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Abstract—The paper describes research challenges arising
from the increasing interest in supporting more immersive and
more intelligent environments that enable the next generation of
seamless human and physical interactions. These environments
span the gamut from augmented-physical to virtual, and are
referred to hereafter as the Meftaverse. We focus on challenges
that constitute a natural extension of Internet of Things (IoT)
research. Among the key applications of IoT has always been the
integration of physical and cyber environments to endow “‘things”
with a better contextual understanding of their surroundings, and
endow human users with more seamless means of perception
and control, ranging from smart home automation to industrial
applications. This IoT vision was based on the premise that the
number of physical “things” on the Internet will soon significantly
outpace humans. Intelligent 10T further envisions a proliferation
of edge intelligence with which humans will interact. The paper
elaborates the research challenges that extrapolate the above
trajectory.

Index Terms—Metaverse, 10T, Cyber-Physical Systems, Al,
Machine Learning.

I. INTRODUCTION

The rebranding of Facebook as Meta in 2021 [46], brought
to the forefront debates over the timeliness and viability of
the underlying technology roadmap.' Taking a step back to
today’s capabilities and demands, this paper develops a vision
for emerging research challenges and applications in the space
of cyber-mediated intelligent interactions between humans and
their physical environment. We refer to these interactions as
Metaverse applications. We argue that viable applications will
build on two great successes of the preceding decade: (i) the
proliferation of Internet of Things (IoT) technologies, and (ii)
the popularization of practical machine intelligence. These two
pillars combined will drive a next generation of content and
usecases, centered around enabling new degrees of freedom in
perception, interaction, and control.

Spurred by prospects of immersive virtual spaces, many
Metaverse surveys emerged in the last few years. The most
comprehensive Metaverse survey to date is likely by Lee
et al. [51]. Several other surveys address aspects of the
problem [17], [21], [70], [72], [95]. These aspects include
policies, industries, and applications [70], immersion and
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interaction challenges [17], [21], [72], and privacy and se-
curity challenges [95]. Complementing the above efforts, this
paper extrapolates a research trajectory that intersects machine
intelligence and IoT research roadmaps, offering answers for
what might be both technologically possible and likely, given
the current impetus.

Over the last decade, significant and exciting advances in
the IoT landscape have redefined its vision, frontiers, and
challenges [6]. The natural extension of this roadmap leads to
the emergence of a more intelligent, interactive, and distributed
application ecosystem that bridges the cyber and physical
realms. Said differently, while saturating human senses will
ultimately take a bounded amount of bandwidth, it is the
explosive growth of world data, generated by the physical
environment, by software, and by machine intelligence that
will truly drive future content expansion frontiers. This expan-
sion will require innovative interfaces that enhance perception,
immersion, and control, in the face of challenges at the edge,
in the network, and at the back-end.

At the front end, emerging challenges will parallel two big
trends in 10T research and development. The first trend has
been the introduction of cloud-assisted machine intelligence at
the edge for sensing, data processing, and control [1], [22]. The
second trend has been the evolution of interaction modalities
with IoT devices. These modalities evolved from utilizing sim-
ple APIs (such as structured environmental controls in smart
home environments [42], [75]) to accepting human-like inputs,
such as gestures [38], natural language commands [33] and
visual likeness [73]. Extrapolating these trends, IoT research
will continue to seek more natural and intelligent interfaces
that allow individuals to interact with, influence, and perceive
physical environments or their digital representations, thanks
to new visual, acoustic, and haptic interfaces, paired with
autonomous agents, machine learning, and digital twinning
technology that significantly broaden the types of allowed
cyber-physical interactions.

In the network, as more immersive content becomes more
popular, applications will push the demand on high-bandwidth
low-latency networking [90] and call for advances in a wide
range of data services [78]. To create the abstraction of an
integrated ecosystem, where user identity and (some aspects
of) state persist across applications, application interoperability
must be achieved, as opposed to creating application-specific



experiences and vertical silos. The data plane of the new
ecosystem will need to support decentralization, sharing, and
persistent state [36]. The control plane will support resource
allocation policies and control mechanisms for security, pri-
vacy, and financial transactions. These requirements will give
rise to network architecture challenges, reminiscent of the
exploration of design principles that informed today’s layered
Internet architecture [83].

At the back-end, as application-supported interactions be-
come Al-heavy, it will become important to investigate so-
lutions for accelerating the execution of machine learning
primitives and democratize access to Al capabilities at scale.
Cloud services in this space may include managing spatio-
temporal content [53], efficient storage [13], approximate
queries/search [59], distributed retrieval [63], and real-time
content summarization [66].

