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Abstract

Consider the following optimization problem: Given n xn matrices A and A, maximize (A, UAU*)
where U varies over the unitary group U(n). This problem seeks to approximate A by a matrix
whose spectrum is the same as A and, by setting A to be appropriate diagonal matrices, one can
recover matrix approximation problems such as PCA and rank-k approximation. We study the
problem of designing differentially private algorithms for this optimization problem in settings
where the matrix A is constructed using users’ private data. We give efficient and private algo-
rithms that come with upper and lower bounds on the approximation error. Our results unify and
improve upon several prior works on private matrix approximation problems. They rely on exten-
sions of packing/covering number bounds for Grassmannians to unitary orbits which should be of
independent interest.
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1. Introduction

In machine learning and statistical data analysis, a widely used technique is to represent data as a
matrix and perform computations on the covariance matrix to extract statistical information from
data. For instance, consider the setting with n users and where one represents the features of each
user by a vector z; € R?, giving rise to the d x d covariance matrix M = Dy x,x;r In many ap-
plications, approximations to such matrices are sought to reduce the space/time required to perform
computations or, to replace them by matrices with a specified spectrum (Sarwar et al., 2000; Paterek,
2007; Koren et al., 2009; Beutel et al., 2015). An example of the first kind is the rank-%k approxima-
tion problem where one is given a positive integer k£ and the goal is to find a rank-k matrix H which
is “close” to M. An example of the latter class of problems is the rank-k£ PCA problem where one
is given a positive integer k and the goal is to output the matrix H corresponding to the projection
onto the subspace spanned by the top k eigenvectors of M. Closeness is usually measured using the
spectral or Frobenius norm of M — H. All of these problems are extensively studied and algorithms
for these problems have been well studied and deployed; see Blum et al. (2020).

Since such matrix approximation problems are often applied to matrices arising from user data
(i.e. each user contributes one vector x; to the sum above), an important concern is to protect the
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privacy of the users. Even without fixing a specific notion of privacy, traditional algorithms for these
problems can leak information of users. For instance, suppose we know that a user vector x is part
of exactly one of the two covariance matrices M and M’, but we cannot access the data matrices
directly and can only obtain the information of the data matrices using PCA. If we apply a traditional
algorithm for rank-k PCA onto M and M’, we obtain two projection matrices H and H’ spanned by
the top k eigenvectors of M and M’, respectively. Then, if z is in the subspace of H but not in the
subspace of H', we know for sure that x is part of M but not of M’ —leading to a breach of privacy
of the data vector x. Important examples of real-world privacy breaches in settings of this nature
include the Netflix prize problem and (Bennett and Lanning, 2007) and recommendation systems of
Amazon and Hunch (Calandrino et al., 2011). It is thus important to design private algorithms for
fundamental matrix-approximation problems.

The notion of differential privacy has arisen as an important formalization of what it means to
protect privacy of individuals in a dataset (Dwork, 2006). We say that two Hermitian PSD matrices
M and M’ are neighbors if each matrix is obtained from the other by replacing one user’s vector by
another user’s vector. In other words, M and M’ are neighbors if and only if there exists 2,y € C?
such that |z|2, |yl < 1 and M’ = M — zz* + yy*. We can now define differentially private
computations on matrices.

Definition 1.1 (Differential Privacy) For a given e > 0 and 6 = 0, a randomized mechanism M
is said to be (g, 0)-differentially private if for any two neighboring matrices M and M' and any
measurable set of possible output S, it holds that

P[M(M) € S] < exp(e) - P[M(M') € S] + 6.
When 6 = 0, the mechanism is said to be e-differentially private.

There have been multiple works that give differentially private algorithms for matrix approximation
problems, including rank-%k approximation (Kapralov and Talwar, 2013; Upadhyay, 2018; Amin
et al., 2019) and rank-k PCA (Chaudhuri et al., 2013; Dwork et al., 2014; Leake et al., 2021).
Roughly, these algorithms can be divided into two categories: Those satisfying pure differential
privacy (e-differential privacy) (Chaudhuri et al., 2013; Kapralov and Talwar, 2013; Amin et al.,
2019) and those satisfying (e, §)-differential privacy with a § > 0 (Chaudhuri et al., 2013; Dwork
et al., 2014; Upadhyay, 2018). Pure differential privacy provides better privacy protection and we
focus on pure differential privacy in this paper.

All the algorithms mentioned above that come with pure differential privacy guarantees utilize
the exponential mechanism (McSherry and Talwar, 2007) (see Theorem B.3). This mechanism
involves sampling from an exponential distribution which, in turn, depends on the utility function
chosen. Among these algorithms, one of the algorithms by Chaudhuri et al. (2013) (PPCA) provides
a near-optimal algorithm for PCA under pure differential privacy. However, the error upper and
lower bounds are only proved for the first principal component (the top eigenvector). In addition,
their algorithm satisfying pure differential privacy (PPCA) is implemented with a Gibbs sampler
which is not shown to run in polynomial time.

Kapralov and Talwar (2013) provide two different algorithms under pure differential privacy for
rank-1 approximation and rank-k approximation. They also provides error upper and lower bounds
for both problems. Their rank-1 approximation relies on an efficient way to sample from a unit
vector using the exponential mechanism. The algorithm outputs the sampled vector as the estimation
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of the first eigenvector of the input matrix. The rank-k approximation samples top k eigenvectors
iteratively. The error bound is worse compared to the rank-1 case and there is a significant gap from
the lower bound proved in the paper.

