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A simple but powerful simulated certainty equivalent
approximationmethod for dynamic stochastic problems
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We introduce a novel simulated certainty equivalent approximation (SCEQ)
method for solving dynamic stochastic problems. Our examples show that SCEQ
can quickly solve high-dimensional finite- or infinite-horizon, stationary or non-
stationary dynamic stochastic problems with hundreds of state variables, a wide
state space, and occasionally binding constraints. With the SCEQ method, a desk-
top computer will suffice for large problems, but it can also use parallel tools ef-
ficiently. The SCEQ method is simple, stable, and can utilize any solver, making it
suitable for solving complex economic problems that cannot be solved by other
algorithms.
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1. Introduction

Dynamic stochastic general equilibrium (DSGE) problems are often studied using sta-
tionary models, which are relatively easy to solve using local approximation meth-
ods.1 Stationary problems have time-invariant decision rules and projection methods
can compute global solutions for value functions and/or decision rules in moderate
dimensional-problems.2

However, many real-world problems are neither stationary nor low-dimensional.
Life-cycle models often have time-varying endowments and preferences. Representative
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agent models often include nonstationary changes in the population, technology, re-
source stock, and climate, such as DSICE (Cai, Judd, and Lontzek (2017), Cai and Lontzek
(2019)). Computing the full set of state-contingent decisions and prices is often compu-
tationally challenging, particularly when limited to desktop computing hardware. Those
solutions may produce more information than is needed to answer the questions an
economist has for a model. In addition, it is challenging to compute global solutions,
particularly when value functions and/or decision rules are not smooth, such as dy-
namic problems with inequality constraints. This paper proposes the Simulated Cer-
tainty Equivalent approximation (SCEQ) method, which uses standard computational
tools to provide useful approximations of high-dimensional, nonstationary economic
models.

Before discussing the details of SCEQ, we present a notation, which will help us ex-
plain the key ideas. Consider a stochastic dynamic economic model, defined by a set of
equations, which may depend on time if, for example, population, productivity, or pref-
erences depend on time in a manner that cannot be simplified by detrending. We want
to solve the model for all time up to some terminal time T (which may be infinite). Let
Mt denote the model which “begins” with time t specifications for tastes and technology
and has the terminal time T .

Let Pt denote the Mt model constructed by setting all disturbances in Mt to zero.
Pt is a perfect foresight model and for each state x, we define Pt(x) to be the perfect
foresight solution of Pt if the state at t is x. The Pt(x) problems are relatively easy to
solve since they are perfect foresight models. Basically, perfect foresight models begin
from some state not caring about how it got to that state and then solves for all variables
in current and future periods under the assumption that there will be no shocks. For
example, Nordhaus’ DICE (Nordhaus (2008)) model is a perfect foresight model.

The key feature of SCEQ is that it solves a large set of perfect foresight models Pt(x).
Suppose that the model M0 has an initial state x0. The first step in SCEQ is to solve
the perfect foresight model P0(x0 ), which produces a path for the state variables for
t = 0, 1, � � � , T . SCEQ then constructs a second path in the following way: simulate the
model by following the solution of P0(x0 ) until some period s, at which point we intro-
duce shocks to the system for only period s, which change the state from xs to xs + εs,
and then solve the perfect foresight system Ps(xs +εs ). SCEQ repeats this for many times
s and many shocks εs . The collection of perfect foresight solutions is then our approxi-
mate solution to the stochastic model.

SCEQ wants the collection of perfect foresight solutions to approximate the stochas-
tic processes implied by the underlying stochastic model. Therefore, SCEQ chooses the
εs shocks according to the specifications for uncertainty in the original stochastic model.
The frequency of shocks should also match the original model’s specification. Most of
our examples have shocks at each time t, implying that we also have shocks at each
time. Basically, we start with some state, solve the model under the assumption that
there are no future shocks to pin down the current variables, but then shock the system
and resolve the resulting perfect foresight problem at the next period’s state.

This description of SCEQ is meant to describe the general intuition. A more com-
plete description will follow in later sections. At this point, we will point out the key
advantages of SCEQ.
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First, it only needs methods to solve perfect foresight models, a relatively simple
task. Several papers have described a variety of methods; see, for example, Fair and
Taylor (1983), Hall (1985), Fisher, Holly, and Hallett (1986), Boucekkine (1995), Gilli and
Pauletto (1997), Juillard, Laxton, McAdam, and Pioro (1998).

Second, SCEQ is fast, and able to produce many simulated paths at low cost. It can
be naturally parallelized; that is, one can solve for many of the paths simultaneously. In
fact, it scales linearly, which means that doubling the number of processors will double
the number of paths in the same amount of time. The marginal cost of a simulation
path is small. If there is a shock at time s, the solver has the solution for Ps(xs ) because
it equals the path produced by Ps−1(xs−1 ) after one takes out the time s − 1 variables.
Therefore, the solver can use Ps(xs ) as the initial guess for Ps(xs + εs ). This warm start
will reduce the cost of solving. Furthermore, the solver may also use the Jacobian from
solving Ps−1(xs−1 ), creating a hot start. The use of warm starts and hot starts imply that
the marginal cost of computing a path is much less than computing a path using more
standard initial guesses.

Third, there is no limitation on the stochastic processes. Large shocks to the system
are as easily solved as small shocks. The desire to approximate the stochastic model’s
process also implies that the number of simulations should grow over time. We will often
want the set of simulations to faithfully approximate the stochastic model conditional
on the state xt for some initial set of times t = 1, � � � , H. That implies that we need a
nontrivial sample of paths from each of the states xt , t = 1, � � � , H. Using k simulations
from each of these states would imply at least kH total simulated paths. This “curse of
dimensionality” is partly offset by the use of hot starts but does imply H needs to be
kept small. While conditional accuracy may be less for t > H, the paths for t > H can
still represent the unconditional distributions of variables.

Fourth, even if SCEQ does not produce desired information (such as an asset pric-
ing kernel, one of the achievements in DSICE) the paths produced by SCEQ produces
information that would help other methods. When solving stationary models, methods
focus on computing time-invariant functions on a fixed portion of the state space. In
nonstationary models, such as DSICE, the domain of the solution varies with the time t.
If one uses projection methods to get a better solution, as done with DSICE, tractability
requires guessing the range of states that will be part of the solution for each time t. This
substantially adds to the necessary computational effort. The paths produced by SCEQ
will approximate the domain of the solution for each time t. Furthermore, SCEQ pro-
duces information, which could be used to choose efficient methods of approximation
in applying projection methods to the problem. We leave development of these obser-
vations to future papers.

Fifth, SCEQ has easily implemented accuracy checks. We will demonstrate the qual-
ity of SCEQ in several examples below, but a method should also include diagnostics,
which indicate if the sample sizes are large enough and if SCEQ is delivering good ap-
proximations to the stochastic model, M0, which is what we really care about.

In this paper, we show that the SCEQ is highly accurate and achieves stable numer-
ical solutions for dynamic stochastic problems. Our first numerical example is for il-
lustration only. The second example is a multicountry model with occasionally bind-
ing constraints. We solve cases with 10, 20, 50, 100, and 200 countries, each of which
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only takes minutes or hours on a Mac Pro desktop computer. The computational time
is nearly linear to the number of countries, and increasing the dimensionality has lit-
tle impact on the solution’s accuracy. The third example is a nonstationary stochastic
integrated assessment model of climate and the economy with six continuous endoge-
nous state variables and one discrete state variable. Moreover, the model has occasion-
ally binding constraints that make it challenging to solve with standard methods, but
SCEQ took less than 2 hours to provide 1000 simulation paths of solutions such as the
optimal carbon taxes on a Mac Pro desktop computer. The last example applies SCEQ
to solve a New Keynesian model with a zero lower bound, showing that SCEQ can solve
stochastic competitive equilibrium problems. All the examples demonstrate that SCEQ
can solve dynamic stochastic problems with an accuracy of two or three digits, which
is within the acceptable range of accuracy for most dynamic stochastic economic prob-
lems.

The paper is organized as follows. Section 2 compares SCEQ with existing methods.
Section 3 introduces the SCEQ method. Section 4 provides numerical examples. Sec-
tion 5 discusses some properties of SCEQ. Section 6 concludes.

2. Comparison with existing methods

Alternative solution methods for dynamic economic models use different notions of
what is a solution, reflecting different objectives. This section compares SCEQ to alter-
natives in terms of what different methods can deliver.

Local approximation methods are the cheapest to compute. The cheapest is the
common log-linear approximations often used in macroeconomics, cheap because it
needs only to compute the steady state (defined by a system of nonlinear equations),
the local Jacobian (very cheap if one uses automatic differentiation), and solves the re-
sulting Ricatti equation. Even high-dimensional models are easy to solve; for example,
it takes only 90 seconds to do an eigenvalue–eigenvector analysis of a random 20,000 by
20,000 dense matrix on a 2019 Mac Pro with 24 cores. Linearizations are based on the
Hartman–Grobman theorems for differential equations and maps.

Linearization methods have important limitations. First, the mathematical foun-
dations require that the dynamic system is smooth in its variables. Second, the lin-
ear approximation is valid only for states close to the deterministic steady state where
“close” can be very small. Perturbation methods can only provide locally accurate so-
lutions around the nonstochastic steady state, which are then treated as if they were
globally valid. But it is often not sufficient for decision-making purposes because the
nonstochastic steady state may be far away from the initial state. A practical dynamic
optimization problem aims to provide initial-period decisions that are based on those
periods’ states, rather than states in the far future (although future dynamics can af-
fect initial-period solutions; see Cai, Judd, and Steinbuks (2017) for further discussion of
this issue), which imply a wide approximation domain for approximating value or pol-
icy functions. Third, if the procedure uses only first- and second-order derivatives of the
utility function then the approximation cannot accurately approximate movements in,
for example, risk premia.
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Higher-order expansions are easily computed, where each higher-order expansion is
determined by a system of equations that can be computed directly (see Judd (1998), Jin
and Judd (2002)). They will improve accuracy but its validity will be limited by the radius
of convergence of the power series (“infinite-order”) expansion. Higher-order expan-
sions also require extended precision arithmetic, something which is readily available
today.

Log-linear approximations are not affected by the stochastic elements of a model.
They only produce a linear approximation for the underlying deterministic model and
then simulate it with the stochastic processes. This is what we refer to as the “certainty
equivalent” property of the log-linear approximation. Perturbation methods more gen-
erally can compute dependencies with respect to the statistics of a model’s stochastic
processes (see Judd (1998), Judd and Guu (1993)). The extra terms are defined by linear
equations and may rely on bifurcation theorems. The mathematics behind all pertur-
bation methods assume smoothness in a model’s functions. Therefore, they cannot be
directly applied to models with occasionally binding constraints.

