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Abstract. Ensuring fairness in anomaly detection models has received
much attention recently as many anomaly detection applications involve
human beings. However, existing fair anomaly detection approaches
mainly focus on association-based fairness notions. In this work, we tar-
get counterfactual fairness, which is a prevalent causation-based fair-
ness notion. The goal of counterfactually fair anomaly detection is to
ensure that the detection outcome of an individual in the factual world
is the same as that in the counterfactual world where the individual had
belonged to a different group. To this end, we propose a counterfactually
fair anomaly detection (CFAD) framework which consists of two phases,
counterfactual data generation and fair anomaly detection. Experimen-
tal results on a synthetic dataset and two real datasets show that CFAD
can effectively detect anomalies as well as ensure counterfactual fairness.
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1 Introduction

Anomaly detection, which aims to detect samples that are deviated from the nor-
mal ones, has a wide spectrum of applications. Recently, deep anomaly detection
models, powered by complex deep neural nets, have made promising progress in
effectively detecting anomalies. Besides effectiveness, researchers recently notice
the importance of taking the societal impact of anomaly detection into considera-
tion as many anomaly detection tasks involve human individuals. Fairness as one
fundamental component to build trustworthy AI has received much attention.
Recent studies have shown that anomaly detection models can incur discrimina-
tion against certain groups. For example, a deep anomaly detection model could
overly flag black males as anomalies [16]. In the scenarios of credit risk analysis,
anomaly detection models predict more females as anomalies [15].

Several fair anomaly detection models have been proposed, which ensure
no discrimination against a particular group based on the sensitive feature
[1,3,14-16]. However, these approaches mainly focus on achieving association-
based fairness notions like demographic parity. Recent studies have demonstrated
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the importance of treating fairness as causation-based notions that concern the
causal effect of the sensitive feature on the model outcomes [2,8,11]. Counter-
factual fairness is one important causation-based fairness notion [9]. It considers
that a model is fair if, for a particular individual, the model outcome in the fac-
tual world is the same as that in the counterfactual world where the individual
had belonged to a different group. To the best of our knowledge, no studies have
been conducted to ensure counterfactual fairness in anomaly detection.

In this work, we focus on counterfactual fairness for anomaly detection with
the goal to ensure that the detection outcomes remain consistent in both the
factual and counterfactual worlds. Achieving counterfactual fairness for anomaly
detection is challenging. First, we can only observe the factual data. The coun-
terfactual data are unobservable and cannot be obtained by simply changing the
sensitive feature of the factual data. This is because the data generation is gov-
erned by an underlying causal mechanism where any intervention on one feature
will subsequently affect the values of other features. Second, in anomaly detec-
tion, we can only observe factual normal data. Building a detection model which
ensures the detection results be unchanged for individuals across the factual and
counterfactual worlds while also preserving high anomaly detection performance
imposes additional challenges.

To tackle the above challenges, we propose a Counterfactually Fair Anomaly
Detection (CFAD) framework. We do not require the knowledge of the causal
graph and structural equations but only assume that the data generation fol-
lows a generalized linear Structural Causal Model (SCM). We use an autoencoder
as the base anomaly detection model where the anomaly score of a sample is
derived based on the reconstruction error of the autoencoder. Then, we propose
a two-phase approach. In the first phase, motivated by [12] which leverages the
graph autoencoder for causal structure learning from observed data, we develop
an approach to generate counterfactual data based on a graph autoencoder. In
the second phase, we apply adversarial training [6,10] on a vanilla autoencoder
to achieve counterfactual fairness for anomaly detection. The idea is to ensure
that the hidden representations of factual and counterfactual data derived from
the encoder cannot be distinguished by a discriminator. As a result, the recon-
struction error, i.e., anomaly score, will not differ much between the factual and
counterfactual data, leading to similar detection results for both factual and
counterfactual data.

2 Preliminary

Structural Causal Model (SCM). Our work adopts Pearl’s Structural Causal
Model (SCM) [13] as the prime methodology for defining and measuring coun-
terfactual fairness. Throughout this paper, we use the upper/lower case alphabet
to represent variables/values.

Definition 1. An SCM is a triple M = {U,V, F} where

1) U is a set of exogenous variables that are determined by factors outside the
model. A joint probability distribution P(u) is defined over the variables in U.
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2) V is a set of endogenous variables that are determined by variables in UUV .

