
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Proceedings of the

32nd USENIX Security Symposium

is sponsored by USENIX.

ASSET: Robust Backdoor Data Detection Across
a Multiplicity of Deep Learning Paradigms

Minzhou Pan and Yi Zeng, Virginia Tech; Lingjuan Lyu, Sony AI;

Xue Lin, Northeastern University; Ruoxi Jia, Virginia Tech

https://www.usenix.org/conference/usenixsecurity23/presentation/pan

ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning

Paradigms

Minzhou Pan∗*1, Yi Zeng*1, Lingjuan Lyu2, Xue Lin3 and Ruoxi Jia1

1Virginia Tech, Blacksburg, VA 24061, USA
2Sony AI, Tokyo, 108-0075, Japan

3Northeastern University, Boston, MA 02115, USA

Abstract
Backdoor data detection is traditionally studied in an end-

to-end supervised learning (SL) setting. However, recent years

have seen the proliferating adoption of self-supervised learn-

ing (SSL) and transfer learning (TL), due to their lesser need

for labeled data. Successful backdoor attacks have also been

demonstrated in these new settings. However, we lack a thor-

ough understanding of the applicability of existing detection

methods across a variety of learning settings. By evaluating 56

attack settings, we show that the performance of most existing

detection methods varies significantly across different attacks

and poison ratios, and all fail on the state-of-the-art clean-label

backdoor attack which only manipulates a few training data’s

features with imperceptible noise without changing labels. In

addition, existing methods either become inapplicable or suf-

fer large performance losses when applied to SSL and TL. We

propose a new detection method called Active Separation via

Offset (ASSET), which actively induces different model be-

haviors between the backdoor and clean samples to promote

their separation. We also provide procedures to adaptively

select the number of suspicious points to remove. In the end-

to-end SL setting, ASSET is superior to existing methods

in terms of consistency of defensive performance across dif-

ferent attacks and robustness to changes in poison ratios; in

particular, it is the only method that can detect the state-of-the-

art clean-label attack. Moreover, ASSET’s average detection

rates are higher than the best existing methods in SSL and

TL, respectively, by 69.3% and 33.2%, thus providing the first

practical backdoor defense for these emerging DL settings.

1 Introduction
Deployment of deep learning (DL) in critical services and

infrastructures calls for special emphasis on security, given

its susceptibility to erroneous predictions in the presence of

attacks [1±3]. Specifically, data-poisoning-based backdoor

attacks - where attackers manipulate the training data to force

certain outputs during testing - pose a significant threat. Suc-

cessful attacks have been demonstrated on various computer

∗Y. Zeng and M. Pan contributed equally. Correspond Y. Zeng or R. Jia.

Figure 1: Illustration of popular DL paradigms and corre-

sponding threat models. Case-0: traditional end-to-end SL,

where one trains a model from scratch. Case-1: SSL adap-

tation, where one first pre-trains a model via SSL using un-

labeled pre-training data and then linearly adapts to a small

amount of labeled data to obtain the final model. Case-2: TL,

where one starts with an existing pre-trained model and fine-

tunes it. Existing work has demonstrated successful attacks in

all three cases under the threat models where datasets marked

with red circle indicates poisons. Yet, none of the existing

backdoor detection methods is evaluated in all three cases.

vision tasks and beyond [4]. This paper focuses on the prob-

lem of detecting the poisoned samples within a training set.

An effective detection strategy allows one to mitigate the risk

of backdoors by removing suspicious samples from training.

Poisoned samples can be regarded as outliers in a train-

ing set. However, unlike arbitrary outliers considered in the

classical outlier detection and robust statistics literature, poi-

soned samples are special outliers that induce specific model

behaviors, e.g., misleading the model to predict some target

class(es). Hence, recent works on backdoor detection primar-

ily leverage the model trained on the poisoned dataset (back-

doored model hereinafter) or information cached during train-

ing to help discover poisoned samples [5±11]. For instance,

most of the prior work starts by extracting the backdoored

model’s output [6], intermediate activation patterns [7±10],

gradient [11] for each sample, and then separate poisons from

clean samples based on the extracted information.

While taking advantage of the information collected from

USENIX Association 32nd USENIX Security Symposium 2725

the downstream learning process provides a clear path to en-

hancing backdoor detection performance, it also raises the

question: Can these detection methods maintain their per-

formance across different DL settings? Particularly, existing

detection methods are exclusively evaluated in only one learn-

ing settingÐend-to-end supervised learning (SL), where a

labeled poisoned dataset is used to train a model from scratch.

On the other hand, new learning paradigms are increasingly

adopted and have demonstrated state-of-the-art prediction per-

formance with reduced annotation costs and computational

burden [12±15]. The two most representative and popular

paradigms are self-supervised learning (SSL) adaptation and

transfer learning (TL), as illustrated in Figure 1.

In SSL adaptation, one pre-trains a model on large un-

labeled data (e.g., through contrastive learning [16±18] or

masked autoencoder (MAE) [13]) and then fine-tunes only

the last layer using labeled data from a specific downstream

task. Recent work [19±21] has shown that an attacker can

poison the unlabeled dataset to implant backdoors without

any control over downstream fine-tuning processes. Thus, it is

natural to ask: Can we detect the poisoned samples within an

unlabeled dataset using existing methods? In TL, one starts

with an existing pre-trained model and fine-tunes all layers of

the model or just the last layer with labeled data. Despite the

importance of TL in practice [22], we lack an understanding

of backdoor detection in this setting: Can we detect the poi-

soned samples when they are used for fine-tuning an existing

model instead of training it from scratch?

Our first contribution is a comprehensive evaluation of

existing detection methods across different DL paradigms.

The key findings are summarized as follows.

• (Case-0) End-to-end SL: Despite the efficiency demon-

strated by prior detection efforts in specific settings, the

consistency of efficacy varies a lot across different at-

tacks or poison ratios. In particular, all fail to detect the

state-of-the-art clean-label backdoor attack1 [2] and un-

derperform in the very low or very high poison ratio

setting (e.g., 0.05% or 20%).

• (Case-1) SSL adaptation: There are no existing meth-

ods dedicated to detecting unlabeled poisoned samples

in the SSL setting. Yet, some of the existing methods

can be adapted to the SSL. For instance, those methods

attempting to separate the poisoned samples from clean

in the embedding space can employ an embedder learned

from unlabeled data to generate the embedding for each

sample 2. However, the performance of these methods

after adaptation is limited (e.g., their average detection

rate over different attacks all falls below 26%).

• Case-2 TL: While prior literature omitted TL in their

evaluation, the detection methods can all be applied to

it. However, the methods based on embeddings suffer a

1Clean-label attacks refer to those where the poisoned samples appear to

be correctly labeled to a human inspector.
2We will elaborate on the adaptation techniques in Section 5.1.

Spectral

[7]

Spectre

[8]

Beatrix

[9]

AC

[10]

ABL

[11]

Strip

[6]

CT

[23]
Ours

Applicable to

Labeled Data
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Applicable to

Unlabeled Data
⃝ ⃝ ⃝ ⃝ ⃝ ⃝ × ✓

Robust to

Diff. Triggers
× × × × × × × ✓

Robust to Diff.

Poison Ratios
× × × × × × × ✓

Table 1: A summary and comparison of representative works

in the detection of backdoored samples. ⃝ denotes partially

satisfactory (i.e., requiring additional adaptation).

significant performance loss compared to the end-to-end

SL setting because the poisoned samples are less distin-

guishable from clean ones in a fine-tuned embedding

space than a trained-from-scratch one.

The limitations of existing methods per our evaluation are

summarized in Table 1. Overall, there still lacks a detection

method that is effective across different learning paradigms.

Our second contribution is the development of a robust,

generic approach to backdoor detection that applies to the

three representative learning paradigms discussed above.

Like most existing literature [6, 8, 9], our approach also as-

sumes that the defender has an extra set of clean samples

(referred to as a base set hereinafter) with a size much smaller

compared to the training set. In practice, these clean sam-

ples can be obtained through manual inspection or automatic

screening [24]. However, unlike the previous works, we do

not require the base set to be labeled.

The key idea of our approach is to induce different model

behaviors between poisoned samples and clean ones. To

achieve this, we design a two-step optimization process: we

first minimize some loss on the clean base set; then, we at-

tempt to offset the effect of the first minimization on the clean

distribution by maximizing the same loss on the entire training

set including both clean and poisoned samples. The outcome

of this two-step process is a model which returns high loss

for poisoned samples and low loss for clean ones. Hence, we

can decide whether a sample is poisoned or clean based on

the corresponding loss value.

We found that the two-step optimization-based offset idea

achieves strong detection performance except in settings

where the poison ratio is low, or the learning of the poisoned

samples happens slowlyÐat roughly the same speed as learn-

ing of clean samples. As we will explicate later in the paper,

in these cases, the effect of the second maximization signif-

icantly outweighs that of the first minimization; as a result,

both poisoned and clean samples achieve large losses and

become inseparable.

To tackle the challenge, we propose a strengthened tech-

nique that involves two nested offset procedures, and the inner

offset reinforces the outer one. Specifically, we use the inner

offset procedure to identify the points most likely to be poi-

soned and mark them as suspicious; the outer offset procedure

still minimizes some loss on the clean base set, but the maxi-

mization will now be performed on the points marked to be

suspicious by the inner offset, instead of the entire poisoned

2726 32nd USENIX Security Symposium USENIX Association

dataset. As the proportion of clean samples within the suspi-

cious set is much smaller than that within the entire poisoned

set, the small loss of clean samples obtained from the first

minimization would be impacted much less by the second

maximization. This nested design effectively improves the

separability between clean and poisoned samples.

Our third contribution is the provision of techniques

that can adaptively set the loss threshold to discern poi-

soned samples. Some of the prior works [7, 8] assume the

knowledge of poison ratio and mark a fixed number of samples

as poisoned ones based on their respective criteria. Moreover,

the poisoned and clean samples often do not have a clear sep-

aration based on their criteria (see examples in Figure 5); as a

result, their detection performance is very sensitive to the esti-

mated poison ratio. We argue that in practice, it is challenging

to have an accurate estimate of the poison ratio. Hence, it is

preferable to adapt detection to the data characteristics rather

than relying on a fixed estimate. Herein, we design two adap-

tive thresholding techniques tailored to specific requirements

imposed by inner and outer offset procedures (i.e., prioritizing

precision vs. prioritizing true positive rate).

We conduct extensive experiments in comparison with

seven representative or state-of-art backdoor data detection

methods over 56 different attack settings across various DL

paradigms and show that our proposed method, ASSET, is

the only one that can provide reliable detection consistently

across all the evaluated settings. This work is also the first

practical backdoor detection for the SSL and the TL settings3.

2 Background & Related Work

End-to-end supervised learning & transfer learning. The

objective of end-to-end SL is to train a classifier f (·|θ) : X →
[k], which predicts the label y∈ [k] of an input x∈X . θ denotes

the parameters of the classifier f (·|θ). The standard end-to-

end SL (Case-0) consists of two stages: training and testing.

In the training stage, a learning algorithm is provided with a

set of training data, D = {(xi,yi)}
N
i=1, consisting of examples

from k classes. Then, the learning algorithm seeks the model

parameters, θ, that minimize the empirical risk:

θ∗ = argmin
θ

N

∑
i=1

L (f (xi|θ) ,yi) . (1)

When f (·|θ) is a deep neural network, the corresponding

empirical risk is a non-convex function of θ, and finding a

global minimum is generally impossible. Hence, the standard

practice is to look for a local minimum. Algorithmically, the

model is initialized with random parameters and updated itera-

tively via stochastic gradient descent [25]. In the test stage, the

trained model f (·|θ∗) takes input test examples and serves up

predictions. TL (Case-2) shares the same optimization goal as

the end-to-end SL. However, TL initializes the optimization

with a pre-trained backbone model instead of random param-

eters. Within the scope of this paper, we consider two of the

3Open-source: https://github.com/ruoxi-jia-group/ASSET

Figure 2: Illustration of representative SSL methods: Sim-

CLR [12], MoCo V3 [12], BYOL [18], and the Masked Auto-

Encoder [13]. The solid gray arrow indicates forward propa-

gation, and the dashed black arrow indicates backpropagation.

most popular TL schemes: (1) FT-all: the entire pre-trained

model gets updated during training (e.g., [13, 14, 26]); (2)

FT-last (or linear adaptation): only the last fully-connected

layer is updated (e.g., [15, 16, 27]). In the context of TL, we

will refer to solving the optimization (1) as fine-tuning and D

as the fine-tuning data.