At the other extreme are projection methods, which aim to approximate value func-
tions, decision rules, and/or price functions over a large state space. Value function
iterations (VFI), projection methods, and time iterations are often used to solve dy-
namic stochastic problems. For nonstationary problems, time-varying approximation
domains can be used to obtain accurate solutions while keeping a low-degree approxi-
mation for each period. For example, Cai, Judd, and Lontzek (2017) and Cai and Lontzek
(2019) apply the parallel VFI method to solve many large-scale dynamic stochastic in-
tegrated models of climate and the economy (DSICE). However, VFI and time iterations
both face challenging issues such as high-dimensional state spaces, shape-preservation
of value functions, appropriate approximation domains, and occasionally binding con-
straints. Brumm and Scheidegger (2017) introduce adaptive sparse grids in a time it-
eration to overcome the kink problem, but their method requires complicated coding
and still requires a large number of approximation points around the kinks. Moreover, if
the problem is nonstationary, then the adaptive sparse grid method would be less effi-
cient as it cannot reuse the last iteration’s grids.3 These methods require efficient ways
to approximate functions and compute conditional expectations, difficult challenges
for complex high-dimensional problems. The solutions allow one to examine nonlinear
properties of a solution over a global range of states. The high-quality approximations
allow the solutions to approximate features such as movements in an asset pricing ker-
nel. Advanced examples of this approach have often required high-power computing
(see, e.g., Cai, Judd, and Lontzek (2017), Cai and Lontzek (2019)) but this is becoming
less of a limitation with ongoing advances in computing power.

SCEQ lies between the full global nonlinear approximation methods and local ap-
proximations in terms of both cost and usefulness of results. The SCEQ method focuses
directly on computing a set of simulations without approximating any nonlinear func-

3See Rust (1996), Judd (1998), Ljungqvist and Sargent (2018), Miranda and Fackler (2002), Bertsekas
(2005, 2007), Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2006), Kollmann, Maliar, Malin, and
Pichler (2011), Juillard and Villemot (2011), Guerrieri and Iacoviello (2015), Fernandez-Villaverde, Rubio-
Ramirez, and Schorfheide (2016), Fernandez-Villaverde and Levintal (2018), Levintal (2018), and Cai (2019)
for more discussion on the conventional methods.
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tions. These simulations can be used directly to compute the statistical properties of the
solution. It is a kind of a “certainty equivalent” method because the solution at any time
t is based on a deterministic model for all times at and after time t. The shocks are drawn
from the distributions of the stochastic model, implying that the results will reflect those
stochastic properties. Simulations based on linear approximations can easily stray out-
side the domain where the linear approximation is valid, whereas each path produced
by SCEQ is based on the model at the states it visits.

Paths generated by SCEQ have many advantages over simulations based on stan-
dard linear approximations. They certainly will be better at approximating the statistical
properties. SCEQ shares some of the limitations inherent in certainty equivalent meth-
ods, which may argue for projection methods. However, solutions produced by projec-
tion methods are often used only to compute stochastic properties of the problem, such
as means, variances, and covariances of the variables, which can be well approximated
by SCEQ simulations. The choice among linearization methods, SCEQ, and projection
methods can be based on what one wants to study and the set of states visited in equi-
librium.

SCEQ is particularly attractive when trying to solve nonstationary models. There is
no nonstochastic steady state in nonstationary models on which standard lineariza-
tion methods are based. Projection methods may produce higher-quality approxima-
tions, but it is often necessary to guess an approximation domain and an approxima-
tion method, then check if these can solve the problem, and this process may have to be
repeated many times.

SCEQ is related to another certainty equivalent method. Cai, Judd, and Steinbuks
(2017) propose a stable and efficient nonlinear certainty equivalent approximation
method (NLCEQ) for solving stationary dynamic stochastic problems. NLCEQ applies
the concept of certainty equivalent approximation to transform an infinite-horizon
stochastic problem into a finite-horizon deterministic problem, solves it to obtain the
optimal solution of decisions for each approximation node in the state space at the ini-
tial time, then fits the solutions with a globally nonlinear approximation to the opti-
mal policy function. Cai, Judd, and Steinbuks (2017) demonstrate that NLCEQ can be
used to achieve accurate solutions to a variety of problems, including high-dimensional
problems such as a model with many countries, and problems with kinks such as a New
Keynesian model with a zero lower bound. For high-dimensional problems, NLCEQ uses
sparse grids approximation (see, e.g., Smolyak (1963), Malin, Krueger, and Kubler (2011),
Judd, Maliar, Maliar, and Valero (2014)), which can work well for smooth policy func-
tions. For problems with kinks, NLCEQ can use high-degree approximations or adaptive
sparse grids to reduce approximation errors caused by kinks.

Similar to NLCEQ, the SCEQ method uses the certainty equivalent approxima-
tion idea to transform infinite- or finite-horizon stochastic problems into deterministic
finite-horizon problems in order to solve them, so it inherits the stability and efficiency
properties of NLCEQ. However, SCEQ uses a period-by-period approach to construct
one simulation path of solutions: first, it solves the transformed deterministic problem
starting with a given initial state at the initial time s = 0, and uses the solution at s = 0
to simulate the shocks, generating a simulated state at time s = 1. It then solves the new
transformed deterministic problem starting with the simulated state at time s = 1 to ob-
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tain the solution at s = 1, which is used together with new simulated shocks to generate
a new simulated state at time s = 2. This process is iterated for each period until the time
of interest to generate one simulation path. SCEQ obtains a set of simulation paths by
repeating the period-by-period approach with different realization paths of the shocks,
thus obtaining distributions of states and decisions for economic analysis.

Compared to the NLCEQ method, SCEQ has the following advantages:

(i) SCEQ can solve problems that are challenging for NLCEQ. If a problem has both
a high-dimensional state space and kinks in the optimal policy function, then
NLCEQ will have to choose a large number of approximation nodes in the state
space to approximate this policy function with a sufficient level of accuracy. It
will then take too much time to solve the large-scale optimization problems cor-
responding to the approximation nodes. In contrast, SCEQ is very suitable for
solving such problems.

(ii) NLCEQ needs to specify an approximation domain in the state space a priori,
whereas SCEQ does not. NLCEQ requires this specification to choose approxima-
tion nodes, but we often do not know how wide a domain we should choose. If it
is too wide, then it requires too many approximation nodes to obtain a good ap-
proximation to the policy function, implying too many large-scale optimization
problems. If it is too narrow, then next period’s optimal state will often be beyond
the approximation domain, which limits the subsequent economic analysis. In
contrast, if we want to construct a policy function optimization using simulated
solutions from SCEQ, we can easily define an approximation domain with the
minimum and maximum of the simulated solutions, or we can use a small set of
“representative” points to cover the support of the simulated solutions and then
use projection techniques (Maliar and Maliar (2015)).4

(iii) To obtain the same solution accuracy as SCEQ, NLCEQ suffers from the “curse
of dimensionality” of the state space, both in endogenous and exogenous state
variables.

(iv) NLCEQ only solves infinite-horizon stationary problems,5 while SCEQ can solve
both stationary and nonstationary problems in an infinite or a finite horizon.

(v) SCEQ can quickly check if its solution is accurate: it can just obtain one or several
simulated paths at first and measure their accuracy. But NLCEQ has to wait until
all of its optimization problems are solved, which incurs a larger computational
cost.

4SCEQ’s solution could have a wide domain, particularly if its initial state is far away from the non-
stochastic steady state for a stationary problem. For example, in our multicountry model, the initial levels
of capital range from 0.1 to 10 across countries, while the steady-state level is 1.

5NLCEQ can be adapted to solve nonstationary problems by iterating the process. That is, we apply
NLCEQ for the first period with a given approximation domain and use its solution to generate an approxi-
mation domain for the second period. We then apply NLCEQ for the second period and use its solution to
generate an approximation domain for the third period, and repeat this process for each subsequent period
until the end of the required time period. This iterative method may incur a large computational cost, as
NLCEQ has to solve a large number of large-scale optimization problems for every period.
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In certain contexts, NLCEQ has its advantages. For example, NLCEQ could be faster
than SCEQ for low-dimensional stationary problems with smooth policy functions, and
NLCEQ can be applied to find optimal policy functions for deterministic problems.

VFI and time iterations have similar disadvantages when compared with SCEQ.
They face even worse challenges than NLCEQ when solving problems with both a high-
dimensional state space and kinks in the optimal policy function: they have to choose
(time-varying) approximation domains in the state space a priori they suffer the “curse
of dimensionality” for both endogenous and exogenous state variables;6 they are less
flexible in checking whether they work or not, as they have to wait until the iteration con-
verges for a stationary problem before checking their solution; and they require more
complicated coding in low-level programming languages like Fortran or C, sparse grids,
or parallelism for high-dimensional problems. In addition, VFI or time iterations are
generally not stable.7

SCEQ has advantages over other proposed simulation solution methods. Judd,
Maliar, and Maliar (2011) suggest a generalized stochastic simulation algorithm (GSSA),
and Judd, Maliar, and Maliar (2012) and Maliar and Maliar (2015) propose an ε-
distinguishable set (EDS) method to merge projection approaches and simulation. How-
ever, both methods only solve infinite-horizon stationary problems. Moreover, it will be
challenging for their methods to solve some problems that SCEQ can simply handle,
for example, (1) a high-dimensional problem with kinks, in which the EDS method may
have to use locally adjusted EDS grids and piecewise local basis functions, and then the
associated global nonsmoothness may make it unstable or inefficient to find the global
minimizer in their projection step to minimize residuals; (2) an application requiring a
sufficiently accurate solution along some simulation time paths, which are outside its
simulated ergodic set,8 in which the EDS method has to include all the points along
the time paths so it has a wide approximation domain, which is challenging for their
projection methods. Furthermore, Maliar and Maliar (2015) point out that their solution
methods may fail to converge, which are common limitations for all projection methods.
In addition, their methods are less flexible in checking whether they work or not, as they
have to obtain a large number of simulated results before they can approximate policy
functions. However, if one wants to solve stationary problems without kinks, then the
GSSA, EDS, and projection methods could be more accurate or faster than SCEQ,9 par-
ticularly when SCEQ uses the optimization solvers of Matlab,10 not other programming

6There are methods to alleviate or even avoid the “curse of dimensionality” for some problems; see, for
example, Rust (1997, 2019), Judd et al. (2014), Brumm and Scheidegger (2017), Cai (2019), and Scheidegger
and Bilionis (2019).

7Note that VFI can be stable if it uses a shape-preserving approximation method (Cai and Judd (2013)).
8For example, our DSICE example in Section 4.3 starts with a real world initial state that is far away from

its steady state, which will take thousands of years to be reached, while policymakers want to compute an
optimal carbon tax path in this century.

9SCEQ could still be faster for the stationary problems without kinks, if there are many compute cores
for parallelization, while the GSSA, EDS, and projection methods do not have efficient parallelization.