Amin et al. (2019) provide a differentially private algorithm for the version of rank-k approx-
imation problem when k = d (covariance matrix estimation problem). This problem is trivial
without a privacy requirement: one can set the output H as the input covariance matrix M. In the
differentially private case, Amin et al. (2019) give an algorithm that samples eigenvectors iteratively
using an exponential mechanism. It uses a different error measure compared to Kapralov and Talwar
(2013) and, hence, the error bounds cannot be compared directly. However, the algorithm of Amin
et al. (2019) only applies to the covariance matrix estimation problem which is a special case of the
rank-k approximation problem.

2. Our Work
2.1. Unitary Orbit Optimization

We first present a generalized problem that captures the matrix approximation problems mentioned
above. The problem is a linear optimization problem over an orbit of the unitary group. Recall that
a matrix U € C%*? is said to be unitary if UU* = I. The set of unitary matrices forms a group
under matrix multiplication and is denoted by U(d). U(d) is also a non-convex manifold. For a
given d x d Hermitian matrix H, U(d) acts on it by conjugation as follows: H — UHU™ for a
unitary matrix U. Note that H has the same eigenvalues as U HU* for any unitary matrix U. Thus,
the set of matrices obtainable from H under this action have the same set of eigenvalues. Given a
diagonal matrix A = diag (A1, ..., A\g), we denote its unitary orbit: Op = {UAU* : U € U(d)}.

Problem 2.1 (Unitary orbit optimization) Given a Hermitian matrix M € C**% with eigenvalues
Y1 = -+ = g and a list of eigenvalues \y = --- = Xy, the goal is to find a Hermitian matrix
H € Oy with A := diag (A1, . .., \g) € C? that maximizes (M, H) := Tr(M* H).

Since UAU™ has the same eigenvalues as A, this problem asks to find the “closest” matrix to a
given matrix M, with eigenvalues identical to those of A. This is a well-studied problem and the
Schur-Horn Theorem implies that the optimal solution to this problem is the matrix H = UAU*
where U is a unitary matrix whose columns are the eigenvectors of M, attaining the optimal value
S A (Schur, 1923; Horn, 1954).

Rank-k PCA, rank-k approximation, and covariance matrix estimation of a given covariance
matrix M can be reduced to Problem 2.1 by a careful choice of A;’s. The rank-k PCA problem is
obtained by setting A\; = --- = Ay = land A\py; = --- = Ay = 0. The rank-k approximation
problem is obtained by setting A; equal to the ¢-th largest eigenvalue of M for 1 < ¢ < k, and to
0 for ¢ > k. Finally, the covariance matrix estimation problem is obtained by setting \; equal to

the i-th largest eigenvalue of M foralli = 1,2,...,d. In the rank-k approximation and covariance
estimation problems, we consider both the setting where the eigenvalues Aj, ..., A\ are given as
prior “non-private” information, as well as the more challenging setting when A1, . .., \; are private.

2.2. Upper Bound Results

Our first result is an e-differentially private mechanism for Problem 2.1 when the matrix A is non-
private (as in the case of rank-k PCA). Our algorithm (Algorithm 1) utilizes the exponential mech-
anism (McSherry and Talwar, 2007) and samples H from O, from a density that is close in infinity
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distance to exp(5- (M, H)). However, to do this, we need a unitarily invariant measure 45 on Oj.
Such a measure can be derived from the Haar measure on U(d); see Leake and Vishnoi (2021).
Note that while Problem 2.1 makes sense for general Hermitian M, in our results we consider the
case when M is Hermitian and positive semidefinite (PSD) as in the case of a covariance matrix.

Theorem 2.2 (Differentially private unitary orbit optimization) For any ¢ € (0, 1), there is a
randomized e-differentially private algorithm (Algorithm 1) such that given a d x d PSD Hermitian

matrix M € C¥9 with eigenvalues v > vo = -++ = g = 0, the maximum rank of the output
matrix k € [d], and a list of top k nonnegative eigenvalues of the output matrix \y = \g > -+ >
Xk = 0, outputs a d x d PSD Herimitian matrix H € C** with eigenvalues A1, Xa, . .., M\, 0, ..., 0,

where there are d — k 0’s. Moreover, for any 5 € (0, 1), with probability at least 1 — [3, we have
(M,H) > Zle yiXi — O <dk>‘1> . where O hides logarithmic factors of% and Tr(M). The

€

number of arithmetic operations required by this algorithm is polynomial in log % AL, Y1 — Ya, and
the number of bits representing A = (A1, Aa, ..., \g) and v = (71,72, - - -, Yd)-

This theorem is a generalization of the result in Leake et al. (2021) which proved such a theorem
for the special case of rank-k PCA (when the orbit eigenvalues are \y = --- = X\ = 1 and
Ak+1 = -+ = Ag = 0). Our algorithm leverages efficient algorithms to sample approximately
from such exponential densities on unitary orbits by Leake et al. (2021); Mangoubi and Vishnoi
(2021) that provide guarantees on the closeness of the target distribution and the actual distribution
in infinity distance.! Note that the error bound in Leake et al. (2021) improves on Kapralov and
Talwar (2013) but is weaker than in Theorem 2.2 since Theorem 2.2 holds with high probability
while Leake et al. (2021) only holds in expectation. The proof of Theorem 2.2 appears in Appendix
C and uses a covering number bound for the orbit Oy (Lemma C.3) that generalizes the upper
covering bounds for the Grassmannian (Szarek, 1982).

Our next result considers the setting of Problem 2.1 when A is the spectrum of M: \; = ~; for
1 <7< kand A\; = 0 for¢ > k (as in the rank-k covariance matrix approximation problem). In
this case, A is also private and Algorithm 1 does not apply as such. However, we show that adding
Laplace noise to \;s, sorting them, and then using Algorithm 1 suffices; see Algorithm 2.