Self-supervised learning. SSL usually consists of two phases:

pretext training and fine-tuning. Pretext training aims to train

an encoder f (·|θ) : X → Z that can map the input x ∈ X

into the embedding z ∈ Z. θ denotes the parameters of the

encoder f (·|θ). This paper focuses primarily on two of the

most recent SSL schemes: contrastive learning and masked

auto-encoder (MAE). Their training processes are illustrated

in Figure 2, where M is a multi-layer perceptron (MLP) used

to reduce the dimension of features, and P is a predictor. The

fundamental idea of contrastive learning, e.g., SimCLR [12],

MoCo V3 [17], and BYOL [18], is to learn an encoder by

bringing the embeddings corresponding to the augmentations

of the same image (a.k.a. positive pairs) closer and distanc-

ing its embeddings from other images (a.k.a. negative pairs).

All three methods pre-train f (·|θ), M and P (if applicable)

on large amounts of unlabeled data, and differ in how they

generate positive and negative pairs and in the loss functions

they use for training. We refer interested readers to [28] for

more details. By contrast, the recently proposed SSL method,

MAE [13], trains the encoder f (·|θ) by masking a portion

of pixels in an image x (the masked image is denoted by x′)

and then using f (x′|θ) with a decoder d(·) to restore x. For

all the aforementioned SSL methods, after the pretext train-

ing, the acquired encoder parameters θ∗ will be adapted to a

downstream task similarly to TL using the fine-tuning data.

Backdoor attacks. Backdoor attacks have been extensively

studied in the end-to-end SL setting and can be categorized

into dirty-label and clean-label attacks. Dirty-label backdoor

attacks manipulate both label and feature of a sample. These

attacks have developed from using a sample-independent vis-

ible pattern as the trigger [1, 29±31] to more stealthy and

powerful attacks with sample-specific [32] or visually imper-

ceptible triggers [33±38]. Clean-label backdoor attacks ensure

that the manipulated features are semantically consistent with

corresponding labels. Existing attacks in this category range

from inserting arbitrary triggers [39±41] to optimized trig-

USENIX Association 32nd USENIX Security Symposium 2727

gers [2]. Most of the above backdoor attacks can be easily

adapted to TL settings without modifications. There are also

backdoor attacks specifically designed for TL settings, e.g.,

the hidden trigger backdoor attack [40].

With the thriving development of SSL, especially con-

trastive learning (e.g., SimCLR [12, 16], MoCo [17, 42, 43],

BYOL [18]) and the MAE [13], backdoor attacks targeting

SSL have also been explored. Recent work mainly applies

existing dirty-label backdoor triggers studied in SL to the

targeted category of samples [19, 20]. However, attacks’ effi-

cacy are limited (ASR below 10% on CIFAR-10 even with an

in-class poison ratio set to 50%, as shown in our experiment,

Section 5.3). A recent attack [21] exploits the ªrepresentation

invarianceº property of contrastive learning and instantiate a

symmetric trigger via manipulation in the frequency domain,

achieving much higher ASR with a lower poison ratio (e.g.,

in-class poison ratio of 10%).

Backdoor sample detection. Note that no existing back-

doored sample detection methods have been considered nor

evaluated over cases other than Case-0. In particular, there

is no practical defense under the SSL, and the study in TL

is overlooked. Many of the existing works identify poisoned

samples by examining their difference from clean ones in the

embedding space, such as using singular value decomposition

(SVD) [7, 8], Gram matrix [9], K-Nearest-Neighbors [44],

and feature decomposition [5]. In addition to embeddings,

intermediate neural activation [10, 45] and gradients [46, 47]

extracted from samples can also be adopted for backdoored

sample detection. Past work has also examined other differ-

entiating properties of backdoor samples, such as trigger’s

resistance to augmentations [6], high-frequency artifacts [36],

low contribution to the training task [48,49], or backdoor sam-

ples may achieve lower loss at the early stage of training [11].

A recent work [23] proposed a confusion training proce-

dure, which trains a model on a weighted combination of the

randomly-labeled clean base set and the poisoned set. Intro-

ducing a randomly-labeled clean set into training prevents

the model from fitting to the clean portion of the poisoned

data, thereby allowing the identification of poisoned samples

whose labels are consistent throughout the training process.

Our experiment found that the effectiveness of [23] highly

relies on the hyperparameter tuning of the weighted combined-

training process and the performance varies significantly with

poison ratios. Additionally, the fundamental assumption is

that decoupling the benign correlations between semantic fea-

tures and semantic labels does not influence the learnability

of the correlations between backdoor triggers and target la-

bels. However, some advanced clean-label backdoor attack

trigger [2] strongly entangles with the semantic features of

the target class; therefore, [23] falls short of detecting the

trigger. At a high level, confusion training shares a similar

idea to ours in the sense that we both leverage a clean base set

to induce different detector behaviors between clean and poi-

soned samples. However, there are several key differences in

the method design: our approach induces different behaviors

by optimizing opposite optimization objectives on the base

set and the poisoned set, whereas confusion training relies on

random labeling to disrupt the learning of the clean samples.

Importantly, we design a nested procedure that can effectively

deal with the failure cases of [23]. Moreover, our method dis-

tinguishes itself from [23] by providing additional important

advantages: (1) our approach does not require the poisoned

set to be labeled, thereby enabling applications in SSL set-

tings; and (2) our approach is robust to different poison ratios

without ratio-specific tuning and can effectively detect attacks

generating triggers entangled with semantic features.

3 Attacker & Defender Models

This section discusses standard threat models and assump-

tions about defender knowledge for different DL paradigms.

Case-0 End-to-end SL: In this setting, the attacker performs

the backdoor attack by injecting a set of poisoned samples into

the training dataset. The defender has access to the poisoned

training dataset and the downstream learning algorithm. The

defender’s goal is to identify the poisoned samples within

the training set and further remove the identified samples to

prevent backdoor attacks from taking effect.

Case-1 SSL Adaptation: Under this setting, the attacker

performs the backdoor attack by poisoning the unlabeled

dataset [20, 21]. Following prior attack literature, we assume

that the attacker does not have access to the fine-tuning taskÐ

the dataset or algorithm. Thus, the dataset used for fine-tuning

is clean, and the attack only affects the unlabeled dataset. The

defender has access to the complete training data, including

both the data for SSL as well as the data for fine-tuning. In

addition, the defender knows the algorithm for SSL and fine-

tuning. The goal of the defender is to identify and remove

the poisoned samples from the unlabeled dataset. Other at-

tack settings target multi-modal contrastive learning, such as

attacking the CLIP [19], is not considered in this case, as

training CLIP requires additional text input supervision [50].

Case-2 Transfer Learning: The attacker performs the back-

door attack by poisoning a labeled dataset used for fine-tuning

an existing pre-trained model. The defender knows the pre-

trained model, the entire fine-tuning dataset (whose size often

cannot support training a model from scratch), as well as the

fine-tuning algorithm. The goal of the defender is to detect

the poisoned samples within the fine-tuning dataset.

In all three cases, we assume the attacker can poison no

more than half of the training dataset. We also assume that

the defender has a small set of clean, unlabeled samples (the

base set) to help with detection. These clean samples can

be manually or automatically screened [24]. Compared with

most recent detection methods [23], which require a labeled

clean base set of at least 2000 samples, our method relaxes

the requirement on the label information.

2728 32nd USENIX Security Symposium USENIX Association

4 Proposed Method

4.1 Key Idea

Figure 3: Illustration of (a) single off-

set procedure and (b) how the power

of differentiating between clean and

poison improves when the single off-

set is replaced by a nested loop.

Our goal is to en-

force distinguishable

model behaviors on

poisoned and clean

samples actively. The

key idea is to de-

sign two optimiza-

tions that induce op-

posite model behav-

iors on the poisoned

dataset (including its

clean and poisoned

portion) and the clean

base set. Specifically, the two optimizations are performed

simultaneously, where the first one minimizes a certain loss

function on the clean base set and the second one maximizes

the same loss on the entire poisoned training dataset. Note that

the clean portion of the poisoned dataset and the clean base

set are both drawn from the same clean distribution. Hence,

the effect of the second optimization on the clean samples

will be offset by the first optimization, and the loss on clean

samples after the two optimizations is closer to the loss before.

By contrast, the poisoned samples only go through the second

optimization; therefore, the loss on the poisoned samples is

maximized. Overall, as a result of the two optimizations, poi-

soned and clean samples will produce different loss values,

thus becoming separable. The single offset’s effect on clean

samples and poisoned samples is illustrated in Figure 3 (a).

Intuition on the distinguishability of poisons. Poisoning,

whether through additive triggers [1], generative models [32],

affine transformations [35], or even adaptive perturbation tech-

niques [36], introduces a distributional shift from clean data.

The resulting poisoning distribution and the original clean

distribution have disjoint support, and thus the total variation

(TV) distance between the two distributions is one. The Le

Cam’s lower bound, a classic result in statistical learning (refer

to Chapter 15 in [51]), states that the minimum error over all

detectors that classify the samples from two distributions, P1

and P2, is equal to 1/2(1−∥P1−P2∥TV). Hence, there exists

a detector achieving zero error probability for distinguishing

between poisons and non-poisons. Le Cam’s bound guaran-

tees the existence of a good detector as long as poisons do not

naturally appear in the clean distribution, and our method to

be introduced is an effort to find such a detector based on the

information of a clean base set.

4.2 Detection via Offset

Now, we formalize the offset idea for poisoned sample

detection. Let Db denote the clean base set and Dpoi denote

the poisoned training set. Formally, we can characterize the

process of inducing distinguishable behaviors on poisoned

and clean samples as a multi-objective optimization:

θ∗ ∈ argmin
θ

1

|Db|
∑

xb∈Db

Lmin (f (xb|θ))

−
1

∣
∣Dpoi

∣
∣ ∑

xpoi∈Dpoi

Lmax

(
f (xpoi|θ)

)
. (2)

When discussing the high-level idea of our method, we assume

that the minimization and maximization employ the same

objective, i.e., Lmin = Lmax. However, these two functions can

also be different; as long as minimizing Lmin and maximizing

Lmax induce different model behaviors, one optimization will

mitigate the effect of the other on the clean distribution.

In the implementation, we do not directly solve the opti-

mization with two optimizations at the same time due to the

instability of the corresponding optimization path; instead, we

loop between two objectives:

1. We first minimize Lmin by taking a gradient descent step

on a mini-batch drawn from the base set;
2. Then, we utilize the resulting model as the initializer for

maximizing Lmax and perform a gradient ascent step on

a mini-batch drawn from the poisoned set;
3. Repeat the above two steps.

We empirically observe the alternating procedure is stable. As

the focus of the paper is to develop practical detection meth-

ods, we will defer the theoretical analysis of this procedureÐ

an interesting open problemÐfor future work.

Next, we will discuss which loss function we shall use to in-

stantiate Lmin and Lmax. With the goal of detecting unlabeled

poisoned data in mind, we propose a loss function, which cal-

culates the variance of the logits. Let f (x|θ) denote the output

logit of a model that is parameterized by θ and takes x as input.

For a model that performs k-class classification, f (x|θ) ∈ R
k

and the i-th class logit is denoted by f (x|θ)i. Furthermore, let

f (x|θ) denote the average of the output logits of all classes.

Then, our proposed loss function can be expressed as

Lvar(f (x|θ)) =
1

k

k

∑
i=0

(

f (x|θ)i− f (x|θ)

)2

. (3)

When the detection is performed on the unlabeled data, we

can instantiate both Lmin and Lmax to be Lvar defined above,

because calculating Lvar does not require label information.

As the result of minimizing Lmin, the clean samples are forced

to have a flat logit pattern. Then, the maximization optimiza-

tion maximizes the same loss on the poisoned dataset, which

induces high-variance logits for poisoned samples. For clean

samples, the effects of maximization and minimization are

roughly canceled out. Therefore, clean samples are expected

to produce lower-variance logits than poisoned samples.

When the detection is performed on a labeled poisoned

dataset, we find that instantiating Lmax with the cross-entropy-

based prediction loss Lce achieves a good detection perfor-

mance faster than Lvar:

Lce(f (x|θ),y) =−
k

∑
i=1

yi logσ(f (x|θ))i, (4)

where σ(x)i denotes the i-th output of the softmax and y rep-

resents the one-hot encoding of x’s label.

USENIX Association 32nd USENIX Security Symposium 2729

It is worth mentioning that we fix the minimization loss

to be Lvar regardless of whether the base set is labeled or

unlabeled. We found that even when the label information

is available, this choice still leads to better detection perfor-

mance than using Lce as the minimization goal. This is be-

cause learning through minimizing Lvar will make the model

extract class-independent features. A mini-batch of the base

set may be class-imbalanced or sometimes contain only par-

tial classes due to random sampling. Hence, Lvar can be more

steadily minimized than Lce via mini-batch gradients.