10The optimization step of SCEQ can be implemented with the deterministic simulation of Dynare (Ad-
jemian et al. (2011)), a Matlab toolbox for solving DSGE models, particularly stationary problems in macroe-
conomics.
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languages such as GAMS (General Algebraic Modeling System)11 that can have much
faster implementation in solving many large-scale optimization problems as shown in
our examples. Moreover, the GSSA, EDS, and projection methods can solve stationary
dynamic portfolio problems or dynamic stochastic problems with Epstein–Zin prefer-
ences (Epstein and Zin (1989)) but SCEQ cannot. In addition, theoretically it is always
possible (while practically challenging) for the GSSA, EDS, and projection methods to
improve their solution’s accuracy with a higher degree approximation (and more simu-
lation points for the GSSA and EDS methods), but SCEQ cannot. Grune, Semmler, and
Stieler (2015) apply a nonlinear model predictive control method for solving dynamic
problems, which only solves infinite-horizon stationary dynamic programming prob-
lems and focuses on deterministic problems. It does not provide a distribution of solu-
tions or policy function approximation, nor accuracy measures for stochastic problems.

The examples in the following sections show the advantages of SCEQ in a variety of
cases. We review our findings in the rest of this section. First, SCEQ does not suffer from
the so-called “curse of dimensionality” in our examples: its accuracy is independent of
the state space’s dimensionality, and in our multicountry examples its computational
time is a nearly linear and at worst a cubic function of the state space’s dimensional-
ity.12 Second, SCEQ efficiently solves high-dimensional dynamic stochastic problems
with occasionally binding constraints: it only took hours on a standard computer to
provide 1000 simulation paths of solutions for 400-dimensional multicountry problems
with a lower bound on investments. Third, SCEQ efficiently solves both stationary and
nonstationary dynamic stochastic problems, even those with high dimensionality and
occasionally binding constraints. Fourth, SCEQ can solve problems with a wide state
space domain, even if high dimensionality, occasionally binding constraints, and non-
stationarity are also present. Fifth, SCEQ’s efficiency (computational time and accuracy)
is independent of the number of exogenous state variables, because there are no nu-
merical approximation or integration over them in SCEQ. Sixth, SCEQ can be very fast.
In our applications, using a Mac Pro desktop computer, SCEQ only took minutes to pro-
vide all possible simulation paths of solutions for a 200-country problem (Section 4.2.2),
and only took hours to provide 1000 simulation paths of solutions for larger 200-country
problems with 201 or 400 state variables (Sections 4.2.1 and 4.2.3). If there are many
compute cores, SCEQ may take only minutes for the large 200-country problems with

11There are many reliable and efficient professional solvers available using GAMS (McCarl, Meeraus, van
der Eijk, Bussieck, Dirkse, and Nelissen (2016)), such as CONOPT (Drud (1994)) and SNOPT (Gill, Murray,
and Saunders (2005)) for solving nonlinear programming problems. Moreover, these solvers are provided
in the NEOS server (Czyzyk, Mesnier, and More (1998)) (https://neos-server.org/neos/solvers/index.html)
and are free to use with GAMS.

12The “curse of dimensionality” refers to the case where computational cost grows exponentially with the
dimensionality of state space. There is also another potential “curse of dimensionality” in the control space.
For example, if the control variables are discrete and we use enumeration to find the optimal solution,
then it suffers from the “curse of dimensionality.” But usually we can use an efficient optimization solver to
avoid the “curse of dimensionality.” For instance, if control variables are continuous and the objective and
constraints are smooth, then Newton’s method has the quadratic convergence rate in general in finding
the optimal solution if its initial guess is in the neighborhood. For discrete control variables, an integer
programming method may also avoid the “curse of dimensionality.”

https://neos-server.org/neos/solvers/index.html
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201 or 400 state variables, because it can be naturally parallelized with high efficiency.
Seventh, SCEQ is stable and can solve both stochastic dynamic programming problems
and stochastic dynamic competitive equilibrium problems. Lastly, SCEQ is highly accu-
rate, providing solutions with an accuracy of two or three digits for all examples in this
paper.

3. The SCEQ method

Let xt be a vector of state variables (e.g., capital), and at be a vector of decision variables
(e.g., consumption) at each time t. The transition law of the state vector x is

xt+1 = gt(xt , at , εt+1 ),

where εt is a serially uncorrelated random vector process13 and gt is a vector of functions
which could be time-varying: its ith element, gt,i, returns the ith state variable at time
t + 1: xt+1,i.

Without loss of generality, we assume the mean or median of εt is 0. For notational
simplicity, we keep the same mathematical representation of a transition function even
if some of its elements are redundant. For example, if gt,i is deterministic, that is, xt+1,i =
gt,i(xt , at ), since it can be rewritten as xt+1,i = gt,i(xt , at ) + 0 · εt+1, we will still denote it
as xt+1,i = gt,i(xt , at , εt+1 ). Similarly, if there are some unused elements of εt+1 or some
redundant arguments in a function gt,j , we can multiply them by zero in gt,j , and thus
still use xt+1,j = gt,j(xt , at , εt+1 ).

We solve the following social planner’s problem:

max
at

E

{
T−1∑
t=0

βtut(xt , at ) +βTVT (xT )

}

s.t. xt+1 = gt(xt , at , εt+1 ), t = 0, 1, 2, � � � , T − 1,

ft(xt , at ) ≥ 0, t = 0, 1, 2, � � � , T − 1, (1)

where ut is a utility function which could be time-varying, β ∈ (0, 1) is the discount fac-
tor, E is the expectation operator, T is the horizon (T = ∞ if it is an infinite-horizon
problem), VT (xT ) is a given terminal value function depending on the terminal state xT
(it is zero everywhere for an infinite-horizon problem), and ft(xt , at ) ≥ 0 represents the
feasibility constraints for actions at (e.g., nonnegativity constraints at ≥ 0).14 We assume
that the initial state x0 is given, as it can usually be observed or estimated.

We assume that the social planner is interested in solutions for the first T ∗ periods.
Macroeconomists are often interested in obtaining solutions around the nonstochastic
steady state. However in reality, the initial state could be far away from the steady state,
and a policymaker may be more interested in the solutions for the initial periods in the

13If a dynamic model has serially correlated random variables, they are exogenous state variables, and
we can use an uncorrelated vector εt in their transition laws.

14An equality constraint f (x, a) = 0 can be written as a combination of f (x, a) ≥ 0 and −f (x, a) ≥ 0.
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forward-looking model (1) than the far future states that could be around the steady
state. For example, in environmental and climate change economics, we are often inter-
ested in solutions for the coming century rather than longer time periods. The following
SCEQ algorithm obtains solutions for the first T ∗ periods.

Algorithm 1 SCEQ for Stochastic dynamic programming problems.

Step 1. Initialization step. Given the initial state x0 and a time of interest T ∗, choose
a time-varying number of periods �s and a time-varying “terminal” value function
Vs+�s (xs+�s ) for each time s. Simulate a sequence of εt to get m paths, denoted εit for
path i, from t = 1 to T ∗. Let xi0 = x0 and iterate forward through steps 2 and 3 for
s = 0, 1, 2, � � � , T ∗ − 1.

Step 2. Optimization step. Solve the following deterministic model starting at time s and
simulated node xis :

max
at

s+�s−1∑
t=s

βt−sut(xt , at ) +β�sVs+�s (xs+�s )

s.t. xt+1 = gt(xt , at , 0), t = s, s + 1, � � � , s +�s − 1,

ft(xt , at ) ≥ 0, t = s, s + 1, � � � , s +�s − 1, (2)

where xs is given by xis , for each i = 1, � � � , m.
Step 3. Simulation step. Set xis+1 = gt(xis , ais , εis+1 ), where ais is the optimal decision at

time s of the problem ( 2), for each i = 1, � � � , m.

Algorithm 1 obtains simulated pathways of optimal decisions and states. It contains
three steps: (i) the initialization step, which chooses an appropriate �s and “terminal”
value function Vs+�s (xs+�s ) and simulates the shocks; (ii) the optimization step, which
solves the finite-horizon deterministic optimization problems (2); (iii) the simulation
step, which uses the optimal decision of (2) at time s to generate simulated states at time
s + 1.

Note that the inside loop across i can be switched with the outside loop across time,
that is, for each i, we can obtain one simulation path by iteratively solving (2) and simu-
lating xis+1 = gt(xis , ais , εis+1 ) for s = 0, 1, 2, � � � , T ∗−1. In addition, with a fixed initial state,
the solutions at s = 0 are independent of simulation, so the optimization step just needs
to solve the case with i = 1 and assign its solutions to the other cases with i = 2, � � � , m.
Algorithm 1 can also be applied to problems without a fixed initial state, as sometimes
the initial state might be uncertain or hard to evaluate accurately. In this paper, we al-
ways assume that the initial state is fixed, without loss of generality.

3.1 Initialization

In the initialization step of Algorithm 1, for a finite T -horizon problem, we can set
�s = T − s so that Vs+�s (xs+�s ) is always the true terminal value function VT (xT ). For
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an infinite horizon problem, �s and Vs+�s (xs+�s ) are chosen such that the solution of (2)
at its starting time s is almost identical to a solution with a larger �s for every state at s.
Ideally, Vs+�s (xs+�s ) is chosen to be an approximation of the cumulative optimal welfare
from time s +�s to time T − 1, that is,

Vs+�s (xs+�s ) ≈max
at

E

{
T−1∑

t=s+�s

βtut(xt , at ) +βTVT (xT )

}

s.t. xt+1 = gt(xt , at , εt+1 ), t = s +�s , � � � , T − 1,

ft(xt , at ) ≥ 0, t = s +�s , � � � , T − 1, (3)

One example of such an approximation is Vs+�s (xs+�s ) = ∑T−1
t=s+�s

βtut(xt , a∗
t (xt )) +

βTVT (xT ), where a∗
t (xt ) is a guess of the optimal policy function at t. For an infinite

horizon stationary problem, we can use Vs+�s (xs+�s ) = u(xs+�s , a∗(xs+�s ))/(1 − β). The
difference between Vs+�s (xs+�s ) and the true optimal welfare since time s+�s (the “trun-
cation error”) may impact the solution at time s. If �s is large, then the “terminal” value
function Vs+�s (xs+�s ) often has little impact on the solution of (2) at its starting time
s so the truncation error is small,15 but it also implies that (2) is a larger optimization
problem and takes more computational time to solve.

Thus, for an infinite-horizon problem, in the initialization step of Algorithm 1 we
first choose a large �s and a reasonable Vs+�s (xs+�s ). For a few test nodes in the state
space at time s (e.g., some reasonable extreme points), we let xs be given by a test node
and then solve (2), to make sure that a much larger �s will not change the solutions. We
use these solutions as the “true” solutions. We then choose a smaller �s and a different
Vs+�s (xs+�s ), resolve (2) at the same test nodes, and compare these solutions with the
“true” solutions to estimate the truncation error. For a stationary problem, we suggest
choosing a constant �s and a time-invariant “terminal” value function. In the end, we
choose the best pair of �s and Vs+�s (xs+�s ) in terms of computational speed and size of
the truncation error.

3.2 Optimization

The optimization step of Algorithm 1 applies the original certainty equivalent approxi-
mation idea of the NLCEQ method: for a given state at time s, xis, we replace all future
stochastic variables by their corresponding certainty equivalent approximation (e.g., ex-
pectations or medians) conditional on the current state xis , and convert the dynamic
stochastic problem (1) into the deterministic finite-horizon dynamic problem (2).

