2303.05016v1 [cs.PF] 9 Mar 2023

arxiv

Performance Characterization of using Quantization
for DNN Inference on Edge Devices: Extended
Version

Hyunho Ahn*, Tian Chen*, Nawras Alnaasan, Aamir Shafi, Mustafa Abduljabbar, Hari Subramoni, and
Dhabaleswar K. (DK) Panda
The Ohio State University
{ahn.377, chen.9891, alnaasan.1, shafi.16, abduljabbar.1, subramoni.1, panda.2}@osu.edu

Abstract—Quantization is a popular technique used in Deep
Neural Networks (DNN) inference to reduce the size of models
and improve the overall numerical performance by exploiting
native hardware. This paper attempts to conduct an elaborate
performance characterization of the benefits of using quantiza-
tion techniques—mainly FP16/INT8 variants with static and dy-
namic schemes—using the MLPerf Edge Inference benchmarking
methodology. The study is conducted on Intel x86 processors
and Raspberry Pi device with ARM processor. The paper uses
a number of DNN inference frameworks, including OpenVINO
(for Intel CPUs only), TensorFlow Lite (TFLite), ONNX, and
PyTorch with MobileNetV2, VGG-19, and DenseNet-121. The
single-stream, multi-stream, and offline scenarios of the MLPerf
Edge Inference benchmarks are used for measuring latency
and throughput in our experiments. Our evaluation reveals that
OpenVINO and TFLite are the most optimized frameworks for
Intel CPUs and Raspberry Pi device, respectively. We observe
no loss in accuracy except for the static quantization techniques.
We also observed the benefits of using quantization for these
optimized frameworks. For example, INT8-based quantized mod-
els deliver 3.3x and 4x better performance over FP32 using
OpenVINO on Intel CPU and TFLite on Raspberry Pi device,
respectively, for the MLPerf offline scenario. To the best of our
knowledge, this paper is the first one that presents a unique
characterization study characterizing the impact of quantization
for a range of DNN inference frameworks—including Open-
VINO, TFLite, PyTorch, and ONNX—on Intel x86 processors
and Raspberry Pi device with ARM processor using the MLPerf
Edge Inference benchmark methodology.

Index Terms—Quantization, Edge, Inference, MLPerf

I. INTRODUCTION

The last decade has seen the emergence of Deep Neural
Network (DNN) training as an important workload on parallel
systems, including High-Performance Computing and Cloud
hardware. DNNs have been found to be very useful in many
applications, including Computer Vision and Natural Lan-
guage Processing, due to their high accuracy that is mainly due
to the large number of training parameters. While significant
successes [1]-[3] have been realized in training such large
networks, there is relatively less focus on deploying them
for inference on edge devices. The deployment of these
large models for inference on commodity servers, as well

*These authors contributed equally to this work

as resource-constrained environments, is vital for successful
democratization of Artificial Intelligence (AI) models.

A common challenge in deploying large models for infer-
ence is the sheer size of these models due to the large number
of parameters. One technique to address this is quantization
which allows using the lower-precision number format for
storing weights and activations during DNN training and
inference [4]. This means using formats like INTS, FP16, etc.,
instead of the default FP32. While quantization has been very
successful in DNN training, this paper focuses on inference
only.

A. Motivation

The main motivation of this paper is to conduct performance
characterization using quantization for DNN inference on edge
systems, including Intel x86 systems and Raspberry Pi 4B
device equipped with ARM processor. We are interested in
quantifying the reduction in sizes of quantized models while
also measuring the accuracy of these models—the goal is to
reduce the size while not affecting the accuracy. We are also
motivated to explore and use the commonly used quantization
techniques, including FP16 and INT8 variations. This study is
done using a variety of DNN inference frameworks, includ-
ing OpenVINO [5] (for Intel CPUs only), TensorFlow Lite
(TFLite) [6], ONNX [7], and PyTorch [8] using specialized
backends and libraries for the corresponding x86 and ARM
processors. The overall goal of using quantization is to: 1)
reduce the memory/energy footprint of Al models without
losing accuracy and 2) improve numerical performance by
exploiting native hardware support for faster arithmetic. We
use the benchmarking methodology adopted by the MLPerf
Edge Inference benchmarks [9].

This paper makes the following key contributions:

o Explore the use of various quantization techniques—
based on INT8/FP16 and static/dynamic strategies—on
a range of DNN inference frameworks, including Open-
VINO, PyTorch, TFLite, and ONNX.

o The performance evaluation is done on Intel CPUs (Cas-
cade Lake and Skylake) and Raspberry Pi 4B equipped
with ARM processor.

o The performance characterization reveals that the size of
original models is reduced by a quarter for INT8-based
models without losing accuracy. The only exception is
when static quantization is utilized, where we witnessed
a slight accuracy reduction.

o The characterization study uses a range of popular Al
models—including MobileNetV2 [3], VGG-19 [2], and
DenseNet-121 [1]. We found that OpenVINO and TFLite
are the most optimized frameworks for Intel CPUs and
Raspberry Pi 4B device, respectively. For the MLPerf
offline scenario, INT8-based quantized models deliver
3.3x and 4 x better performance over FP32 using Open-
VINO on Intel CPU and TFLite on Raspberry Pi device,
respectively.

o The evaluation is done using the MLPerf Edge Inference
benchmark and uses the single-stream, multi-stream, and
offline scenarios. We also studied the impact of using
optimized numerical instructions like Vector Neural Net-
work Instruction (VNNI) [10] provided by the Cascade
Lake processors.

To the best of our knowledge, this paper presents a unique
characterization study that studies the impact of quantization
for a range of DNN inference frameworks—including Open-
VINO, TFLite, PyTorch, and ONNX—on Intel x86 processors
and Raspberry Pi device with ARM processor using the
MLPerf Edge Inference benchmark methodology.