The rest of this paper is organized as follows. Section II
briefly reviews recent business drivers of Metaverse-like ap-
plications. Sections III, IV, V, VI, and VII overview the
five key challenge areas: namely, the IoT front-end, network,
back-end, application-inspired Al acceleration, and physical
integration/automation, respectively. The paper concludes with
Section VIII that summarizes the key points.

II. THE DRIVERS

According to a US-based survey, conducted by pwc.com
in 2022, 82% of the surveyed business executives said they
“expect Metaverse plans to be part of their business activities
within three years”. What are the drivers behind these pre-
dictions? Today’s more optimistic Metaverse expectations are
reminiscent of business predictions for IoT, roughly a decade
ago, when a number of industry giants [24] projected an IoT
device explosion to (up to) 50 billion by 2020, driven by the
reduced cost of sensors, the growing availability of processing
capacity and communication bandwidth, and technological
advances such as IPv6 and ubiquitous wireless coverage.
Many drivers were cited from personal wearables and home
automation to office, healthcare, transportation, and smart city
services [89], prompting organizational and market research
pillars, such as McKinsey & Company, to predict the global
IoT market to reach $11.1 trillion by 2025 [20]. What is the
next step in this evolution?

Standardization: The prospective application domains of
the Metaverse are perhaps best reflected in the membership
of the Metaverse standards forum, founded in June 2022,
with the goal of ensuring interoperability of Metaverse compo-
nents. Current members include telecoms, search engines, chip
manufacturers, defense contractors, software/OS developers,
social media companies, the entertainment industry, game
engines, sports associations, and consumer retail outlets. They
feature such prominent names as Acer, Adobe, ARM, BBN,
Blockchain, Comcast, Deloitte, T-mobile, Ericsson, Fujifilm,
Google, Huawei, Ikea, Intel, Juniper, Lenovo, LG, Meta,
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Microsoft, the National Basketball Association (NBA), Nestle,
Nokia, NVIDIA, Pramount, Qualcomm, Samsung, Siemens,
SONY, Unity, Verizon, and W3C. As visions for Web 3.0 also
gain ground, discussions for Mataverse support in Web 3.0
promise to resolve logistic hurdles, such as authentication,
security, non-fungible tokens, and decentralized persistence
(e.g., blockchain) protocols [47]. A recent market analysis
report® predicts the market size for Metaverse-based appli-
cations to reach nearly one trillion USD by 2030, up from
approximately $65B in 2022 (currently mostly attributed to
revenues of today’s gaming market, such as Epic Games,
Roblox, and Minecraft).

Gaming and Entertainment: While the most obvious near-
future Metaverse value generators are perhaps VR gaming
applications, other directions include revenue from 3D ad-
vertizing [43], online shopping [107], and social applications,
including teleconferencing, recently brought to focus by the
COVID-19 pandemic. The entertainment industry has also
made plans to capitalize on virtual reality offerings. For exam-
ple, Warner Music Group, in cooperation with Sandbox, have
announced the creation of virtual theme park that features,
among other things, virtual concerts and performances by top
artists. Universal Studios in Japan integrated some of their
rides with virtual experiences.

Training, Twinning, and Augmentation: Metaverse-based
training and education have been cited as other examples of
important applications [36], [92] with the potential to help
learners improve attention span, build confidence, and generate
a sense of community. This application space extends to life
sciences and physical sciences, where virtual interactions may
allow learners to explore and manipulate objects in novel
ways. It is an instance of human enhancement that augments
perception and manipulation capabilities with mediation from
digital twins and novel physical manipulators [4].

Services: On the government side, investments are being
made into using the Metaverse as a tool to improve public ser-
vices. South Korea has recently announced a three year effort
to create a virtual replica of Seoul [2]. Among other objectives,
it will allow citizens’ avatars to use tax services, libraries, and
other public resources. Virtual reality has also been a proposed
solution for preservation of cultural heritage [7], [41]. For
example, the rising ocean levels have prompted the island
nation of Tuvalu to embark on creating a Metaverse replica
of their nation to preserve its heritage and art before they
are fully submerged [41]. In a similar vein, a collaborative
discussion has started on preserving the Australian Aboriginal
(First Nation) culture by replication in the Metaverse [7], as
well as preserving Japanese cultural elements such as Japanese
tea ceremonies.