Since εt is a serially uncorrelated stochastic process, if all transition laws are contin-
uous we can replace εt in (2) by its (zero) mean or median for simplicity. Generally, we

15Most infinite-horizon dynamic economic models assume that the system asymptotically evolves to-
wards its stationary state, so the discount factor β < 1 makes the terms βt−sut (xt , at ) small in magnitude
for t ≥ s +�s with a large �s , and a smaller β implies that we can choose a smaller �s in SCEQ. Such a trun-
cation is often used in the literature; see, for example, Nordhaus (2008), Grune, Semmler, and Stieler (2015),
Cai, Judd, and Steinbuks (2017), Cai, Judd, and Lontzek (2017), Cai and Lontzek (2019), Maliar, Maliar, Tay-
lor, and Tsener (2020).



Quantitative Economics 14 (2023) A simple but powerful SCEQ method 663

can replace εt by a deterministic function of its standard deviation, so SCEQ may pro-
vide a more accurate solution or even solve problems such as stochastic volatility (see,
e.g., Caldara, Fernandez-Villaverde, Rubio-Ramirez, and Yao (2012)).

For problems with a discrete Markov chain in transition laws, to obtain the corre-
sponding deterministic model (1) we can use the same technique as described in Cai,
Judd, and Steinbuks (2017) for NLCEQ with a discrete stochastic state. That is, given the
Markov chain realization at time s, we can compute expectations of the Markov chain at
all times after s conditional on the value at time s, then replace the stochastic process by
the path of the conditional expectations in the optimization step of Algorithm 1.

We implement the optimal control method (see, e.g., Cai (2019)) to solve (2) numer-
ically: we view (2) as a large-scale nonlinear constrained optimization problem with
{ait : t ≥ s} and {xit : t ≥ s} as its variables, and the transition equations and feasibility
restrictions as its constraints. The problem can be directly solved with an appropriate
nonlinear optimization solver such as CONOPT (Drud (1994)).

3.3 Simulation

In the simulation step of Algorithm 1, we use the optimal decision ais to generate the next
period state, xis+1 = gt(xis , ais , εis+1 ), given the realization of shocks, εis+1. Once we reach
the state xis+1 at time s + 1, we come back to implement the optimization step and then
the simulation step. In other words, Algorithm 1 uses an adaptive management strategy:
decisions are made for the current period in the face of future uncertain shocks; once the
next-period shock is observed, decisions for the next period are made by reoptimizing
given the observed shock and new state. Observe that the serial correlation of random
variables has been captured in their associated transition laws. By repeating this process
iteratively T ∗ times, we compute one simulated path of optimal decisions, {ais }T

∗−1
s=0 , and

states, {xis }T
∗

s=0, which corresponds to the realized path of shocks, {εis}T
∗

s=1. Repeating over
i, we compute m simulated paths of optimal states and decisions, and then obtain their
distributions.

3.4 Parallelism

Relative to other methods, SCEQ could take longer to run low-dimensional problems,
as it requires solving m×T ∗ optimization problems (2). But for high-dimensional prob-
lems, SCEQ can take much less time to run. Moreover, since simulation paths are in-
dependent of each other, Algorithm 1 can be naturally parallelized across simulation
paths: For example, one simulation path per compute core, so the wall clock time could
be around the time spent to solve T ∗ optimization problems (2), which could be fast
with modern hardware and optimization solvers. For example, it took seconds or at most
several minutes in all of our examples, including the problem with 200 countries (201 or
400 state variables) and �s = 50, to solve T ∗ optimization problems (2) on a standard
computer. Therefore, we solve the large scale dynamic stochastic problems in minutes
or hours, using parallelism on six compute cores of a Mac Pro desktop. Moreover, the
running time can be reduced to seconds or minutes if we use many compute cores.
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3.5 SCEQ for competitive equilibrium

Like NLCEQ, the SCEQ method can also be adapted to solve competitive equilibrium
problems with transition laws of states xt+1 = gt(xt , at , εt+1 ), where xt is the state vector,
at is the action vector, and εt is a serially uncorrelated random vector process. We first
use the certainty equivalent approximation idea to make the stochastic problem deter-
ministic. A deterministic model’s equilibrium solution should satisfy a set of equations
and inequalities (including transition laws of states, feasibility constraints for actions,
Euler equations, market clearing conditions, and other first-order conditions):⎧⎪⎪⎨⎪⎪⎩

xt+1 = gt(xt , at , 0), t = 0, 1, 2, � � � , T − 1,

ft(xt , at ) ≥ 0, t = 0, 1, 2, � � � , T − 1,

Ht(xt , at , xt+1, at+1 ) = 0, t = 0, 1, 2, � � � , T − 1,

(4)

where ft(xt , at ) ≥ 0 represents the feasibility constraints for actions at period t, and
Ht(xt , at , xt+1, at+1 ) = 0 represents the Euler equations, market clearing conditions, and
other first-order conditions for the transformed deterministic model. If there are occa-
sionally binding constraints, then the arguments of Ht should also contain correspond-
ing Lagrange multipliers, which we omit here without loss of generality. We can trun-
cate infinite-horizon problems into finite-horizon problems with a terminal condition,
such as (xT , aT ) = (xss , ass ) where the pair (xss , ass ) is the steady or asymptotic state and
its associated action. For a finite-horizon problem, we also need a terminal condition
for (xT , aT ). Without loss of generality, we assume that the terminal condition is that

Algorithm 2 SCEQ for Stochastic competitive equilibrium problems.

Step 1. Initialization step. Given the initial state x0 and a time of interest T ∗, choose
a time-varying number of periods �s and a time-varying “terminal” policy function
a∗
s+�s

(xs+�s ) for each time s. Simulate a sequence of εt to get m paths, denoted εit for

path i, from t = 1 to T ∗. Let xi0 = x0 and iterate forward through steps 2 and 3 for
s = 0, 1, 2, � � � , T ∗ − 1.

Step 2. Optimization step. Solve the following deterministic model starting at time s and
simulated node xis :

max
at

1

s.t. xt+1 = gt(xt , at , 0), t = s, s + 1, � � � , s +�s − 1,

ft(xt , at ) ≥ 0, t = s, s + 1, � � � , s +�s − 1,

Ht(xt , at , xt+1, at+1 ) = 0, t = s, s + 1, � � � , s +�s − 1,

as+�s = a∗
s+�s

(xs+�s ), (5)

where xs is given by xis , for each i = 1, � � � , m.
Step 3. Simulation step. Set xis+1 = gt(xis , ais , εis+1 ), where ais is the optimal decision at

time s of the problem ( 5), for each i = 1, � � � , m.
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the terminal policy function is given (i.e., as+�s = a∗
s+�s

(xs+�s ) with a given a∗
s+�s

). Algo-
rithm 2 summarizes the SCEQ method for solving stochastic competitive equilibrium
problems.

The objective of the maximization problem (5) is a constant, as we are finding a feasi-
ble solution for competitive equilibrium and a nonlinear constraint optimization solver
(e.g., CONOPT in GAMS, or fmincon in Matlab) can solve such problems. If (5) do not
have inequality conditions or they are not binding at the solution, then it can also be
solved by an equation solver (e.g., fsolve in Matlab). Like Algorithm 1, Algorithm 2 can
also be naturally parallelized.

3.6 Policy function approximation

Note that the SCEQ method does not need to approximate a value or policy function.
After we obtain the simulated paths, we can use them to conduct economic analysis di-
rectly. For example, we can compute the expectation, distribution, and moments from
the simulated solutions. Section 4.3 shows that we can use the SCEQ method to estimate
the social cost of carbon in the first 100 years in the presence of economic risk. How-
ever, if necessary, we can employ a projection approach like the least-squares method to
construct a policy function approximation from simulated solutions if there are a large
number of simulated results. This method is particularly efficient for stationary prob-
lems, because all simulated decisions ais follow the same policy function for all s and i.
Moreover, the simulated results often locate inside a narrow domain, so a low-degree
approximation often has enough approximation accuracy over the domain if the policy
function is smooth. Furthermore, we can follow the method of Maliar and Maliar (2015)
to construct a fixed grid covering the support of the simulated solution, then use a pro-
jection approach to obtain a policy function approximation.

3.7 Accuracy measures

It is important to check the accuracy of solutions obtained with SCEQ, because we can-
not a priori determine how the certainty equivalence assumption affects the solution’s
accuracy.

A standard accuracy measure method computes errors in equilibrium conditions
(see, e.g., Jin and Judd (2002) and Kollmann et al. (2011)), with the major errors for dy-
namic problems often being Euler or Bellman equation errors. For example, Cai, Judd,
and Lontzek (2017) and Cai and Lontzek (2019) apply the value function iteration to ob-
tain value/policy function approximations in each period. They randomly choose a set
of points in the state space at period t, compute new solutions at the points from the
Bellman equation using the value function approximation at t + 1, then compare those
true values with the values of the period-t value/policy function approximation at these
points. This procedure produces Bellman equation errors for accuracy measures.

Cai, Judd, and Steinbuks (2017) apply NLCEQ to obtain policy function approxima-
tions. As in Cai, Judd, and Lontzek (2017) and Cai and Lontzek (2019), they randomly
choose a set of points, �, in the current-period state space, use the approximate pol-
icy function to compute the next-period states and decisions for each point in �, then
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compute Euler equation errors at those points. The same procedure was employed in
Jin and Judd (2002) and Kollmann et al. (2011) to investigate the solution accuracy of
the approximate global decision rule along a simulated path for stationary problems.
Those error estimation procedures require a global value or policy function approxima-
tion, which could be challenging for high-dimensional problems, particularly if there
are kinks in the value or policy functions. The key challenge is to adapt those error ac-
curacy measures, developed to evaluate global solutions of dynamic problems, to the
SCEQ method, which produces only simulated paths.

In SCEQ, we follow the idea of Jin and Judd (2002) and Kollmann et al. (2011) to mea-
sure Euler errors at the simulated states without constructing a global function approx-
imation. Instead, we develop an error formula that implicitly constructs a local policy
function approximation for each simulated state we use in error checking.

For each simulated state at period t, we choose a set of quadrature nodes and then
use the state transition laws to obtain a set of states at period t+1, denoted St+1. For each
state in St+1, we use it as the starting state and t + 1 as the starting period, then solve the
optimization problem (2) in Algorithm 1 for dynamic programming problems, or (5) in
Algorithm 2 for competitive equilibrium problems. Thus, we obtain decisions in t + 1
for all states in St+1, then use the corresponding quadrature rules to estimate the Euler
error at the time-t simulated state. The quadrature formulas are called “interpolatory
rules” because they implicitly use local information to construct a local approximation
adequate for the purpose of integration. That is, we can compute the Euler errors at the
simulated states without explicitly constructing a policy function approximation.16

Note that for an infinite horizon problem, if we choose �s = T̂ − s then the infinite
horizon problem is viewed as a finite T̂ -horizon problem in SCEQ, so the truncation er-
ror is not reflected in the Euler errors. However, for an infinite-horizon stationary prob-
lem, if we choose a constant �s and a time-invariant “terminal” value function, then the
truncation error is reflected in the Euler errors (see Appendix A.1 in the Online Supple-
mentary Material (Cai and Judd (2023) for more details). For some special cases like the
example in Section 4.2.2, we can compute all possible paths within a time of interest T ∗,
and use them to compute Euler errors, with little computational cost.

