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Abstract

The development of connected and autonomous vehicles
opens an opportunity to manage intersections without signals.
One promising approach is to use a central autonomous inter-
section manager to optimize the movement of the vehicles
in the intersection. Existing work uses Mixed Integer Lin-
ear Programming (MILP) to find optimal solutions for this
problem but is time-consuming and cannot be applied in real-
time. On the other hand, the coordination of the vehicles is
essentially a Multi-Agent Path Finding (MAPF) problem, for
which dozens of efficient algorithms have been proposed in
recent years. Inspired by these MAPF algorithms, we pro-
pose a three-level algorithm called PSL to solve the inter-
section coordination problem. Theoretically, PSL is complete
and polynomial-time in the number of vehicles. Empirically,
PSL runs significantly faster with only a slight compromise
in the solution quality than the optimal MILP method. It also
generates significantly better solutions with a slightly larger
runtime than the traditional First-Come-First-Served strategy.

Introduction

The development of Connected and Autonomous Vehicles
(CAVs) technology opens a new opportunity to manage ve-
hicles on roads, particularly vehicles crossing intersections.
With the assumption that a full fleet of CAVs will be on the
road in the future, the concept of signal-free intersections
has attracted researchers in the transportation field (Dresner
and Stone 2004; Zhong, Nejad, and Lee 2021). The early
proposal of signal-free intersections was based on reserva-
tion strategies. All approaching vehicles communicate with
a central autonomous Intersection Manager (IM). The IM
receives reservation requests from vehicles and accepts a re-
quest if it has no collisions with the previous reservations.
An early implementation of the reservation-based strategies
was First Come First Served (FCFS) (Dresner and Stone
2004, 2008; Au and Stone 2010; Au, Shahidi, and Stone
2011; Li et al. 2013), where the IM assets the priority of the
vehicles using the temporal order of the received requests.

However, such FCFS strategies can lead to poor solu-
tion quality, particularly in the scenario with high traffic de-
mands. For instance, FCFS was shown to increase delays
beyond conventional signals in specific scenarios (Levin,

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Boyles, and Patel 2016). For that reason, several studies pro-
posed optimization-based strategies (Lee and Park 2012; Zo-
hdy and Rakha 2016). Noticeably, Levin and Rey (2017)
developed a Mixed Integer Linear Programming (MILP)
model to determine the optimal coordination strategies for a
single intersection. It produced significantly better solutions
than the FCFS strategy but was computationally inefficient
and thus cannot be used in real-time. Refer to (Zhong, Nejad,
and Lee 2021) for a thorough survey on different coordina-
tion strategies for autonomous intersection management.

The core challenge here is to efficiently and effectively
resolve collisions among many vehicles, which is close
to Multi-Agent Path Finding (MAPF) (Stern et al. 2019),
a problem widely studied in AI and robotics. Dozens of
MAPF algorithms have been proposed in recent years,
which, for example, can find optimal solutions for hundreds
of agents (Li et al. 2021a) and near-optimal solutions for a
thousand agents (Li, Ruml, and Koenig 2021) within just
a minute. Inspired by the MAPF algorithms, we propose
a three-level algorithm PBS-SIPP-LP (PSL): Level 1 uses
Priority-Based Search (PBS) (Ma et al. 2019) to resolve col-
lisions between vehicles; Level 2 uses a modified version of
Safe Interval Path Planning (SIPP) (Phillips and Likhachev
2011) to plan optimal paths for individual vehicles; and
Level 3 uses a Linear Programming (LP) model to optimize
the entry time and speed of each vehicle.

Our main contribution is as follows: (1) We apply MAPF
algorithms to the intersection coordination problem and
show promise compared to the existing intersection coordi-
nation algorithms. Specifically, PSL runs significantly faster
than MILP and is suitable in real-time. It finds near-optimal
solutions, which are substantially better than the solutions
of FCFS. (2) We combine search- and optimization-based
methods to optimize the trajectories and speeds of the ve-
hicles simultaneously (while existing MAPF algorithms do
not optimize speeds). (3) We prove that PSL is complete and
polynomial-time in the number of vehicles (while PBS for
MAPF is neither complete nor polynomial-time).