Theorem 2.3 (Differentially private rank-% approximation) Given a PSD Hermitian input ma-
trix M € ’Hi, ak e [d], and an € > 0. Let the eigenvalues of M be \y = --- = \g = 0. There
exists a randomized e-differentially private algorithm (Algorithm 2), which outputs a rank-k matrix
He H‘i and a list of estimated eigenvalues 5\1, ce N\i. For any (3 € (0, 1), with probability at least

1 — B, for all i € [k], we have |A\; — \;| < O (% log %) , and

d
~ 1
IM-H|} < )] /\§+O<k2+dk<)\1+>>,
t=kt1 € € €

where O hides logarithmic factors of % and ZIZ:I Ao The number of arithmetic operations re-

quired by this algorithm is polynomial in log % A1, and the number of bits representing X =
(A1, A2,y Ag)-

v(6) |

1. For two densities v and 7, the infinity distance is de (v, 7) := supy | log
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The proof of Theorem 2.3 is an extension of the proof of Theorem 2.2 and appears in Appendix D.
Since the (full-rank) covariance matrix estimation problem is a special case of the rank-k approxi-
mation problem (when we set k& = d), the above result immediately applies in this case. Theorem
2.3 improves upon the bound in (Amin et al., 2019): Roughly, when the covariance matrix has its
largest eigenvalue within a constant factor of its middle eigenvalue \; = O(A & ), our bound of

O(%(Al + %)) is O(d) better than the bound Q(%‘p) of (Amin et al., 2019). This includes the set-
ting when the input matrix M is a random sample covariance matrix from the Wishart distribution
Wishart (1928) (thatis M = %X TX, where X is a d x m matrix with i.i.d. standard Gaussian en-
tries), as such a matrix has, with high probability, \; = O(Ax ) for any m, d, where k = min(m, d).
We discuss these examples in detail in Appendix A. ’

Note that in Theorem 2.3 we do not lose utility due to privatization of the eigenvalues whenever
A1 = Q(2), which is often the case in practice. In this case the utility bound é(@) in Theorem
2.2 (where we assume the eigenvalues are “public”, and do not have an eigenvalue privatization step)
is the same as the utility bound O(% (M + %)) in Theorem 2.3 (where we do privatize eigenvalues).

2.3. Lower Bound Results

We give a lower bound for an e-differentially private algorithm in the case where the eigenvalues
1, - - -, 74 of the input matrix are equal to the eigenvalues Ay, ..., A\g of the output matrix. Note
that this lower bound holds even when the eigenvalues of the input matrix are given to the algorithm
as prior non-private information.

Theorem 2.4 (Error lower bound) Suppose that \y = --- = A\g = 0 and € > 0. Then for any
e-differentially private algorithm A which takes as input a Hermitian matrix and outputs a rank-k
Hermitian matrix with eigenvalues A1, . . ., Ay, there exists a d x d PSD Hermitian matrix M with
eigenvalues y; = \;, i € [d], such that, with probability at least % the output H := A(M) of the
algorithm satisfies

d

d

M-H[F=Q Y A+ max i X (A\j — Ag—iv1)? | - 1
I |7 (e_k;ﬂ v max(Ay/z, V)2 1eies ( d—i+1) (D

Note that the r.h.s. of our lower bound is never larger than Q(Z?:I AZ7); this is true for any error
lower bound since the diameter D).| . (Ox) of the unitary orbit is D). .(O4) := supys geo, |M —

H|rp = O(4/ 2?21 AZ). The proof of Theorem 2.4 is given in Appendix F. The proof of Theorem
2.4 relies on a novel packing number lower bound for the unitary orbit Oy (Theorem 2.7). As a first
attempt we show a packing number bound for the entire unitary orbit (Inequality 3). Unfortunately
the resulting utility error lower bound (Inequality 11 in the proof overview) is (roughly) proportional
to e aPlr (OA)Z, which is exponentially small in the eigenvalues Ay, ..., A\y. To achieve an error
bound polynomial in the \’s, we instead show a packing bound on a ball of radius w inside the orbit,
where w is carefully chosen to ensure that the error bound is polynomial in Aq, ..., A4.

Next, we give a corollary of Theorem 2.4, which provides a lower bound for the rank-k approx-
imation problem (which includes the covariance matrix estimation problem as a special case).

Corollary 2.5 (Lower bound for covariance estimation) Suppose that \y = --- = A\g = 0 and
€ > 0. Then for any e-differentially private algorithm A which takes as input a Hermitian matrix
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M and outputs a rank-k Hermitian matrix H = A(M), there exists a d x d PSD Hermitian matrix
M with eigenvalues \;, i € [d], such that, with probability at least %, the output H := A(M) of the
algorithm satisfies

M — H|% > 2 max i x (N — Ag—iz1)? | .
[ = (Z ¢t — AM VAP 1o ( d +1)>

l=k+1

The proof of Corollary 2.5 is given in Appendix F. Note that, unlike in Theorem 2.4, the output
matrix in Corollary 2.5 is allowed to be any matrix, and need not have the same eigenvalues as the
input matrix. To verify that the lower bounds in Theorem 2.4 and Corollary 2.5 are indeed lower
than the upper bounds in Theorems 2.2 and 2.3, we observe that when the input matrix is of any
rank 1 < k < d, maxjcicgi X (A — Ag—it1)? < k x A\J. Thus, the r.h.s. of the lower bound in
Theorem 2.4 and Corollary 2.5 is at most %, up to a constant factor. On the other hand the upper
bounds in Theorems 2.2 and 2.3 are each at least as large as %(/\1 + ) which is greater than dk

When the input matrix is rank-k, and Ax — Az = (A1), Corollary 2.5 implies that, w1th

4 4
probability at least 1, [M — A(M)[3 > £ if A > Q(@) and |[M — A(M)|% = kXN if A <
Q(@) Thus, our lower bound matches our upper bound from Theorem 2.3 up to a factor of % if

A= Q(@) and a factor of Aila otherwise. This includes the setting when the input matrix M is
a random sample covariance matrix from the Wishart distribution Wishart (1928), as such a matrix
has, with high probability, \; = O()\g) and )‘E —)\% = Q(\1) for any m, d, where k = min(m, d).