Rest of the paper is organized as follows. Section II presents
background on DNN inference frameworks the MLPerf Edge
Inference benchmark. Section III reviews important concepts
related to quantization and provides an overview of our ap-
proach to quantizing models for OpenVINO, PyTorch, TFLite,
and ONNX. The experimental setup for our characterization
study is provided in Section IV that is followed by the detailed
evaluation and analysis in Section V. Section VI presents
related work and the paper is concluded in Section VII.

II. BACKGROUND
A. Deep Learning Frameworks on Edge Devices

Deep Learning (DL) frameworks provide a high-level in-
terface and building blocks for designing, training, and val-
idating Deep Neural Networks (DNNs) on a wide range of
devices. There is a plethora of ML/DL frameworks such as
TensorFlow [11], PyTorch [8], CoreML [12], ONNX [7],
OpenVINO [5]. Each of these frameworks differs in terms
of purpose, performance, model API, and hardware compati-
bility. Some frameworks are designed for a specific hardware
architecture, like CoreML, which is exclusively used for Apple
devices. Other frameworks like OpenVINO and TensorFlow
Lite (TFLite) [6] are more focused on providing an efficient
and portable solution for model inference on devices that have
limited memory and computing resources.

One solution to address the limitations of edge devices is
the quantization of DL models to reduce the size and compute
requirements for performing inference tasks. Furthermore,
several low-level libraries can be used to accelerate the perfor-
mance of edge devices. For instance, the ArmNN library [13]

bridges the gap between the DL framework and underlying
architectures by increasing the efficiency of the Arm Cortex-A
CPUs and Arm Mali GPUs. ONNX supports similar libraries
like NVIDIA TensorRT [14] and Intel oneDNN [15]. Intel also
provides its optimized TensorFlow version for Intel CPUs [16],
which uses oneDNN to fully utilize the Advanced Vector
eXtensions (AVX) instruction set.

For our experiments, we select four representative frame-
works that support model quantization: 1) PyTorch, which
allows the training, quantization, and deployment of models
within the same framework, 2) TFLite, which is the optimized
TensorFlow runtime for edge devices, 3) ONNX, which of-
fers great flexibility in translating models from/to other DL
frameworks, and 4) OpenVINO, an Intel developed framework
which is integrated with several Intel acceleration libraries.

B. MLPerf Inference Benchmark

The MLPerf Inference Benchmark Suite [9] is a standard
machine learning (ML) benchmark suite that prescribes a set
of rules and best practices to fairly evaluate the inference
performance of ML hardware. It spans multiple ML models
and tasks in the Computer Vision and Natural Language
Processing domains, including image classification, object de-
tection, medical imaging, speech-to-text, translation, etc. Each
task and model are well-defined to ensure the reproducibility
and accessibility of the benchmarks. An MLPerf Inference
submission system consists of System Under Test (SUT),
Load Generator (LoadGen), Accuracy Script, and Data Set
unit. SUT includes the hardware, architecture, and software
used in the inference. SUT should follow Model-equivalence
rules, which provide a complete list of disallowed and allowed
techniques in benchmarking. These rules are in place to
help submitters efficiently reimplement models on various
architectures. The LoadGen is a traffic generator that loads the
SUT and measures performance. It produces the query traffic
according to the rules of each scenario. MLPerf identifies
four inference scenarios that represent many critical inference
applications in real-life use cases: the single-stream, multi-
stream, server and offline scenarios. Among the server senario
is not required in edge benchmark. We conduct our experi-
ence in the remaining three scenarios. In each scenario, the
LoadGen process generates inference requests in a particular
pattern. In the single-stream and multi-stream scenarios, the
LoadGen sends the next query as soon as SUT completes the
previous query. In offline scenario, LoadGen sends one query
with all samples to the SUT at the beginning of the execution.
According to Model-equivalence rules, dynamically switching
between one or more batch sizes within the scenario’s limits
is allowed. Following this rule, we tweak offline batch size
for a given SUT in order to prevent device out of memory,
as well as maximize inference throughput. Table I shows
specific metrics measured in each scenario to evaluate SUT
performance. For single-stream scenario, 90%-ile measured
latency are measured so that 90% of total queries would be
done in a given time. Similar to multi-stream scenario, but
99% of total queries would be done in a given time. Offline

TABLE I: Criteria of MLPerf Testing Scenario

TABLE II: The Analyzed Quantization Methods.

Senario Duration Samples/Query Performance Metric

Quantization Dynamic/ Bits Data Type Symmetric/Asymmetric

method Static
1024 queries 90%-ile
Single-stream and 68 seco}) ds measured latency Default N/A 32 FP32 N/A
(millisecond) INT8-DQ Dynamic 8 INTS8 Asymmetric
. 99%-ile INT8-SQ Static 8 INTS8 Asymmetric
Multi-stream 270,336 queries 8 measured latency FP16 Static 16 FPl16 Symmetric
and 600 seconds (millisecond) S = Tohis
INT§-OM Static 8 INT8 ymmetne on Weig s,

1 query
and 60 seconds

Measured throughput

Offline (samples/sec)

At least 24,576

measures average throughput during inferencing in terms of
samples per second.

III. PROPOSED APPROACHES AND GUIDELINES FOR DEEP
NEURAL NETWORK QUANTIZATION

This section provides an overview of relevant quantization
concepts and how we used them to generate quantized mod-
els for different DL frameworks, including PyTorch, TFLite,
ONNX, and OpenVINO.