3) F is a set of deterministic functions {fi,...,fn}; for each X; € V, a
corresponding function f; is a mapping from U U (V \ {X;}) to X;, i.e.,
Xi = fi(Xpagi), Ui), where Xpaiy € V\{Xi} called the parents of X;, and
U, CU.

An SCM is often illustrated by a causal graph G where each observed variable
is represented by a node, and the causal relationships are represented by directed
edges —. In this graphical representation, the definition of parents is consistent
with that in the SCM.

Inferring causal effects in the SCM is facilitated by the do-operator which
simulates the physical interventions that force some variable X € V to take a
certain value x. For an SCM M, intervention do(X = z) is equivalent to replac-
ing original function in F' with X = z. After the replacement, the distributions
of all variables that are the descendants of X may be changed. We call the SCM
after the intervention the submodel, denoted by M[z]. For any variable Y € V
which is affected by the intervention, its interventional variant in submodel M [z]
is denoted by Y[z].

Counterfactuals. Counterfactuals are about answering questions such as for two
variables X, Y € V, whether Y would be y had X been x in unit (or situation)
U = wu. Such question involves two worlds, the factual world represented by M
and the counterfactual world represented by M|z], and hence cannot be answered
directly by the do-operator. When the complete knowledge of the SCM is known,
the counterfactual quantity can be computed by the three-step process:

1) Abduction: Update P(u) by evidence e to obtain P(ule).

2) Action: Modify M by performing intervention do(x) to obtain the submodel

3) Prediction: Use modified submodel M|[z] with updated probability P(ule) to
compute the probability of Y = y.

3 Counterfactually Fair Anomaly Detection

3.1 Counterfactual Fairness

We start by defining counterfactual fairness in the context of anomaly detection.
Following the typical anomaly detection setting, we assume a training set D =
{d™}N_, which consists of N normal samples/individuals and a test set that
consists of both normal samples and anomalies. Each sample is given by d(™ =
{50 (M} where S denotes a binary sensitive variable and X = {X; |i = 1:m}
denotes all other variables (i.e., profile attributes). We then use Y to denote the
anomaly label. For representation, we use S = {s7, s} to denote advantage and
disadvantage groups respectively, and use Y = {0, 1} to denote normal samples
and anomalies respectively. The goal is to learn a detection model for computing
an anomaly score g(z(™)) based on the profile attributes for each individual n,
which can be used to judge whether it is an anomaly.
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Fig. 1. Framework of CFAD

To define counterfactual fairness, similar to [9], for each individual d™ we
consider its instance in the counterfactual world M, by flipping the value of
its sensitive variable to the opposite s (i.e., st becomes s~ and vice versa),

denoted by d( - {s,x, )} where x( ") represents the profile attributes in the

counterfactual world. Note that xif) may not be the same as z(™ due to the

causal relation between S and X in the underlying data generation mechanism.
Then, counterfactual fairness is defined as:

Definition 2. An anomaly detection model is counterfactually fair if for each
individual n we have g(z™) = g(w(c}l))

3.2 Overview of Counterfactually Fair Anomaly Detection (CFAD)

The goal of CFAD is to train an anomaly detection model on D that can: (1)
effectively detect anomalies, and (2) ensure counterfactual fairness. To achieve
this goal, CFAD consists of two phases, counterfactual data generation and fair
anomaly detection. Counterfactual data generation is to generate a counter-
factual dataset Der = {d(n) N_| of D in which each counterfactual sample is
generated by the submodel Wthh flips the value of the sensitive variable to its
counterpart. To this end, we assume a generalized linear SCM and develop a
novel graph autoencoder for data generation. In the second phase, we make use
of a standard autoencoder for anomaly detection where the anomaly score is
derived based on the reconstruction error. To achieve fairness, we develop an
adversarial training framework to train the autoencoder by taking the factual
and counterfactual data as inputs. The idea is to make the hidden representa-
tions of the autoencoder not encode the information of the sensitive variable so
that intervening the sensitive variable would not change the detection outcome.
Figure 1 shows the framework of CFAD.

3.3 Phase One: Counterfactual Data Generation

We assume that the data generation follows a generalized linear SCM, which is a
common assumption in gradient-based causal discovery. To ease representation,
we also assume that S has no parents in the SCM. Our method can easily extend
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to cases where S has parents by keeping the values of S’s parents unchanged
in the counterfactual world since the intervention on S has no influence on its
parents. Thus, W.L.O.G. the structural equation of each variable X; in X can
be written as follows.