4.3 Strengthened Detection via Nested Offset
Weakness of a single offset. Despite the neatness of the

offset idea, directly solving the two optimizations with the

proposed loss functions is limited in tackling attacks with low

poison ratio and the settings where poisoned samples take

effect slowly during training (i.e., attacks need many epochs

of training to obtain a high enough success rate; examples of

such attacks include [2,21]). The reasons are as follows. In the

low poison ratio setting, mini-batches naturally contain very

small amounts of poisoned samples; on the other hand, each

gradient ascent step takes a step towards reducing the average

loss over a mini-batch and tends to overlook the minorities.

Hence, the loss of poisoned samples would be increased by

less with a lower poison ratio. To explain the second limitation,

note that θ is an over-parameterized model (e.g., ResNet-18

and Vision Transformer). If an attack takes many epochs to

take effect, then we need to train θ for long enough. The

model after long training will end up ªmemorizingº all the

samples from the base set and the poisoned set, i.e., all the

samples from the base set achieve a low value of Lmin and all

the samples from the poisoned set (including both clean and

poisoned samples) to achieve a high value of Lmax. In that

case, the poisoned portion and the clean one are inseparable.

How to mitigate these failure cases? To illustrate our idea,

let us think about a hypothetical design, assuming one can

perfectly pinpoint a set of poisoned samples. In this design,

we keep the first step minimizing on the clean base set, but

the second maximization is performed on purely poisoned

samples instead of the poisoned training set, which generally

contains a large portion of clean samples and only a small

portion of poisoned samples. This hypothetical design would

be able to solve the two failure cases above. For the first case,

since mini-batches for maximization contain solely poisoned

samples, the poisoned samples would still have their loss

increased and thus is distinguishable from the clean ones. For

the second case, while long training can lead to memorization

but with the hypothetical design, it is just the poisoned samples

that get memorized and are assigned with high loss; therefore,

the poisoned samples and the clean ones are still separable.

While having access to a set of purely poisoned samples is

not realistic, this thought experiment inspires an idea to im-

prove an offset-based detection approach, which is to replace

the poisoned training set (dominated by clean samples) with a

set dominated by poisoned samples in the second maximiza-

tion. To form such a poison-dominated set, we can leverage a

new offset loop (referred to as the inner offset loop) to mark

a set of the most suspicious samples. Then, we use those

samples to perform maximization of the original offset loop

(referred to as the outer offset loop).

How to design the inner offset loop that provides a poison-

condensed set? First, it is not ideal to reuse the design of the

outer loop for this inner one, because in that case the inner

would suffer the same ªmemorizationº issue. Instead, we aim

to avoid ªoverparameterizedº models and perform the inner

loop with a simple model. On the other hand, a simple model

could be incapable of extracting complex features to support

the detection of poisoned samples. Our solution is to use the

poisoned model (i.e., the downstream model trained on the

poisoned dataset) to extract features from the poisoned set

and the base set and then optimize a simple model to detect

the poisoned samples in the feature space.

Note that the embedding space of a poisoned model has

been shown to be informative to detect many but not all back-

door attacks (detailed in Section 5). Although the poisoned

and clean samples are not perfectly separable based on the

embeddingsÐas illustrated in Figure 6Ðthe reason why these

methods underperform in many cases, the poisoned model still

provides a well-trained embedding space and some imperfect

signals for selecting a poison-condensed set.

Detailed design of the inner offset loop. The inner offset

loop is executed inside the previous offset loop (Eqn. 2). It

condenses the poison in a mini-batch sampled by the maxi-

mization step of the outer offset loop. Specifically, the inner

offset loop will return a set of samples marked as poison. We

will use this poison-condensed subset of the original mini-

batch to perform the outer maximization. When the inner loop

is relatively precise in gathering a poison-condensed subset,

the outer loop will maximize the outer loss of poisoned sam-

ples without introducing much offset effect on clean samples.

As a result, the poisoned and clean samples become more

distinguishable in terms of the outer loss compared to a sin-

gle offset loop via Eqn. 2. An intuitive explanation of the

improvement is illustrated by Figure 3 (b).

Let f (x|θ∗poi) denote the poisoned model, and its parameters

are given by θ∗poi. Let M(·|w) be a mapping from the logits to

a real value in the range [0,1], and w denotes its parameters.

The inner offset can be characterized by

w∗ = argmin
w

1

|Bb|
∑

xb∈Bb

LBCE

(
M(f (xb|θ

∗
poi)|w),0

)

︸ ︷︷ ︸

L1

+
1

∣
∣Bpoi

∣
∣ ∑

xpoi∈Bpoi

LBCE

(
M(f (xpoi|θ

∗
poi)|w),1

)

︸ ︷︷ ︸

L2

, (5)

where LBCE(p,q) =−p logq+(1− p) log(1−q), represent-

ing the binary cross entropy loss and Bb and Bpoi stand for a

mini-batch drawn from the clean base set and the poisoned

training set, respectively.

2730 32nd USENIX Security Symposium USENIX Association

The first minimization objective will encourage learning a

mapping M such that the mini-batch from the clean base set

is labeled as ª0º; the second objective will further promote

M to label the mini-batch from the poisoned set as ª1º. By

minimizing the two objectives simultaneously, the effect on

the clean data gets canceled. As a result, the clean samples

will be predicted as ª1º with low confidence, yet the poisoned

ones will be predicted as ª1º with high confidence. Then,

we can mark the samples with the highest confidence or the

lowest BCE loss for predicting ª1º as the suspicious poisoned

samples. In practice, M is implemented as a two-layer, full-

connected network with 128 hidden neurons. Again, to avoid

stability issues, in the implementation, we first take a gradient

descent step to minimize L1 and then take a gradient ascent

step to minimize L2, and alternate between the two steps.

The pseudo-code for the inner offset loop is provided in

Algorithm 1, termed Poison Concentration.

Algorithm 1: Poison Concentration

Input: θ∗poi (Poisoned feature extractor);

Bpoi (Poisoned training mini-batch);

Bb (Base set mini-batch);

Output: Bpc (Poison concentrated mini-batch);

Parameters: N (Total inner loop iteration number);

γ > 0 (Step size);

λ (Threshold);

/* 1.Dynamic training of M */

1 for each iteration j in (0,N −1) do

2 M′j←M j− γ 1
|Bb|

∑xb∈Bb

∂LBCE(M(f (xb|θ
∗
poi)),0)

∂M
;

3 M j+1←M′j− γ 1
|Bpoi|

∑xpoi∈Bpoi

∂LBCE(M′(f (xpoi|θ
∗
poi)),1)

∂M′
;

/* 2.Get output values */

4 V ←MN

(

f (Bpoi|θ
∗
poi)

)

;

/* 3.Using AO to determine outliers */

5 Bpc← Bpoi[AO(V)≥ λ];
6 return Bpc

Adaptive thresholding for the inner offset. The last step of

Poison Concentration is to select the subset marked as poison

based on the confidence score output by M. We will elaborate

on how to adaptively choose the size of this subset. First, di-

rectly adopting a fixed threshold to identify the most likely

poisoned samples is impractical, as different mini-batches

may contain different amounts of poisons. To tackle this prob-

lem, we adopt Adjusted Outlyingness (AO) [52] to adaptively

determine the number of most suspicious samples within each

mini-batch. AO maps the BCE losses into a scale such that a

fixed threshold can effectively identify the most suspicious

samples. Note that AO does not aim to filter out as many poi-

soned samples as possible within the mini-batch; instead, it is

adopted to achieve high precision, i.e., identifying a subset of

the mini-batch that is dominated by poisoned samples. In the

evaluation, we threshold the output of AO with 2. By the na-

ture of AO, we are essentially adopting an adaptive threshold

despite using a fixed output value (see Figure 8).

4.4 Overall Workflow

The overall algorithm of ASSET with two offset loops is

presented in Algorithm 2. Functionally speaking, the inner

loop condenses the poison within each mini-batch drawn from

the poisoned dataset, the outer loop induces different model

behaviors on clean samples and poisoned samples. At each

iteration of the outer, we minimize Lvar by taking mini-batch

gradient descent with samples from the clean base set; then,

we perform the poison concentration step: the inner returns

subset of samples most likely to be poisoned; then proceed

to the maximization step of the outer Lmax by doing gradient

ascent with the suspicious points returned by the inner. In the

end, we can obtain a detector model f (·|θI) with parameters

θI obtained after I outer iterations and this model induces

different values of Lmax between clean and poisoned samples.

Algorithm 2: ASSET Backdoor Detection

Input: θ0 (Initialized detector);

θ∗poi (Poisoned feature extractor);

Dpoi (Poisoned training set);

Db (Base set);

Output: Spoi (Indexes of the detected poisoned samples);

Parameters: I (Total outer loop iteration number);

α > 0 (Step size);

1 for each iteration i in (0,I −1) do

/* 1. Obtaining mini-batches */

2 Bi
poi← Bi

poi ∈ Dpoi;

3 Bi
b← Bi

b ∈ Db;

/* 2. Minimization */

4 θ′ =← θi−α 1
|Bi

b|
∑xi

b∈Bi
b

∂Lvar(f (xi
b|θi))

∂θi
;

/* 3. Poison Concentration */

5 Bi
pc← Poison Concentration

(

Bi
poi,B

i
b,θ
∗
poi

)

;

/* 4. Maximization */

6 θi+1← θ′i +α 1
|Bi

pc|
∑xi

pc∈Bi
pc

∂Lmax(f (xi
pc|θ

′))
∂θ′

;

/* 5.Get output loss values */

7 V ← Lmax

(
f (Dpoi|θI)

)
;

/* 6.Detection result via adaptive GMM */

8 Spoi← adaptive GMM(V);
9 return Spoi

Adaptive thresholding for the outer loop. With the trained

detector model, θI , we now discuss how to identify the poi-

soned samples. Similar to the inner, we propose an adaptive

thresholding method for the outer as well. Note that the thresh-

old of the inner and outer loop has distinct goals. The inner

loop aims to identify a subset with a high density of poisons,

while the outer loop aims to adaptively conduct a split be-

tween the clean and poisoned loss distribution that helps the

detector to remove as many poisons as possible while main-

taining a low false positive, i.e., high precision is prioritized

for the inner yet high recall is prioritized for the latter.

As will be shown later, after the overall optimization,

f (·|θI) will output distinct loss distribution for the clean and

poisoned samples. One might be tempted to directly fit a Gaus-

USENIX Association 32nd USENIX Security Symposium 2731

Figure 4: Illustration of (a) the problem of GMM over long-

tailed cases where the attacks are of low poison ratio and (b)

how the proposed adaptive GMM can help.

sian Mixture Model (GMM) with two components. However,

doing so is problematic, as depicted in Figure 4. Since there

are usually much fewer poisoned samples than clean ones, the

GMM tends to split the multiple-modal clean distribution into

two Gaussian distributions instead of fitting two Gaussians

respectively to the clean and poison distributions.

To tackle this problem, we propose a simple twist of GMM,

termed adaptive GMM. We first abandon half of the samples

achieving the highest values of Lmax, which will remove all

the poisoned samples (we assume the attacker can poison no

more than half of the training dataset, Section 3). Then, we fit a

Gaussian to the remaining points. Since the optimized detector

model largely centers the clean samples’ loss close to Lvar =
0 or Lce = − log(1

k
), the Gaussian fitted on the remaining

samples remains similar to the Gaussian fitted on all the non-

poisons (see Figure 4 (b)). Lastly, we set a small threshold

on the Gaussian density, β, to cut off the samples that are

unlikely to be generated from the fitted Gaussian. In practice,

we set the cut-off threshold as β = 10−6, which equivalently

keeps the lowest-loss samples with a probability higher than

> 99.99% being generated from the fitted Gaussian (for any

Gaussian distribution with a variance smaller than 10).

5 Evaluation
Our evaluation aims to answer the following questions.

• Case-0 (Section 5.2): How does ASSET compare with

other methods in end-to-end SL setting? Is detection

effective when multiple attacks exist simultaneously?

How does the detection performance vary over different

attacks and poison ratios?

• Case-1 (Section 5.3): Can ASSET robustly detect at-

tacks in SSL settings? How does the knowledge about

downstream tasks affect the defense’s effect?

• Case-2 (Section 5.4): Can ASSET provide reliable back-

door sample detection in TL settings? What are the limi-

tations of other defenses in this setting?