A. Quantization Methodology

Most DNN training and inference frameworks use FP32
datatypes by default. However, the weights and activations of
DNNs may not require the full range and accuracy of FP32.
This provides an opportunity to exploit leaner number formats
like FP16, INT16, and INTS via model quantization. Using
smaller datatypes to represent a model can lead to reduced
memory footprint, smaller latency, and improved throughput.
This approach is especially beneficial for edge devices with
limited memory and compute resources. There are several
technicalities involved when it comes to mapping the full range
of FP32 values into a smaller representation:

1) Scaling Factor: In order to convert FP32 values to
smaller representations, the scaling factor is used to divide
the floating-point values and round them to the nearest integer.
We then multiply the output by the scaling factor again. The
scaling factor is critical for minimizing the difference between
the original and quantized values, which in turn minimizes the
quantization error.

2) Clipping Range: The clipping range determines the
range of values that will be retained after quantization. All
other values that fall outside this range will be clipped to
the minimum or maximum bounds of this range. Clipping is
performed to avoid overflow errors in the new representation
and to reduce the impact of outliers that can cause issues
during the quantization process. The process of choosing the
clipping range is called calibration.

3) Quantization Symmetry: Quantization can be either sym-
metric or asymmetric depending on how we select the clipping
range. If the minimum and maximum bounds are set to have
the same distance from the central value (usually zero), then
the quantized values will be symmetrically distributed. For
example, in 8-bit quantization, the clipping range can be
between -128 to +127 for symmetric quantization. On the other
hand, in asymmetric quantization, the minimum and maximum

Asymmetric on activations

TABLE III: Combination of Quantization Methods and DNN
Frameworks Used for Performance Evaluation.

Quantization method PyTorch TFLite ONNX OpenVINO

Default N v’ NG v’
INTS-DQ v’ v’
INT8-SQ v’ v’ v’

FP16 v’

INT8-OM v’

bounds of the clipping range may have different distances from
the center. This results in asymmetric distribution of quantized
values. An example for 8-bit asymmetric quantization is to
select the clipping range between 0 to 255.

4) Static vs. Dynamic Quantization: Another important
aspect of quantization is the timing of when the scaling factor
and clipping range are determined. In static quantization, the
quantization parameters are determined, pre-calculated, and
fixed during the inference process. Static quantization is often
only applied to the weights. In dynamic quantization, on the
other hand, the quantization parameters adapt to the input data
while the inference is being performed. Dynamic quantization
is applied on both the activations and weights and is useful
when the data fed to the network varies greatly between dif-
ferent samples. Dynamic quantization is generally considered
to be more accurate than static quantization, but it is relatively
more compute-heavy compared to static quantization.

5) Post-Training Quantization (PTQ) vs. Quantization-
Aware Training (QAT): In post-training quantization (PTQ),
we perform quantization on a pre-trained DNN. Weights and
activations are determined without retraining the DNN model.
PTQ is useful when the data is limited or unlabeled. In
contrast, quantization-aware training (QAT) is incorporated
into the training process, which requires dataset access. During
QAT, the network is trained with quantized weights and
activations, which usually results in better accuracy at the cost
of being a slower process compared to PTQ [4]. Also, this
method additively processes pruning to optimize the network.
In this paper, we focus on the quantization method only. Thus,
we narrowed our experiments to the PTQ approach alone.

The quantization methods that we use in this work are
detailed in Table II, which include 1) INT8 dynamic asym-
metric quantization (INT8-DQ), 2) INT8 static asymmetric
quantization (INT8-SQ), 3) half-precision static symmetric
quantization (FP16), and 4) 8-bit static symmetric quantization
on weights and asymmetric quantization on activations (INTS-
OM). Table III shows the quantization method support offered

by different DNN frameworks for Convolutional Neural Net-
works (CNNs) quantization.

B. Quantization Approachs Based on DL Frameworks

To evaluate the aforementioned quantization methods and
inference scenarios, we select three representative Convolu-
tional Neural Networks (CNNs): DenseNet-12, MobileNetV2,
and VGG-19. Depending on the DL framework and quanti-
zation technique detailed Tables II and III, we quantize these
three models using different configurations to evaluate their
performance in terms of latency, throughput, and accuracy.
Below are the proposed approaches and guidelines to quantize
these models using PyTorch, TFLite, ONNX, and OpenVINO.

1) PyTorch Models: The PyTorch versions of DenseNet-
121, MobileNetV2, and VGG-19 models and their weights
are obtained from TorchVision [17]. PyTorch’s API provides
two different quantization methods called Eager Mode Quanti-
zation and FX Graph Mode Quantization. Eager Mode Quan-
tization is an experimental feature. The user needs to perform
manual operator fusion for quantization and dequantization.
FX Graph Mode Quantization is a newly offered feature that
automates quantization. In this work, we use the FX Graph
Mode Quantization method to perform static quantization over
the default FP32 model to obtain the INT8-SQ models. We
only perform static quantization using PyTorch due to the
framework’s lack of support for dynamic quantization over
convolution layers.

2) TFLite Models: The TFLite versions of DenseNet-121,
MobileNetV2, and VGG-19 models and their weights are
obtained from Keras Applications [18]. The quantized models
were generated using TFLite default quantization converter.
There are four quantization variants of TFLite models: 1)
Dynamic Quantization (DQ), 2) Static Quantization (SQ),
3) FP16 quantization (FP16), 4) 16-bit activations with 8-
bit weights (Mixed). Dynamic quantization is the default
setting of the TFLite converter. The “dynamic-range” operators
dynamically quantize activations based on their range to 8-bits
and perform computations with 8-bit weights and activations.
Compared to full fixed-point static quantization, the outputs
of the dynamic-range operators are stored in floating-points,
resulting in lesser speedups for the dynamic quantized method
when compared to the full fixed-point one. Static quantiza-
tion, as known as full integer quantization in TFLite, offers
additional latency enhancements, decreases in peak memory
usage, and improved compatibility with hardware devices that
only support integers. We implemented a representative dataset
feeder using the ImageNet 2012 calibration dataset, which is
provided by the MLPerf Inference Benchmarks. By using this
representative dataset, calibration was performed on the SQ
models.