Xi=Aui-f(S)+ Y. A f(X)+ U, (1)
X;i€Xpa(i)\{S}

where f(-) can be any linear/nonlinear function and A,; is an element in the
adjacency matrix A € R(?+D>*(m+1) which indicates the weights of the general-
ized linear SCM. Each sample d™) = {s(™) {xfn) | i =1:m}} satisfies Eq. (1).
Following the Abduction-Action-Prediction process, from Eq. (1), we have

u =l = Ay fs™) - ST Ay f@),
X;€Xpa)\{S}

Meanwhile, by performing intervention to flip s(™ to its counterpart s, the
structural equation of counterfactual variable X;[s] in the submodel M[s| of
Eq. (1) is given by

Xilsl=Avi-f(s)+ > A f(X[s]) + Us. (2)
X;€Xpa)\{S}

Note that S is fixed to s by the intervention and U; is not affected by the
intervention. Denoting the counterfactual of d™ by d,(c?) = {s, {xl(n') [s]|i=1":
m}}, it should satisfy Eq. (2). Thus, we have

dVls = A fO)+ Y A fals)
X;€Xpa(i)\1S}

which leads to

sl = Avif()+ Y A SV ral — A ™) - Y A0 f@(). (3)

XjEXpa(i)\{S} XjEXpa('i)\{S}

Finally, we compute the value of xgn) [s] according to Eq. (3) following the topo-

logical order and derive di’;) from the observational data.

The challenge in the above derivation is how to estimate function f(-) and
adjacency matrix A of the SCM. Next, we develop a causal structure discovery
approach based on the graph autoencoder as proposed in [12].

Causal Structure Discovery. We estimate the adjacency matrix of the SCM
defined in Eq. (1) by a graph autoencoder model with parameters {61, qbl,fl}.
Specifically, an encoder is first adopted to derive the hidden representation of a
sample d™) | i.e., h(™ = Ey (d™), where Ep, (-) is parameterized by a multilayer
neural network. Then, the message passing operation is applied on the hidden



60 X. Han et al.

representation, i.e., /(™ = ATh("), where A is a parameter matrix. Finally, a
decoder is used to reconstruct the original input from A'(™ | i.e.,

d™ = Dy, (™)) = Dy, (AT Eg, (d™)),

where Dy, (-) is parameterized by a different multilayer neural network. Note
that both the encoder Ejp, (-) and the decoder Dy, (-) work in a variable-wise
manner in order to preserve the order of the message passing in the SCM. To
train the graph autoencoder model, the objective function is defined as:

N
1 N N L
Loar(4, 01, ¢1) = N E [d™) —d™|2 + XAy s.t. tr(et®4) —m —1=0,
n=1

where the constraint tr(e4®4) —m — 1 = 0 is to ensure acyclicity in the graph.
After training, matrix A will be a good estimation of the adjacency matrix A.

One challenge in applying the graph autoencoder to our work is that,
although the graph autoencoder can accurately estimate the adjacency matrix
A it does not produce a good reconstruction of the input sample, which implies
that it does not accurately estimate the function f(-) in the SCM. In order to
generate the counterfactual data, the reconstructed sample with high fidelity is
critical. Hence, we improve the graph autoencoder by adding another decoder
that focuses on data reconstruction, where the trained matrix A and the encoder
Ey, (+) are reused in this step.

In particular, we similarly feed each sample d(™ to trained encoder Ep, (*)
to obtain the corresponding hidden representation. Then, in order to be consis-
tent with the structural equations Eq. (1), different from [12] where the mes-
sage passing operation is applied in the representation space, we first use a new
variable-wise decoder Dy to transform the hidden representation back to the
original data space, and then aggregate the message from the neighbors based
on matrix A. As a result, the reconstruction process of each sample is given by
the following equation.

d™ = A" Dy (Eg, (d™)).

The objective function is to reconstruct the input with A and 6, fixed:

N d
1 n (n
Lo(#) = 57 > > lld" —d™|3.
2N i=1
After training, we obtain the approximated mapping function f = Dy o Ey,.