The Caveat: It remains to note one important difference
between the explosive growth of the IoT ecosystem a decade
ago and the prospective rise of the Metaverse today. IoT
visions were driven by a proliferation of a new type of
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created content, namely, the creation of sensor data thanks
to the abundance of smart sensors and low-cost embedded
computing and network hardware. This new type of created
content was then monetized via a range of IoT applications.
This is similar to the way the growth of YouTube leveraged
the ubiquitous creation of video content (thanks to camera
phones) and the growth of Instagram leveraged the ubiquitous
creation of images. In contrast, the Metaverse is driven by
visions of immersive content consumption at a time when the
creation of immersive content is not yet commonplace. While
advances in such devices as 360 cameras [100] might soon
change the status quo, successful expansion of the Metaverse
remains contingent on the democratization of content creation.
Moreover, due to the inherently compute-heavy nature of
content services in the Metaverse, leveraging its full potential
may also be contingent on democratizing access to machine
learning at scale and democratizing the creation of digital
twins for physical artifacts. The research roadmap presented
in this paper discusses such infrastructure prerequisites.

III. THE FRONT END: ACCELERATION FOR IMMERSION

The front end of the Metaverse resides in the edge com-
puting platforms that are either on one’s person (e.g., head-
mounted displays) or in one’s physical vicinity (e.g., ambient
displays), and realize a Capture-to-Delivery (C2D) pipeline
that is at the core of cross- and mixed-reality interaction
and immersion. The end-to-end C2D pipeline is a multi-
stage one with functions that include capture (acquire signals
carrying information about the user and their surrounding),
perception (estimate from sensor data the state of the user
and various entities in the environment), cognition (derive
from the perceived state an understanding of the current
situation and project its future trajectory), memory (isolate
and store significant information relevant for future iterations
of the C2D pipeline), communication (collaborate with other
edge computing platforms and with premise, edge, and cloud
based networked computing resources to optimize various
dimensions of user experience, and, presentation (deliver to
the users various multisensory experiences that fuse real and
virtual information). The front end needs to provide these
capabilities in diverse operational settings that range from
well-instrumented indoor spaces (e.g., office, home, factory,
store, hospital, etc.) to out in the wild (e.g., on the road,
battlefield, forest, etc.).

Scene Capture & Perception: Essential to providing a user
with a good cross-reality immersive experience is the ability of
the system to know what is the user’s state (not just physical
but also physiological, cognitive, and other) and what is going
on around the user, both in the real world and in the virtual
world. This task of perception involves two steps: acquire
using sensors physical signals relevant to the state information
of interest and process those signals to predict the state
information. To eventually immerse the user in a multisensory
experience that is at least as rich as the real world we live in,
Metaverse front end capture multimodal signals from the user
and their environment, some corresponding to common human

senses (e.g., vision and sound) and some beyond-human ones
(e.g., RF and inertial). There are two key goals: capture high-
fidelity information about the visual and acoustic aspects of
the scene so that a digital twin can be constructed at a different
time or place, and track detailed position and orientation of the
user and their body parts relative to the scene so that sensory
experiences can be suitably transformed as the user moves
and interacts with the scene. Currently used sensing modalities
include various types of cameras (2D, 360, RGBD), Lidars,
acoustic arrays, inertial sensors, and wireless (WiFi, mmWave,
UWB). While there have been considerable advances in both
Inside-out and Outside-in tracking [49] — in the former, a body-
mounted device (such as a head-mounted one) performs the
necessary sensing while in the latter ambient devices such as
in the environment take on the burden — the current state of the
art leaves much to be desired. Outside-in approaches limit the
user to a specific region of the physical world which is a priori
instrumented, while Inside-out approaches present physical
burden for the user due to the heavy weight of current devices
and also fail to provide complete position and orientation of
the entire body (e.g., it is hard to infer the state of the lower
body from sensors in a head-mounted display).

Beyond position tracking, the Metaverse also requires sens-
ing finer-grained and richer state about the user and their en-
vironment. For example, sensing what kind of floor is the user
walking on [102] or sensing what gesture is the user making
with their fingers or what is the force with which they are
touching the object [74] or what is the expression on their face.
To accomplish these sensing tasks, the captured physical signal
must be suitably processed to derive the desired inferences.
For example, Lidar point clouds require complex processing to
isolate from the background [98], RGB and depth images need
to be processed to create meshes for display, and 360 video
cameras produce equirectangular format which then needs to
be transformed into other representations such as navigation
graphs [71]. While in the past, the sensor information was
processed using first-principles algorithms based on physics
and signal processing, in recent years deep neural networks
with a large number of parameters and trained using data have
shown much superior performance because of their ability
to model complex and unknown physics [80], [81] as well
as an ability to extract state information from unstructured
hight dimensional sensor signals, but have also resulted in the
challenge of implementing deep neural networks on low SWaP
edge platforms without sacrificing performance [82].