3) ONNX Models: The ONNX versions of MobileNetV?2
and VGG19 model were obtained from ONNX Model Zoo
[19]. The ONNX version of DenseNet-121 model was ob-
tained through the export of the TorchVision version of
DenseNet-121 from PyTorch. Quantized ONNX models can be

represented in either operator-oriented (QOperator) or tensor-
oriented (QDQ; Quantize and DeQuantize) methods. In the
operator-oriented representation, all quantized operators have
their own ONNX definitions. In contrast, in the tensor-oriented
representation, quantization and dequantization functions are
inserted between the original operators. The operator-oriented
representation can be converted to its equivalent QDQ format
[7]. In our evaluation, the ONNX Runtime APIs were used
to perform dynamic and static quantization over the original
ONNX format model.

4) OpenVINO Models: The OpenVINO framework sup-
ports both the ONNX format and the OpenVINO Interme-
diate Representation (IR) format. However, the IR format is
recommended as it allows for more optimizations when using
the OpenVINO Model Optimizer (MO), which only supports
the IR format. To obtain quantized IR models, we first con-
vert the original DenseNet-121, MobileNetV2, and VGG-19
ONNX models to FP32 IR models using the MO with default
settings. Then, using OpenVINO Post-training Optimization
Tool (POT), we perform uniform integer quantization on the
obtained IR models. We implement a calibration dataset feeder
using the same ImageNet 2012 calibration dataset provided by
MLPerf, which provides samples needed for calibration.

The OpenVINO Post-training Optimization Tool (POT) of-
fers a range of hyperparameters to fine-tune the quantization
algorithms, giving users flexibility in choosing the number
of quantized bits, number of calibration samples, symmet-
ric/asymmetric quantization, granularity, range estimators, etc.
To further improve quantization quality, we tune POT hyper-
parameters in five separate ways and pick one hyperparameter
set with the best balance between accuracy, performance,
and model size. Using this hyperparameter set, we conduct
quantization on the non-quantized IR models.

IV. EXPERIMENTAL SETUP

This section details the hardware platform used for con-
ducting this study. We also enumerate the state-of-the-art
models and DL frameworks used along with models and
datasets. Details on the selected quantization methods are also
presented.

A. Hardware Configurations

The hardware configurations used in this paper are presented
in Table IV. We rely on two HPC platforms—TACC Frontera
and an internal system at The Ohio State University called
RI2—as well as an edge device—Raspberry Pi 4B—to conduct
our characterization study.

B. Software Packages and Versions

MLPerf Edge Inference benchmark suite v2.1 has been
used in this study. This suite contains the LoadGen python
module—responsible for generating input traffic—-that is built
with the default setting.

The 2.9.1 version of TensorFlow Lite module in Intel-
Tensorflow [16] package is used on Frontera and RI2 systems.
Also, the 2.9.1 version of tflite-runtime is utilized on the

TABLE IV: Hardware specification of the Raspberry Pi 4B,
in-house RI2 System, and the TACC Frontera System.

Specification Raspberry Pi 4B Frontera Ri2
Processor Family Cortex-A72 (ARMv8) Xeon Cascade Lake Xeon Skylake
Processor Model Broadcom BCM2711 Platinum 8280 Gold 6132
Clock Speed 1.5 GHz 2.7 GHz 2.6 GHz
Sockets 1 2 2

Cores Per socket 4 28 14

RAM 8 GB 192 GB 192 GB

Raspberry Pi 4B device. The 1.12.1 version is used with
PyTorch and ONNX runtime on all platforms. OpenVINO
version 2022.2.0 is employed for Frontera and RI2 systems.
OpenVINO is built from source code for Frontera and RI2
systems following the official build guide for CentOS. We did
not use the model optimization features on frameworks not to
impact the quantization characteristic.

C. Models and Datasets

In this study, we used three representative popular image
classification DNN models, DenseNet-121, MobileNetV2, and
VGG-19, are used:

o Dense Convolutional Network (DenseNet) has a feed-
forward fashion between layer-to-layer connections. It
embraced the observation that convolutional networks can
be substantially deeper, more accurate, and more efficient
to train if they contain shorter connections between layers
close to the input and those close to the output.

o MobileNet is a class of efficient models for mobile and
embedded vision applications. It is based on a streamlined
architecture that uses depth-wise separable convolutions
to build light weight deep neural networks.

e VGG is a class of deep convolutional networks which
use architecture with tiny (3x3) convolution filters. By in-
creasing the depth to 16-19 weight layers. It significantly
improved accuracy in the large-scale image recognition
setting compared with its prior state-of-the-art results.

The validation dataset of ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012) [20] is used to
input data for all models under test. Input images are re-
sized for the size that is suggested on each model. Final
values are rescaled to [0.0,1.0] and then normalized using the
mean value of [0.485,0.456,0.406] and standard deviation of
[0.229,0.224,0.225].

V. EVALUATION AND ANALYSIS

In this section, we show the results of performance charac-
teristics on quantization and analysis the results. The following
quantization techniques were used: FP32 = Default, INT8-SQ
= Static Quantization with INT8 Format, INT8-DQ = Dynamic
Quantization with INT8 Format, FP16 = Half-Precision For-
mat, INT8-OM = 8-bit symmetric quantization on weights and
asymmetric quantization on activations.