• Adaptive Attack (Section 5.5): Is it possible to adap-

tively evade ASSET’s detection?

• Ablation Study (Appendix 6.4): How do different de-

sign choices affect the final performance of ASSET?

5.1 Settings
Evaluation metrics. There are two key aspects throughout

our evaluation: (1) How accurately can the poisoned samples

be detected (upstream evaluation)? (2) After the suspicious

points are removed, how would a downstream model learn

from the remaining data perform (downstream evaluation)?

For upstream evaluation, we utilize two metrics, namely,

True Positive Rate (TPR), T PR = T P/(T P+FN), and False

Positive Rate (FPR), FPR = FP/(FP+T N), where T P, FP,

T N, and FN denote the number of true positives, false posi-

tives, true negatives, and false negatives, respectively4. TPR

depicts how well a specific backdoor detection method filters

out the backdoored samples. A higher TPR (closer to 100%)

denotes a stronger filtering ability. FPR depicts how precise

the filtering is: when a specific method achieves TPR that is

high enough, FPR helps us to understand the trade-off, i.e.,

how many clean samples are wasted and wrongly flagged as

backdoored during the detection. A lower FPR shows that

fewer clean samples are wasted, and more clean data shall be

kept and available for downstream usage.

One thing worth noting is that no detection method can

reliably remove all the poisoned samples. However, the re-

mained backdoor samples that go unnoticed by a successful

defense should be small enough to deactivate attacks. Thus,

we evaluate the backdoor attacks’ Attack Success Rate (ASR)

on the downstream model trained using the filtered dataset to

study whether the detection is good enough to stop attacks.

ASR measures the proportion of backdoored test samples be-

ing classified into target classes. Additionally, we evaluate the

downstream model’s Clean Accuracy (ACC). A high ACC

means that the detection method is able to maintain a large

enough clean set to support the model performance.

Dataset & models. We incorporate three standard computer

vision benchmark datasets into our evaluation: CIFAR-10 [53]

(main text), STL-10 [54] (Appendix 6.3), and ImageNet [55]

(a randomly selected 100-class subset, Appendix 6.3). To

ensure the effectiveness of the baselines and fair comparison,

we set the base set size as 1000 for all the settings. We will

later show that our method is robust to different choices of

the base set size in the ablation study, Appendix 6.4. We

obtain a 1000-size clean base set for each dataset by randomly

selecting the samples from the test set and removing their

label information. All the upstream evaluation metrics (i.e.,

TPR and FPR) are evaluated on the respective training sets,

i.e., the training set of Case-0, the fine-tuning set of Case-2,

and the unlabeled pre-training set for Case-1. For Case-0, we

adopt all the remaining data from the test set for evaluation of

the downstream metrics (i.e., ACC and ASR). For Case-1 and

Case-2, we split the remaining test set into half being fine-

tuning set and half being the downstream metric evaluation set.

ResNet-18 [56] is adopted on the CIFAR-10. ViT-Small/16

[14] is adopted on STL-10 and ImageNet (Appendix 6.3).

For Case-1, we incorporate four state-of-the-art SSL training

methods, i.e., SimCLR [12], MoCo V3 [17], BYOL [18], and

the MAE [13], for evaluation. For Case-2, we consider the two

most popular transfer learning cases, namely, FT-all and FT-

last (detailed in Section 2). The pre-trained model parameters

for fine-tuning are loaded from the timm library5.

4Note that poison is considered positive and clean is considered negative.
5https://timm.fast.ai/

2732 32nd USENIX Security Symposium USENIX Association

Dirty-Label Backdoor Attacks Clean-Label Backdoor Attacks
Average Worst-Case

BadNets (5%) Blended (5%) WaNet (10%) ISSBA (1%) LC (1%) SAA (1%) Narci. (0.05%)

(a) Upstream Evaluation

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓

Spectral 95.6 2.86 99.8 2.64 0.64 16.6 0.00 1.52 80.2 0.71 87.6 0.63 0.00 0.08 51.9 3.58 0.00 16.6

Spectre 96.9 0.28 99.8 2.64 1.00 16.6 80.2 0.71 99.8 0.51 99.4 0.51 0.00 0.07 68.2 3.05 0.00 16.6

Beatrix 93.8 1.81 67.9 3.04 82.2 0.53 73.4 1.31 91.2 0.29 69.8 1.58 12.0 1.97 70.4 1.50 12.0 3.04

AC 90.5 40.1 65.4 44.9 8.30 41.5 11.0 41.1 91.2 0.41 75.6 21.5 0.00 34.3 48.9 32.0 0.00 44.9

ABL 85.4 3.40 93.4 2.98 28.1 13.5 55.2 0.96 87.2 0.63 73.4 0.77 0.00 0.07 60.4 3.19 0.00 13.5

Strip 25.4 11.5 17.3 12.1 5.08 10.0 68.8 9.34 100 0.85 63.4 1.22 0.00 0.05 40.0 6.44 0.00 10.0

CT 99.0 3.72 98.1 4.53 95.8 2.64 96.6 4.37 100 9.01 95.2 5.44 0.00 5.54 83.5 5.03 0.00 9.01

Ours 99.5 0.55 100 0.00 90.7 8.09 95.6 0.36 96.2 0.75 96.6 0.39 92.0 0.34 95.8 1.49 90.7 8.09

(b) Downstream Evaluation

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑

No Def. 96.5 93.4 94.9 93.5 99.4 93.5 92.6 94.1 100 94.7 76.7 94.4 99.7 94.9 94.3 94.1 100 93.4

Spectral 48.4 94.5 10.7 94.1 98.9 90.0 93.0 94.1 10.6 94.8 3.11 94.2 99.7 94.8 52.1 93.8 99.7 90.0

Spectre 34.8 94.5 6.57 94.1 100 89.6 14.0 94.3 100 94.7 0.86 94.4 99.8 94.9 50.9 93.8 100 89.6

Beatrix 55.6 93.8 94.9 93.8 2.13 94.1 17.0 94.2 4.12 94.8 8.64 94.3 90.4 94.5 39.0 94.2 94.9 93.8

AC 81.3 76.9 93.3 82.1 99.7 83.1 83.5 81.3 4.31 94.8 7.63 87.7 100 90.7 67.1 85.0 100 76.9

ABL 88.6 92.5 94.2 88.7 90.2 93.1 30.6 94.2 6.32 94.7 7.63 94.4 99.3 94.9 59.6 93.2 99.3 88.7

Strip 76.9 85.3 93.8 87.1 98.6 91.7 25.5 91.0 0.38 94.8 9.63 94.4 99.8 94.9 57.8 91.3 99.8 81.3

CT 3.42 93.1 31.3 91.2 0.53 92.5 1.12 93.2 0.44 91.1 2.16 93.2 100 94.1 19.9 92.6 100 91.1

Ours 2.68 94.9 0.44 95.2 1.89 93.1 1.55 94.8 1.16 94.9 1.14 94.4 9.68 94.9 2.65 94.6 9.68 93.1

Table 2: (a) Upstream and (b) Downstream evaluation and comparison results under Case-0, CIFAR-10. We list the poison ratio

of each attack at the top of each column, which follows the original work that proposed these attacks. We highlight the ASR

below 20% in blue as a success defense, the ASR above 20% in red as a failed defense case.

Baseline defenses. Referring to Table 1, we incorporate a

wide range of existing backdoor detection for comparison,

including both standard baselines used in prior work as well

as state-of-the-art ones. In particular, we consider Spectral [7],

Spectre [8], and the Beatrix [9]; we include AC [10] as a

representative work that utilizes intermediate neural activa-

tion; ABL [11], which was originally a robust training de-

fense and repurposed as a detection method based on output

losses; Strip [6] as a representative detection approach based

on model outputs; and CT [23], the most recent work reported

achieving state-of-the-art performance on end-to-end SL set-

tings based on confusion training. All the implementations

and hyperparameters follow the original papers. For methods

that rely on or can be boosted by an additional base set, e.g.,

Spectre, Beatrix, Strip, CT, we use the same 1000-size base

set as ours. We note that this comparison setting might not be

fair, as compared to these baselines, our method relaxes the

requirement on label information; in addition, AC and ABL

cannot be adapted to use the base set. We want to show that

even without label information, our method can still achieve

comparable or much better results with stronger robustness

than the other baselines. Detailed explanations of the defense

settings and how we adapted them to Case-1 and Case-2 are

provided in Appendix 6.1.

Backdoor attack settings. For Case-0 we incorporate seven

standard or state-of-the-art attacks, including four dirty-label

and clean-label ones. For dirty-label backdoor attacks, we

incorporate localized backdoor attack BadNets [1], global-

wised blended trigger Blended [29], wrapping-based invis-

ible backdoor attack WaNet [35], and the state-of-the-art

sample-specific invisible backdoor attack, ISSBA [32]. For

clean-label attacks, we include the standard Label Consistent

(LC) attack [39], the state-of-the-art feature-collision-based

hidden trigger backdoor, Sleeper Agent Attack (SAA) [41],

and the state-of-the-art optimization-based Narcissus attack

(Narci.) [2]. For Case-1, only limited existing work has ex-

plored the attack over SSL’s unlabeled training set. We in-

corporate the Checkerboard trigger (C-brd) used in [19], the

Colored Square trigger (C-squ) used in [20], and the state-

of-the-art YCbCr frequency-based invisible trigger used in

CTRL [21]. In particular, CTRL has been shown to achieve

a magnitude higher attacking efficacy than [20]. For Case-2,

directly implementing some of the attacks from end-to-end

SL may not lead to effective attacks, e.g., the Blended attack

cannot achieve high ASR under the FT-all settings. Thus, we

consider attacks that can maintain effectiveness for each TL

setting. BadNets and the SAA are adopted for evaluation un-

der the FT-all case. Blended and the hidden trigger backdoor

attack (HTBA) [40] are adopted for the evaluation under the

FT-last case. All the incorporated attacks’ settings, such as

trigger design and trigger strength, all follow their original

papers. Appendix 6.2 details the specifics of these attacks’

setups under each learning paradigm and visual examples of

the poisoned samples we intend to detect.

5.2 Case-0: End-to-end SL
Detection performance against different attacks in SL. Ta-

ble 2 presents the upstream and downstream evaluation results

under the end-to-end SL setting on the CIFAR-10 dataset with

the ResNet-18 model trained from scratch for 200 epochs.

For each different attack, we adopt the poison ratio following

each original paper, which is listed at the top of each column.

We have included the row of ªNo Defenseº in Table 2 (b)

USENIX Association 32nd USENIX Security Symposium 2733

Poison

Ratio%

Spectral

[7]

Spectre

[8]

Beatrix

[9]

AC

[10]

ABL

[9]

Strip

[6]

CT

[9]
Ours

0.05%\25 25 23 13 22 7 19 1 0

1%\500 37 23 13 416 32 446 0 17

5%\2500 109 109 155 238 365 1866 20 13

20%\10000 817 170 113 1086 4590 330 16 7B
a

d
N

et
s

50%\25000 7963 158 264 774 1944 1001 25000 4

0.05%\25 25 25 22 25 19 23 2 4

1%\500 86 44 53 49 41 413 16 2

5%\2500 6 5 803 866 1023 2068 33 0

20%\10000 226 27 31 306 4965 1669 3659 13B
le

n
d

ed

50%\25000 9568 1023 2386 1514 13959 10736 25000 8

Table 3: # poisons remained in the filtered training set af-

ter defense (Case-0, CIFAR-10). Bolded results denote the

smallest value. red to highlight failed defenses where more

than 30 poisoned samples remain as we find this amount of

poisons still enables ASRs greater than 30%.

to show the attack effects without any backdoor detection

defense in place. Existing methods are able to achieve decent

detection effects on some specific attacks, but they experience

large performance variations when defending different attacks.

These methods either solely rely on the embedding space of

a poisoned model that may change with different trigger de-

signs or rely on some detection rule that may not apply to

specific backdoor designs. For example, ABL assumes that

backdoor samples achieve the lowest loss at the early stage of

training. However, the Narci. clean-label poisoned samples’

losses do not meet the assumption; thus, ABL is not effective

on the Narci. The recently proposed CT achieves the highest

detection rate and the most consistent performance among all

baselines, but it still fails to detect the state-of-the-art clean-

label attack, Narci. Notably, no existing detection method

obtains satisfying results as Narci. introduces optimized fea-

tures as robust as the semantic features of the target class [2].