Generating Counterfactual Data. Given estimated adjacency matrix A and
function f , for each sample d(™), we generate its counterfactual dé?) following the
Abduction-Action-Prediction process. We first intervene s(™) to its counterpart
s and compute f (s). Then, we sort all variables in X in a topological order and
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compute x( m) [s] iteratively according to Eq. (3) where A and f are replaced by

their estimators A and f. Finally, we obtain D = {d where CZE?) =

{5, {2"]s] | i =1:m}}.

n17

3.4 Phase Two: Fair Anomaly Detection

We use the autoencoder as the base model for anomaly detection, which is trained
to minimize the reconstruction errors of normal samples. It is worth noting
that a fully-connected autoencoder model is used here which is different from
the variable-wise autoencoder used in the previous section for counterfactual
data generation. Meanwhile, to achieve counterfactual fairness, we leverage the
idea of adversarial training to make the hidden representations derived by the
autoencoder not encode the information of the sensitive variable. To this end,
we develop a pre-training and fine-tuning framework to ensure the effectiveness
of anomaly detection as well as counterfactual fairness. The reason for adopting
the pre-training and fine-tuning training approach instead of the end-to-end
training is that some counterfactual samples in D could be anomalies. If we
include all samples in D to train the autoencoder model, the performance of
anomaly detection can be damaged. Hence, we use samples in D to pre-train the
autoencoder model. Then, during fine-tuning, we slightly update the autoencoder
so that the effectiveness of anomaly detection and counterfactual fairness can be
balanced. Finally, we do not use the sensitive variable and only use the non-
sensitive variables X to train the anomaly detection model.

To be more specific, in the pre-training phase, given the training set with
normal samples D, an encoder first maps each sample (™) to a hidden repre-
sentation z("™) = Ey (2(™), and then a decoder aims to reconstruct the original
input from the hidden representation (") = Dy, (2(™). The objective function
is to minimize the reconstruction error of normal samples:

Lan(br,92) = zNZHd — Dy, 0 B, (= ™)]3

After pre-training the autoencoder model, in order to achieve counterfactual
fairness, we further incorporate the adversarial training strategy to further fine-
tune the autoencoder model so that the hidden representation z(™) derived by
the encoder is free of the information of the sensitive variable. To this end, for
each sample d™) = {5 z(™} and its counterfactual sample czg?) = {s,ﬁg?)},

we first derive the hidden representations, z(™ and zé?), respectively, by feeding

them to the encoder Ejy,. Then, a discriminator Cy, is applied on 2™ and zi?) to
predict whether the hidden representations are from observed or counterfactual
samples, which is a binary classification task. We parameterize the discriminator
Cy by a multilayer neural network with the sigmoid function as the output layer
and use the negative of the standard cross-entropy loss for binary classification
tasks as the objective function to train the discriminator:

Lo(0a,9) Z log(Cyy(2(™)) +log(1 — Cy(21"))].
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The discriminator is trained to accurately separate the hidden representations
of observed and counterfactual samples. Meanwhile, to make the hidden repre-
sentation derived from the encoder invariant to the change of sensitive attribute,
the adversarial game is to train the encoder Fy, to fool the discriminator Cly,
but still be good for reconstructing the original input. As a result, the objective
function can be defined as a minimax problem:

min mgx Lag (02, ¢2) + ALc(02,v), (4)

02,02

where X is a hyper-parameter to balance the reconstruction error and adversarial
loss. Besides minimizing the reconstruction error Lag, the encoder also tries
to maximize the cross-entropy loss for the discriminator L£c(62,1)). Once the
discriminator is unable to distinguish the hidden representations from factual
or counterfactual data, we expect that both factual and counterfactual samples
have similar reconstruction errors.

After training, the anomaly score for a new sample d = {s,z} is computed
based on the reconstruction error:

9(z) = ||z — Dy, o Ep, ()]3-

If the anomaly score g(x) > 7, where 7 is a hyperparameter of the model, we
label the sample as anomalous, i.e., § = 1.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on a synthetic dataset and two real-
world datasets, Adult and COMPAS. Table 1 summarizes the statistics of three
datasets.

Table 1. Statistics of datasets.