Cognition & Memory: While scene capture and perception
provide an awareness of the current state of the user and
various entities in their surroundings, providing a meaningful
multimodal immersive experience to the user requires process-
ing the multidimensional state information to understand the
significant spatiotemporal events and activities in the scene
and projecting them into the future so as to both guide
autonomous actions by the system (e.g., interacting on the
user’s behalf with other entities) as well as to provide the
user with information relevant for their decisions and actions.
Moreover, such understanding and projection can also guide



the process of making memories, i.e., storing information that
may be useful as context at a future moment in time. The
primary challenge arises from the the the mismatch between
the resources available on the edge computing platforms
employed in the Metaverse systems and the large deep neural
network models that are needed for good performance, such as
those based on transformer architectures being used for image,
video, speech, and natural language. Another challenges arise
from the dynamic nature of the front end, for example with
continual changes in sensor perspectives due to mobility,
impairment of select sensing modalities due to environmental
factors, and sensor occlusions due to body movement and
ambient clutter. Lastly, in light of limited memory storage,
the system needs to be intelligent about identifying the key
change points that should trigger memory formation actions.
A key to meeting these challenges will be to leverage the
current or predicted user attention [69] to focus the limited
processing resources on the most high value sensors streams
or regions within a stream (e.g., in the case of 360 cameras),
and to devise multimodal architectures that can adapt to the
availability of sensor modalities by employing shared cross-
modal latent representations [54], [99], and the availability
of computing resources by employing approximate compu-
tations [104], neural network model compression [48], [56],
[106], and input resolution adjustment [34]. As data memory
consumes significant power, reducing memory footprint for
both the models and the stored contextual data is important;
for the former besides model compression methods such
as weight virtualization [52] can help, while for the latter
compression methods exploit semantics and latent represen-
tations are promising [105]. Lastly, important for address-
ing Cognition & Memory related challenges would be new
hardware capabilities such as accelerators optimized not just
for convolutional layers but newer transformer architectures,
and tighter memory-processing integration such as compute-
in-memory.

Edge Communication: Communication is core to the
Metaverse, with communication taking place both in the
virtual world (a user’s digital twin exchanging information
with digital twins of other users and with other entities) and
the real world (user-worn and ambient devices exchanging
information for sensing and presentation, and for off-loading
computing to on-premise, edge, and cloud servers). The main
challenge arises from the simultaneous requirements of high
data rates due to rich sensors (such as cameras and Lidars) and
high-resolution displays, as well as ultra low latency and tight
time synchronization due to human perception requirements
and to avoid adverse health effects such as nausea. This
confluence of high-throughput (Gpbs) and low-latency (ms) is
currently beyond the reach of low-power wireless technologies
that can be incorporated into front end devices for use in
the wild, and come with severe range limitations, essentially
tethering the user to within a local area. The development
of suitable wireless technologies is a barrier challenge that
needs to be solved for Metaverse viability, and would involve
addressing challenges across the entire wireless stack from

antennas up. As high data rate would require the use of high
carrier frequencies whose propagation is easily impaired by
environment clutter and user’s own body, it would be essential
to take a joint sensing-communication approach whereby
sensing of the world and user state informs the communication
decisions. Also important would be compression that exploits
semantics to significantly reduce data rate requirements. Se-
mantic compression and decoding technology can represent
complex concepts in multimedia streams concisely in low-
dimensional latent representation spaces and decode efficiently
from such spaces to generate realistic real-time environments
for the user [15], [29], [103]. Such technologies can further
be enhanced with asymmetric encoder/decoder design [14],
[105] that places a lower computational burden on the headset,
while compensating by using more computationally-heavy
algorithms on the edge server. For example, deep compressive
offloading [105] uses a lightweight encoder to compress out-
going data on the end device and a resource-intensive decoder
to restore the data at the edge server. It further uses knowledge
of downstream tasks to determine which data features could
be compressed away and which features are more important
for the specific task at hand, thereby achieving a higher overall
compression ratio.

