


The world is represented by a 2D occupancy grid, similar

to the MovingAI maps. Specifics of intralogistics are also

modelled, including shelves containing items which need to

be brought to picking stations. Therefore, agents can perform

additional actions, such as picking up and place down a shelf,

instead of just moving from location to location. While the

constraints can be defined using answer set programming,

the robot motion model is rather simple and the focus lies

on abstract representations of agents. Different from our ap-

proach low level control (e.g. collision avoidance) of robots

is neglected. Flatland [1], [14] is a tool for benchmarking

vehicle rescheduling problem, but it is not well suited for

broader robotics domains we have in mind. The environ-

ments they consider are 2D grids with some restrictions on

transitions between cells: e.g., there is no type of cells that

allows entering and exiting a cell from all directions, as one

would expect for most household or intralogistics robots.

Contrarily to Flatland, our approach considers more realistic

robotic scenarios in terms of environment representation and

modelling of the systems to control.

Moreover, our approach different from all the others, aims

to reduce the gap between simulation and real-world oper-

ation by making use of state-of-the-art robotic frameworks,

namely: ROS2 [13] with Gazebo [10], Navigation 2 (Nav2)

[12], and the Robotics Middleware Framework (RMF) [15].

III. BENCHMARK IMPLEMENTATION

In this section, we explain key decisions in designing the

benchmark and outline its architecture.

A. Software Architecture

Figure 2 provides an overview of MRP-Bench.

1) Starting Up: The workflow starts at the RMF Traffic

Editor, which can be used to generate a Gazebo world

file with the intermediate step of a building.yaml descrip-

tion. Together with the config.yaml file, this provides the

necessary information for the Bench Manager Node to

start the benchmark, such as the number of robots, the

random seed and the start and goal coordinates. Using the

world file, Gazebo launches the simulated 3D environment.

From the simulation, a binary costmap is obtained using

raytracing. The building.yaml file contains a representation

of the navigation graph, which specifies the lanes that robots

can move in. From this navigation graph, another simpler

occupancy grid is created. This occupancy grid serves as an

input for the path planning algorithm. Some algorithms can

also use the navigation graph directly.

2) Planning and Fleet Management: If the planning li-

brary has managed to create a schedule, the Bench Man-

ager Node computes and saves performance metrics for the

planning, converts the schedule to a separate path request for

each agent, and sends it to the fleet server, which delivers

them to the individual Fleet Clients. The path consists of

several waypoints, that are provided to the local navigation

units.

3) Local Navigation: Together with a State Publisher

and the Fleet Client, a full Nav2 stack is spawned for

each robot. We use the standard global and local planning

algorithms provided by the main repository. The benchmark

user is free to choose which planners to use for their

scenarios. The Nav2 stack interpolates a local path between

the waypoints of the provided high-level path, controls the

robots, and in case of conflicts, performs collision avoidance

and local recovery. The ground truth position from the

simulator can be used, or the user can decide to run a SLAM

algorithm instead. Currently, the benchmark operates under

the assumption that robots progress from cell to cell with the

same average speed.

4) Data Visualization and Collection: Robot poses are

displayed on a map using the RMF Schedule Visualizer.

While the robots follow their schedule, their states (that

is poses and velocities) are recorded and can be analyzed

later to gather additional metrics. The users can also record

additional data in rosbag format. All self-coded nodes are

implemented in Python3. The architecture is heavily based

on the ROS2 launch system.

IV. EVALUATION SUB-SYSTEM

In this section we detail the scenarios and the metrics

included in the benchmark. They can be further extended

by the user.

A. Scenarios

We provide three main environments, namely the office,

the airport and warehouse, see Figures 3 and 4. Their

main properties are shown in Table I. The warehouse and

airport environments are the most complicated for planning

algorithms, both due to their size and their layout with high-

traffic main roads.

Property Office Warehouse Airport
Terminal

Size
Width 21.53m 22.16m 282.22m

Height 12.05m 27.07m 64.35m

Navigation graph
Vertices 29 54 210
Edges 32 59 211
Occupancy grid
Cells total 1,025 3,009 105,700
Cells passable 333 788 7,645
Cells impassable 692 2,221 98,055

TABLE I: Properties of the environments for 0.4m grid resolution
and two-way roads.

B. Metrics

There are two sets of metrics. The first set is related to

planning performance and quality: success rate, planning

time, makespan and cost (i.e. path length). The second set is

calculated offline by analyzing recorded data of the execution

of the scenarios:

i) Execution Time: The execution time is the time it took

for all agents to reach their goals. It is bounded by a pre-

configured timeout value; once passed, the simulation will

be terminated.

ii) Number of Goals Reached is the number of robots that

managed to reach the goal before the timeout. In case the

execution time is smaller than the timeout, this number is

equal to the number of agents in the scenario.





simulation. The normalized success rate for planning and

execution is based on all scenarios where all algorithms

could calculate a schedule. For the overall success rate, cases

where no schedule was found count as unsuccessful, since

the robots cannot complete the tasks without a schedule.

Table III shows the differences between the algorithms.

On the office map, the success rate is high for all algorithms

and the differences are relatively small. On the more difficult

warehouse map, the differences become more distinct. The

highest success rate, both normalized and overall, is obtained

by ECBS. CBS, on the other hand, has a decent outcome in

the normalized success rate, but the lowest overall success

rate. This is due to the fact that CBS is the computationally

heaviest of the four algorithms. In 17 of 108 scenarios, CBS

does not find a schedule within the timeout of 60 s. For

ECBS, this only occurs twice and, for A* and EECBS, it is

never the case. While decentralized A* has a slightly lower

normalized success rate on the warehouse map, it is not far

below the other algorithms.

Algorithm Success Rate
Normalized Overall
Office Wareh. Office Wareh.

A* 95% 81% 95% 77%
CBS 93% 84% 92% 70%

ECBS 95% 89% 95% 85%
EECBS 95% 84% 95% 78%

TABLE III: Algorithms’ success rate of completing a scenario
within the timeouts of 60 second (planning) and 5min (execution).
Data based on 108 experiments, except for warehouse, normalized,
which is based on 91 experiments.

B. Summary

In summary, our experiments suggest that using subopti-

mal algorithms is a viable approach for coordinating multiple

robots. ECBS turned out to be faster than CBS and also

delivered a higher success rate. EECBS is even faster and

never failed to find a solution in our scenarios, at a small

cost in the success rate. Overall, the local recovery feature

offered by Nav2 sometimes may be sufficient to even use

decentralized approaches, such as A*. This is advantageous

in environments that are less static than in our scenarios

since, if robots have to rely even more on local observations

due to a rapidly changing environment, centralized planning

is generally not a good idea.

VI. CONCLUSIONS

In this paper, we introduced MRP-Bench; a novel bench-

mark for multi-agent task assignment and path planning

in realistic environments. The benchmark offers a set of

scenarios and metrics ready to be used together with state-

of-the-art algorithms. Its architecture has been designed

such that more scenarios or additional robot models can

be integrated with little effort. We provide interfaces to

the most common frameworks for robot simulation, nav-

igation and multi-robot planning. In our preliminary ex-

periments, we were able to demonstrate that data gath-

ered using this benchmark allows us to judge the suitabil-

ity of multi-agent algorithms for different scenarios. By

making our benchmark open source (https://github.

com/boschresearch/mrp_bench), we hope that the

research community will use it to evaluate novel algorithms

and scenarios in the field of multi-robot planning. We warmly

welcome contributions to this project.
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