The only previous lower bound we are aware of for the problem of (pure) differentially private
rank-k covariance matrix estimation is from Kapralov and Talwar (2013). Roughly, their result says
that if, for any w > 0 and A1 > 0, we have \; > %k’(d — k) log(%), then, for any e-differentially
private algorithm .4, there exists a matrix M with top eigenvalue Aj, such that the error (measured
in the spectral norm) has a lower bound of | M — A(M)|2 = Ag+1 + dA1 with positive probability,
where A;1 is the k + 1’st eigenvalue of the matrix M guaranteed by their result. Since only a
condition on the top eigenvalue A; is specified in their result, to show their result it is sufficient to
produce an input matrix M satisfying their lower bound with A;; = 0, that is, an input matrix of
rank k, and this is what they show in their proof. Solving for the value of w which maximizes their

lower bound, one gets that their lower bound implies |M — A(M)|la — Agp11 = 9(6_%/\1).

While our lower bound is stated in terms of Frobenius norm, to see what our results give for
the spectral norm error, we can use the fact that the Frobenius norm distance between two rank-
k projection matrices is at most O(/k) times the spectral norm distance to obtain a spectral norm
bound. In the case where the input matrix is rank-%, our result implies a error bound of | M — H |5 >
Q(g) if, e.g., A1e > Q(v/d). Thus, our lower bound is larger by a factor of roughly -4 ek& k).

For the general unitary orbit approximation problem, Theorem 2.4 implies the followmg utility
lower bound on the Frobenius norm utility:

Corollary 2.6 (Lower bound for general v and )\) Suppose that v1 > - =0, and M\ =
> Ag = 0, and € > 0. Then for any e-differentially private algorithm A whlch takes as input a
Hermitian matrix and outputs a rank-k Hermitian matrix with eigenvalues \1, . . ., \i, there exists

a d x d PSD Hermitian matrix M with eigenvalues y;, i € [d], such that, with probability at least
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%, the output H := A(M) of the algorithm satisfies

M—H|% > + maxzx '—d—‘12-
|2 — HJ; > (( DI E S veren e s O )
The proof of Corollary 2.6 is given in Appendix F. Corollary 2.6 says that, given any v, > --- >
v¢ = 0and any Ay > --- = Ay = 0, the same lower utility bound given in Theorem 2.4 holds
(with ~; taking the place of \; on the r.h.s. of the inequality) even if the eigenvalues \; of the output
matrix are not equal to ;.

2.4. Packing Number Bounds for Unitary Orbits

As our main technical tool for proving the lower bounds on the error in Theorem 2.4 and Corollary
2.5, we will show packing number bounds for the unitary orbit. For any set S in a normed vector
space with norm || - || and any ¢ > 0, we define a (-packing of the set S with respect to || - || to be
any collection of points {z1,...,2;} € S, where J € N, such that || zs — z;|| = ( for any s,t € [J].
We define the packing number P(S, || - ||, () to be the supremum of the number of points in any
¢-packing of S. We also denote by B(X,r) := {Z € C™*? . ||Z — X|| < r} aball of radius r with
center X with respect to the norm || - [|. We show the following lower bound on the packing number
of any unitary orbit O with respect to the Frobenius norm | - | 7, and also provide a bound on the
packing number of any ball B n O, which is a subset of the unitary orbit. Since the (-packing
and (-covering numbers of any set are equal up to a factor of 2 in ( (see equation 4), our packing
number lower bound also implies a lower bound on the covering number of the unitary orbit.

Theorem 2.7 (Packing number lower bound for unitary orbits) There exist universal constants
C > ¢ > 0 such that, for any A = diag(A1, ..., \q), and any w,( > 0, and any X € Oy,

log P(B(X,w) n Op, | - |, <)

> max 2ix(d—j+1)xlog

1<i<j<d

min(w, \vi, Aiv/d — 5+ 1) x (A — Aj) )
< 20 ¢ > .

Moreover, we get the following bound for the packing number of the entire unitary orbit O :

IOg P(OAvH ! ”FvC)

> max 2ix(d—j+1)xlog

ey (cmln(\/ WVd—j+1) x (A —A)>. 3)

¢

The proof of Theorem 2.7 is given in Appendix E. The bound in Theorem 2.7 depends on the gaps
Ai — Aj between the eigenvalues of A, and is largest when there is a large gap between eigenvalues
Ai — A;j such that both ¢ and d — j are large. A special case of the unitary orbits is the Grasmannian
manifold Gg s, for any k£ < d, which is the set of k-dimensional subspaces in a d-dimensional vector
space. Identifying each subspace V € G, with its projection matrix, the Grassmanian Gg ;, has a
one-to-one correspondence with the unitary orbit A\; = --- = Ay = land \y11 = --- = A\g =0,
and any norm on the unitary orbit induces a norm on the Grassmannian. Theorem 2.7 generalizes
the covering/packing number lower bounds for the (complex) Grassmannian of Szarek (1982, 1998)
(restated as Lemma E.1 in the Appendix; see also e.g. Pajor (1998) and Kapralov and Talwar (2013)



MANGOUBI WU KALE THAKURTA VISHNOI

for different proofs of the same result), to a lower bound on the covering/packing number of any
unitary orbit Op. Namely, in the special case where Ay = --- = Ay = land A\ = -+ =

Ag = 0, the r.h.s. of Theorem 2.7 is just 2d x (d — k) log(cm'”%(gd’k)), since the diameter of the
Grassmannian is D.|,.(Gg, 1) = ¢ min(v/k, v/d — k + 1), for universal constant ¢’.