Display & Presentation: The final stage of the C2D
pipeline is presentation of multimedia content to the user, and
then closing the loop by sensing user’s actions to continually
adapt the presentation. Recent years have seen tremendous ad-
vances in audio-visual content presentation technologies such
as AR/VR headsets that provide immersive visual experiences,
lightfield-based parallel reality ambient displays that provide
simultaneous viewer-specific content to a large number of
users, and tiny earables with spatial audio that adapts to
head position and room acoustics. For headsets and earables,
communication bandwidth and battery life remain a painpoint.
For example, Today’s Meta Quest Pro headset* weighs over
700g. It comes equipped with 256GB storage, a 12GB RAM,
and a SnapDragon processor that consumes several Watts of
power, making cooling a potential concern when in protracted
use. To ameliorate these challenges, solutions that decrease
headset power consumption are needed. Such power-efficiency
solutions might, for example, leverage architectural innova-
tions that improve computational capacity per Watt [8], [101],
or exploit protocols that balance computation between the
headset and back-end support (e.g., edge or cloud servers)
to minimize the computational needs of the former [62].
Besides audio-visual content, other innovative interfaces might
emerge, such as haptic [18], olfactory [68] and cognitive [67]
interfaces. For example, recent advances demonstrated the
feasibility of communicating signals over a network from
one user’s brain to another [37]. Direct brain stimulation has
also been shown to modulate cognitive performance [64] or
induce certain affective states [84]. Combined with audio-
visual stimuli, such interfaces could serve a wide variety of
functions from stimulating productivity to enhancing immer-
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sive entertainment. Olfactory and visual media must come
together to provide a unique immersive experience. However,
one of the challenges is synchronization of delivered media
due to their different propagation delays to user’s senses [68].
Haptics and immersive video have their own challenges such
as delays introduced by force rendering, and overall reduction
of disparity between haptic and visual data [10].

IV. NETWORK PROTOCOLS

Moving away from the edge network, a key challenge will
be to reduce or mask end-to-end latency. In applications where
users interact with each other or with a remote environment
across long distances, latency may interfere with illusions of
virtual presence. Even at the speed of light, it takes over 100ms
to circle Earth once, which can be quite perceptible to an
end user. Unfortunately, network latencies in local-, metro-,
and wide-area settings are typically much larger than speed
of light, due to suboptimality of Internet path selection (e.g.,
AS path inflation, hot potato routing), congestion, reliance
on third-party services such as DNS, and protocol overheads.
Even worse, the nature of these underlying properties is highly
variable, leading to statistical effects such as jitter and non-
stationarity, complicating the ability to counter them.

Combating Latency: Predictive algorithms may extrapolate
from the current state to compute and render predicted future
states ahead of data reception or to prefetch data ahead of
user requests to offer the illusion of a more timely interaction
with the remote environment. “Dead reckoning” has been
widely used within video gaming environments to overcome
latency, and such techniques could perhaps be extended to
predict the more complex interactions found in metaverse
environments. Some metaverse services may be replicated
using content distribution networks or cloud services; the
advent of edge computing may enable placement of services at
the network edge close to users. The mechanisms underlying
these services, such as anycast and network mapping, have
been widely explored in the context of traditional Internet
services (such as web hosting), and may need to be extended to
support the novel low-latency and highly collaborative nature
of multiverse services. Protocols will be needed to efficiently
convey change. Receiver-side models could be used to predict
future frames based on an activity model shared with the
sender. The sender can then prioritize the transmission of only
those bits that cannot be accurately predicted from the models.

Wide-area Scalability: The advent of cloud computing
led to fundamental changes in the Internet’s design, with
the advent of massive private intra-cloud networks, edge
computing CDNSs, and a general “flattening” of the Internet’s
hierarchical structures. The metaverse will place new demands
on the Internet to achieve real-time communications at scale.
While low-latency communication mechanisms have pervaded
cloud computing deployments with Infiniband and RDMA,
we lack comparable technologies for the wide area. A chal-
lenge will be developing incentive-compatible mechanisms
which can provide advanced quality of experience across
multiprovider networks. Latency may be further reduced by

exploring novel congestion control mechanisms optimized for
real-time delivery, resizing router buffers and exploring novel
router architectures to provide cost-effective guarantees on
packet delivery at scale, and content distribution network
architectures that decentralize metaverse systems, offloading
core functions to edge computing. In recent years, intent-based
networking has gained significant traction within industry,
allowing operators to manage their networks through direct
expression of high-level policies; however, much work in this
space has focused on reachability policies, a challenge will be
to develop frameworks to support customizable intents on user
quality of experiences and metrics related to the metaverse
experience. Programmable networks, including frameworks
such as P4, may further creation of customizable packet
processing logic that can adapt to changing workloads and
operational constraints. Finally, operators may also benefit
from more formal approaches to peering for low latency, lever-
aging machine learning and predictive technologies, as well as
network surveys and structural observations to determine the
best locations and approaches to peer.