Synthetic Adult COMPAS

Training | Test | Training | Test | Training Test
Normal (Y=0) 12000 4000 | 12000 4000 | 2000 1283
Abnormal (Y=1) | N/A 400 |N/A 800 |N/A 384

Synthetic Dataset. We first build a synthetic dataset with 21 variables where
we can obtain the ground truth of counterfactuals. We first randomly generate
the adjacency matrix A of a causal graph using the Erd8s-Rényi model [17]
where one node is defined as a root node for representing the sensitive variable S.
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Figure 2 shows the generated adjacency matrix A. The value of S is randomly
generated with binarized value {-1, 1} to indicate sensitive and non-sensitive
groups. Then, similar to [12], the rest 20 variables are generated based on the
following data generating procedure: X = 3AT cos(X + 1) + U, where U is
a standard Gaussian noise. Finally, one leaf node is selected as the decision
attribute Y for determining anomalies. Specifically, for each sample, if the value
of Y is greater than 0.85 quantile or smaller than 0.01 quantile, we label this
sample as an anomaly, i.e., Y = 1. If the value of Y is between 0.3 and 0.7
quantiles, we label the sample as normal, i.e., ¥ = 0. Meanwhile, for both
training and test sets, for 50% of the samples, their corresponding counterfactuals
have labels that are different from the factual ones.

Adult Dataset. Adult is a real-world dataset with 14 features [5]. We treat
“gender” as the sensitive attribute and samples with “income > 50k” as anoma-
lies. We normalize all continuous features and binarize all categorical features.
Figure 4a shows the causal graph on Adult learned in Phase One of our app-
roach. Meanwhile, as we do not know the ground truth of counterfactuals, we
use the generated counterfactual samples for measuring counterfactual fairness.

COMPAS Dataset. COMPAS is another real-world dataset [4], which con-
sists of 8 features. We consider “race” as the sensitive attribute, where “African-
American” and “Caucasian” are the disadvantage and advantage groups, respec-
tively, and treat “recidivists” as anomalies. Similar to Adult, we normalize all
continuous features and binarize all categorical features. Figure4b shows the
learned causal graph.

Baselines. We compare CFAD with the following baselines: 1) Principal Com-
ponent Analysis (PCA), which is a dimensional reduction based anomaly detec-
tion approach; 2) One-class SVM (OCSVM), which is a one-class classification
model that can detect outliers based on the observed normal samples; 3) Iso-
lation Forest (iForest), which is a widely used tree-based anomaly detection
model; 4) Autoencoder (AE), which is trained on normal data and widely-used
for anomaly detection based on the deep autoencoder structure; 5) Deep Cluster-
ing based Fair Outlier Detection (DCFOD) [15], which adopts the adversarial



64 X. Han et al.

training to achieve the group fairness in anomaly detection; 6) Fairness-aware
Outlier Detection (FairOD) [14], which is also an autoencoder-based anomaly
detection approach with fairness regularizers.

Evaluation Metrics. We evaluate the performance of anomaly detection based
on Area Under Precision-Recall Curve (AUC-PR), Area Under Receiver Oper-
ating Characteristic Curve (AUC-ROC), and Macro-F1. We evaluate coun-
terfactual fairness by computing the changing ratio of the samples whose detec-
tion outcomes are different from those for their corresponding counterfactuals,
i.e., changing_ratio = Zooy W00 1[?\?)#@5?)], where 1[-] is the indicator function.
Implementation Details. Regarding baselines, we use Loglizer [7] to evalu-
ate PCA, OC-SVM, and iForest. We implement FairOD and DCFOD based on
public source code [15]. By default, the threshold 7 for anomaly detection is set
based on the 0.95 quantile of reconstruction errors (AE, FairOD, and CFAD) or
distance to the normal center (DCFOD) in the training set. Our code on CFAD
is available online!.

4.2 Experimental Results

Counterfactual Data Generation. We first evaluate the performance of coun-
terfactual data generation in the synthetic dataset by comparing CFAD with
GAE [12] in terms of Euclidean distance between the generated and ground-
truth samples. As shown in Fig. 3, on the factual data, CFAD achieves a much
lower reconstruction error compared with GAE. More importantly, for counter-
factual data generation, CFAD is much better compared with GAE. It indicates
that by incorporating a variable-wise decoder Dy for data generation, CFAD
can generate counterfactual samples with high fidelity.

Table 2. Anomaly detection on synthetic and real datasets with threshold 7 = 0.95. For
AUC-PR, AUC-ROC, and Macro-F1, the higher the value the better the effectiveness;
for Changing Ratio, the lower the value the better the fairness.