3. Proof Techniques
3.1. Upper Bounds: Theorem 2.2 (and Theorem 2.3)

Given M = 3" | z;x] for adataset {z1,...,z,} < C", where |2;| < 1 for each ¢, and a diagonal
matrix A, the goal of our algorithm is to output a matrix H € Op which maximizes the utility
(M, H ) under the constraint that the output is e-differentially private. Moreover, we would like our
algorithm to run in time polynomial in the number of bits needed to represent M and A.

Privacy guarantee. Given datasets {x;}!; and {z/}7_,, we say that two matrices M = > "' | z;x}
and M’ = " | xia}* are neighbors if 2; = 2 for all but one pair of points i. And we say that
the output of any algorithm A is e-differentially private if for any M, M’ which are neighbors, and
any set .S in the output space of the algorithm, we have P(A(M) € S) < e P(A(M’) € S). Our
algorithm ensures that its output is e-differentially private by applying the exponential mechanism
of McSherry and Talwar (2007) to sample a matrix H = UAU™, where U is a unitary matrix, from
the unitary orbit O,. For any choice of query function ¢(M, H) and A > 0, a sample from the

exponential mechanism with probability distribution proportional to exp ( %), is guaranteed

to be e-differentially private as long as A is no greater than the sensitivity

sup (M, H) — q(M', H)]
MM
M, M’ are neighbors

of the query function for all H. To ensure that matrices H with a larger utility (M, H ) are sampled
with a higher probability, we apply the exponential mechanism with the query function ¢(M, H) =
(M, H), and sample H from the distribution exp(5; (M, H))dua, where dju is a unitarily in-
variant measure on O, obtained from the Haar measure on the unitary group. Since we show that
whenever M and M’ differ by only one point z; |[{M, H) —(M', H)| = |x;Hx} — x}Ha*| < M\
(Lemma C.1), the sensitivity is A < Aj. Thus, Algorithm 1 is e-differentially private.

Running time. To generate the sample from the distribution v(H)ocexp(5; (M, H))dua, we
use the Markov chain sampling algorithm from (Leake et al., 2021) (improved in Mangoubi and
Vishnoi (2021)), which generates a sample from the log-linear distributions on unitary orbits. The
distribution 7 of the output of this algorithm is guaranteed have sampling error at most O(¢) in
the infinity-distance metric, supy | log %\ < ¢. Thus, the output of the Markov chain sampling
algorithm is O(¢)-differentially private as well. Its running time bound is polynomial in A1, y1 — 4
and the number of bits needed to represent A = (A1, Aa,..., A\g) and v = (v1,72, .-, 7d)-

Upper bound on error. Our upper bound on error is based on a covering number argument. For
any set S and any ( > 0, we define a (-covering of the set S with respect to a norm || - || on this
set to be any collection of balls { By, ..., B} of radius ¢ with centers in S, where J € N such that
S c U;Ll B;. We define the covering number N (S, || - ||, ¢) to be the smallest number J of Balls
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in any (-covering of S. The packing and covering numbers are equal up to a factor of 2 in the radius
( (see e.g. chapter 3.5 of Mohri et al. (2018)):

PS, - 11,2¢) < NS - Q) < PCS - 6) - Ve > 0. 4)

From a standard result about the exponential mechanism (McSherry and Talwar (2007)), we have
that the utility of the exponential mechanism satisfies

exp(—3x1)

P(M ¢ S;) < ,U«A(S%) ,

&)

where S; is the set of all matrices M with utility (M, H) > OPT — t and OPT = Z?:1 AiYi
is the optimal value that (M, H) can take. The key ingredient we need to bound the utility is an
upper bound on the volume g (S t ) in the denominator of equation 5. We bound this quantity via a

covering number argument. First, we show that St is contained in a spectral norm ball B of radius
2

o, where I := tr(M), with center at the optimal point Hy, since, whenever |[H — Ho| < ﬁ,

d d
t
(M, H) = (M, Ho) = (M, Ho) > 3 Aiyi = | Ho = Hatr(M) > 37 Aivi = 5.
=1 i=1

To obtain a bound on the volume of pa(B), we use the fact that the spectral norm | - |2 and the
measure y (B) are both unitarily invariant. We say a norm || - || is unitarily invariant if ||[UX V|| =
| X || for any X € C?*? and any unitary matrices U,V e U(d); in particular || - | and || - | are
unitarily invariant norms. And we say a measure (4 is unitarily invariant if 4 (USV') = pu(.S) for each
subset S and each U,V € U(d). Since pp and | - |2 are both unitarily invariant, every | - |2-norm
ball of radius % in Oy has the same volume with respect to the measure p14. Thus, if we can find a
covering of Oy of some size N consisting only of balls of radius % we would have pip(B) > +

= N*
Thus, in terms of the covering number, we can rewrite the utility bound equation 5 as

t
P (Z Yidi — (M, H) < t) > N (oA, I D, 2F> exp (—5xt) - ©)

To bound the utility with equation 6, we will show that the covering number of Oy satisfies
N (Op, | - l2,t) < (1 + %)zdk (Lemma C.3). Plugging our covering number bound, and the
sensitivity bound A < \; into equation 6 we get that

—1\ 2dk e
P(Zi:%/\i—<M,H><t> > (1+8MIt 1) exp (—%t>, vt > 0.