Background

Intersection Setup

Levin and Rey (2017) introduced a conflict-point representa-
tion for single intersections and modeled the intersection co-





i, respectively. When vehicles i and j move through point c,
a collision occurs iff time intervals [ti(c), ti(c) + τi(c)) and
[tj(c), tj(c) + τj(c)) overlap. Vehicles are not allowed to
overtake each other in the intersection: If vehicles i and j
are in the same entry lane with ei < ej , then ti(c) < tj(c)
holds for all points c that both vehicles visit.

Our task is to plan for each vehicle i a path, namely a se-
quence of conflict points, starting at γ−

i and ending at γ+

i ,
associated with a reserved interval [ti(c), ti(c) + τi(c)) for
each point c in the sequence, so that the vehicles neither
overtake nor collide with each other and the sum of their
exit times is minimized.

PBS-SIPP-LP (PSL)

Our algorithm PSL consists of three levels: Level 1 uses
PBS (Ma et al. 2019) to address the collisions between the
paths of the vehicles by generating spatio-temporal con-
straints, where the paths of the vehicles are generated by
Level 2; Level 2 uses a modified version of SIPP (Phillips
and Likhachev 2011) to plan an optimal path for a vehicle
with respect to the spatio-temporal constraints generated by
Level 1, where the entry time and the speed of the path are
determined by Level 3; and Level 3 uses an LP model to
optimize the entry time and the speed of a vehicle.

Level 1: PBS

Prioritized planning is a widely-used MAPF algorithm. It
first sorts the agents by a predefined total priority ordering
and then plans a path with the minimum travel time for each
agent, from the highest priority to the lowest priority, that
avoids collisions with the paths of all higher priority agents.
The FCFS strategy can be viewed as a prioritized planning
algorithm that sorts the vehicles by their earliest entry times.

Prioritized planning is simple and runs fast. But its solu-
tion quality is sensitive to the predefined total priority or-
dering. Priority-Based Search (PBS) (Ma et al. 2019) over-
comes this drawback by searching the space of all possible
priority orderings. We choose to use PBS instead of other
MAPF algorithms for three reasons: (1) PBS is efficient. For
example, it can plan paths for 200 agents within a second in
an offline setting (Ma et al. 2019) and for 800 agents within
five seconds in an online setting (Li et al. 2021b). So it fits
our requirement of real-time planning. (2) PBS finds near-
optimal solutions empirically. For example, the sum of the
travel times of its solution is always less than 5% worse than
the optimal on the MAPF benchmark suite (Ma et al. 2019),
which significantly outperforms other prioritized planning
methods. So it can coordinate the vehicles in the intersec-
tion with high throughput. (3) PBS or, in general, priori-
tized planning is flexible and can be easily adapted to differ-
ent agent models without sacrificing its efficiency too much.
For example, it can be used for differential drive robots and
general agents with nonlinear (Yakovlev, Andreychuk, and
Vorobyev 2019) or nonholonomic (Chen et al. 2021) dynam-
ics. So it can be adapted to our vehicle models efficiently.

We adapt PBS to solving our problem as follows. Algo-
rithm 1 shows the pseudo-code. We search a binary Priority
Tree (PT) in a depth-first manner. Each PT node contains a

Algorithm 1: Level 1 of PSL.

1 Root ← GENERATEROOT();
2 STACK ← {Root};
3 while STACK ̸= ∅ do
4 N ← STACK.pop();
5 if N.collisions = ∅ then return N.plan;
6 (i, j)← a collision in N.collisions;
7 Ni, Nj ← N ; // Two copies of N
8 for (x, y) ∈ {(i, j), (j, i)} do
9 ≺≺≺Nx

←≺≺≺Nx
∪{y ≺ x};

10 UPDATEPLAN(Nx);

11 Insert Ni and Nj into STACK in descending order of
the sum of the exit times of their paths;

12 return ªNo Solutionº;

set of (partial) priority orderings and a set of paths, one for
each vehicle, that is consistent with its priority orderings.
That is, if two vehicles i and j have a priority ordering i ≺ j
(indicating that vehicle i has higher priority than vehicle j),
then the path of vehicle j has to avoid collisions with the
path of vehicle i. If two vehicles do not have a priority or-
dering, then their paths are allowed to collide with other, and
the collisions will be resolved in descendant PT nodes.

