


II. RELATED WORK

Benchmarking planning algorithms has received a lot of

attention in the last years [5], [8], [11], [17], [23], [30], [33],

[35]. However, few of them focus on multi-robot planning

and coordination [8], [23], [33], [35]. Stern et al. [33]

discuss the Grid-Based MAPF benchmark from MovingAI

[34], [35], which provides 2D occupancy grid-based maps

with various scenarios (consisting of tuples of starts and

goal cells). This benchmark assumes perfect knowledge of

the world, while our approach considers not only planning

but also execution in realistic simulated environments (con-

sidering uncertainty). Asprilo [8] also offers a simulation

environment, enabling the user to check and visualize the

results. This framework is aimed specifically at intralogistic

warehouse scenarios. The world is represented by a 2D

occupancy grid. Specifics of intralogistics are also modelled,

including shelves of items which need to be brought to

picking stations. Therefore, agents can perform additional

actions, such as picking up and setting down a shelf. While

the constraints can be defined using answer set programming,

the robot motion model is rather simple and the focus is

on abstract representations of agents. Different from our

approach, this approach neglects the higher-level control as-

pects (e.g. collision avoidance). Flatland [2], [23] focuses on

the benchmarking of vehicle rescheduling problem and is not

well suited for broader robotics domains. The environments

are 2D grids with some restrictions on the transitions between

cells: for example, there is no type of cell that can be entered

and exited from all directions, as one would expect for most

household or intralogistics robots. Contrary to Flatland, our

approach considers more realistic robotic scenarios in terms

of environment representation and robot models.

Several approaches exist for machine learning based so-

lutions [27], [31] that are also able to train reinforcement

learning agents. Differently from our benchmark, they do

not consider a realistic multi-robot navigation system.

Moreover, our approach, different from all the others, aims

to reduce the gap between simulation and real-world oper-

ation by making use of state-of-the-art robotic frameworks

(namely, ROS 2 Galactic [22] with Gazebo [18], Navigation

2 (Nav2) [21] and the Robotics Middleware Framework

(RMF) [24]). Different from [6], we do not limit ourselves

to simulations but also provide metrics, scenarios and reports

generation tools.

III. BACKGROUND

In our benchmark we consider the following two planning

problems: task assignment and path finding. Importantly,

both problems are tightly coupled and can be solved sep-

arately or combined [13]. While hereinafter we focus on

navigation tasks, the framework can be extended to handle

different type of tasks, e.g. such as pick and delivery [20].

A. Task Assignment

We define our task assignment problem as follows. We are

given a set of n Agents A = {a1, ..., an} and a set of n Goals

G = {g1, ..., gn}. In a first step, an n×n matrix M = [mij ]
is created that represents the estimated costs for each agent ai

to reach each goal gj . Different heuristics are possible here,

such as the Euclidean distance, the Manhattan distance or the

path length calculated by A* between an agent and a goal.

Following [29, p. 1f.], we model the problem using a bipartite

graph G = (A;G,E). The edges in E connect vertices in

A and G. Each edge is given a weight that relates to the

estimated cost between the respective agent and goal. Then,

an optimization problem is solved to obtain the matching of

A and G that minimizes the total weight.

B. Path Finding

Stern et al. [33] attempt to unify the terminology used

in describing MAPF problems and the evaluation metrics.

The authors first define what they call the classical MAPF

problem. In their definition, the environment is described by

an undirected graph. The problem consists of a set of agents,

each of which is located at a start vertex and needs to move

to a goal vertex. Agents can wait at their current vertex

or move from their current vertex to an adjacent one. Both

possibilities constitute an action. Different kinds of conflicts

are defined to specify the constraints imposed on the agent.

The simplest ones are the edge and vertex conflict, where no

two agents may occupy the same space at the same time.

Following the definitions in [33], we represent the world

as a binary occupancy grid W and use the bijection SG

to represent our MAPF problem. This results in an w × h

matrix, where each entry denotes a square cell c of size

d in the physical world. The value of each cell denotes

whether that cell is traversable. The path-finding algorithm

generates a set of schedules (i.e. paths) S = Sa1
, ..., San

,

with Sai
= {< c1, t1 >,< c2, t2 >, ..., < ck, tk >} for each

agent ai ∈ A, i = 1, . . . , n, that represents the cell that ai
occupies at each discrete time step in the simulation. The

schedule must adhere to the constraint that no two agents

ever occupy the same cell at the same time step. In addition,

all cells ever occupied by agents must have an occupancy

value of 0 in W , and, in the last step of each schedule, each

agent ai has to occupy its goal cell gi. This problem can

be solved by planning algorithms, optimizing for different

metrics. Often, either total cost or the makespan are used.

We use the common definition of individual cost for each

agent as the number of cells traversed. Consequently, the

total cost is the sum of individual costs. The makespan is

defined as the highest individual cost.

IV. MRP-BENCH ARCHITECTURE

In this section, we explain the key decisions in designing

the benchmark suite and outline its architecture. We describe

the frameworks on which the benchmark is based, then

present the algorithms for which we provide interfaces, and

lastly present the proposed software architecture.