A related issue is architecture design principles for the
Metaverse that allow interoperability and give rise to a com-
mon ecosystem, as opposed to a set of individual applications
that share in common the use of immersive content.

V. THE BACK-END: CONTENT PROCESSING SERVICES

A growing fraction of today’s global computational de-
mands stems fundamentally from the need to process net-
worked world data [23], [88]. Since the Metaverse application
ecosystem will give rise to new more immersive data formats,
novel challenges arise in back-end data processing.

Access, Indexing, and Search: Among the largest drivers
for increased computational needs in recent history has been
the democratization of at-scale content sharing, driven by
Web and social network platforms. Today, the most visited
websites are those that offer global content access, indexing,
and search, such as Google, YouTube, Facebook, and Twitter.
The Metaverse application ecosystem offers the next step in
immersion and thus advances the modalities of shared content.
It will popularize a next generation of content that evolves
from text, images, sound, and video to 3D environments with
haptic audio-visual modalities [19] and possibly cognitive
influence interfaces. Platforms for content sharing will need
to evolve to support operations on the new content modalities.
At present, scalable search of complex content modalities,
such as video, is still relatively new [40]. While initial
systems exist for scalable video analytics using machine-
learning approaches [39], [79], the interfaces for specifying
visual concepts for search purposes and algorithms for ranking
potential matches remain an active research topic. Searching
immersive 3D multimedia content for specific types of activity,
experiences, or artifacts is an important future challenge.

Summarization: A related issue is to re-imagine the very
role of search services in the Metaverse age. The interface
of today’s search engines has not substantially changed in 30
years; a list of matching entries, such as videos, Webpages,



or Tweets, is returned the way it was when the first browser
appeared [5]. In the meantime, the number of Internet users
has grown by orders of magnitude. Metaverse content con-
sumers should be empowered with mechanisms that facilitate
understanding the content beyond the top matching items. For
example, imagine what it might be like to retrieve past tourist
experiences at a particular landmark. Technologies are needed
to generate summaries of representative experiences, possibly
from thousands of distinct specific experiences stored. Means
for summarizing both individual content items and content
collections will become necessary. The emergence of the
Metaverse may precipitate the development of next-generation
algorithms for organizing and summarizing unstructured mul-
timedia data in an unsupervised manner. Hierarchical catego-
rization and summarization will help consumers understand
the totality of content and efficiently navigate to shared clips,
memories, or experiences, much the way they can navigate
review categories on Yelp or Travelocity today. An example
of an unstructured content summarization service today (for
the most parsimonious content modality — text), based on
pre-trained language models [76] (as opposed to knowledge-
base grounding), is ChatGPT [93]. It is likely to be the first
of many more Al-based services that will increasingly target
multimedia and more resource-intensive content to generate
more engaging and immersive summaries.

Generative Foundation Models: A related direction might
lie in the creation of immersive experiences based on pre-
trained foundation models (in Al) [9]. Foundation models are
large deep neural networks that are pre-trained using a self-
supervised approach on extensive amounts of data and are
customizable to a variety of downstream content generation
tasks. For example, ChatGPT [93] is a foundation model
that can generate text in response to a prompt. Foundation
models are also being explored in other fields as a way
to summarize common knowledge, somewhat analogously to
large-scale simulations. An example is foundation models for
networking [50]. The 3D immersive environment of the envi-
sioned Metaverse suggests that future foundation models might
assimilate text, audio, and visual content, offering customized
multimedia experiences, prompted by user input, or synthesize
multimedia summary highlights based on user queries.

VI. Al ACCELERATION AND APPLICATION SERVICES

The computational challenges posed by Metaverse appli-
cations on the computing infrastructure will drive advances
in hardware and compiler technology. Much recent work has
already focused on accelerating different Al-inspired compu-
tational kernels. Future advances are needed to support the
computational needs of creating, summarizing, searching, or
otherwise processing Metaverse content.