If there are many shocks, a large number of quadrature nodes are required to com-
pute Euler errors, running the above accuracy measure method could be computation-
ally expensive. Here, we also provide a weaker but no-cost indicator for checking accu-
racy: we use the Monte Carlo simulation idea to estimate the Euler error at the initial
state only. Note that the initial state is given and fixed, so Algorithm 1 or 2 has already
applied the Monte Carlo simulation to generate m simulated states in the second period
and their corresponding decisions. That is, if we use the Monte Carlo quadrature rule,
then we have already had the next-period states and decisions, so we can evaluate the
Euler error at the initial state by simply taking the average across the simulated solutions

16For low-dimensional problems with smooth policy functions, we can also compute Euler errors by
explicitly constructing policy function approximations as discussed in Section 3.6. This method’s compu-
tational cost is low, but it requires extra coding for approximating policy functions. More importantly, it
would be challenging for problems with high dimensionality or nonsmooth policy functions.
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for the second period. Following the law of large numbers, the accuracy of the Euler er-
ror is proportional to 1/

√
m. Our multicountry examples show that the Euler error at the

initial state is close to the Euler errors across other periods.17

4. Numerical examples

We apply SCEQ to solve four dynamic stochastic problems. The first is a simple op-
timal growth problem for illustration purposes only. The second example shows that
SCEQ can solve high-dimensional multicountry problems with occasionally binding
constraints. The third example solves nonstationary stochastic integrated assessment
models with seven state variables (six of them are continuous) and occasionally binding
constraints. The last example shows that SCEQ can solve stochastic competitive equi-
librium problems like New Keynesian models with a zero lower bound. All the examples
show that SCEQ can obtain an accuracy of two or three digits. For all examples, we use
the GAMS programming language (McCarl et al. (2016)) with the CONOPT optimization
solver (Drud (1994)), and run the SCEQ code in parallel on a Mac Pro desktop computer
with six cores.18 It took minutes or at most hours to solving each example. To further
illustrate the implementation of SCEQ, we also provide Matlab code for the first sim-
ple example with the fmincon optimization solver, and for the last competitive equilib-
rium example with the fsolve equation solver. However, since the fmincon optimization
solver in Matlab is slow in solving large scale problems, it will be much more efficient
to apply SCEQ in GAMS or other programming languages with efficient optimization
solvers (e.g., AMPL (Fourer, Gay, and Kernighan (1990)), FORTRAN, C, etc.), while Mat-
lab can be used for solving low-dimensional problems, which could still be challenging
for other computational methods if their value/policy functions have kinks.

4.1 An illustrative example

To illustrate the SCEQ method, our first example is a simple optimal growth problem
with stochastic discrete total factor productivity (TFP), Ãt . We assume Ãt = θtAt , where
At is the deterministic trend, and θt evolves according to the following stochastic pro-
cess:

ln(θt+1 ) = ρ ln(θt ) + σεt+1, (6)

where εt is a standard normal random variable, ρ = 0.95, and σ = 0.02. We solve the
following optimal growth problem:

max
ct

E

{ ∞∑
t=0

βtu(ct )

}

s.t. Kt+1 = (1 − δ)Kt + θtAtK
α
t − ct , t = 0, 1, 2, � � � , (7)

17In some rare cases, the Euler error in the first period may not be enough. See Appendix A.6 for an
example.

18We run one GAMS procedure per core, while each procedure uses a different seed for generating dif-
ferent pseudo random number sequences used in SCEQ and its accuracy measures.
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where Kt is capital and ct is consumption at time t, β = 0.96 is the discount factor, and
α = 0.3. The initial states are K0 = 1 and θ0 = 1. For simplicity, we assume At ≡ A :=
(1 − (1 − δ)β)/(αβ), so the nonstochastic steady state of capital is Kss = 1. We choose
the full depreciation rate δ = 1 and the utility function u(c) = ln(c) so the problem has
an analytical solution of consumption policy function: C∗(K, θ) = (1 − αβ)θAKα. Ap-
pendix A.2 provides another illustrative example for the same optimal growth model
but with a power utility function and 10% depreciation rate, in which case there is no
analytical solution.

4.1.1 Implementation of SCEQ Assume that we are interested in the solutions for the
first 20 periods (T ∗ = 20). Using the notation from Section 3, x := (K, θ) is the vector of
state variables, a := c is the decision variable, and the transition laws are

Kt+1 = gKt (xt , at , εt+1 ) = (1 − δ)Kt + θtAKα
t − ct ,

θt+1 = gθt (xt , at , εt+1 )

which can be written as xt+1 = gt(xt , at , εt+1 ), where εt+1 is standard normal and gt =
(gKt , gθt ) is a vector of two functions. Here, we use θt+1 = gθ(xt , at , εt+1 ) to represent the
transition law of θt , (6).

In the initialization step of SCEQ, we choose �s = 30 and the “terminal” value func-
tion Vs+�s (xs+�s ) = u(AKα

s+�s
−δKs+�s )/(1−β). We assume that consumption after time

s+�s is always AKα
s+�s

−δKs+�s so that capital after the “terminal” time s+�s is always

the “terminal” capital Ks+�s , as long as θt = 1.0 for all t ≥ s + �s.19 We simulate a se-
quence of εt to get m= 1000 paths for the periods of interest: {εit : 1 ≤ i ≤m, 1 ≤ t ≤ T ∗}.

We start from the initial period s = 0, and set the initial state (Ki
0, θi0 ) ≡ (K0, θ0 ) =

(1, 1) for each i = 1, � � � , m. In the optimization step of Algorithm 1 for solving problems
at time s, the transition equation xt+1 = gt(xt , at , 0) has θt replaced by its median con-
ditional on the realized value θis (i.e., (θis )ρ

t−s
for any t ≥ s) for simulation path i. That is,

the optimization step of Algorithm 1 solves the following problem:

max
ct

s+29∑
t=s

βt−su(ct ) +β30u
(
AKα

s+30 − δKs+30
)
/(1 −β)

s.t. Kt+1 = (1 − δ)Kt + (
θis
)ρt−s

AKα
t − ct , t = s, s + 1, � � � , s + 29, (8)

and the dynamic system starts with the state values (Ki
s , θis ) at time s for the ith sim-

ulation path. We solve the deterministic finite-horizon problem (8) using the CONOPT
optimization solver (or fmincon in Matlab) to obtain the optimal consumption cis , for
each i = 1, � � � , m. The simulation step of Algorithm 1 uses the state values (Ki

s , θis ) at
time s and their associated solution cis from the optimization step to simulate the state
values at time s + 1: Ki

s+1 = (1 − δ)Ki
s + θisA(Ki

s )α − cis and θis+1 = (θis )ρ exp(σεis+1 ) with
the simulated value εis+1 in the initialization step.

19We tried �s = 50 and found that it has little impact on the solutions obtained with �s = 30.
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We iterate the optimization step and the simulation step from s = 0 until s = T ∗ −1 =
19. Thus, we generated m = 1000 simulated paths of solution (Ki

s , θis , cis ) for the periods
of interest (the first 20 periods).20 The GAMS code took 4.2 minutes to run on a Mac Pro
desktop computer.21

4.1.2 Accuracy measures The normalized Euler error for this problem is∣∣∣∣1 −βE

[
u′(ct+1 )
u′(ct )

(
1 − δ+ θt+1AαKα−1

t+1

) ∣∣∣ (Kt , θt )

]∣∣∣∣. (9)

We can estimate it at the initial state by replacing the expectation with the average across
1000 simulated solutions in the second period:∣∣∣∣∣1 − β

1000

1000∑
i=1

[
u′(ci1)
u′(ci0)

(
1 − δ+ θi1Aα

(
Ki

1

)α−1) ∣∣∣ (K0 = 1, θ0 = 1)

]∣∣∣∣∣. (10)

The estimated normalized Euler error at the initial state is 5.3 × 10−8. We also employ
the accuracy measure method in Appendix A.1 and find that the L∞ Euler error over the
1000 simulated paths is 3.1 × 10−7, only slightly larger than the Euler error at the initial
state. If we compare the SCEQ’s simulated consumption, denoted c

i,SCEQ
t , with the true

analytical solution C∗(K, θ) = (1 − αβ)θAKα, then the L∞ relative error of the SCEQ
solution, defined as

max
0≤t<20,1≤i≤1000

∣∣ci,SCEQ
t − C∗(Ki,SCEQ

t , θi,SCEQ
t

)∣∣
C∗(Ki,SCEQ

t , θi,SCEQ
t

) ,

is 8.3×10−8, where (Ki,SCEQ
t , θi,SCEQ

t ) are the SCEQ’s simulated states. These small errors
are due to that certainty equivalent approximation in future periods has no effect on the
current-period solution for this specific example: with a given state (Ks , θs ) at time s,
no matter how we choose a deterministic path of θt for t > s, its associated determinis-
tic model’s optimal consumption at time s is always C∗(Ks , θs ) if the truncation error is
small. In the other illustrative example in Appendix A.2, certainty equivalent approxima-
tion in future periods has effect on the current-period solution, and its SCEQ solution’s
error is around 0.1% using our estimated Euler error measures or the relative difference
with a high-accuracy solution from the value function iteration. Both illustrative exam-
ples show that our estimated normalized Euler errors are close to the true relative errors,
so we can use them for checking the accuracy of SCEQ’s solution.

20Since the problem is stationary, the solutions {(Ki
s , θis , cis ) : 0 ≤ s < 20, 1 ≤ i ≤ 1000} follow the same

consumption policy function across time, so we can use them to construct our policy function approxima-
tion. Since the domain of simulated states is narrow, we can use a degree-3 complete Chebyshev polynomial
of ln(K) and ln(θ) to have a good approximation of the policy function, in which we use the least-squares
fitting method to estimate the Chebyshev coefficients.

21If we do not implement parallelism on the six compute cores, then the runtime is 22 minutes, so the
parallel efficiency is 87%. We also tried a parallel Matlab code, and it took 11 minutes to run on the same
computer, much slower than the GAMS code.
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4.2 Application to multicountry models

In this application, we show that SCEQ can solve high-dimensional dynamic stochas-
tic problems with occasionally binding constraints and up to 400 state variables and
600 decision variables in every period. Den Haan, Judd, and Juillard (2011) introduce
a multicountry model. Here, we apply SCEQ to solve its modified version. We assume
that there are N countries with a capital stock state vector Kt = (Kt,1, � � � , Kt,N ), and the
production function for the jth country at time t is

Yt,j = ζt,jAt,j(Kt,j )α(�t,j )1−α, (11)

where �t,j is labor supply, α is the expenditure share of capital in production, At,j is the
deterministic productivity trend, and ζt,j is a country-specific productivity shock. The
law of motion of capital is

Kt+1,j = (1 − δ)Kt,j + It,j , (12)

where It,j is investment and δ is the depreciation rate of capital.
The utility function for the jth country is

uj(ct,j , �t,j ) = (ct,j )
1− 1

γj

1 − 1
γj

−Bt,j
(�t,j )

1+ 1
ηj

1 + 1
ηj

, (13)

where ct,j is consumption, γj is the intertemporal elasticity of substitution, ηj is the
Frisch elasticity of labor supply, and Bt,j is the relative weight of consumption and
leisure in the welfare function.