Regarding the upstream evaluation in Table 2 (a), our method

reliably achieves a TPR above 90% for all the evaluated set-

tings and significantly improves the state-of-the-art in terms

of the average and worse-case defensive performance over dif-

ferent attacks. Regarding the downstream evaluation in Table

2 (b), we find that ASSET is the only defense that gives rise to

robust models over all the evaluated poisoned datasets, i.e., all

ASRs drop below random guessing rate, i.e., 10%. In particu-

lar, our method is the only effective method to mitigate Narci.

Moreover, the downstream models trained over ASSET fil-

tered datasets achieve the highest average ACC. Notably, the

average ACC of our method is slightly higher than using the

original poisoned dataset (which contains more clean sam-

ples). Results for multiple attacks introduced simultaneously

are provided in Appendix 6.3, with similar observations.

Unlike ASSET, the existing methods do not have an ac-

tive process to induce differentiating behaviors between clean

samples and poisoned ones. Thus clean and poisoned samples

often have overlapping behaviors and cannot be easily sepa-

rated. We illustrate the separation between clean and poisoned

samples using different detection methods and their thresh-

old in Figure 5, emphasizing the importance of the proposed

active offset process.

Figure 5: Detection results with different defenses in distri-

bution histograms (CIFAR-10, Blended attack, 5%, Case-0).

We emphasize the effects and the necessity of adaptive thresh-

olding and the process of actively pushing the distribution of

clean and poison away from each other.

Impact of poison ratios. In Table 3, we study the effects of

poison ratio on different detection methods against two stan-

dard attacks, namely, BadNets, and the Blended attack. Most

existing detection works better for small poison ratios but fails

as the ratio increases. One reason is that many works, such as

Spectral, Spectre, and AC, are based on the feature distribu-

tion of the poison dataset. However, an increased poisoning

rate will cause the clean feature distribution to be closer to

the poisoned one, making them less separable. CT is the most

robust baseline in the previous evaluation, but it also fails for

very large ratios like 20% (10000 poisons) or 50% (25000

poisons). The reason could be that their detector uses fixed

hyperparameters that are fine-tuned on small poison ratios.

Our defense is robust to poison ratio changes, even for ex-

treme cases where half of the samples in the training set are

poisoned or only 25 (0.05%) samples are poisoned.

5.3 Case-1: SSL Adaptation

C-brd (0.5%) C-Squ (0.5%) CTRL (1%) Average Worst-Case

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓

Spectral 0.08 7.89 0.44 7.87 1.20 1.50 0.57 5.75 0.08 7.89

Spectre 0.64 7.86 2.36 7.77 0.40 1.51 0.64 5.71 0.40 7.86

Beatrix 0.88 7.85 2.76 7.75 73.4 2.79 25.7 6.13 0.88 7.85

AC 6.72 28.6 9.88 28.4 36.8 21.3 17.8 26.1 6.72 28.6

ABL 5.76 7.59 6.24 7.57 20.2 1.31 10.7 5.49 5.76 7.59

Ours 91.5 0.67 96.0 0.25 97.4 0.69 95.0 0.54 91.5 0.69

Table 4: Upstream evaluation and comparison results under

Case-1 with SimCLR. The bolded results denote the best

defense results among the evaluated defenses.

Detection performance against different attacks in SSL.

Now we study the efficacy in detecting unlabeled poisons

under the SSL adaptation cases. Table 4 and Table 5 list out

the upstream and downstream evaluation results, respectively,

on CIFAR-10 using ResNet-18 trained via SimCLR-based

SSL for 600 epochs with linear adaptation for 100 epochs.

We find that the ASRs of C-brd and C-Squ are below 20% so

these attacks cannot lead to a successful attack on average.

We still keep their results but show the number of successfully

attacked samples (denoted with ASR∗) as done in [20]. Even

though these attacks do not result in as high ASR as the attacks

in SL or as the CTRL attack, they can still result in an increase

of samples with triggers being classified as the target class.

2734 32nd USENIX Security Symposium USENIX Association

C-brd (0.5%) C-Squ (0.5%) CTRL (1%)

ASR* ↓ ACC ↑ ASR* ↓ ACC ↑ ASR ↓ ACC ↑

No Def. 404 85.2 435 84.6 81.4 85.3

Spectral 405 84.1 478 84.2 81.3 85.2

Spectre 405 84.1 445 84.2 81.4 85.3

Beatrix 402 84.2 444 84.2 16.8 85.0

AC 513 73.26 376 73.2 36.5 78.6

ABL 380 84.6 399 84.4 46.6 85.3

Ours 100 85.1 87.0 84.9 2.47 85.9

Table 5: Downstream evaluation and comparison results under

Case-1 with SimCLR. We highlight the ASR below 20% in

blue as a success defense, the ASR above 20% in red as

a failed defense case. ASR∗ is the number of successfully

attacked samples. We use ASR∗ instead for the C-brd and

the C-Squ attack, referring to the original work [20], as their

ASRs are naturally low to SSL paradigms.

As shown in Table 4, among all the evaluated attacks, our

method obtains the highest TRP while remaining the lowest

FPR among all detection methods. Noting the absence of CT

under the SSL. Recall that in the SL setting, CT can achieve

compatible results as our method on most attack settings; yet,

it is inapplicable to SSL as its core techniqueÐconfusion

trainingÐrelies on label information [23]. In particular, as C-

brd and C-Squ do not result in a high ASR as shown in Table

5, the model’s response to clean and backdoor samples is not

sufficiently different, thereby making detection very difficult.

In fact, none of the baselines provides reliable detection of

these two attacks. For the CTRL attack, which achieves an

ASR of over 80%, we start to see that some of the baseline

defenses take effect, e.g., the Beatrix. But still, our method

achieves the best upstream detection performance (Table 4)

and gives rise to the highest ACC and lowest ASR downstream

(Table 5).

Further evaluation with more SSL training algorithms. We

further evaluate our defense under other popular SSL training

algorithms and different model structures and datasets, e.g.,

ResNet-18 and ViT-Small/16 trained using SimCLR, MoCO

V3, BYOL, MAE over CIFAR-10 or the ImageNet (Appendix

6.3). The upstream and downstream evaluation results on the

CIFAR-10 are shown in TBALE 6 and Table 7, respectively.

Across all the evaluated settings, our method provides reli-

able upstream detection results with TPRs over 90% for all

the cases and low FPRs. Thanks to the upstream efficacy,

our detection method can give rise to the downstream model

with a low ASR and an ACC close to or better than the set-

tings without removing any training point. Overall, our results

demonstrate that our method can reliably sift out the poisoned

samples across different settings of SSL adaptation.

Impact of # logits w.r.t. SSL downstream task. Note that for

SSL evaluation, the pre-trained model requires a fixed number

of logits, each corresponding to a different output category. In

our evaluation, we use the actual classes contained (e.g., 10 for

the CIFAR-10 and 100 for the ImageNet 100-subset). Such

a setting is applicable when the defender knows the exact

downstream classification task. Now we consider a much

C-brd (0.5%) C-Squ (0.5%) CTRL (1%)

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓

SimCLR 91.5 0.67 96.0 0.25 97.4 0.69

MoCo V3 91.3 0.49 96.9 0.20 98.2 0.32

BYOL 95.9 0.22 95.8 0.35 94.6 0.57

MAE 97.2 0.67 98.2 0.50 97.2 0.73

Table 6: Further upstream evaluation of ASSET under Case-1

with four SSL training algorithms, CIFAR-10.

more strict case where one tries to conduct detection over

unlabeled datasets without any prior knowledge about the

number of categories in downstream tasks. As shown in Table

8, we find our method is robust to the change in the number

of logits and can maintain a TPR higher than 90%.

5.4 Case-2: Transfer Learning

Detection performance against different attacks in TL. We

consider two of the most popular TL schemes for evaluation:

FT-all and FT-last with models pre-trained on the ImageNet.

All the existing backdoor defenses can be easily generalized

to TL. However, none of them has empirically evaluated the

backdoor detection efficacy under the TL settings in the prior

literature, which leaves a gap to fill.

The upstream and downstream results are listed in Table

9. Existing methods’ detection results on FT-all seem more

consistent than the results on FT-last. This observation might

be due to that FT-all is a setting much closer to the end-to-end

SL. While many defenses can achieve satisfying results on

some specific attacks in SL, none can achieve a TPR above

90% for all attack settings in TL, except CT on BadNets. We

now take a closer look at the reason why existing detection

methods fall short in TL. We depict the feature space t-SNE re-

sults comparing the attacks in Case-0 and Case-2 in Figure 6.

Since in TL, the model parameters have been initialized with

additional knowledge obtained from pre-training, clean and

poisoned samples are harder to be separated in the embedding

space, thus resulting in a worse detection result compared to

SL. As shown in Figure 6, for both BadNets and the Blended

attack, the clean and poisoned samples have a larger over-

lapping in the TL case than in SL. These results emphasize

the importance of introducing active measures to increase

separability.

Figure 6: In-class features space t-SNE results with the model

trained with CIFAR-10 using end-to-end SL or TL: (a) Bad-

Nets 20%, (b) Blended 20%.

On the other hand, for all the evaluated settings on the two

datasets (CIFAR-10 and STL-10, Appendix 6.3), our method

consistently achieves the best TPR, FPR, ASR, and ACC.

USENIX Association 32nd USENIX Security Symposium 2735

No Attack C-brd (5%) C-Squ (5%) CTRL (1%)

ASR ↓ ASR* ↓ ACC ↑ ASR*0 ASR* ↓ ACC0 ACC ↑ ASR*0 ASR* ↓ ACC0 ACC ↑ ASR0 ASR ↓ ACC0 ACC ↑

SimCLR 1.78 79 85.4 403 100 84.7 84.8 434 87 84.6 85.0 61.4 2.47 85.3 85.9

MoCo V3 1.88 83 87.2 411 95 87.0 87.1 374 83 87.2 87.13 56.3 3.70 86.5 87.9

BYOL 1.13 50 85.6 455 79 85.5 85.3 446 56 85.2 85.4 39.7 4.36 85.5 85.5

MAE 1.58 70 89.2 83 74 88.4 88.4 104 70 88.65 88.93 15.9 3.42 87.2 89.9

Table 7: Downstream evaluation results of our method under Case-1, CIFAR-10. ASR∗ is the number of successfully attacked

samples. ASR*0 and ACC0 with subscripts are the results without defense (i.e., the ªNo Defenseº baseline in other tables). We

use ASR∗ instead of ASR for the C-brd and the C-Squ attack, referring to the original work [20], as their ASRs are naturally low.

5 10 100 1000

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓

CTRL (1%) 93.2 0.02 97.4 0.07 95.2 0.34 92.6 2.81

Table 8: # logits used and the detection effects over unlabeled

CTRL poisons (Case-1, CIFAR-10, SimCLR, ResNet-18).

Remarkably, the averaging performance on both upstream

and downstream of ASSET is of magnitude better than the

seven baselines. The results highlight that actively introducing

different model behaviors can help a detection method to be

of better robustness to the DL paradigm shift.

FT-all FT-last
Average Worst-Case

BadNets (20%) SAA (5%) Blended (20%) HTBA (5%)

(a) Upstream Evaluation

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓

Spectral 82.3 16.9 39.2 5.83 11.6 34.6 53.6 5.07 46.7 15.6 11.6 34.6

Spectre 85.1 16.2 53.6 4.54 68.5 20.4 74.4 3.98 70.4 11.3 53.6 20.4

Beatrix 64.4 19.1 66.8 3.96 13.1 31.4 89.6 3.50 58.5 14.5 13.1 31.4

AC 21.6 46.3 57.2 32.5 0.60 46.9 41.6 34.4 30.3 40.0 0.60 46.9

ABL 59.8 22.6 48.4 5.35 49.3 25.2 61.2 4.67 54.7 14.5 48.4 25.2

STRIP 92.3 10.6 25.6 8.23 67.1 16.8 35.6 8.70 55.2 11.1 35.6 16.8

CT 94.6 10.4 78.0 7.24 0.00 0.00 82.4 3.49 63.8 5.33 0.00 10.4

Ours 98.7 1.03 95.2 0.51 99.2 0.10 95.6 0.34 97.2 0.50 95.2 1.03

(b) Downstream Evaluation

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑

No Def. 97.5 91.3 98.7 92.3 93.9 71.4 56.4 72.8 86.6 82.0 98.7 71.4

Spectral 97.4 91.5 80.2 91.8 91.4 68.7 16.9 72.1 71.5 81.0 97.4 68.7

Spectre 95.8 91.8 75.9 91.9 92.5 69.8 10.9 72.3 68.8 81.5 95.8 69.8

Beatrix 96.0 91.7 68.9 92.0 92.7 67.6 5.50 72.6 65.8 81.0 96.0 67.6

AC 97.4 86.7 73.2 88.7 93.3 65.4 21.4 66.1 71.3 76.7 97.4 65.4

ABL 96.4 91.7 80.1 92.0 93.7 68.3 14.2 72.2 71.1 81.1 96.4 68.3

Strip 94.4 91.8 87.0 91.9 92.9 70.8 24.3 71.3 74.7 81.5 94.4 70.8

CT 93.2 91.8 18.6 91.9 93.9 71.4 8.60 72.5 53.6 81.9 93.9 71.4

Ours 10.2 92.9 8.40 92.3 16.2 74.8 3.40 72.8 9.55 83.2 16.2 72.8

Table 9: (a) Upstream and (b) Downstream Evaluation and

comparison results under Case-2 with CIFAR-10: The first

row denotes the TL strategy. The bolded results denote the

best defense results among all defenses. We highlight the ASR

below 20% in blue as a success defense, the ASR above 20%

in red as a failed defense case.