A. Background Frameworks

In our benchmark, we adopt the most common state-of-

the-art frameworks used by the robotics community for robot

control and navigation, namely:

i) ROS 2, short for Robot Operating System 2, is an

open-source middleware for robotics applications using a

publisher-subscriber architecture [7]. The last version of ROS



1, ROS Noetic, was released in 2020. While ROS 1 will still

be supported for a few years, we base this benchmark on

ROS 2 as the more advanced and future-proof version.

ii) Gazebo is the default 3D robot simulation environment

for ROS [7]. Version 11, which we use, is the last major

release of Gazebo [26].

iii) Nav2 is a framework for mobile robot navigation [1].

It can compute paths and interpolate between waypoints,

build a local costmap, and attempt recovery in case a robot

is stuck. Nav2 is becoming the standard regarding robot

navigation for modern systems; suggesting that the results

obtained from the benchmark might be easy to replicate

in real-world settings. Nav2 implements different heap for

recovery and collision avoidance, both important tools for

reducing conflicts during execution.

iv) RMF (Robotics Middleware Framework) is ªa collection

of reusable, scalable libraries and tools building on top of

ROS 2 that enable the interoperability of heterogeneous

fleets of any type of robotic systemsº [25]. We use two

components of RMF. The first component is the fleet adapter.

The benchmark interacts with the interfaces provided by the

fleet adapter to obtain the current status of the simulated

robots and to sending control commands. A standardized

interface is the basis for integrating different types of robots

into the simulation. The second component is the demo

environments and Traffic Editor of RMF, which is a GUI-

based tool for creating benchmark scenarios quickly.

All robot models that run within Gazebo, ROS 2 and Nav2

can be used in our benchmark. Our initial experiments use

the TurtleBot3 as it is a small robot with a simple 2D LiDAR

that is available at a reasonably low cost [3] [15].

B. Algorithms

As our work focuses on benchmarking, we selected an ini-

tial set of state-of-the-art algorithms based on the availability

of proper documentation and open-source implementations.

Notably, the ROS 2 interfaces allow for an easy integration of

other solvers and additional algorithms. For our benchmark

and the experiments in Section VI, we adopt the following

tools:

i) OR-Tools [9] is an open software suite for optimization,

maintained by Google [28]. Besides tasks such as routing and

scheduling, it can also be used to solve the task-assignment

problem. For this task, either a Mixed-Integer Programming

or a boolean satisfiability problem (SAT) solver can be used.

ii) From libMultiRobotPlanning [12], we adopt the follow-

ing algorithms: decentralized A* [10], Confict-Based Search

(CBS) [32], Enhanced Confict-Based Search (ECBS) [4],

CBS-TA [13] and EBCS-TA [13]. A* is not a multi-robot

algorithm. However, we turned it into a very simple baseline

by running A* for each agent and combining the resulting

paths into a schedule (which is currently a standard approach

used in industry). The optimal algorithm CBS works on two

levels. On the low level, it performs path planning using A*

for each agent and checks for conflicts. A conflict is defined

as two agents occupying the same vertex at the same time.

If such a conflict occurs, a new constraint that prevents this

particular conflict is added to the lower-level search. Given
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Fig. 2: A flow-chart of the proposed benchmarking architecture.

a conflict with two agents, the constraint could be added

to either of them. To ensure optimality, both possibilities

are saved. The hierarchy of constraints is stored in a tree

representation. The higher level search resolves the tree of

conflicts until the optimal solution has been determined.

ECBS is an extension to CBS that allows for suboptimality

on both planning levels: the user can provide a suboptimality

factor w, and the cost of the returned solution is guaranteed

to be smaller than or equal to w · optimalCost. This is

achieved by using a bounded-suboptimal variant of A* for

single-agent searches. CBS-TA combines CBS with task

assignment. However, with N robots and goals to match,

the number of possible assignments is N !. Checking N !
assignments quickly becomes impractical. CBS-TA therefore

starts with the best assignment in theory, i.e. the assignment

where the sum of individual shortest paths is minimized.

If conflicts occur, the next-best assignment is also taken

into consideration, besides introducing constraints as in plain

CBS. This means CBS-TA creates a search forest instead of

just a search tree. For EBCS-TA, the changes compared to

plain ECBS are analogous to CBS and CBS-TA, respectively.

iii) EECBS [19]: Motivated by Explicit Estimation Search

(EES), [19] propose Explicit Estimation CBS (EECBS), a

new bounded-suboptimal variant of CBS that uses online

learning to inadmissibly estimate the cost of the solution

under each high-level node and uses EES to choose which

high-level node to expand next.

C. Software Architecture

Figure 2 provides an overview of MRP-Bench. The

framework consists of the following sub-components: a

traffic editor for defining the environment, a configuration

file for settling the problem to solve, the simulator, the

manager node for orchestrating the benchmarking phase, the

local navigation systems and the evaluation sub-system (see

Section V).

1) Starting Up: The workflow starts at the RMF Traffic

Editor which can be used to generate a Gazebo world file

with the intermediate step of a building.yaml description.