We solve the social planner’s problem, where aggregate utility is defined as

U(ct , �t ) =
N∑
j=1

τjuj(ct,j , �t,j )

with ct = (ct,1, � � � , ct,N ) and �t = (�t,1, � � � , �t,N ), where τj are country-specific weights.
The social planner has the following aggregate world resource constraint:

N∑
j=1

(ct,j + It,j + �t,j ) =
N∑
j=1

Yt,j , (14)

where

�t,j ≡ φ

2
Kt,j

(
It,j

Kt,j
− δ

)2

(15)

is an adjustment cost with φ as the intensity of the friction. There is also a lower bound
for investment:

It,j ≥ Imin, ∀t, j. (16)
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That is, the social planner solves

max
c,�,I

E

( ∞∑
t=0

βtU(ct , �t )

)
(17)

subject to the transition law (12) and feasibility constraints (14) and (16), for each t and
j, where β is the discount factor.

We set β = 0.99, α = 0.33, δ = 0.025, and φ = 0.5. While SCEQ can also solve multi-
country problems with heterogeneous preferences, for convenience, we also let γj ≡ γ =
0.5, ηj = η= 0.5, τj ≡ 1, At,j ≡A= (1 − (1 − δ)β)/(αβ), and Bt,j ≡ (1 − α)A(A− δ)−1/γ

so that the problem has a symmetric and stationary model specification and the non-
stochastic steady state for each country is Kss = 1, with associated decisions �ss = 1,
css =A− δ, and Iss = δ.

The initial state for the jth country is set as

K0,j = exp
(
ln(Kmin ) + (

ln(Kmax ) − ln(Kmin )
) j − 1
N − 1

)
with Kmin = 0.1 and Kmax = 10 for j = 1, � � � , N . Note that we choose a wide range for
the initial capital levels across countries, to more closely replicate real-world cross-
country differences. In contrast, most other methods for high-dimensional problems
solve around the steady state, assuming that all countries have similar levels of capital.
We choose Imin = 0.9Iss so the inequality (16) will bind frequently.

Since our policy functions in this application have kinks and a wide-ranging and
high-dimensional state space (the dimensions of our cases in this application are from
21 to 400), it will be challenging for any existing methods to solve our problems, as they
will require a high-degree approximation or an adaptive sparse grids approximation for
value or policy functions. But it is simple for SCEQ. Here, we apply SCEQ to solve three
cases of our high-dimensional model with occasionally binding constraints and a wide-
ranging state space.

4.2.1 Case 1: Systematic shock Our first case assumes ζt,j ≡ ζt is independent of coun-
try j and instead is a systematic shock affecting all countries. We assume that ζt is a
Markov chain with three possible values: 0.9, 1.0, and 1.1, and its transition probability
matrix is

P =
⎡⎢⎣0.8 0.2

0.2 0.6 0.2
0.2 0.8

⎤⎥⎦ . (18)

Its initial state is ζ0 = 1.
For SCEQ, we choose �s = 50 and the “terminal” value function Vs+�s (xs+�s ) =

U(0.75AKα
s+�s

, 1)/(1 − β), where Kα
s+�s

= (Kα
s+�s ,1, � � � , Kα

s+�s ,N ), assuming that the la-
bor supply after time s+�s is always 1, and that consumption after time s+�s is always
75% of the deterministic output at time s+�s , with ζs+�s = 1.0. In the optimization step
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of Algorithm 1, we replace ζt by its mean conditional on the realized values of ζs for all
t ≥ s:

E(ζt | ζs ) = ςπt,s,

where ς = (0.9, 1.0, 1.1) is the vector of all possible values of ζt , and πt,s is a column vec-
tor representing the probability distribution conditional on the realized values of ζs . If
the realized value of ζs is the kth element of ς, we have πt,s = Pt−sπs,s , where πs,s is a
length-3 column vector with 1 for the kth element and 0 everywhere else. The optimiza-
tion problem (2) thus becomes

max
c,�,I

s+49∑
t=s

βt−sU(ct , �t ) +β50U
(
0.75AKα

s+50, 1
)
/(1 −β)

s.t. Kt+1,j = (1 − δ)Kt,j + It,j ,

N∑
j=1

(ct,j + It,j + �t,j ) =
N∑
j=1

(
E
(
ζt | ζis

)
A(Kt,j )α(�t,j )1−α

)
,

t = s, s + 1, � � � , s + 49, (19)

with the starting state Ks = Ki
s and ζs = ζis at time s for the ith simulation path.

We first solve the problem with N = 10 countries and generate 1000 simulated paths
of the first 20 periods, which are assumed to be the periods of interest. It took 11 min-
utes on a Mac Pro desktop computer with six cores. Figure 1 displays the distributions of
country 1’s optimal investments, Iis,1. From period 18 onwards, more than 10% of invest-
ments are binding at the lower bound Imin = 0.09.22 The L∞ Euler error on the simulated

Figure 1. Distribution of investment for country 1.

22The other countries have a greater percentage of binding investments because they have higher ini-
tial levels of capital. These countries have less incentive to invest as their capital levels are close to the
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Table 1. Running times and errors for Case 1.

N

Number
of Cores

Time (in Hours)
for SCEQ

Euler Error

L∞ L1 Initial State

10 6 0.18 6.9(−3) 3.7(−3) 6.7(−3)
20 6 0.37 7.1(−3) 3.7(−3) 6.9(−3)
50 6 1.1 7.1(−3) 3.7(−3) 7.1(−3)

100 6 3.4 7.1(−3) 3.7(−3) 7.1(−3)
200 6 16.1 7.1(−3) 3.7(−3) 6.8(−3)

Note: a(−n) means a× 10−n .

paths is 0.0069 and the L1 Euler error is 0.0037, demonstrating that SCEQ works well for
high-dimensional problems with kinks in the policy function. We can improve accuracy
further by increasing �s , which reduces the truncation error. With �s = 100, the L∞ Euler
error is 0.0024 and the L1 Euler error is 0.0011, but running time increases to 19 minutes.

We also use SCEQ to solve problems with N = 20, 50, 100, and 200 countries, for
�s = 50. Solutions are similar to the ones derived for N = 10 countries. Table 1 reports
the running times (in hours) of Algorithm 1 on a Mac Pro desktop computer, that is,
the time taken to generate 1000 simulation paths of the first 20 periods and the Euler
errors in L∞ and L1 with �s = 50. The errors are almost identical to those for N = 10,
demonstrating that SCEQ’s accuracy is independent of dimensionality, as SCEQ does not
need to approximate value or policy functions. Even with N = 200 countries, SCEQ just
needs 16.1 hours to run on a Mac Pro desktop computer. Moreover, an increase from N

countries to 2N countries did not increase computational time exponentially, showing
that the SCEQ’s computational time is nearly linear to the problem’s dimensionality.23

The last column of Table 1 also reports the Euler error at the initial state, which is
computed with the average across the 1000 simulated solutions for the second period.
The Euler errors at the initial state are close to those in L∞ across all simulated states,
because the largest error usually happens at the most extreme states and the first period
has the widest range of initial capital levels across countries.24 Thus, we can also use the
Euler errors at the initial state to measure accuracy, as computing them has almost no
additional cost.

4.2.2 Case 2: Irreversible risk Sometimes a risk is irreversible, meaning that a shock
leads to a permanent change to the system. Irreversible risks often have a significant
impact on decisions, so it might seem like SCEQ would not be a suitable method, but

nonstochastic steady state in the long run, especially if their initial capital levels are higher than the steady-
state level. For example, the initial capital of country 10 is Kmax = 10, much larger than the steady state
Kss = 1, so its level of investment is always binding at Imin in the initial periods, until its capital is close to
the steady-state level.

23As with N = 10, the solutions’ accuracy for larger N can also be improved by setting �s = 100 to reduce
truncation error, though it increases the computational time.

24The Euler errors at the initial state could be slightly larger than those in L∞ across all simulated states,
because they use different methods of estimation: Euler errors at the initial state have a standard error when
using the average across the simulated solutions at the second period to estimate the expectation.
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here we show that SCEQ can solve these problems with a high level of accuracy and only
take several minutes of computational time on a standard computer, much faster than
Case 1 where the risk was reversible.25

Our second case assumes that ζt,j ≡ ζt is a systematic shock independent of country
j, described as a Markov chain with two possible values: ς1 = 1.0 and ς2 = 0.95 and the
following transition probability matrix:

P =
[

0.99 0
0.01 1

]
. (20)

The initial state is ζ0 = 1.0. This shock represents a global risk that results in a permanent
5% damage to economic output, with a 1% probability of occurrence in each period (the
shock can only occur once). This problem is nonstationary as ζt will converge to 0.95. For
this specific example, there are only T ∗ different paths within the time interval of interest
T ∗: the first path has ζt = 1.0 for all 0 ≤ t < T ∗, the second path assumes that the shock
happens in the second period, that is, ζ0 = 1.0 and ζ1 = · · · = ζT ∗−1 = 0.95, and so on,
with the last path having ζ0 = · · · = ζT ∗−2 = 1.0 and ζT ∗−1 = 0.95. Thus, we can solve all
different paths using SCEQ. Since the stochastic problem becomes deterministic once
the shock happens, we just need to solve 2T ∗ − 1 optimization problems characterized
by (2), that is, solve problem (19) with

E
(
ζt | ζis

)=
{
Pt−s

11 ς1 + (
1 − Pt−s

11

)
ς2 if ζis = ς1,

ς2 otherwise,

where P11 = 0.99 is element (1, 1) of the transition probability matrix P .
Table 2 shows that with T ∗ = 20 and �s = 50, SCEQ took only seconds for N ≤ 50,

3 minutes for N = 100, and 17 minutes for N = 200 on a Mac Pro desktop computer
without using parallelism. The solutions show that investments bind frequently, and the
Euler error in L∞ is around 0.0068 for each N , close to those in Case 1.

Table 2. Running times and errors for Case 2.

N

Number
of Cores

Time (in Minutes)
for SCEQ

Euler Error

L∞

10 1 0.1 6.9(−3)
20 1 0.2 6.9(−3)
50 1 0.8 6.9(−3)

100 1 3 6.9(−3)
200 1 17 6.9(−3)

Note: a(−n) means a× 10−n .

25Appendix A.6 shows that SCEQ can also solve problems with an irreversible risk and endogenous prob-
abilities.
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Table 3. Running times and errors for Case 3.

N

Number
of Cores

Time (in Hours)
for SCEQ

Euler Error at
the Initial State

10 6 0.18 6.7(−3)
20 6 0.33 6.8(−3)
50 6 0.97 7.1(−3)

100 6 3.3 7.3(−3)
200 6 16.4 7.2(−3)

Note: a(−n) means a× 10−n .