5.5 Adaptive Attack Analysis

From the above, we find ASSET is the most reliable detec-

tion method across different attacks, datasets, poison ratios,

and training paradigms. Now we study adaptive attacks, where

we want to understand how an attacker’s knowledge about

defense implementation impacts defense performance.

Attacker goal & settings. The attacker aims to craft poisoned

samples resulting in a low TPR while maintaining a low FPR

for upstream detection , and resulting in a high ASR while

maintaining a high ACC for the downstream poisoned model.

A successful adaptive attack should achieve satisfying re-

sults based on these metrics simultaneously. We consider two

models of attack knowledge: White-box attack and Gray-box

attack. (1) White-box Settings. The attacker has full access to

the details of ASSET, namely, the workflow of ASSET; the

architecture of the detector model, and the architecture of the

feature extractor; the architecture of the weighting network

will be used for poison concentration; the original poisoned

dataset, Dpoi; and the clean base set Db. Although such disclo-

sure of the defense details is rare in practice, an investigation

of this setting gives insights into the worst-case performance

of ASSET. (2) Gray-box Settings. We also consider a more

realistic attack scenario where the attacker is aware of the

ASSET pipeline and the respective datasets but not aware

of the specific model architectures used by the defender for

conducting the detection and performing downstream tasks.

In both White-box attack and Gray-box, the attacker updates

the original poisoned samples in Dpoi and then supplies the

updated dataset to the defender.

Attack design. For both White-box and Gray-box attack, we

investigate optimization-based techniques to design poisoned

samples to evade ASSET. The attacker can use Dpoi and Db

to obtain trained detector parameters, θI and then resolve the

following optimization to obtain an additive noise for each

poisoned sample xpoi in Dpoi to evade the detection

δ∗ = argmin
δ

Lmax

(
f (xpoi +δ|θI)

)
, (6)

where Lmax is inherited from Eqn. (2). Recall that ASSET

optimizes θ so that poisoned samples are assigned with large

loss values while clean samples are assigned with small loss

values. The above formulation manipulates one poisoned sam-

ple, xpoi, such that the trained detector will assign low loss

values to xpoi + δ∗, which helps disguise the poison. To re-

solve the proposed adaptive attack formulation in Eqn (6), we

conduct gradient descent 100 steps for each example. Visual

examples of the adaptive attack manipulated poisons for the

attacks considered in Case-0 are depicted in Figure 7, Ap-

pendix 6.3. After the update of Dpoi, we obtain new model

parameters (i.e., feature extractor θ̃∗poi, detector θ̃I , and weight-

ing network M̃) on the updated Dpoi and evaluate the attack

2736 32nd USENIX Security Symposium USENIX Association

Dirty-Label Backdoor Attacks Clean-Label Backdoor Attacks

BadNets (5%) Blended (5%) WaNet (10%) ISSBA (1%) LC (1%) SAA (1%) Narci. (0.05%)

(a) Upstream Evaluation

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓
White-box 60.6 1.47 98.1 0.49 65.3 5.41 80.6 0.03 41.4 37.3 85.4 0.14 36.0 17.6

Gray-box 99.7 0.22 99.6 0.18 83.4 4.18 90.6 0.08 98.6 0.57 96.4 47.1 100 0.03

(b) Downstream Evaluation

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑
White-box Adaptive Attack

No Defense 93.1 93.5 83.7 93.9 41.2 92.9 84.1 93.8 95.6 94.2 34.2 93.7 25.3 94.7

Ours 58.3 94.5 8.41 94.1 11.4 93.3 22.5 94.4 20.3 93.9 2.35 94.4 5.49 94.9

Ours + Unlearn 3.21 89.4 0.46 91.2 2.45 88.7 0.87 93.6 0.53 71.2 0.63 92.3 1.21 92.0

Gray-box Adaptive Attack

No Defense 91.3 90.5 88.5 91.5 83.6 89.8 26.2 90.3 64.6 91.0 15.2 91.1 22.4 91.1

Ours 6.23 90.9 4.35 90.6 8.64 89.0 1.23 90.3 8.57 91.1 1.06 91.1 1.34 91.1

Table 10: (a) Upstream and (b) Downstream evaluation results for the adaptive attacks. We consider the same attacks from

Case-0, CIFAR-10, and implement the white-box adaptive attack to disguise the original poisoned samples.

performance following the aforementioned attack settings.

For the White-box attack setting, we evaluate the downstream

with the same model structures as used by the attacker for syn-

thesizing δ∗. For the Gray-box attack setting, we use different

model structures.

Results and insights. The results of ASSET against the

adaptive attacks are summarized in Table 10. From the up-

stream evaluation, for White-box attack, we find the adaptive

attack’s effect varies from trigger to trigger. The performance

of the White-box attack on disguising Blended triggers is lim-

ited, while on BadNets, LC, and Narci., the TPR is largely

decreased. Interestingly, the model mismatch introduced in

the Gray-box largely impacts the attack efficacy and ASSET

is able to maintain high defense performance across all the

Gray-box attacks. While moving on to the downstream evalu-

ation, we find both White-box and Gray-box adaptive attack

introduced additional noise that impedes some of the backdoor

triggers from taking effect, i.e., lower ASR at the end, even

without any additional defensive measure. For White-box at-

tack, we find only the adaptive BadNets attack can achieve

an ASR greater than 50% after the model converges over

the subset removing the detected samples using ASSET. By

following the standard procedure in many detection-based de-

fenses [11,23], we use the detected samples to provide revered

gradients for the downstream model (e.g., minimize negative

CE loss) or known as Unlearning, denoted by ªOurs+Unlearnº.

We find this simple adaptation of ASSET can successfully

diminish the effect of all the evaluated White-box adaptive

attacks. On the other hand, the ASSET on the Gray-box

adaptive attacks with detector model mismatch (attacker uses

ResNet-18 to obtain θI , defender uses VGG-16 to obtain θ̃I)

are almost the same on the vanilla attacks without adaptation.

To conclude, the above study shows that ASSET is robust

to the evaluated White-box attack with the standard unlearning

procedure using the detected samples and robust to the eval-

uated Gray-box attack. The results highlight that disclosing

the knowledge of our defense workflow and models can ex-

pose ASSET to the risk of adaptive attacks. Not releasing the

model architecture can mitigate the risk of adaptive attacks to

a large extent. Also, using the detected samples for unlearning

can be a simple yet effective post-processing method that can

be used in tandem with our detection to safeguard ML applica-

tions against adaptive attacks to our defense. One thing worth

highlighting is that the unlearning process requires the detec-

tion method to obtain a better precision upstream. Otherwise,

if the FPR of the upstream is high (more clean samples are

wrongly flagged), the downstream unlearning would result

in an unfavorable impact on the ACC (e.g. the results on the

White-box LC results).

6 Conclusion

This work is motivated by the glaring gap between the

focused evaluation of the end-to-end SL settings in prior back-

door detection literature and the fast adaption of other more

data- and computation-efficient learning paradigms, including

SSL adaptation and TL. We find that existing detection meth-

ods cannot be applied or suffer limited performance for SSL

and TL; even for the widely studied end-to-end SL setting,

there is still large room to improve detection in terms of their

robustness to variations in poison ratio. This work proposes a

novel idea for actively enforcing different model behaviors on

clean and poisoned samples through a two-level nested offset

loop. Our approach provides the first backdoor defense that

operates across different learning paradigms, different attack

techniques, and poison ratios.

Our work opens up many directions for future work. (1)

Theoretical Understanding of Offset: Despite the empirical

success, an in-depth understanding of convergence behaviors

and sample complexity of ASSET is still lacking. In addition,

we have shown multiple offset objectives, but how to explain

why a loss design is better than the other is still an open ques-

tion. (2) Alternative Offset Goal Designs: Our work provides

a general algorithmic framework for active backdoor data

detection by optimizing opposite goals. Are there other opti-

mization objectives beyond what we proposed in this paper

that can lead to better detection performance? (3) Extension to

Broader Data Types: Evaluating ASSET on domains beyond

images and texts is of practical importance.

USENIX Association 32nd USENIX Security Symposium 2737

Acknowledgement

RJ and the ReDS lab appreciate the support of the Amazon

- Virginia Tech Initiative for Efficient and Robust Machine

Learning and the Cisco Award. YZ is supported by the Ama-

zon Fellowship. XL gratefully acknowledges the support of

National Science Foundation Award No. CNS-1929300.

References

[1] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, ªBad-

nets: Evaluating backdooring attacks on deep neural net-

works,º IEEE Access, vol. 7, pp. 47 230±47 244, 2019.

[2] Y. Zeng, M. Pan, H. A. Just, L. Lyu, M. Qiu, and R. Jia,

ªNarcissus: A practical clean-label backdoor attack with

limited information,º ACM CCS, 2023.

[3] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-

han, I. Goodfellow, and R. Fergus, ªIntriguing properties

of neural networks,º in ICLR, 2014.

[4] Y. Li, B. Wu, Y. Jiang, Z. Li, and S.-T. Xia, ªBackdoor

learning: A survey,º arXiv:2007.08745, 2020.

[5] D. Tang, X. Wang, H. Tang, and K. Zhang, ªDemon in

the variant: Statistical analysis of {DNNs} for robust

backdoor contamination detection,º in USENIX Security,

2021, pp. 1541±1558.

[6] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe,

and S. Nepal, ªStrip: A defence against trojan attacks

on deep neural networks,º in ACM ACSAC, 2019.

[7] B. Tran, J. Li, and A. Madry, ªSpectral signatures in

backdoor attacks,º in NeurIPS, 2018, pp. 8000±8010.

[8] J. Hayase, W. Kong, R. Somani, and S. Oh, ªSpectre: de-

fending against backdoor attacks using robust statistics,º

in ICML, 2021.

[9] W. Ma, D. Wang, R. Sun, M. Xue, S. Wen, and Y. Xiang,

ªThe" beatrixºresurrections: Robust backdoor detection

via gram matrices,º in NDSS Symposium, 2022.

[10] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Ed-

wards, T. Lee, I. Molloy, and B. Srivastava, ªDetecting

backdoor attacks on deep neural networks by activation

clustering,º arXiv:1811.03728, 2018.

[11] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, ªAnti-

backdoor learning: Training clean models on poisoned

data,º in NeurIPS, vol. 34, 2021.

[12] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, ªA

simple framework for contrastive learning of visual rep-

resentations,º in ICML, 2020, pp. 1597±1607.

[13] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick,

ªMasked autoencoders are scalable vision learners,º in

CVPR, 2022, pp. 16 000±16 009.

[14] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-

senborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-

derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,

ªAn image is worth 16x16 words: Transformers for im-

age recognition at scale,º in ICLR, 2021.

[15] J. Z. HaoChen, C. Wei, A. Kumar, and T. Ma, ªBe-

yond separability: Analyzing the linear transferability

of contrastive representations to related subpopulations,º

arXiv:2204.02683, 2022.

[16] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and

G. E. Hinton, ªBig self-supervised models are strong

semi-supervised learners,º in NeruIPS, 2020.

[17] X. Chen, S. Xie, and K. He, ªAn empirical study of

training self-supervised vision transformers,º in CVPR,

2021.

[18] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond,

E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo,

M. Gheshlaghi Azar et al., ªBootstrap your own latent-a

new approach to self-supervised learning,º in NeurIPS,

vol. 33, 2020, pp. 21 271±21 284.

[19] N. Carlini and A. Terzis, ªPoisoning and backdooring

contrastive learning,º in ICLR, 2022.

[20] A. Saha, A. Tejankar, S. A. Koohpayegani, and H. Pirsi-

avash, ªBackdoor attacks on self-supervised learning,º

in CVPR, 2022, pp. 13 337±13 346.