A. Model Accuracy and Size of Quantized Models

Figure 1 shows the overall experimental results of the
model accuracy and size, including VGG-19, MobileNetV2,
and DenseNet-121 on all four frameworks (ONNX, Py-
Torch, TFLite, and OpenVINO) using the ImageNet validation
dataset. Since INT8-SQ, INTS8-DQ, and INT8-OM utilize
the 8-bit integer representation, we witness the model size
reduction by a quarter to the original FP32 model. The model
size of the FP16 variant is reduced by half. We note that
while the model sizes are reduced substantially, the accuracy
of quantized models is as good as the original FP32 models.
The only exception is the INT8-SQ variants because of the
use of static clipping range during the model calibration. The
drop in accuracy with the INT8-SQ quantized model is the
most visible for PyTorch and TFLite for the DenseNet-121
model.

B. Evaluating Inference Latency and Throughput using
MLPerf Benchmark

MobileNetV2. Figures 2 and 3 present the MLPerf Edge
inference benchmarks performance numbers—single-stream,
multi-stream, and offline scenarios—for the MobileNetV2
model on the TACC Frontera system and the Raspberry Pi 4B
device, respectively. The reason for choosing MobileNetV2
is the small model size and high accuracy (as discussed in
Section V-A). Figure 2 shows that ONNX and OpenVINO are
the most optimized frameworks for Intel CPUs on the Frontera
system for the default FP32 format. The OM performance of
OpenVINO shows performance benefits over FP32. The DQ
method—for both Frontera and Raspberry—is always slower
than FP32 because DQ exhibits overhead due to scale factor
calculation at runtime. PyTorch is slower than ONNX and
OpenVINO, but SQ improves the performance as it employs
the FBGEMM library, which is optimized for low-precision
calculation on the x86 architecture. TFLite shows the lowest
performance among the frameworks, and quantization does
not enhance the latency and throughput. The main reason
is TFLite primarily targets ARM and embedded devices and
is not optimized for Intel CPUs. Also, we observe that SQ
only shows performance benefits in the offline scenario for
the ONNX framework. This is because ONNX provides better
quantization inferences with mini-match on Intel CPUs. Fig-
ure 3 presents the performance evaluation on the Raspberry Pi
4B device. Here, we exclude the OpenVINO framework since
it mainly targets Intel CPU. Like Frontera, we note that DQ
does not improve performance. Contrary to Frontera, where
TFLite exhibited the worst performance, TFLite here shows
the best performance compared to other frameworks, including
ONNX and PyTorch. We do not observe any benefits of using
quantization with the ONNX framework. On the other hand,
the SQ performance for PyTorch is significantly faster than
FP32. The main reason is that PyTorch uses the optimized
QNNPACK as the backend compute library with quantized
solutions.

DenseNet-121 and VGG-19. Figure 4 plots the single-
stream, multi-stream, and offline scenario results—with Open-

__700 ONNX_ 10penVINO} PyTorch | TFLite 80 16 ONNX | OpenVINO} PyTorch ! TFLite 80 35 ONNX 10penVINO! PyTorch TFLite 80
B —_—— . @ . R z 1 . .
= 600 T H i R L 218 e i . E . : o 70 s 30 . ! 1 70
= 1 = = 1 3 I v =
T oo H i N 60E 3 i i i 60 ¥ 3 5 ! /. 60 &
< 1 I 1 = < i 1 1 > o H H -
s 1 1 1 505 s 1 1 1 50 @ > 1 1 50 8
s 400 1 1 1 5 S 1 1 1 5 5 20 1 1 5
5 N 03 i v wg H = o3
£ 300 ! | ; 0% b i i IN 30 % 31 H i 30T
200 H i i \ = Z 1 I N 2 a 10 ! 1 8 a
! ! N A 208 — i iN § 2 ZRZH i 20,0
100 i 1 - \ ZR7l 1 1 \ 10 5 71 7 i
i ! N = 2 Ot ! NN 7ar ! N N
! ‘
0 ! ! A J 0 A A ! R o 0 ZaZr ! ! N o
D QDO D OO O A D P A DN D P KAV« S S, PR N AR« A AN R e S8
QQ"’/\%,O CF PSP CF P L CF PP &P Qq"’&o L& L F P
S = SR SR S N DR SR S = NI
Quantization Method Quantization Metohd Quantization Method
(a) VGG-19 (b) MobileNetV?2 (c) DenseNet-121

Fig. 1: Model accuracy and size for VGG-19, MobileNetV2, and DenseNet-121 on all four frameworks (ONNX, PyTorch,
TFLite, and OpenVINO) using the ImageNet validation dataset. Accuracy is plotted with the line on the y2 axis

400 ONNX 1 OpenVINO 1 PyTorch 1 TFLite 3835 ONNX | OpenviNO
i | : 3 400 H
i
B i i i E300 i
1 1
> ! >
g 200 1 ! | £ 200 !
g 1 i 1 £ 1
5 ! i 1 5]
100 : 1 : 100
1 41 424
503 \
30 2 iz 2B P P) o 2o & Nz s
oV
& S S & & & & &S & & «%’oo & qf’é
FF TE TS & ¢ o &S

Quantization Method

(a) Single-stream

<

Quantization Method

(b) Multi-stream

4417 OpenVINO : PyTorch

| PyTorch | TrLite 3500 ONNX H H TFLite
1 1 s3] = 3000 | 2918.8] i
1 1 7z > 25481] ! |
i i Z7 =1 . ! ! !
! Vasao 2 g 2500 ! ! !
1 1 - 77 A b 1 1 1
1 177 7zl & 2000 ! ! !
1 8% 7 5 14303 ! ! !
s 17 2 7 5 1500 jumo |1 i
77 77 A H
i lmm 659 | % 7 & 1000 [i 6607 |
1 7 A W/ £ 500 3671 Vs 13758 305
| N HE VA 1 T i =N HzR-
v O 43 © O
AR S A I T S S N P « S\ AR S SR ¥
& é\q, & & é\q, <& «“0’ /\%f‘) /\q’,O ‘3% %,o (3% /&fo (g% (g’» /&fo /\%,0
B N NN N S S

Quantization Method

(c¢) Offline

Fig. 2: Inference performance of ONNX, OpenVINO. PyTorch, and TFLite using MLPerf Edge benchmarks with single-stream,
multi-stream, and offline scenarios on the TACC Frontera System. The model is MobileNetV2.