4.2.3 Case 3: Country-specific shocks The last case assumes that every country has a
country-specific shock ζt,j , which is also correlated with a systematic shock affecting all
countries (εt+1). We assume ζt,j is a continuous exogenous state variable, following the
stochastic process:

ln(ζt+1,j ) = ρ ln(ζt,j ) + σ1εt+1,j + σ2εt+1 (21)

for each j = 1, � � � , N , where εt+1,j , εt+1 ∼ i.i.d. N (0, 1) (i.e., εt+1,j and εt+1 are indepen-
dent and identical standard normal distributions across time and countries), ρ = 0.95,
and σ1 = σ2 = 0.01. Thus, an N-country model has 2N state variables, of which N are
exogenous, while Cases 1 and 2 have N endogenous state variables and only one exoge-
nous discrete state variable.26

In the optimization step of Algorithm 1, we still solve (19) but replace E(ζt | ζis ) with
(ζis,j )ρ

t−s
, the median of ζt,j at time t conditional on the realized value ζis,j at time s, with

the starting state Ks =Ki
s and ζs,j = ζis,j at time s for the ith simulation path. We generate

1000 simulated paths of the first 20 periods. The solutions show that investments bind
frequently an the lower bound Imin for each country.

Table 3 reports the running times (in hours) and Euler errors at the initial state, for
the number of countries N = 10, 20, 50, 100, and 200 with �s = 50. We see that SCEQ
solves the problems within minutes or hours, close to the computational times in Case 1,
although their dimensions are nearly double those in Case 1. Moreover, the Euler errors
at the initial state are close to those in Case 1. This example shows that SCEQ’s effi-
ciency is independent of the number of exogenous state variables, because exogenous
state variables are replaced by their certainty equivalent approximation (e.g., mean or
median) in SCEQ, so have almost no impact on SCEQ’s computational time or accuracy.

4.3 Application to DSICE

Cai, Judd, and Lontzek (2017) and Cai and Lontzek (2019) solve a dynamic stochastic
integrated model of climate and economy (DSICE) that has economic and climate risks.

26This example is a more complicated version of the multicountry model in Judd, Maliar, and Maliar
(2012) and Maliar and Maliar (2015), as our example has kinks, a much wider-ranging state space, labor,
and adjustment cost, while their model does not. Our example is also challenging for the method of Judd,
Maliar, and Maliar (2012) and Maliar and Maliar (2015) to solve. But it is simple to apply SCEQ to solve their
model; see Appendix A.3.
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DSICE is a DSGE extension of DICE (Nordhaus (2008, 2017)), which has exogenous paths
for the population, TFP, land emissions, abatement cost, carbon intensity, and exoge-
nous radiative forcing. Cai, Judd, and Lontzek (2017) and Cai and Lontzek (2019) em-
ploy Epstein–Zin preferences (Epstein and Zin (1989)), long-run economic risk (Bansal
and Yaron (2004)), and climate tipping risks (Lenton et al. (2008)) with endogenous tip-
ping probabilities, uncertain duration, and uncertain damage. Here, we apply SCEQ to
solve a simpler version of DSICE, in which we follow the same deterministic economic
and climate systems, but we assume a simple economic risk and do not use Epstein–Zin
preferences.27 All exogenous paths and parameter values follow Cai, Judd, and Lontzek
(2017) and Cai and Lontzek (2019), except those specified below.

4.3.1 Model overview We briefly describe the deterministic version of DSICE. Let Mt =
(MAT,t , MUO,t , MLO,t )
 be the carbon concentrations in the atmosphere, and upper and
lower levels of the ocean, respectively. These concentrations evolve over time according
to

Mt+1 = �MMt + (Et , 0, 0)
, (22)

where �M is a linear transition matrix, and Et = EInd,t + ELand,t is the annual total car-
bon emissions, where EInd,t is industrial emissions and ELand,t is exogenous land emis-
sions. Let Tt = (TAT,t , TOC,t )
 be temperature anomalies of the atmosphere and ocean,
following the law of motion:

Tt+1 = �TTt + (ξ1Ft , 0)
, (23)

where �T is a linear transition matrix and ξ1 is a parameter. Ft = η log2(MAT,t/M
∗
AT ) +

FEX,t is global radiative forcing, where η is a parameter, M∗
AT is the preindustrial atmo-

spheric carbon concentration, and FEX,t is the exogenous radiative forcing.
The economic system has a state variable, capital (Kt ), which is used to define gross

economic output Yt = AtK
α
t L

1−α
t , where α is a parameter, At is exogenous TFP, and Lt

is the exogenous global population size at time t. Output is reduced by the temperature
anomaly according to the damage factor

�(TAT,t ) = 1

1 +π1TAT,t +π2(TAT,t )2 ,

where π1 and π2 are parameters. Economic production has industrial emissions EInd,t =
σt(1 − μt )Yt , which is proportional to gross output but can be reduced by mitigation,
measured by the emission control rate μt ∈ [0, 1], and σt is exogenous carbon intensity.
The mitigation cost is �t = θ1,tμ

θ2
t Yt , where θ1,t is the exogenous abatement cost and θ2

is a parameter. Thus, the transition law of capital is

Kt+1 = (1 − δ)Kt +�(TAT,t )Yt −Ct −�t , (24)

27Appendix A.6 shows that SCEQ can solve another simpler version of DSICE with climate tipping risks
and endogenous tipping probabilities. It took only 2 minutes on a single compute core and gave an accept-
able solution accuracy.
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where δ is the depreciation rate and Ct is consumption. Note that the emission control
rate μt may be binding at its upper bound, so this problem has an occasionally binding
constraint.

The deterministic model solves the following social planner’s problem:

max
Ct ,μt

∞∑
t=0

βtu(Ct/Lt )Lt (25)

subject to the transition laws (22)–(24) of six state variables: Mt , Tt , and Kt , where Ct

and μt are decision variables, β is the discount factor, and u is a power utility function
u(c) = c1−γ/(1 − γ) with γ = 1.45 denoting the elasticity of marginal utility of per capita
consumption c as in DICE-2016 (Nordhaus (2017)). The initial states are observed and
given.

Now we add a simple economic risk. We assume that TFP, Ãt , is stochastic: Ãt =
ζtAt , where At is the deterministic trend and ζt is a Markov chain representing a pro-
ductivity shock. For simplicity, we assume that ζt follows the same distribution and
transition probabilities as in Section 4.2, that is, ζt has three possible values: 0.9, 1.0,
and 1.1, and its transition probability matrix is given by (18). Gross economic output is
Yt = ÃtK

α
t L

1−α
t , and we solve the social planner’s problem

max
Ct ,μt

E

{ ∞∑
t=0

βtu(Ct/Lt )Lt

}
(26)

subject to the transition laws (22)–(24) and the Markov chain of ζt .

4.3.2 Implementation of SCEQ Because DSICE is a nonstationary stochastic problem
with six endogenous continuous state variables, one exogenous discrete state variable,
and occasionally binding constraints, it is challenging to solve it using standard methods
like VFI unless we can choose the appropriate approximation methods and time-varying
approximation domains as in Cai, Judd, and Lontzek (2017) and Cai and Lontzek (2019).
Here, we can apply SCEQ to overcome these challenges.28 As in Section 4.1, in the opti-
mization step of Algorithm 1 we replace ζt by its mean conditional on the realized value
of ζs for all t ≥ s.

Figure 2 displays distributions of the optimal carbon taxes in the first T ∗ = 100 years
from 1000 simulation paths obtained by SCEQ, which took 1.8 hours to run on a Mac Pro
desktop computer. The economic risk has little impact on the initial carbon tax, and the
average or median path is almost identical to the deterministic solution. These results
are different from those in the stochastic growth benchmark example of Cai, Judd, and
Lontzek (2017) and Cai and Lontzek (2019) due to the differences of utility function and
economic risk, but Figure 2 still shows that the optimal carbon tax is stochastic and has

28We follow DICE by truncating the infinite-horizon problem to a 600-year problem with the terminal
value function being zero everywhere, as reasonable terminal conditions at the 600th year have little impact
on the solution in the first 100 years—the time of interest—due to the small compound discount factor and
a small magnitude of utility in the long run (as consumption will be large and the elasticity of marginal
utility γ > 1). In SCEQ, we let �s = 600 − s and the terminal value function be V600(x600 ) ≡ 0.
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Figure 2. Carbon tax for DSICE with economic risk.

a wide range in 2100: $185 to $282 per ton of carbon, although the range in Cai, Judd,
and Lontzek (2017) and Cai and Lontzek (2019) is much wider.

4.3.3 Accuracy measures Table 4 lists the Euler errors, specified in Appendix A.5, at the
simulated states using the accuracy measure method in Appendix A.1. It shows that the
L∞ Euler error is 0.0011 and the L1 Euler error is 1.1 × 10−4. We also compare the SCEQ
solution with the solution obtained from VFI for the first 100 years, as in Cai, Judd, and
Lontzek (2017) and Cai and Lontzek (2019). We use time-varying approximation do-
mains and degree-6 complete Chebyshev polynomials for approximating value func-
tions in VFI. As in Section 4.1, we use the policy functions from VFI to compute the deci-
sions at the realized SCEQ simulated states, then compare them with the corresponding
SCEQ simulated decisions. Table 4 shows that for the optimal carbon taxes in the first
100 years, the relative L∞ error is 0.023 and the relative L1 error is 0.0031, if we treat
the VFI solution as the “true” solution.29 In addition, the relative L∞ error is 0.0028 and

Table 4. Errors for DSICE with economic risk.