[21] C. Li, R. Pang, Z. Xi, T. Du, S. Ji, Y. Yao, and

T. Wang, ªDemystifying self-supervised trojan attacks,º

arXiv:2210.07346, 2022.

[22] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,

M. Matena, Y. Zhou, W. Li, P. J. Liu et al., ªExploring

the limits of transfer learning with a unified text-to-text

transformer.º J. Mach. Learn. Res., 2020.

[23] X. Qi, T. Xie, J. T. Wang, T. Wu, S. Mahloujifar, and

P. Mittal, ªTowards a proactive ml approach for detecting

backdoor poison samples,º 2023.

[24] Y. Zeng, M. Pan, H. Jahagirdar, M. Jin, L. Lyu, and R. Jia,

ªMeta-sift: How to sift out a clean subset in the presence

of data poisoning?º 2023.

[25] L. Bottou, ªStochastic gradient descent tricks,º in Neural

networks: Tricks of the trade. Springer, 2012.

[26] M. Tan and Q. Le, ªEfficientnet: Rethinking model scal-

ing for convolutional neural networks,º in ICML, 2019.

2738 32nd USENIX Security Symposium USENIX Association

[27] Z. Xie, Y. Lin, Z. Yao, Z. Zhang, Q. Dai, Y. Cao, and

H. Hu, ªSelf-supervised learning with swin transform-

ers,º arXiv:2105.04553, 2021.

[28] J. Gui, T. Chen, Q. Cao, Z. Sun, H. Luo, and D. Tao,

ªA survey of self-supervised learning from multiple per-

spectives: Algorithms, theory, applications and future

trends,º arXiv preprint arXiv:2301.05712, 2023.

[29] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, ªTargeted

backdoor attacks on deep learning systems using data

poisoning,º in arXiv:1712.05526, 2017.

[30] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang,

and X. Zhang, ªTrojaning attack on neural networks,º in

NDSS, 2018.

[31] E. Bagdasaryan and V. Shmatikov, ªBlind backdoors in

deep learning models,º in USENIX Security, 2021, pp.

1505±1521.

[32] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, ªInvisible

backdoor attack with sample-specific triggers,º in ICCV,

2021.

[33] S. Li, M. Xue, B. Zhao, H. Zhu, and X. Zhang, ªInvisible

backdoor attacks on deep neural networks via steganog-

raphy and regularization,º IEEE TDSC, 2020.

[34] Y. Liu, X. Ma, J. Bailey, and F. Lu, ªReflection backdoor:

A natural backdoor attack on deep neural networks,º in

ECCV, 2020. Springer, 2020, pp. 182±199.

[35] T. A. Nguyen and A. T. Tran, ªWanet-imperceptible

warping-based backdoor attack,º in ICLR, 2020.

[36] Y. Zeng, W. Park, Z. M. Mao, and R. Jia, ªRethinking

the backdoor attacks’ triggers: A frequency perspective,º

in ICCV, 2021.

[37] H. A. A. K. Hammoud and B. Ghanem, ªCheck your

other door! establishing backdoor attacks in the fre-

quency domain,º arXiv:2109.05507, 2021.

[38] T. Wang, Y. Yao, F. Xu, S. An, H. Tong, and T. Wang, ªAn

invisible black-box backdoor attack through frequency

domain,º in ECCV, 2022.

[39] A. Turner, D. Tsipras, and A. Madry, ªLabel-consistent

backdoor attacks,º arXiv:1912.02771, 2019.

[40] A. Saha, A. Subramanya, and H. Pirsiavash, ªHidden

trigger backdoor attacks,º in AAAI, 2020.

[41] H. Souri, M. Goldblum, L. Fowl, R. Chellappa, and

T. Goldstein, ªSleeper agent: Scalable hidden trigger

backdoors for neural networks trained from scratch,º

arXiv:2106.08970, 2021.

[42] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, ªMo-

mentum contrast for unsupervised visual representation

learning,º in CVPR, 2020, pp. 9729±9738.

[43] X. Chen, H. Fan, R. Girshick, and K. He, ªIm-

proved baselines with momentum contrastive learning,º

arXiv:2003.04297, 2020.

[44] N. Peri, N. Gupta, W. R. Huang, L. Fowl, C. Zhu,

S. Feizi, T. Goldstein, and J. P. Dickerson, ªDeep k-nn

defense against clean-label data poisoning attacks,º in

ECCV, 2020.

[45] E. Soremekun, S. Udeshi, and S. Chattopadhyay, ªEx-

posing backdoors in robust machine learning models,º

arXiv:2003.00865, 2020.

[46] A. Chan and Y.-S. Ong, ªPoison as a cure: Detecting

& neutralizing variable-sized backdoor attacks in deep

neural networks,º arXiv:1911.08040, 2019.

[47] E. Chou, F. Tramer, and G. Pellegrino, ªSentinet: De-

tecting localized universal attacks against deep learning

systems,º in 2020 IEEE Security and Privacy Workshops

(SPW). IEEE, 2020, pp. 48±54.

[48] T. Wang, Y. Zeng, M. Jin, and R. Jia, ªA unified

framework for task-driven data quality management,º

arXiv:2106.05484, 2021.

[49] P. W. Koh and P. Liang, ªUnderstanding black-box pre-

dictions via influence functions,º in ICML, 2017.

[50] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,

S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark

et al., ªLearning transferable visual models from natural

language supervision,º in ICML, 2021.

[51] M. J. Wainwright, High-Dimensional Statistics: A Non-

Asymptotic Viewpoint, ser. Cambridge Series in Statisti-

cal and Probabilistic Mathematics, 2019.

[52] G. Brys, M. Hubert, and P. Rousseeuw, ªA robustifica-

tion of independent component analysis,º Journal of

Chemometrics: A Journal of the Chemometrics Society,

vol. 19, no. 5-7, pp. 364±375, 2005.

[53] A. Krizhevsky, G. Hinton et al., ªLearning multiple lay-

ers of features from tiny images,º 2009.

[54] A. Coates, A. Ng, and H. Lee, ªAn analysis of single-

layer networks in unsupervised feature learning,º in Pro-

ceedings of the fourteenth international conference on

artificial intelligence and statistics. JMLR, 2011.

[55] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei, ªImagenet: A large-scale hierarchical image

database,º in CVPR, 2009, pp. 248±255.

USENIX Association 32nd USENIX Security Symposium 2739

[56] K. He, X. Zhang, S. Ren, and J. Sun, ªDeep residual

learning for image recognition,º in CVPR, 2016.

[57] J. D. M.-W. C. Kenton and L. K. Toutanova, ªBert: Pre-

training of deep bidirectional transformers for language

understanding,º in NAACL-HLT, 2019.

[58] Y. Zeng, S. Chen, W. Park, Z. Mao, M. Jin, and R. Jia,

ªAdversarial unlearning of backdoors via implicit hyper-

gradient,º in ICLR, 2022.

Appendix

6.1 Detailed Defense Settings

In the evaluation section, we provide a thorough compari-

son of existing backdoor detection techniques. These methods

can be classified into several categories, including Spectral [7],

Spectre [8], and Beatrix [9], which utilize analysis of activa-

tion patterns; AC [10], which leverages clustering of feature

information; ABL [11], which detects the lowest loss from

poisoned datasets; Strip [6], which focuses on logits of sample

outputs; and CT [23], which employs confusion training in

end-to-end supervised learning settings.

Note that the above baseline defenses were only evaluated

under the settings of end-to-end SL (Case-0) in their original

papers. They can also be directly generalized to Case-2. We

will incorporate the above seven baseline defenses in Case-0

and Case-2 with the suggested hyperparameters proposed in

these original works for comparison. As for Case-1, some of

the methods are not applicable, whereas others can be adapted

to operate without label information. In particular, Strip [6]

and CT [23] are label-information-dependent methods, which

are excluded from evaluation in Case-1. The vanilla design

of Spectral [7] and Spectre [8] used a feature extractor trained

with label information. In our Case-1 experiment, we replace

the feature extractor trained with labels with one trained using

the SSL paradigm. The original implementation processes

samples class-wisely for the Beatrix [9] and AC [10]. How-

ever, since there is no label information in Case-1, we pro-

cess all training samples together. For ABL [11], we replace

the original implementation’s Cross-Entropy loss with the

respective training loss function used in the respective SSL

algorithm (e.g., the InfoNCE loss for the MoCo V3 [17]).

6.2 Detailed Attack Settings

In this work, we examine several representative attacks

for each category of attack design. For Case-0, which is the

end-to-end supervised learning setting mentioned in Section

5.2, we thoroughly investigate existing Dirty-label attacks

and Clean-label backdoor attacks. Dirty-label attacks create

a backdoor by altering the label of the poisoned samples to

the target class. We selected some representative attacks for

experiments. For example, BadNets [1] and Blended [29] are

used as triggers by simply superimposing special patterns;

there are also affine transformations that are difficult to find

on pictures, such as WaNet [35]; as well as training an en-

coder to create distinct backdoor trigger for each sample like

ISSBA [33]. On the other hand, Clean-label backdoor attacks

maintain the original label of the poisoned samples. Examples

include LCciteturner2019label, which makes models learn

simple triggers by patching adversarial noise on the remain-

ing part of sample; SAA [41], which produces effects through

model feature collisions; and the state-of-the-art attack Nar-

cissus [2], which obtains the backdoor trigger by optimizing

the distribution within the class and the connection of the

target label. For these three Clean-label backdoor attacks, we

set l∞ = 16/255 to ensure the consistency of the attack. For

Case-1, we consider the backdoor attack in the SSL setting

(detailed in Section 5.3). Since the training does not require

labels and always contains strong augmentations, traditional

attacks against SSL are not effective. However, with the de-

velopment of this training paradigm, attacks against it have

started to emerge. There are attacks by superimposing spe-

cific design patterns [19, 20] and attacks by adding specific

frequency noise to the YCbCr color space [21]. The C-brd and

C-Squ adopt a fixed in-class poison ratio w.r.t. only the sam-

ples from the targeted category (50% in-class), following [20].

CTRL adopts a fixed poison ratio w.r.t. the whole dataset (1%

of all the samples), following [21]. For Case-2, we investigate

the attacks in the context of transfer learning, as described

in section 5.4. Our evaluation revealed that adding backdoor

attack samples to the fine-tuned dataset leads to a successful

attack. Basic backdoor attacks, such as BadNets and Blended,

can easily be generalized and result in an effective attack.

Furthermore, attacks based on the collision of the model’s

feature space, such as SSA or HTBA [40] can also work in

this scenario. All the attacks use the default settings in the

original paper to ensure consistency with the original work.

6.3 Additional results

In addition to the results presented in the main text, we also

evaluate the performance of the baseline defenses in different

attack settings and dataset settings.

Additional Results with Multiple Attacks. For Case-0, we

test the scenario where multiple backdoor attacks appear si-

multaneously in a training set. We deploy 4 different dirty

label attacks that have appeared in the main text into 4 differ-

ent classes of the CIFAR-10 dataset, and the poison ratio is

consistent with the main text. At the same time, the ASR of all

attacks is above 90% to ensure the effectiveness of the attack.

The results are listed in Table 14. When multiple attacks are

present, all the baseline defense methods except CT can main-

tain a reliable detection, as at least one set of poisoned samples

ends up with a TPR lower than 50%. Our method achieves the

highest average TPR among all defenses and demonstrates a

better and more consistent detection performance with all the

TPR above 85% under this setting.

Additional Results with SSL. For Case-1, we evaluate the re-

2740 32nd USENIX Security Symposium USENIX Association

No Attack C-brd (5%) C-Squ (5%) CTRL (1%)

ASR ↓ ASR* ↓ ACC ↑ ASR*0 ASR* ↓ ACC0 ACC ↑ ASR*0 ASR* ↓ ACC0 ACC ↑ ASR0 ASR ↓ ACC0 ACC ↑
SimCLR 0.34 6 67.2 168 8 65.9 66.9 141 12 65.6 66.8 25.0 1.36 66.1 66.8

MoCo V3 0.32 6 68.4 67 8 68.0 68.2 119 12 67.8 68.2 23.6 2.12 68.2 68.3

BYOL 0.36 7 67.1 290 11 66.6 67.1 263 19 66.8 66.9 40.9 1.44 66.5 66.8

MAE 0.28 5 70.2 28 6 68.9 70.1 68 8 69.1 69.9 30.7 1.66 68.7 69.3

Table 11: Downstream evaluation results of our method under Case-1 in ImageNet-100.