Compiler Infrastructure and Optimizations: First, ma-
chine learning models and methods used in metaverse appli-
cations tend to have sparse components and hence we can
leverage advances in domain specific hardware and compiler
techniques in sparse tensor algebra to accelerate such work-
loads. For example, a collaborative filtering content recom-

mendation system might compute its recommendations from
observing who liked what in the past, as well as their similarity
relations to the item being recommended. However, “who liked
what” is a very sparse matrix, as each user likely interacts with
only a small subset of all available items. Recent advances
in domain specific compilation techniques targeting sparse
tensor algebra [45], [85] and graph computations [109] can
potentially be used to automatically generate fast code for
these applications. Different compiler techniques focusing on
eliminating redundancies [111] and workspaces [44] have been
suggested to further improve upon these compiler infrastruc-
tures. Additionally, we can gain even more runtime perfor-
mance by specializing the optimization strategies specific to
the sparsity pattern of the sparse matrices. Some works focus
on selecting the best sparse storage format [110]. Others
propose adaptive optimizations such as input-sensitive load
balancing schemes [97], adaptive sparse tiling [32] and cache-
aware graph segmentation schemes [108]. These techniques
use both heuristic-based compiler algorithms as well as data-
driven auto-tuning techniques.

Also, it is important to carefully select and invent compiler
and program optimization techniques for machine learning
models that run on hardware that are designed for metaverse
applications. For example, heavily pruned [27], quantized
machine learning models [30] may dominate inference tasks
in metaverse. Therefore, the applications should leverage com-
piler techniques that focuses on applying those approximate
techniques and optimizes for those. Works that focus on
training neural networks with low memory requirements [57],
works that focus on applying approximate optimization tech-
niques [87], works that focus on edge devices [12] and
infrastructures for federated learning [35] will be of relevance
in this front. Moreover, in processing streaming content, such
as immersive multimedia, there are ample opportunities to
optimize computations. There have been many efforts at lever-
aging compiler optimizations to speedup these multimedia
computations including vectorization [16], specialized code
generation through frameworks such as FFTW [28] and SPI-
RAL [26], early work on optimizing streaming computations
such as Streamit [91] and work on optimizing compression
and decompression workloads [77]. These approaches should
be adapted to work with hardware platforms that will drive
content delivery and computation in metaverse applications.

Distributed Acceleration: Training large AI models, such
as foundations models for multimodal/3D immersive content,
will require distributed computation. Metaverse applications
will thus push the envelope of distributed learning, moti-
vating and advancing the development of frameworks that
significantly accelerate distributed AI [65]. Different from
conventional distributed training, we envision future Metaverse
learning will ingest a diverse set of data (texts, images, and
videos) and run a DAG of heterogeneous models. For example,
the DAG may start with models targeting a specific format
of data and later get additional training across data types.
This brings new challenges for acceleration because we may
incur different delay at different training stages for different



data types. We can address this challenge by leveraging new
algorithms and accelerators to data preprocessing, compres-
sion, and feature extraction (e.g., by leveraging hardware-
based video decoder and in-network computing). Moreover,
we need to dynamically allocate various computing resources
(accelerators, GPUs) to different training tasks based on the
workloads in the runtime. We need to allocate more resources
to parallelize those bottleneck tasks more.

Another challenge is latency (especially tail latency). We
need to continuously collect data and make fine-tuning de-
cisions for the training models. Any delay in Metaverse
significantly affect user experiences or decisions. Therefore,
we need to introduce streaming algorithms that process images
and videos even before they fully arrive at the servers. Our
runtime system needs to incorporate deadline-aware schedul-
ing, which prioritize those operations and data on the critical
path. We also need to dynamically select the right models
based on the latency requirements. Moreover, we need to
introduce approximate solutions that explore the tradeoffs
between latency and accuracy. We also need to mitigate
stragglers while retaining accuracy. Multi-tenancy is another
challenge for accelerating distributed training. Different users
may provide different amounts and types of data and may
need different training models. We need to identify new ways
to share GPU resources across tenants with minimal context
switching overhead. Moreover, we need to find ways to enforce
end-to-end sharing policies into individual components in the
data processing pipeline (e.g., NICs, CPUs, and GPUs).

VII. PHYSICAL AUTOMATION

With advances in autonomy and robotics, pervasive automa-
tion will increasingly delegate physical functions to drones,
robotic assistants, and autonomous machines. At the same
time, a growing number of IoT devices will automate increas-
ingly many applications from smart home energy control to
city-wide traffic management. These applications will offer
control APIs in the Metaverse, thus allowing Metaverse users
to perform tasks in the physical environment.