Relative Difference With the VFI Solution

Euler Error Tax Ct μt

L∞ L1 L∞ L1 L∞ L1 L∞ L1

1.1(−3) 1.1(−4) 2.3(−2) 3.1(−3) 2.8(−3) 2.4(−3) 1.3(−2) 1.7(−3)

29The errors of the VFI solutions are about 0.1–1% because we use degree-6 complete Chebyshev poly-
nomial approximations, so our relative errors using the VFI solution as the “true” solution are a bit biased.
Obtaining an additional digit of accuracy from VFI will require a much higher degree approximation, mak-
ing it too time consuming to run it on a desktop computer. For instance, we use a degree-30 complete
Chebyshev polynomial approximation to obtain the L∞ Euler error 1.2 × 10−4 for the VFI solution of the
example in Appendix A.2, while it only requires a degree-10 complete Chebyshev polynomial approxima-
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0.013 for Ct and μt , respectively, and the relative L1 error is 0.0024 and 0.0017 for Ct and
μt , respectively.30

4.4 Application to a new Keynesian model with zero lower bound

We have shown that with Algorithm 1, SCEQ can solve stationary or nonstationary
stochastic dynamic programming problems with high dimensionality and occasionally
binding constraints. Here, we show that using Algorithm 2, SCEQ can also solve stochas-
tic competitive equilibrium problems with occasionally binding constraints. Our exam-
ple uses the New Keynesian model with a zero lower bound (ZLB), from Guerrieri and
Iacoviello (2015) and Cai, Judd, and Steinbuks (2017).31

4.4.1 Model overview Since we use the exact same New Keynesian model as in Cai,
Judd, and Steinbuks (2017), we only give a brief description here. The model consists
of a representative household, a government, a final-good firm, and intermediate firms.
The government consumes a fraction sg of the final good and issues bonds every period
with a nominal interest rate rt , which has a zero lower bound. The final-good firm pur-
chases intermediate goods from intermediate firms to produce the final good yt and sell
it at the price pt . The intermediate firms are assumed to have Calvo-type prices for the
intermediate goods: in each period, a fraction 1 − θ of the firms have optimal prices and
the remaining fraction keep the same price as the previous period. At each period t, the
representative household consumes the remaining fraction 1 − sg of the final good, buys
newly issued bonds, sells the expired bonds, earns wages from labor supply, receives a
lump-sum transfer from the government, and receives profits from all firms. The repre-
sentative household wants to maximize the present value of expected utilities subject to
a budget constraint. The discount factor βt is the stochastic process

ln(βt+1 ) = (1 − ρ) ln
(
β∗)+ ρ ln(βt ) + σεt+1, (27)

where εt ∼ i.i.d. N (0, 1), and β∗ is the nonstochastic steady-state discount factor.
The New Keynesian model has one endogenous state variable (vt ) that represents

price dispersion:

vt+1 = (1 − θ)q−α
t + θπα

t vt , (28)

where πt ≡ pt/pt−1 is the gross inflation rate, and

qt =
(

1 − θπα−1
t

1 − θ

) 1
1−α

, (29)

tion to obtain the L∞ Euler error 6.4×10−4, or a degree-20 complete Chebyshev polynomial approximation
to obtain the L∞ Euler error 3.9 × 10−4.

30Note that the carbon tax is 1000θ1,tθ2μ
θ2−1
t /σt , so the relative error of μt is amplified when computing

the relative error of carbon taxes.
31New Keynesian DSGE models have been studied frequently in the literature; see, for example, Wood-

ford (2003), Negro, Schorfheide, Smets, and Wouters (2007), Smets and Wouters (2007), Gali (2008),
Fernandez-Villaverde, Gordon, Guerron-Quintana, and Rubio-Ramirez (2015), Maliar and Maliar (2015).
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where α is a parameter in the production function of the final-good firm. Appendix A.8
derives the following equilibrium equations:

1 = 1
χt,1

(
y

1+η
t vt+1 + θEt

{
βt+1π

α
t+1χt+1,1

})
, (30)

1 = 1
χt,2

(
1

1 − sg
+ θEt

{
βt+1π

α−1
t+1 χt+1,2

})
, (31)

qt = αχt,1

(α− 1)χt,2
, (32)

1 = Et

{
βt+1

1 + rt

πt+1

yt

yt+1

}
, (33)

zt = (
1 + r∗

)( πt

π∗
)φπ

(
yt

y∗
)φy

− 1, (34)

rt = max(zt , 0), (35)

where χt,1 and χt,2 are defined in Appendix A.8, and π∗, r∗, and y∗ are the steady-state
gross level of inflation, nominal interest rate, and output, respectively.

We apply Algorithm 2 to solve this stochastic competitive equilibrium problem.32

The state vector is xt = (βt , vt ), with the transition laws (27) and (28). The variables χt,1,
χt,2, and yt are viewed as action variables at , while the other variables qt , πt , zt , and rt can
be substituted by expressions of χt,1, χt,2, and yt , according to (29), (32), (34), and (35).
Except the transition laws, the equilibrium conditions are (29)–(35). The initial states
are β0 = β∗ and v0 = v∗, where v∗ is the steady-state price dispersion. We choose �s =
200 and let the “terminal” decision rule a∗

s+�s
(xs+�s ) be given as χs+�s ,1 ≡ χ∗

1, χs+�s ,2 ≡
χ∗

2, and ys+�s ≡ y∗, where χ∗
1, χ∗

2, and y∗ are the steady-state values of χt,1, χt,2, and yt ,
respectively. In the optimization step of Algorithm 2, we replace the expectations in (30),
(31), and (33) by their median conditional on the realized values of βs . That is, (30), (31),
and (33) are defined as

1 = 1
χt,1

(
y

1+η
t vt+1 + θβ̃t+1π

α
t+1χt+1,1

)
, (36)

1 = 1
χt,2

(
1

1 − sg
+ θβ̃t+1π

α−1
t+1 χt+1,2

)
, (37)

1 = β̃t+1
1 +max(zt , 0)

πt+1

yt

yt+1
, (38)

where

β̃t+1 = exp
(
(1 − ρ) ln

(
β∗)+ ρ ln(β̃t )

)
for t = s, s+ 1, � � � , s+�s − 1, and β̃s = βi

s is the realized value of βs in the ith simulation
path.

32In our GAMS code, we use dnlp to deal with the nonlinear programming problem with discontinuous
derivatives caused by (35). In our Matlab code, we use fsolve to solve the system of equations, where fsolve
uses a finite difference method to smooth out the kink in (35).
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Figure 3. Simulated interest rates and the policy function for interest rate.

We assume that the time of interest, T ∗, is 20 periods. We generated 1000 simulation
paths using Algorithm 2, which only took 4 minutes on a Mac Pro desktop computer.
Using the simulated solutions, we also construct a policy function approximation for zt
using a degree-4 complete Chebyshev polynomial Z(β, v), and then determine the in-
terest rate as r = max(Z(β, v), 0). Figure 3 displays the distribution of interest rates (the
left panel) and the policy function approximation for the interest rate (the right panel),
showing that some interest rates are binding at zero. The Euler error over the simulated
solutions is 0.0032 in L∞. This example shows that SCEQ can solve a stochastic compet-
itive equilibrium problem with occasionally binding constraints.

5. Discussion

If utility ut is a common power function with a relative risk aversion parameter γ, then
γ plays two roles: risk aversion and the inverse of the intertemporal elasticity of substi-
tution (IES) for time-separable power utilities. The role of the risk-aversion parameter
disappears in the certainty equivalent approximation model (2), but the inverse of IES,
1/γ, still affects the solution to the deterministic model (2). For this reason, the SCEQ
method cannot work for dynamic portfolio problems, where the degree of risk aversion
is important for risky portfolio choices, dynamic stochastic problems with Epstein–Zin
preferences in which the risk aversion and the IES are separated (e.g., Cai, Judd, and
Lontzek (2017), Cai and Lontzek (2019)), or static problems, where γ only represents risk
aversion. However, for many dynamic stochastic problems with time-separable power
utilities, the role of the inverse of IES often dominates the role of risk aversion in affect-
ing the solutions, so the SCEQ method can solve them accurately.

When we solve a dynamic stochastic problem, the first step is to choose the com-
putational method. Unfortunately, we cannot know which method can work or is more
efficient a priori. It will be frustrating to spend an enormous amount of time and re-
sources to try one method but finally discover it does not work well. For example, before
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checking Euler errors, NLCEQ has to first solve all optimization problems correspond-
ing to the approximation nodes, VFI or the time iteration have to wait until it converges
before obtaining optimal value or policy functions, and the GSSA and EDS method have
to run a large number of simulated paths to approximate policy functions.

With SCEQ, we can apply the accuracy measure method to do an early and fast check
with only a small amount of computational time and resources. For example, we can
just assume the time of interest to be T ∗ = 2 and obtain m simulated paths with only
two periods using Algorithm 1 or 2, then compute the Euler error at the initial state. If it
is not small (with a large �s), then we switch to other solution methods. That is, a small
Euler error at the initial state is a necessary condition for choosing SCEQ. Alternatively,
we can just solve only one or several simulated paths (i.e., choosing a small m), and
compute the Euler errors along the small number of simulated paths. If they are not
small (with a large �s), then we switch to other solution methods. These two methods
can also be applied to check if the SCEQ code has bugs or �s is large enough: we suggest
using the same code but changing the variances of the random variables εt to be nearly
zero.33 Since SCEQ solves deterministic models very accurately, if the computed Euler
errors for the nearly-zero-variance case are not nearly zero, it implies that there are bugs
in the code or that �s is not large enough (i.e., the truncation error is large). Thus, we can
know almost a priori if SCEQ works for a specific problem.

For some special cases, such as problems with an irreversible risk (Section 4.2.2), the
number of all different possible paths within a timeframe of interest T ∗ may be smaller
than m, the number of (different) simulated paths. In such cases, we can compute the
solutions along all different paths in the time of interest and use them to generate m

simulation paths with little computational cost. For example, in Section 4.2.2, the num-
ber of all different possible paths in the first 20 periods is just 19, so we solve them all
and use these 19 paths to simulate 10,000 paths with little additional cost. Thus, for that
example, SCEQ took only minutes on a Mac Pro desktop computer to solve a DSGE with
201 state variables and occasionally binding constraints, much faster than NLCEQ or
other methods like VFI, even if they use sparse grid methods. But for general problems,
the number of all different possible paths within a timeframe of interest is often much
larger than m, which is often chosen to be 1000 or 10,000. For example, if there is a bi-
nary stochastic state variable and none of its transition probabilities are zero, then there
are 220 ≈ 106 different paths in the first 20 periods.

Some rare cases may require high-accuracy solutions that SCEQ cannot provide,
but we can still use SCEQ to provide (time-varying) approximation domains and ini-
tial guesses for other methods that may have higher accuracy (and much higher com-
putational costs). For example, in the simulation step of SCEQ, we can always choose
the worst scenario or the best scenario to obtain a lower or upper bound of states for
constructing (time-varying) approximation domains, which can then be used for other
methods. Moreover, we may use the SCEQ solution to test which approximation method

33If the problem is stationary and the initial state is equal or close to the nonstochastic steady state, then
we suggest changing the initial state for debugging. Otherwise, with the nearly zero variances and some
terminal conditions, the simulated states could be always close to the non-stochastic steady state so the
Euler errors would always be small.
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in other methods would be suitable: For example, if we use complete Chebyshev poly-
nomials, then we may test how the high degree would be required for approximation.

6. Conclusions

This paper introduces a novel computational method, SCEQ, for solving dynamic
stochastic problems. We have shown that SCEQ can be much more efficient and stable
than other common computational methods such as NLCEQ and VFI, while retaining a
solution with acceptable accuracy. We have also shown that SCEQ can solve problems
that other existing methods cannot, such as problems with both high dimensionality
and occasionally binding constraints.

SCEQ is simple but powerful. It avoids complicated computational techniques for
approximation and integration to make it as simple as perturbation methods, but it
still provides globally valid solutions while perturbation methods provide only locally
valid solutions. Using a standard computer and an efficient optimization solver, SCEQ
can provide accurate solutions for many dynamic stochastic problems with high dimen-
sionality, occasionally binding constraints, nonstationarity, and/or a wide range of state
space, without using an extensive amount of resources. Moreover, SCEQ does not suffer
from the curse of dimensionality. SCEQ provides distributions of solutions, which can
be used to compute stochastic properties, such as means, variances, covariances, and
trends, so it can have extensive use in economic analysis. For example, structural esti-
mation such as the GMM method can apply SCEQ to estimate structural parameters.
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