700 ONNX : PyTorch : TFLite 3500 ONNX : PyTorch : TFLite 25 ONNX : PyTorch TFLite
3051.8 —_ .
600 s i 3000 i i Z% i i o
1 1 1 1 T 1 %
- 500 1 1 2 2500 1 1 H bl 1 7
E 400 i i E i i g15 124 i 7
= ! ! = 2000 ! ! A - ! 7
3 ! ! 5 15209 | ! 5 | 7 7
§ 300 1 1 § 1500 s 1 ! 210 e | 7 7
1 1 . 1 1 4 - % 7
3 200 s 109 i 1500 51000 sz i i e %, H 7 7
100 123 ! mas oo s0 s00 500 H 741|400 00 a0 £ [% 7
i | 5o - o0 77 i 7] 7 7 = % 7
0 ! """m \ 7 VA VA 0 ! WA A V2 o < 7 7
OB < S S A o8 o
o o o o " © o o A L H L N N O o 1) Q >) IS
s P P P s < < 5 7 & 5 & & y 9 < & & <& & &
& & & & < & & & & & & & & & & & & & &
SRS & & & N < & & AR N

Quantization Method

(a) Single-stream

Quantization Method

(b) Multi-stream

Quantization Method

(c) Offline

Fig. 3: Inference performance of ONNX, PyTorch, and TFLite using MLPerf Edge benchmarks with single-stream, multi-stream,
and offline scenarios on the Raspberry Pi 4B device. The model is MobileNetV2.

VINO and PyTorch—for DenseNet-121 and VGG-19 on
the Frontera system. Results here follow the same trend
as discussed earlier for Figure 2. In addition, we plot the
obtained speedup on the y2 axis that is calculated by the

following formula: 2uartizedperformance g, offine scenario
FP32_per formance

and —LL3%Zperformance g, single/multi-stream scenarios.
quantized_per formance

Figure 5 plots the same scenarios/models with TFLite and
PyTorch on the Raspberry Pi 4B device.

C. Impact of the Batch Size on the MLPerf Offline Scenario

The batch size hyperparameter controls the number of
input images that DNN frameworks can process simultane-
ously during inference. This sub-section analyzes the impact
of batch size using quantized weights/activations. Figure 6
shows the inference performance—for the offline scenario—
of ONNX and OpenVINO (on Frontera) and TFLite (on
Raspberry Pi 4B) by varying the batch size from 1 to 32. This
study is done using the MobileNetV2 model. The speedup is

also plotted with a line on the y2 axis using the formula:
q“;’;fg‘;fzzf ;Zf oonenc. On the Frontera system (Figures 6a
and 6b), we observe that the speedup improves by increasing
the batch size. The best speedups of 1.8 and 2.5 are witnessed
for ONNX and OpenVINO, respectively, with 32 batch size.
Also, Figure 6¢ shows that we only witness modest benefits
of increasing batch size for the TFLite framework on the
Raspberry Pi 4B device. This is because the ARM processor
on the device is not able to efficiently process batches of input

compared to scalar input.

D. Benefits of Hardware Support for Inference Tasks

Many vendors are now providing hardware support
for accelerating inference tasks involving quantized
weights/activations. In this sub-section, we demonstrate
the benefits of using a newer generation of Intel CPU
(Cascade Lake vs. Skylake) for the inference performance
evaluation—single-stream latency, multi-stream latency, and

DenseNet-121 ! VGG-19 35 DenseNet-121 ! VGG-19 35 1200 DenseNet-121 ! VGG-19
1
OpenVINO H . 3 400 Goenving 3787 ! 3 R 3 Z 1000 OpenvING %07 i 4
40 WPyTorch ! 25 = m PyTorch H 25 E mPyTorch i .
o espeetup o o, s E30 | eeiun ! , 8 8 800 ¢ qpectun o s
> 30 i 3 z . 1 1960 3 2 600 | 3
g 21 1 g 2 200 i 158 5 s08.3 , 8
g ! 52 2 1324 1 a a H -3
g2 . s ws O k] ! 1 % 400 3277 2062 1 3203
101 101 1 100 1 641 8.4 & ! 1
10 ! 45 05 332 18y ! ’—‘ 209 05 E 200 1049 | 150 774
o i o o B = = 0 o 1] = i o
O N S
& P D D o o o o
& N & /3’5—,0 & qsow“ & § & & é\qf) <& & <& é\q,'o & & & %Io@ & /\%59 & ‘yo\& & &%o»
& R & g S \ S & S N §
Quantization Method Quantization Method Quantization Method
(a) Single-stream (b) Multi-stream (c) Offline

Fig. 4: Inference performance of OpenVINO and PyTorch using MLPerf Edge benchmarks with single-stream, multi-stream,
and offline scenarios on the TACC Frontera System. Models are VGG-19 and DenseNet-121. Speedup is also plotted with

diamonds on the y2 axis using the formula: q";ggzed-p”f ormance for offline, —L 1 oecberformance _ o ¢inole/multi-stream.
_per formance quantized_per formance