The root PT node [Line 1] contains an initial set of pri-
ority orderings with respect to the earliest entry times of the
vehicles, namely i ≺ j iff γ−

i = γ−

j ∧ ei < ej . When ex-
panding a PT node, we first check whether its paths contain
any collisions. We terminate and return its paths if there are
no collisions [Line 5]. Otherwise, we choose one collision,
say between vehicles i and j [Line 6], and resolve it by gen-
erating two child PT nodes: one with an added priority order-
ing i ≺ j and the other one with an added priority ordering
j ≺ i [Lines 7 to 9]. We call the UPDATEPLAN function to
make the paths of each child PT node consistent with its set
of priority orderings [Line 10]. That is, if the paths of any
two vehicles x and y with x ≺ y have collisions, we call
Level 2 to replan the path for vehicle y. In order to avoid
replanning the path for the same vehicle twice, we topolog-
ically sort the vehicles based on the priority orderings of the
child PT node and check the inconsistency in the resulting
order. Please refer to the original PBS paper (Ma et al. 2019)
for more details. Finally, we finish this iteration and will ex-
pand the child PT node whose paths have a smaller sum of
the exit times first in the next iteration [Line 11].

Level 2: SIPP

The task of Level 2 is to plan a path with the minimum exit
time for a given vehicle i ∈ V that does not collide with a
given set of paths (which are the paths of the vehicles with
higher priority than vehicle i). Different from traditional
pathfinding problems in the MAPF literature, our problem
needs to determine not only the sequence of conflict points
that vehicle i needs to visit but also its entry time and speed
(the reserved intervals [ti(c), ti(c) + τi(c)) for each point c
in the sequence can be then computed accordingly). Since
vehicles move in continuous time, traditional single-agent
pathfinding algorithm space-time A* (Silver 2005) (which







SIPP is finite, which indicates that Level 2 can terminate in
finite time if no solution exists. If a solution exists, it is guar-
anteed to be found because we explore all reachable points
during all reachable safe intervals. We then prove the opti-
mality. Since the f -value of a SIPP node is provably a lower
bound on the exit times of its corresponding paths, the small-
est f -value of the SIPP nodes in OPEN, denoted as f(n), is
provably a lower bound on the exit times of the correspond-
ing paths of the SIPP nodes in OPEN. Since p∗ is the best
path seen so far, when f(n) ≥ exit time(p∗), no correspond-
ing paths of the SIPP nodes in OPEN can have smaller exit
times than p∗. That is, p∗ is optimal.

Level 2 is complete and optimal, so it can report failure in
finite time for unsolvable instances. Nevertheless, the CPIC
problem has special properties that ensure that the problem
solved by Level 2 is always solvable (i.e., Level 2 never re-
ports failure), as shown in Lemma 3.

Lemma 3 (Solvability of Level 2). The problem solved by
Level 2 is always solvable. That is, there always exists a path
for vehicle i that does not collide with the paths of the vehi-
cles that have higher priorities than vehicle i.

Proof. Let T be the largest exit time of the vehicles that have
higher priority than vehicle i. The path for vehicle i that en-
ters its entry lane at time T + 1 and moves to its exit lane
with its largest speed does not collide with any vehicle that
has higher priority than it. So the lemma holds.

Theorem 1 (Completeness and Suboptimality of PSL). PSL
is complete and suboptimal. That is, PSL can always find a
solution within finite time, but the solution may not have the
minimum sum of the exit times.