Together with the config.yaml, this provides the necessary

information for the Bench Manager Node to start the

benchmark: e.g. number of robots, random seed, start and

goals. Using the world file, Gazebo launches the simulated

3D environment. From this simulation, a binary costmap is





performed experiments that compare the algorithms intro-

duced in section IV-B in different scenarios. The replicability

experiment was run on a computer with a Intel(R) Core(TM)

i7-7700K CPU @ 4.20GHz, 16GB memory, the rest of the

experiments on a computer with a Intel(R) Xeon(R) W-1270

CPU @ 3.40GHz and 16GB of memory.

A. Replicability

As the first evaluation, we take a look at how consistently

the exact same scenario leads to the same outcome across

different runs. In order to investigate this behavior, we used

three different setups and executed them 100 times each.

To investigate the variability in a conflict-free schedule

execution, we placed one single agent on the warehouse map.

The distance from start to goal was 45 cells, with a cell

size of 0.35m side length. Here, 100% of the runs were

successful, with a standard deviation in execution time of

only 0.4 s. This means without conflicts between agents, the

simulation is very consistent.

In the other two scenarios, there are five agents on the

warehouse map and the time available to complete the

scenario is 300 s. The calculation time for the schedule

is very consistent for both scenarios, with the coefficient

of variation (standard deviation divided by mean) below

2% for all three setups. While the schedule calculation is

reproducible, the execution is less so.

One of the scenarios tests especially challenging start and

goal configurations, namely those for which the schedules

from all algorithms (A*, CBS, ECBS and EECBS) could not

be executed successfully on the first attempt. We executed

this scenario again for 100 times with a schedule planned by

EECBS. The success rate shown now is 16%. The minimum

execution time observed is 214 s. Consistently, it was always

the same agent that in case of failure did not reach its goal,

seldomly accompanied by further failures.

In the second scenario, we used a setup where 3 out of

4 algorithms were successful in the sense that all agents

reached their goals. Two algorithms, EECBS and ECBS,

were used to plan and execute this scenario each 100 times.

Both algorithms always found the same solution (same cost,

same makespan), and both reached the goal in 95% of the

cases. The mean execution time is only about 1% apart.

This experiment shows that while the simulation contains

some degree of randomness, it does affect different planning

algorithms equally.

As to why the same scenario sometimes fails and some-

times completes successfully, the answer lies in conflict

resolution. The conflicts occurring here, as determined by

observation, are conflicts where two agents attempt to travel

along the same path in opposite directions. The Nav2 naviga-

tion system attempts to perform a recovery, which sometimes

is successful, but often fails. These results tell us that drawing

conclusions from a single repetition of the scenario is not a

good idea. Spurious errors can occur and should be evened

out by repeating the same experiments or by setting up more

scenarios.

B. Comparison of Algorithms Across Multiple Scenarios

We modify four parameters: the random seed determining

the start positions of robots and goal locations, the map used

(office and warehouse)1 , the number of robots (5 and 9)

and the algorithm performing the planning. With 54 different

random seeds, this leads to a total of 864 experiments, split

evenly across the possible parameter choices. For algorithms

supporting suboptimality, we use a factor of 1.2.

Looking at the rate of success in planning a schedule

within a timeout of 60 s, we obtain the results listed in Table

II. We group these results by the map being used, as there are

significant differences in the planning success rate depending

on the map.

Algorithm Office Warehouse

A* 100% 100%
CBS 99% 83%
ECBS 100% 97%
EECBS 100% 100%

TABLE II: Algorithms’ success rate of finding a schedule within
60 s, on a basis of 108 experiments for each combination of map
and algorithm.

CBS gives us an indication of the difficulty of maps:

with still 99% success for office, this goes down to 83%

for the warehouse. The time limit of 60 s was selected as a

high, but still reasonable number for real-life applications. In

fact, lower times may be desired and some algorithms like

EECBS can easily provide these, while others like CBS take

significantly longer.

In the next step, we compare how well the plans generated

by the different algorithms actually perform during execution

in the simulation (see Table III). The normalized success rate

describes all scenarios where all algorithms could calculate

a schedule. For the overall success rate, cases where no

schedule was found count as unsuccessful, as without a

schedule, the task cannot be performed at all. Table III shows

the differences between algorithms. On the office map, the

success rate is high for all algorithms and the differences

are relatively small. On the more difficult warehouse map,

differences become more evident. The highest success rates

are obtained by ECBS. CBS, on the other hand, scores

decently in the normalized column, but obtains the lowest

success rate in the overall examination. This is due to the

fact that CBS is the computationally heaviest of the four

algorithms. In 17 of 108 scenarios, CBS does not find a

schedule within the timeout of 60 s. For ECBS, this only

occurs twice and for A* and EECBS, it is never the case.

While the decentralized A* has a slightly lower success rate

on the normalized warehouse column, it is not far below the

other algorithms.

C. Task Assignment

In the previous experiments, the task assignment was

performed using OR-Tools and the Euclidean distance as

a heuristic. This takes about 5ms and leads to the same

1Due to lack of space we do not report results obtained in the airport
scenario, which follow similar trends seen in the warehouse one.
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