3500 DenseNet-121 VGG-19 4 28000 DenseNet-121 VGG-19 5 6 DenseNet-121 VGG-19 4
3259.0 3250.0 24463.3 25100.0 .
7 P A m PyTorch
3000 7 24000 ¢ % %
W PyTorch % PyTorch VA 7, 4 5 mTHite
 Trlite e % 3 20000 9062.1 7 * 7 = 3
2500 Z; - = TFLite ;ggg ;ggg T, Speedup 38
E Jop 25Eetn . % s £ 16000 ¢ specdup 7 7 3 g g 34 % R .
- VA > VA4 7 777
> 7 o 9 o 7 o b 7 °
3z 7 273 2 VA % 3 3 7 2%
& 1500 7, 8 £ 12000 102759 U 7 218 & N &
g 7, & k&t % % h 7 % aa &
~ 1000 ¢ * e 7 8000 . 7 % G2 1 Z %
7353 . % 1 V. % £ Z % . 1
sane % 1365 21800 V. # 1 £ 7 % % 10 2
500 asa 0o % 4000 2980 31285 53007 31201 7 % 1 Z % o /
|| % o Y % m 7z 7z % V, % % % 03 77 03
0 7 % 7% 7 o 0 0 0 7 72 7z ' P 7 7 g
OB S R N VR S SN)
T S N~ R X) S A P A R M OGSy DO B D O D O D D P
DA N R I P N & Q& QL& R P o @ &
& & & & LG & & & & & & & & & L & & & &
N A A N A A N N
Quantization Method Quantization Method Quantization Method
(a) Single-stream (b) Multi-stream (c) Offline

Fig. 5: Inference performance of TFLite and PyTorch using MLPerf Edge benchmarks with single-stream, multi-stream, and
offline scenarios on the Raspberry Pi 4B device. Models are VGG-19 and DenseNet-121. Speedup is also plotted with diamonds

on the y2 axis using the formula: q";’ﬁgge‘i-p”f ormance for offline, —LLos=performance g ginole/multi-stream.
_per formance quantized_per formance

[CIFP32 EEINTS-SQ o Speedup CIFP32 EEINTS-OM Speedup [CIFP32 EAINTS-SQ FP16 ——Speedup (INT8-SQ) ~=—Speedup (FP16)
4000 3 _25 2
18 < I
2 3000 g2 15
s S S 15 e
? & 2000 @ 139
2 53 g 10 3
n Q Q)
$ 1000 S5 0.5
& &
E o Eo0 0
16 1 4 8 1 4 8 16
Batch Size Batch Size Batch Size
(a) ONNX (Frontera) (b) OpenVINO (Frontera) (c) TFlite (Raspberry)

Fig. 6: Inference performance of ONNX and OpenVINO (on Frontera) and TFLite (on Raspberry Pi 4B) using MLPerf Edge

benchmarks with the offline scenario. The model is MobileNetV2. Speedup is also plotted with a line on the y2 axis using

. quantized_per formance
the formula: FP32_per formance

offline scenarios—with the OpenVINO framework. This efficiency and performance, especially for edge devices. How-
is depicted in Figure 7, where Frontera and RI2 systems ever, the study is a survey of existing quantization methods,
are equipped with Cascade Lake and Skylake processors, hence, there are no numerical results in the survey.

respectively. The main reason for better performance—
especially for the offline scenario shown in Figure 7c
(see 2.5x vs. 1.5x speedup)—is that the Cascade Lake
processors are equipped with AVX-512 Vector Neural
Network Instructions (VNNI) [10] boosting INT8 operations.

In [21], Ulker et al. benchmark half-precision quantization
on different devices with various state-of-the-art Deep Learn-
ing Frameworks. They provide detail on framework compati-
bility and indicate the best frameworks for each device model
combination. They report the throughput and benefits of using
VI. RELATED WORK half precision. However, no other quantization methods are
further introduced, and the study has not covered frameworks

Quantization is a widely adopted method for edge device :) - '
targeting edge devices like TFLite.

deep learning model inference. In [4], Gholami et al. conduct a
survey of quantization methods. They state quantization could Efforts have been made in [22] to use compiler-based
give benefits over multiple hardware devices like NVIDIA approaches to generate quantized models optimized for various
GPUs and ARM CPUs. Quantization results in higher power platforms with different device types. However, the authors use

«

mCascade Lake M Skylake # Speedup 2 15

12

IS
g
o

Latency (ms)
w
Latency (ms)

N

-

o

INT8-OM

FP32 FP32

INT8-OM FP32
Quantization Method

INT8-OM

(a) Single-stream

m Cascade Lake m Skylake 4 Speedup 2

FP32

Quantization Method

(b) Multi-stream

u Cascade Lake W Skylake @ Speedup 3

2.5

~

o
12 5 & 2000 S
3 2
g 2 1600 e15 158
08& 81200 &

-

0.5

INT8-OM P32

INT8-OM FP32 INT8-OM
Quantization Method

(c) Offline

Fig. 7: Inference performance of OpenVINO on Frontera (Cascade Lake processors) and RI2 (Skylake processors) using
MLPerf Edge benchmarks. The model is MobileNetV2. Speedup is also plotted with diamonds on the y2 axis using the

uantized_per formance

FP32_per formance

formula: £ for offline,

FP32_per formance

quantized models as sanity checks for their compiler approach
with limited quantization methods adopted.

In our work, we conduct a thorough analysis of multi-
ple quantization methods in conjunction with popular deep-
learning frameworks and hardware platforms from both the
edge and high-end servers’ worlds.