Method | Synthetic Dataset Adult Dataset COMPAS Dataset
AUC-PR | AUC-ROC | Macro-F1 | Changing Ratio | AUC-PR | AUC-ROC | Macro-F1 | Changing Ratio | AUC-PR | AUC-ROC | Macro-F1 | Changing Ratio

PCA 0.992 0.999 0.908 0.478 0.238 0.582 0.476 0.261 0.365 0.642 0.595 0.268
OC-SVM | 0.776 0.953 0.477 0.399 0.282 0.638 0.482 0.285 0.337 0.593 0.488 0.376
iForest | 0.190 0.693 0.570 0.271 0.312 0.658 0.570 0.279 0.311 0.567 0.564 0.415
AE 0.957 0.996 0.883 0.461 0.349 0.640 0.608 0.590 0.344 0.616 0.581 0.407
DCFOD |0.383 0.832 0.721 0.212 0.249 0.623 0.533 0.071 0.260 0.569 0.466 0.067
FairOD | 0.580 0.873 0.689 0.261 0.222 0.621 0.531 0.131 0.265 0.548 0.493 0.068
CFAD 0.947 0.996 0.930 0.199 0.319 0.589 0.576 0.057 0.314 0.596 0.539 0.049

Anomaly Detection. We further evaluate the performance of anomaly detec-
tion in terms of effectiveness as well as fairness. Table2 shows the evaluation
results. We report the mean value after five runs.

! https://github.com /hanxiac0607/CFAD.
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Synthetic Dataset. CFAD can well balance the effectiveness and fairness in
anomaly detection with high AUC-PR, AUC-ROC, and Macro-F1 and a low
changing ratio. AE can achieve good performance on anomaly detection, but
its changing ratio is high. DCFOD and FairOD, which achieve group fairness in
anomaly detection, both have relatively low changing ratios, but their effective-
ness in anomaly detection is not satisfactory.

Real Datasets. We have similar observations on the Adult and COMPAS
datasets. CFAD achieves good performance in both effectiveness and fairness.
For baselines that have no fairness component, their performance is good in
terms of the effectiveness in anomaly detection, but they all have high chang-
ing ratios. Similarly, although DCFOD and FairOD have relatively low changing
ratios, their effectiveness is much worse than other approaches.
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Fig. 5. Trade-off between effectiveness and fairness.

Trade-off Between Effectiveness and Fairness. We further investigate the
trade-off between effectiveness and fairness by varying the threshold as dif-
ferent quantiles of reconstruction errors or distances in the training set. We
plot the effectiveness and fairness of each threshold setting of four approaches
CFAD, AE, DCFOD, and FairOD in Fig.5, where the x-axis is the changing
ratio (counterfactual fairness), the y-axis indicates the Macro-F1 score (effec-
tiveness), and each dot in the line indicates the result from one threshold. The
dots from right to left indicate the performance based on quantiles including
{0.8,0.85,0.9,0.95,0.97,0.98,0.99,0.995,0.999}. Ideally, we expect an anomaly
detection model can achieve a high Marco-F1 score with a low changing ratio,
which is the top left corner of the figure.

As shown in Fig.5, CFAD performs best when the effectiveness trades off
with fairness, as CFAD is closest to the top left corner of the figure. Specifi-
cally, on the Synthetic dataset, CFAD achieves much higher Macro-F1 values
(effectiveness) with similar changing rates (fairness) compared with DCFOD
and FairOD. Meanwhile, for most of the thresholds chosen based on quantiles,
CFAD has higher Macro-F1 and lower changing ratios compared with AE. On
the Adult and COMPAS datasets, CFAD can have higher Macro-F1 values and
lower changing ratios compared with DCFOD and FairOD.
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5 Conclusions

In this work, we have developed a counterfactually fair anomaly detection
(CFAD) framework, which is able to effectively detect anomalies and also ensure
counterfactual fairness. The core idea of CFAD is to generate counterfactual data
governed by a learned causal structure based on the proposed graph autoencoder
model. Then, by using a vanilla autoencoder as the anomaly detection model,
an adversarial training strategy is adopted to ensure the representations derived
by the autoencoder without the information of sensitive attributes. After that,
counterfactual fairness is achieved by having similar reconstruction errors for
both factual and counterfactual samples. The experimental results show that
CFAD can achieve counterfactually fair anomaly detection while well-balancing
the trade-off between effectiveness and fairness.
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