Figure 7: Visual examples of the backdoor poisoned samples disguised by adaptive attacks (Case-0, CIFAR-10).

sults on the ImageNet-100 dataset. ImageNet-100 is a subset

of ImageNet-1K, consisting of 100 randomly selected classes

(about 128,000 samples), which is currently the most popular

benchmark dataset for self-supervised learning. All images are

resized to 224x224 pixels to fit the model input. Here we use

self-supervised learning methods consistent with those in Sec-

tion 4.3, including the contrastive learning method SimCLR,

MoCO V3, BYOL, and the masked-model training method

MAE. Here all backbone models are ViT-Small/16 to obtain

a satisfactory ACC. The upstream and downstream results

can be found in Table 15, and Table 11, respectively. As the

dataset becomes more complex compared to CIFAR-10, de-

tection also becomes more difficult. Nevertheless, our method

provides a TPR greater than 88% in all cases. All FPRs are

below 0.5%, providing as clean samples as possible for subse-

quent downstream tasks and minimizing the impact on ACC.

In the downstream task, our method succeeded in reducing

the ASR with no significant improvement over the baseline

without poison, indicating that our method was successful

in removing the poison. At the same time, thanks to the ex-

tremely low FPR, the ACC of the model has seen a certain

increase compared to the poisoned model.

Additional Results with TL. Finally, in Case-2, we present

the upstream and downstream results of STL-10 in Table 16,

where all images were scaled to 224x224 pixels to align with

the ImageNet-1K [55] pre-trained ViT-Tiny/16 [14] model.

Our method consistently achieves a TPR of over 90%, while

keeping the FPR below 0.6%. Compared to other defense

methods, our method achieves the best average TPR and FPR.

In the downstream tasks, which benefited from the high TPR

and low FPR, our method successfully keeps all ASRs below

20%, ensuring attacks will not effectively occur. Our method

obtains the highest average value for ACC as well as ASR.

Visual Results of Adaptive Attacks. Figure 7 depicts the

visual results of the adaptive attacks discussed in Section 5.5.

Upstream Evaluation Downstream Evaluation

TPR ↑ FPR ↓ ASR ↓ ACC ↑
AC 79.8 18.1 68.4 90.3

Ours 100 3.77 10.3 91.6

Table 12: Textual backdoor detection, BadNets, SST-2 dataset.

Additional Results on Other Modality. We provide addi-

tional results on exploring the applicability of the ASSET

on detecting backdoor samples in the Natural Language Pro-

cessing domain. We implemented the BadNets attack6 on the

SST-2 dataset with BERT [57] as the target model. We set

the poisoning rate to be 10%, with the trigger as "cf mn bb

tq." We observe that ASSET can achieve good detection re-

sults. Compared to the AC evaluated under the same settings,

we find our method provides more effective detection results.

One possible explanation for the AC’s limited effectiveness

is that the BERT model relies on pre-trained features, which

limits the separability based on feature space clustering.

Computation Overhead. Table 13 compares the computation

overhead of ASSET and other baseline methods in Case-0.

Spectral Spectre Beatrix AC ABL Strip CT Ours

CIFAR-10 1800+63 1800+137 1800+782 1800+123 847 1800+374 6300 1800+1800

Table 13: Computational overhead (GTX 2080 Ti GPU sec-

onds) under (Case-0). Defense methods rely on a pre-trained

poisoned model incur additional 1800s for training.

6.4 Ablation Study

Table 17 shows that solely adopting the outer offset loop

will experience limitations in low poison ratio cases. In the

case of a low poison ratio, since the poison samples account

for a relatively small proportion in each mini-batch, the model

will tend to optimize its output for clean samples, thus ignor-

ing its output for poison samples, finally leading to limited

performance. However, this limitation can be effectively over-

come by embedding an inner loop to perform poison concen-

tration. In a relatively high poison ratio setting (e.g., 20%)

where the outer loop alone can already achieve good detection

performance, inserting an inner loop is still useful and can

further boost the detection efficacy. It can be seen that the

design of the inner loop is the key to our successful defense

in spite of the very low poison ratio in Table 3.

We ablate on the size of the base set used in our detec-

tion, and the result is provided in Table 18. We find that

the detection performance slightly decreases as the base set

size is smaller; nevertheless, ASSET can achieve strong per-

formance even with 10 samplesÐone sample per class on

CIFAR-10. Our experiment confirms our conclusion in Sec-

tion 4.1 that the base set and the clean portion of the poisoned

6https://github.com/thunlp/OpenBackdoor

USENIX Association 32nd USENIX Security Symposium 2741

FPR

BadNets (5%)

Class 0

WaNet (10%)

Class 4

ISSBA (1%)

Class 6

Blended (5%)

Class 9
Average Worst-Case

TPR TPR TPR TPR TPR TPR

Spectral 27.2 88.6 0.00 98.4 92.6 69.9 0.00

Spectre 26.5 94.6 0.16 84.2 98.9 69.5 0.16

Beatrix 2.61 92.8 50.9 42.6 75.9 65.5 42.6

AC 42.4 58.9 79.2 4.60 53.3 49.0 4.60

ABL 33.7 89.9 0.64 0.00 6.72 24.3 0.00

Strip 11.2 83.6 6.82 45.4 51.7 46.9 6.82

CT 1.22 99.6 96.5 81.8 96.8 93.7 81.8

Ours 0.36 99.7 86.8 94.2 100 95.2 86.8

Table 14: Defense results on multi-trigger-multi-target attack

under Case-0, FPR refers to the overall FPR in the training

dataset. The bolded results denote the best defense results

among all the evaluated defenses w.r.t. each attack.

C-brd (0.5%) C-Squ (0.5%) CTRL (1%)

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓
SimCLR 95.7 0.17 92.9 0.20 92.9 0.34

MoCo V3 92.5 0.21 90.3 0.23 91.4 0.10

BYOL 90.5 0.15 88.6 0.18 97.4 0.21

MAE 97.8 0.17 94.2 0.27 98.8 0.17

Table 15: Further upstream evaluation of our method under

Case-1 with four training algorithms under ImageNet.

FT-all FT-last
Average Worst-Case

BadNets (20%) SAA (5%) Blended (20%) HTBA (5%)

(b) Upstream Evaluation

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓
Spectral 54.4 23.9 11.2 7.31 16.6 33.4 25.6 4.97 27.0 17.4 11.2 33.4

Spectre 76.8 18.3 17.2 6.99 16.0 33.5 46.4 3.87 39.1 15.7 16.0 33.5

Beatrix 86.9 3.55 74.8 12.1 56.7 11.7 89.2 13.5 76.9 10.2 56.7 13.5

AC 34.6 46.2 18.0 14.5 9.80 60.3 8.40 13.3 17.7 33.6 8.40 60.3

ABL 81.2 17.2 57.2 4.88 75.3 18.7 75.6 3.91 72.3 11.2 57.2 18.7

Strip 83.2 11.2 0.00 20.7 52.9 16.3 71.2 17.6 51.8 16.5 0.00 20.7

CT 98.3 10.5 82.4 3.98 98.7 6.58 96.4 2.57 94.0 5.91 82.4 10.5

Ours 97.7 0.53 90.8 0.34 99.6 0.18 99.2 0.19 96.8 0.31 90.8 0.53

(b) Downstream Evaluation

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑
No Def. 99.6 97.9 93.6 98.6 97.7 98.5 68.1 98.5 89.8 98.4 99.6 97.9

Spectral 99.5 97.6 91.4 98.1 97.6 98.4 49.6 98.5 84.5 98.2 99.5 97.6

Spectre 99.3 98.0 86.3 98.1 97.6 98.4 31.3 98.5 78.6 98.3 99.3 98.0

Beatrix 99.4 98.0 36.2 97.9 95.2 98.6 8.93 98.5 59.9 98.3 99.4 97.9

AC 99.6 97.3 85.6 98.0 98.4 98.2 56.3 98.5 85.0 98.0 99.6 97.3

ABL 99.6 97.1 59.6 98.2 94.2 98.5 14.3 98.5 66.9 98.1 99.6 97.1

Strip 99.5 97.7 94.0 97.8 98.4 98.4 16.8 98.4 77.2 98.1 99.5 97.7

CT 7.65 98.1 11.2 98.2 90.2 98.4 1.27 98.5 27.6 98.3 90.2 98.1

Ours 8.93 98.1 15.4 98.1 1.44 99.2 0.36 98.5 6.53 98.5 15.4 98.1

Table 16: Upstream and Downstream Evaluation and compar-

ison results under Case-2 with STL-10.

BadNets (5%) BadNets (20%)

TPR FPR TPR FPR

Outer loop only 39.0 37.3 96.6 0.83

Outer + Inner 99.5 5.24 99.9 0.03

Table 17: Detection effects w/ or w/o inner loop (Case-0).

dataset share the same clean distribution, while the clean sam-

ple and poison sample originate from distinct distributions.

Figure 8 depicts AO’s impact on mini-batches from the

same poisoned training set. In particular, even though the

two mini-batches are from the same distribution, the number

of poisoned samples varies due to random sampling. With

different sizes of poisoned samples resulting in different dis-

tributions of the loss values, it becomes harder for the inner

loop to use a fixed threshold or fixed ratio to determine the

most likely poisoned samples to form Bpc. AO helps to map

the distribution adaptively so that we find a fixed threshold to

consistently obtain the poison-concentrated subset.

10 100 1000 5000

TPR FPR TPR FPR TPR FPR TPR FPR

BadNets (5%) 98.2 1.04 98.9 1.0 99.5 0.55 99.5 0.22

Blended (5%) 100 0.18 99.9 0.01 100 0.00 100 0.00

Table 18: Ablation study in the base set size (Case-0).

6.4.1 Impact of Base Set Quality on Detection Efficacy

While ASSET exhibits robust performance across a range

of attack settings, its effectiveness may fluctuate depending

on the quality of the base set.

Figure 8: The original BCE loss output (a) and the output

processed after AO (b) (WaNet attack, CIFAR-10, ResNet-18,

Case-0). In particular, AO maps the original outputs to a more

separable range which is easier to concentrate the poisoned

samples with a fixed threshold.
CIFAR-10 CIFAR-100 STL-10 GTSRB

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓
BadNets (5%) 99.5 0.55 98.6 0.81 87.3 3.21 0.00 100.0

Table 19: Use non-iid dataset as the base set (Case-0). The

CIFAR-10 column represents the iid setting.

Sampling quality of the base set. In this paper, the base set

follows the widely accepted setting [23, 58] that it is drawn

from the same distribution as the training set. However, it is

worth noting that in practical, a distributional drifts may occur

between the training and base sets. To test how ASSET fares

in the face of such distributional drifts, we have outlined the

detection results derived from utilizing samples taken from

different datasets as base sets for poison detection on CIFAR-

10 (BadNets attack, Case-0) in Table 19. Our observations

suggest that ASSET can consistently generate acceptable

detection results if the distributional drift does not drastically

alter the task context, as evidenced by the results from CIFAR-

100 and STL-10. However, the detection efficiency falters

when an out-of-distribution dataset is used as the base set, as

exemplified by the use of the traffic sign dataset, GTSRB.

0/1000 1/1000 5/1000 10/1000

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓
BadNets (5%) 99.5 0.55 85.4 1.27 78.7 0.00 9.16 3.39

Table 20: Number of poisoned samples in the base set

(Case-0). The 0/1000 column represents the clean base set.

Poisons in the base set. Stronger attack settings may enable

attackers to tamper with the base set. Implementing this set-

ting is challenging, and it has rarely been discussed in prior

work due to the formidability of embedding the exact trigger

into the carefully scrutinized base set without triggering any

alerts. We evaluate the impact of different poison ratios in the

base set in Table 20, and with 10 poisoned samples infiltrating

the base set will cause the detection to be ineffective.

Remark. The above results on the efficacy and the base set

quality are unsurprising. The detection efficacy’s sensitivity

to the quality of the base set is not exclusive to ASSET. This

sensitivity is likewise a noted drawback of numerous defen-

sive methods that rely on a clean in-distribution base set, as

observed and discussed in [24]. The experimental results high-

light the importance of obtaining high-quality base sets with

the care of drift and security inspections. How to effectively

acquire a high-quality base set is out of the scope of this paper.

2742 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background & Related Work
	Attacker & Defender Models
	Proposed Method
	Key Idea
	Detection via Offset
	 Strengthened Detection via Nested Offset
	Overall Workflow

	Evaluation
	Settings
	Case-0: End-to-end SL
	Case-1: SSL Adaptation
	Case-2: Transfer Learning
	Adaptive Attack Analysis

	Conclusion
	Detailed Defense Settings
	Detailed Attack Settings
	Additional results
	Ablation Study
	Impact of Base Set Quality on Detection Efficacy