VII. CONCLUSIONS

Quantization is a useful technique in DNN inference since
it reduces memory footprint of Al models and improves
performance without incurring accuracy loss. However, the
diversity of edge devices and DNN frameworks makes it
hard to adopt this technique and get the desired performance
gains. In this paper, we evaluated several quantization meth-
ods of TFLite, Pytorch, ONNX, and OpenVINO on Intel
Skylake, Intel Cascade Lake, and ARMV8 processors with
MobileNetV2, DenseNet-121, and VGG-19. We utilized the
methodology of the MLPerf Edge Inference benchmark with
three scenarios—single-stream, multi-stream, and offline—to
thoroughly understand the characteristic of quantization. The
paper studied important quantization features including num-
ber format (like FP16 and INT8), symmetric vs. asymmetric,
and static vs. dynamic approaches. We showed quantization
can achieve up to 4.3x times speedup compared to FP32.
However, in the absence of instruction set support and/or
algorithmic optimizations such as those adopted by FBGEMM,
quantization can adversely impact the inference performance.
In addition to the edge platform studied herein, we compared
two generations of Intel processors (Skylake vs. Cascade Lake)
to emphasize the effect of hardware and library support on
quantization. Overall, we highlighted the characteristics of
quantization to help developers and researchers effectively
adopt it in their particular configuration. In the future, we
plan to study, evaluation, and characterize the impact of
quantization on NVIDIA edge devices including AGX Orin
using TensorRT inference framework.

VIII. ACKNOWLEDGMENTS

This research is supported in part by NSF grants #1818253,
#1854828, #1931537, #2007991, #2018627, #2112606, and
XRAC grant #NCR-130002.

quantized_per formance

[1]
[2]
[3]
[4]

[5]

[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

for single/multi-stream.

REFERENCES

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” 2016.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” 2018.

A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” 2021.

Intel, “Intel® Distribution of OpenVINO™ Toolkit.” https:
/Iwww.intel.com/content/www/us/en/developer/tools/openvino-toolkit/
overview.html. [Online; Accessed 21-January-2023].
Google, “TensorFlow Lite.” https://www.tensorflow.org/lite.
Accessed 21-January-2023].

ONNX Runtime developers, “ONNX Runtime.” https://onnxruntime.ai/.
[Online; Accessed 21-January-2023].

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8024-8035, Curran Associates, Inc., 2019.
V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “Mlperf inference
benchmark,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pp. 446-459, 2020.

A. Rodriguez, E. Segal, E. Meiri, E. Fomenko, Y. J. Kim, H. Shen,
and B. Ziv, “Lower Numerical Precision Deep Learning Inference and
Training,” Jan. 2018.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al., “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, 2015,” Software available
from tensorflow. org, 2016.

Apple, “Core ML.” https://developer.apple.com/documentation/coreml.
[Online; Accessed 21-January-2023].

Arm Software, “Arm NN ML Software.” https://github.com/
ARM-software/armnn. [Online; Accessed 21-January-2023].

NVIDIA, “NVIDIA TensorRT.” https://developer.nvidia.com/tensorrt.
[Online; Accessed 21-January-2023].

Intel, “oneDNN: Intel oneAPI Deep Neural Network Library.” https://
www.intel.com/content/www/us/en/developer/tools/oneapi/onednn.html.
[Online; Accessed 21-January-2023].

Intel, “TensorFlow Optimizations on Modern Intel® Architecture.”
https://www.intel.com/content/www/us/en/developer/articles/technical/
tensorflow-optimizations-on-modern-intel-architecture.html. [Online;
Accessed 21-January-2023].

[Online;

https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.tensorflow.org/lite
https://onnxruntime.ai/
https://developer.apple.com/documentation/coreml
https://github.com/ARM-software/armnn
https://github.com/ARM-software/armnn
https://developer.nvidia.com/tensorrt
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onednn.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onednn.html
https://www.intel.com/content/www/us/en/developer/articles/technical/tensorflow-optimizations-on-modern-intel-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/tensorflow-optimizations-on-modern-intel-architecture.html

[17]

[18]
[19]

[20]

[21]

[22]

S. Marcel and Y. Rodriguez, “Torchvision the machine-vision package
of torch,” in Proceedings of the 18th ACM International Conference on
Multimedia, MM ’ 10, (New York, NY, USA), p. 1485-1488, Association
for Computing Machinery, 2010.

F. Chollet et al., “Keras Applications.” https://keras.io/api/applications/.
[Online; Accessed 21-January-2023].

ONNX, “ONNX Model Zoo.” https://github.com/onnx/models. [Online;
Accessed 21-January-2023].

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211-252, 2015.

B. Ulker, S. Stuijk, H. Corporaal, and R. Wijnhoven, “Reviewing
inference performance of state-of-the-art deep learning frameworks,”
in Proceedings of the 23th International Workshop on Software and
Compilers for Embedded Systems, SCOPES *20, (New York, NY, USA),
p. 48-53, Association for Computing Machinery, 2020.

A. Jain, S. Bhattacharya, M. Masuda, V. Sharma, and Y. Wang, “Efficient
execution of quantized deep learning models: A compiler approach,”
2020.

https://keras.io/api/applications/
https://github.com/onnx/models

	I Introduction
	I-A Motivation

	II Background
	II-A Deep Learning Frameworks on Edge Devices
	II-B MLPerf Inference Benchmark

	III Proposed Approaches and Guidelines for Deep Neural Network Quantization
	III-A Quantization Methodology
	III-A1 Scaling Factor
	III-A2 Clipping Range
	III-A3 Quantization Symmetry
	III-A4 Static vs. Dynamic Quantization
	III-A5 Post-Training Quantization (PTQ) vs. Quantization-Aware Training (QAT)

	III-B Quantization Approachs Based on DL Frameworks
	III-B1 PyTorch Models
	III-B2 TFLite Models
	III-B3 ONNX Models
	III-B4 OpenVINO Models

	IV Experimental setup
	IV-A Hardware Configurations
	IV-B Software Packages and Versions
	IV-C Models and Datasets

	V Evaluation and analysis
	V-A Model Accuracy and Size of Quantized Models
	V-B Evaluating Inference Latency and Throughput using MLPerf Benchmark
	V-C Impact of the Batch Size on the MLPerf Offline Scenario
	V-D Benefits of Hardware Support for Inference Tasks

	VI Related Work
	VII Conclusions
	VIII Acknowledgments
	References