Plugging t = O (%dk log(%)), we get that 3, v A; — (M, H) < O(2Ldk) w.p. at least 1 — 3.

In the rank-£ covariance matrix estimation problem, the algorithm is not handed the eigenvalues
Al, ..., Ag as private information. The Algorithm 2 in Theorem 2.3 perturbs the eigenvalues by
adding random Laplace noise. The proof of Theorem 2.3, in addition to the proof of Theorem 2.2,
requires us to carefully bound the distance between the eigenvalues A; of the covariance matrix and
the perturbed eigenvalues \i; see Section D.
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Bounding the covering number of O,. To bound the covering number of Oy, we will first show
a covering bound for the set S}, of d x k matrices with orthonormal columns, and then construct a
map from Sy, to the unitary orbit Q. Towards this end, we observe that the matrices in Oy are of
the form H = UAU™ where U is a unitary matrix, and, since A has only k£ nonzero eigenvalues,
H only depends on the first k£ eigenvectors of U, which we denote by U;. To bound the {-covering
number of the space Sj of d x k rectangular matrices U; with orthonormal columns, observe that
each Uy € Sy has spectral norm Uy |2 at most 1. Thus, the set Si of d x k complex matrices is
the unit sphere in a 2dk-dimensional (real) normed space. To bound the covering number of Sy, we
apply a well-known result (see e.g., Lemma 6.27 in Mohri et al. (2018)) which says that a minimal
(’-covering By, ... B; of the unit ball in any 2dk-dimensional normed space has cardinality at most
(1+ %)Qdk. To obtain a covering with balls with centers on the unit sphere, we take any point x in
B; n Si, (if such a point exists), and note that the ball centered at x of radius 2( contains B;.

To obtain a covering of Oy, we consider the map ¢ which maps each U; € Si to a matrix
¢(U1) = UFAU,. Since A has rank-k, ¢ : S, — Oy is surjective, and thus ¢(By), ..., ¢(B,) is a
covering of the unitary orbit; however we still need to bound the radius of the balls ¢(31) to show
that it is a (-covering. Towards this end, we note that for any Uy, U] € Sy, we have that

2
[¢(U1) = (U1 ]2 = [UFAUL = UT*AU |2 < 2[UTA(Ur = U)) 2 < N 0= Uilla-

Thus, if we set (' = ﬁ we obtain a (-covering of Oy, and this covering has cardinality (1 +
%)26”“ =(1+ %)Mk, which gives an upper bound on the covering number N (Oy, | - ||2, () of Ox.

3.2. Lower Bounds: Theorem 2.4

To prove a lower bound on the error in the covariance matrix approximation problem, it is sufficient
to consider the setting where the eigenvalues of the output matrix are given as (non-private) prior
information to the algorithm. This is because, any algorithm which works without this prior infor-
mation can also be applied to this setting by simply ignoring the information about the eigenvalues
of the input matrix. Thus, any lower bound for the setting where the eigenvalues are given as a prior
will also imply a lower bound for the covariance matrix estimation problem.

Towards this end, we first show a bound for a special case of the unitary orbit minimization
problem (Theorem 2.4), where the output matrix is in the orbit O, with eigenvalues (A1,...,\g) =
diag(A) that are equal to the (non-private) eigenvalues of the input matrix (for simplicity, in this
proof overview we assume that A\; > Q(1/d)). We then show that, roughly speaking, since the
matrix H which minimizes the Frobenius norm distance |M — H | r is the matrix H = M and is
therefore in the orbit Oy of the input matrix M, our lower bound for the unitary orbit minimization
problem also implies the same lower bound for the covariance matrix estimation problem (Corollary
2.5; see the end of this section for an overview of the proof of this corollary).

Our lower bound relies on a “packing number” lower bound for the orbit O, . As a first attempt,
we consider a maximal ¢-packing of the orbit Op, {U;AUF}E_,, where p = P(Op, || - |r, ) is the
packing number of O,. We show, using a contradiction argument, that || M — A(M)||% > ¢? (with
probability at least %) for any input matrix M and any ¢ small enough such that

4eD* <log P(On, | - ||, ), N

10
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where D is the diameter of Q. Suppose, on the contrary, that for every ¢ € [p], we have that
|M; — AM;) |7 < ¢ ®)

with probability at least 5. Next, observe that one can always find m < |M; — M;|% + d vectors
Z1,..., %, with norm |z;]| < 1 such that M; — M; = 37" | xsa® + d. Thus, if M; and M are data
matrices with unit-norm data points, one can transform ); into M; by modifying at most 2m points
in the dataset. From equation 8, we have that for each i, the output A(M/;) is in the ball B(M;, ()
with probability at least % Thus, since A is e-differentially private, for every ¢, j we have

—2eD? —e(| M;—M;|%+d) P(A(M;) € B(M;,¢)) . ,
e <e o) < AL eB(MZ,C)) < 2P(A(M;) € B(M;,¢))  (9)

since M;, M; € Oy, and D is the diameter of O. Thus, since equation 9 holds for every j € p,

p
1> D PAM;) € B(M;,C)) = 2p x e D%, (10)
j=1
Rearranging equation 10, we get that eD? < logp = log P(Oa, | - |F, (), which contradicts

our assumption in equation 7. Thus, by contradiction, we have that |M — A(M)||% > ¢* with
probability (1) for any ¢ > 0 satisfying equation 7.

Plugging in our packing number bound for O, (equation 3 in Theorem 2.7), and solving for the
largest value of ( satisfying equation 7, gives the lower bound of

|M — A(M)||% = eD? x (A — \j)? ex Dt (11)
Bz AP T d—j 1 1)
for every 1 < ¢,5 < d, where D = DH,”F(gd_jﬂ-JrL ;) is the diameter of the Grassmanian.