Users in the metaverse will be empowered to interact with
a set of agents in the physical world, an evolution of today’s
IoT applications, including various forms of control agents
(e.g., HVAC), mobility devices (e.g., autonomous cars, and
drones), and delegated physical functions (e.g., household and
industrial robotics). Support for automation will become em-
bedded in increasingly more everyday items, giving them the
appearance of intelligence on a budget, within limits on their
embedded memory and computational capacity. Significant
optimizations will be needed to offer these capabilities while
respecting the constraints of their resource-limited computa-
tional environment.

Safety and Security: Task execution that impacts the physi-
cal environment brings about a myriad of concerns, commonly
associated with computational systems that interact with their
physical environment, or cyber-physical systems [86]. For
example, safety and security assurances will become more
important [96]. Solutions will be needed that vet the safety

of actions in real-time before they are committed to the
environment. Conflicting actions and actions with conflicting
policy goals should be avoided [60], [61].

Digital Twins: To ameliorate safety problems and offer
an opportunity for safe “what-if” analysis, a proliferation
of digital twins is expected for networked “things” [11].
Digital twins are thus envisioned to become commonplace
Metaverse citizens [25], [58]. Several companies including
BMW, Coca-Cola, and NASCAR have recently announced
partnerships around building replicas of their products in the
Metaverse. For example, BMW’s digital twin allows it to
explore different configurations of factory automation that op-
timize the manufacturing workflow. Challenges in maintaining
digital twins include reliable low-latency communication [94],
synchronization [31], [31], networking [3], security/privacy
considerations [25], low-resource operation, and edge-cloud
coordination [55], with applications in both industrial and
social contexts. Digital twinning through the metaverse will
transform the way operators and developers create and manage
cyber physical infrastructures. When designing a new infras-
tructure, the developer will leverage the metaverse to rapidly
mock up and prototype their designs without the constraints
of physical hardware. To test their designs, developers will
create physical “unit tests” and other testing frameworks by
manipulating the metaverse environment, running the device
under test through diverse environmental scenarios, and ex-
posing it to unexpected contingencies. ensuring the device
will perform as expected. The self-contained properties of the
digital twin will provide a natural location to apply verifica-
tion and synthesis technologies, providing further assurance
that system software and protocols are properly implemented
with bounded behaviors. The operator can then “push” their
implementations from the cloud out into the real physical
environment, ensuring that their pre-tested implementation and
properly-tuned configuration is what is running in the real
environment. After deployment, the operator can make use
of advanced ML and anomaly detection algorithms to study
behavior of the deployed device, as well as to dynamically
tune operational settings.

Modeling the Environment: An additional challenge will
be in twinning the physical environment surrounding the de-
ployed system. Many simulators exist today for both software
systems (computer networks, microcontroller architectures,
etc.) as well as physical media (mechanical stress, hydrology
and fluid flow, etc), but several things are lacking. First, we
lack comprehensive environmental simulators that can “stitch
together” the joint behaviors of objects and software across
different objects and materials within an environment. Second,
simulators often lack mechanisms to represent environments
with the finer levels of granularity that may be important for
effective twinning. For example, network simulators such as
ns-3 and CORE provide highly effective environments to simu-
late wireless protocol behaviors, yet lack the ability to simulate
specific environmental considerations that may greatly affect
wireless operations (e.g., suppose there are three trees between
the sender and receiver — how is multipath affected?) To



address this, it may be possible to leverage advances in high
fidelity wireless simulations (e.g., by using ray tracing). Third,
we lack effective ways to quickly prototype and instrument
dynamic environments within simulations. The emergence of
LIDAR and mmWave to map physical environments may
provide effective technologies to assist in rapidly prototyping
metaverse environments that mirror existing physical locations.
Prior work in simulating systems of mechanical objects (e.g.,
stress vectors within buildings, sound propagation) may further
improve realism.

VIII. CONCLUSIONS

We described challenges in implementing the Metaverse
application ecosystem as observed through the lens of IoT
research topics. These challenges will enable a world, where
the boundaries between cyber, physical, and social realms are
blurred, new immersive experiences are fed by billions of data
points from multitudes of human, Al-generated, and physical
sources, machine intelligence extracts value for a growing list
of novel applications, and novel social media platform con-
cepts seamlessly integrate humans, avatars, physical devices,
and digital twins, redefining what IoT looks like. This paper
invites IoT, machine learning, and Metaverse researchers to
a collaborative roadmap to generate tomorrow’s systems and
applications.
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