Proof. We know from Lemmas 2 and 3 that Level 2 always
returns a solution. So Level 1 can always successfully gen-
erate a root PT node and, when expanding a PT node, two
child PT nodes. When it resolves a collision between two ve-
hicles at PT node N , these two vehicles are guaranteed to be
collision-free in all descendant PT nodes of N (otherwise,
the paths in the descendant PT nodes are not consistent with
their priority orderings). That is, along one branch, we need
to resolve the collisions between any two vehicles at most
once. Since the maximum number of pairs of vehicles that
can collide is |V|(|V| − 1)/2 and Level 1 performs a depth-
first search, it finds a PT node that contains collision-free
paths within |V|(|V|− 1)/2 PT node expansions. Thus, PSL
is complete. It is suboptimal because Level 1 uses a depth-
first search and stops when finding the first solution.

We have tested a version of PSL that uses best-first search,
instead of depth-first search, in Level 1. But, it is still sub-
optimal because each vehicle optimizes its speed by mini-
mizing the exit time, which might result in a non-minimum
arrival time at some conflict point x along its path. This can
delay the exit time of other vehicles that pass through x after
this vehicle and thus lead to a suboptimal solution. More-
over, empirically, this best-first-search version runs substan-
tially slower than the depth-first-search version with negli-
gible improvements in solution quality in practice. We thus
choose to use the depth-first-search version of PSL.

Lemma 4 (Search-Tree Size of Level 1). Level 1 generates
at most |V|(|V| − 1) PT nodes.

This lemma can be derived from the proof of Thoerem 1.

Lemma 5 (Search-Tree Size of Level 2). Level 2 generates
at most 2(D|V|)d SIPP nodes in each call, where D is the
maximum number of adjacent conflict points a vehicle can
reach from a given conflict point, and d is the maximum num-
ber of conflict points in a path from an entry to an exit lane.

Proof. Since vehicles cannot move backward in an intersec-
tion and the conflict-point graph contains no circles, a ve-
hicle can never visit the same point twice. Hence, in Level
2, each point can be reserved by at most |V| − 1 times, one
time per vehicle. That is, the number of safe intervals at each
point in T is at most |V|. Thus, when we expand a SIPP node
during the SIPP search, we generate at most D|V| child SIPP
nodes. Since the depth of the SIPP tree is bounded by d, the
size of the SIPP tree is bounded by 2(D|V|)d.

Lemma 6 (Problem Size of Level 3). The LP model of Level
3 consists of 2 variables and at most 2(d + 1) constraints,
where d is the number of conflict points in the path.

We omit the proof for this lemma since it is trivial.

Theorem 2 (Time Complexity of PSL). The time complexity
of PSL is O(|V|d+3DdF(d)),2 where d is the largest number
of conflict points in one path, and F(d) is the time complex-
ity of the LP solver with d conflict points as input. Notably,
this time complexity is polynomial in the number of vehicles.

Proof. Since (1) PSL generates at most O(|V|2) PT nodes,
(2) each PT node replans paths for at most |V| vehicles, (3)
each replan generates at most 2(D|V|)d SIPP nodes, and (4)
each SIPP node calls the LP model at most once, the time
complexity of PSL is O(|V|2) · |V| · 2(D|V|)d · F(d) ≤
O(|V|d+3DdF(d)).

Empirical Evaluation

We implement both PSL and baseline algorithms (intro-
duced below) in C++3 and use C++ CPLEX to solve the
programming models. We run experiments on a VMWare
virtual machine with Intel I7-9850H 2.60Hz and 8GB RAM.
CPLEX uses 12 cores, while the other codes use only 1 core.

Baseline Algorithms The survey paper (Zhong, Nejad,
and Lee 2021) divides methods for solving the intersection
coordination problems into three categories, namely system
optimal, FCFS, and heuristics. We pick MILP proposed in
(Levin and Rey 2017) as a representative system optimal
method and FCFS introduced in Section 4.8 in (Levin and
Rey 2017) as a representative FCFS method. We do not
pick any heuristic methods because we are not aware of any
heuristic methods that work for our problem setup.

2This time complexity is in terms of the LP operations and ig-
nores the other operations in the search such as collision checking,
node insertion, etc. because they are usually cheaper than the LP
operations and can be done in (near-)linear time.

3The code is available at https://github.com/theanhhoang/AIM.
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