Unfortunately, since the diameter of Oy is D > A\ — A4 this lower bound is exponential in A1 — A\q.
The D term in the exponent comes from the fact that, since we have used a packing for the entire
unitary orbit Oy, the distance between any two balls in our packing is upper bounded by D. To
achieve a bound that is polynomial in A\; — A4, we would instead like to use a packing for a smaller
subset of the orbit Oy, of some radius (roughly) w < w However, restricting our packing
to a ball of radius w- rather than the entire orbit— requires us to prove a packing number for a subset
of the orbit, (equation 2). This leads to additional challenges in the proof of our packing bound
which we describe in the next subsection. R

1

Replacing the D term in equation 3 with w = ©(;-=4-() and plugging in our bound for the (-
eV

packing number of a ball of radius w inside the orbit, and solving for the largest value of ( satisfying
equation 7, gives the improved lower bound of

ix(d—j+1)

Iar - A > 0 (2

x (i — Aj)2> (12)
for every 1 < ¢ < j < d. Unlike the bound in equation 11 which is exponential in the \’s, this
bound is polynomial in the \’s and in d, % If we plug in j = d in equation 12 and take the maximum
over all ¢ € [d], and then plug in 7 = 1 and take the maximum over all j € [d], and finally take the
larger of these two maximum values, we recover the error lower bound of Theorem 2.4.

11
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3.3. Packing Number Lower Bounds: Theorem 2.7

In this section we first explain how we bound the packing number of the entire unitary orbit Op
(equation 3), and we then explain how we extend the proof to obtain a bound on the packing number
of any ball inside O, (equation 2).

The general strategy for proving our packing bounds for the unitary orbit (Theorem 2.7), is to
first construct a map ¢ : 0 — Oy from some space ) with previously known packing number
bounds to the unitary orbit. And, once we have a map ¢ and a packing X7, ..., X; € {2, we show
that the map preserves (a lower bound for) distances between points in the packing: |¢(X;) —
&(X;)|r = B|Xi — Xj|F for some 8 > 0, implying ¢(X1), ..., $(X;) is a (S-packing of On.

As a first attempt, we consider the space of unitary matrices U(d) for our choice of €2, and the
map ¢ : U — UAU*. Unfortunately, there may be U, U’ € U(d) such that ||¢p(U) — ¢(U’)||r = 0
even though |U — U’'||p > 0 (For instance, if diag(A) = (1,1,0) and U = I and U’ is the matrix
[ea, €1, 63]T where e; is the vector with a 1 in the ¢’th entry and zero everywhere else, we have
¢(U) = ¢(U’) = 0and yet |[U = U'|[F = 2.).

To get around this problem we instead consider a map ¢ from the (complex) Grassmannian
manifold G, ;, the collection of subspaces of dimension ¢ in d-dimensional space, to O . Identifying
each subspace with its associated rank-¢ projection matrix, we construct a maximal (-packing for
Py, ..., B, € Gq;, where p is the packing number of G, ;. To bound the size of this packing, we use
the covering/packing number bound from Szarek (1982) for the Grassmannian G4 ;, which says that

p=:P(Gair |- |r.Q) = (¢eDyy,(Gai)) ™™,

where D|.|,.(Ga,;)) is the diameter of G, ; and c is a universal constant.

To define our map ¢(P) for any rank-i projection matrix P € Gg4;, we find a d x i matrix
U; whose columns form an orthonormal basis for the space spanned by the columns of P; thus,
UUy = P (for now, we choose the matrix U; in an arbitrary manner, although we will choose U
more carefully for our proof of equation 2). We also find a d x (d — i) matrix Uy whose columns
are orthogonal to the columns of U;. Thus, [Uy, Us] is a unitary matrix. This allows us to define the
map ¢ by ¢(P) = UAU*, where U = [Uy, Us].

To show that ¢ preserves a lower bound on the Frobenius norm distance, use the sin-© theorem
of Davis and Kahan (1970) (Lemma E.2) which gives a bound on how much the eigenvectors of a
Hermitian matrix can “rotate” when the matrix is perturbed. More specifically, the sin-© theorem
says that if A, A" are Hermitian matrices, with eigenvalues A1, ..., A\g and X{,..., X}, and V; and
VY are the matrix whose columns are the first i eigenvectors of A and A’ respectively, then |V, V;* —

VIV p < w. Applying the sin-© Theorem, for any P, P’ € G, ; we have
1 i+1

[6(P) = ¢(P))|r = [UAU* = U'AU™ || = (i = Ait1) x [P = P'|lF, (13)

for some unitary matrices U = [Uy, Uz] and U’ = [U], US] such that P = U U5 and P’ = UjU;*.

Inequality 13 implies that since Py, ... P, is a (-packing of Gg;, ¢(P1),...$(F,) must be a
¢ % (Aj — Ai+1)-packing of Op. Thus equation 13, together with the bound on the packing number
of Gg 4, gives the following bound on the packing number of Oy

PO |- |1:€) = (¢ eDyy, (Gai) x (i — Aixn)™™  Vie [d]. (14)

12



PRIVATE OPTIMIZATION ON UNITARY ORBITS

Improving the packing lower bound. While equation 14 gives a bound for the (-packing number
of Oy, the eigenvalue gap term \; — A\; .1 may be much smaller than the eigenvalue gap term \; — A;
which appears in the packing number bounds we ultimately show in Theorem 2.4.

To get around this problem, we replace the map ¢ : G;; — O, and instead consider a more
generalmap ¢ : Gy i1, — On forany i, j € [d]. Namely, forany (d—j+i+1) x (d—j+i+1)
rank-i projection matrix P € Gg_j.;41;, we choose a matrix U; with orthonormal columns such
that U1 Uy = P, and choose Us such that [Uy,Us]isa (d —j + i+ 1) x (d — j + i + 1) unitary

matrix. And, denoting by A[i:j] the rows i, ..., j of a given matrix A, we set
Up[1 : 4] 0 Usa[1 : i]
U= 0 1 0 e U(a),

Ulli+1:d—j+1] 0 Usfi+1:d—j+1]

and set ¢(P) = UAU*. Then, denoting A = diag(A1, ..., A, Ajs ..., Aq),we have by the sin-©
theorem, for any P, P’ € G4_j 441, that

A~ A

|6(P) — ¢(P)|p = |[UAU* —U'AU™*||p = (\; — Xj)|P — P'||, (15)

for unitary matrices U = [U, Us] and U’ = [U}, U}] such that P = UU* and P’ = U'U"*. Com-
bining equation 15 with the lower bound for the packing number of the Grassmannian Gg_ ;41
we obtain our bound on the packing number for the unitary orbit Oy (Inequality 3 in Theorem 2.4).

Packing number lower bounds for B n Oj. To obtain a packing number bound for a subset
of the unitary orbit B(X,w) n Oy where B(X,w) is some ball of radius w with center X € Oy,
we need to ensure that our packing lies inside a ball of radius w. Towards this end, we first extend
the packing number lower bound of Szarek (1982) for the Grassmannian G, ;, to a packing number
lower bound for a ball inside the Grassmannian via a simple covering argument (Lemma E.4). Since
| - || 7 is unitarily invariant, the packing number is the same regardless of the center of the ball; thus,
for simplicity we set the center of the ball in G, ; to be the rank-i projection matrix I; consisting of
the first ¢ columns of the identity matrix. While we have already shown that the map ¢ preserves a
lower bound on the Frobenius distance ||¢(P) — ¢(P’)| r between points in the packing (Inequality
13) to obtain a packing inside Oy, in order to ensure that the packing lies inside a ball of radius w
we will also need to show that the map ¢ preserves an upper bound on this distance.

Unfortunately, if we construct the map ¢(P) by choosing the columns of U; to be an arbitrary
orthonormal basis for the column space of P and then set ¢(P) = UAU™* where U is an arbitrary
unitary matrix whose first ¢ columns are Uy, we may have that |¢(P) — ¢(P’)|» > 1 even when the
distance | P — P’| p is arbitrarily small (e.g., if diag(A) = (2,1,0), U = I,and U’ = e, €1, e3] Ry,
where R, is a rotation matrix for a small angle 7 > 0, and we choose U; to be the first 2 columns of
U and U’ respectively, we have ¢(U1Us) — ¢(U{U7*) > 1 and yet |U, U — U;U7*||p = 1.). This
is because there are many ways to choose the basis U; for the column space of P.

To show a lower bound on |¢(P) — ¢(P’)| r, when constructing the map ¢(P) we will choose
the eigenvectors U; of P such that, roughly speaking, they correspond to the “principal vectors”
between the subspaces spanned by the columns of P and the columns of the projection matrix
Py = I; which ¢ maps to the center X = A of the ball B. We define the principle vectors and

principle angles 61, ..., 6; between any two ¢-dimensional subspaces U/ and V recursively starting
with ¢ = 1 as follows (see e.g. Bjorck and Golub (1973)):
0, :min{arccosm,v} rueld,veV,u L ug,v LoVse 1,...,£—1}. (16)
ul|lv

13
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Letting U be the subspace spanned by the columns of any rank-i projection matrix P, and V the
subspace spanned by the columns of Py = I;, we set Vi = [v1,...,v;] and Uy = [uy,...,u;] to
be the principle vectors between the two subspaces. Thus, roughly speaking, equation 16 implies
that we have chosen matrices U; and V; with the smallest possible angles between the columns of
U, and the corresponding columns of V; under the constraint that U;U;* = I; and V1V = P. We
then define the map to be ¢(P) = W*AW™ where W is a unitary matrix whose first ¢ columns are
V1UY, and the last d — ¢ columns are obtained using a similar “principle angle” construction as the
first ¢ columns. In particular, we have ¢(Py) = A.

We then show Uy — V1 |% = 2k — 22@21 cos(0p) < |ViVy* — I;|%, and hence (Lemma E.3),

ViUt L = Lille < ViVE* = Ll = [P = Li|le
where I; is the first i columns of the identity matrix. This in turn implies the bound
I6P) = Allr < 2041W — Il <401 P — Fill

We now have an upper bound on the distance |¢(P) — A| r between any matrix ¢(P) in our packing
and the center A of the ball B(A,w) we would like to pack. Combining this bound with our lower
bound on |¢(P) — ¢(P’)|  of the previous subsection allows us to show our packing number lower
bound for the ball B(A,w) n Oy (Inequality 2 of Theorem 2.7).
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Appendix A. Comparison of Our Bounds in Different Examples

In this section we compare our upper bound and lower bound theorems to key prior works. In our
notation, the main result of (Amin et al., 2019) can be written as follows.

Theorem A.1 (Amin et al. (2019)) Given a PSD symmetric covariance matrix M € Rdxd 4 pri-
vacy budget € > 0, and privacy parameters €y, €1, . . . , €4, where Zf:o g; = €. Let the eigenvalues
of M be Ay = --- = A\g. There is a polynomial time algorithm that om‘pm‘s a matrix H € Si such

that for any 3 € (0, 1), with probability at least 1 — ( + Zz 1%, Z), where

O hides the logarithmic factors of % d, and \;’s.

In the following we provide comparisons to our results for problems where the output matrix has
(nearly) the same eigenvalues as the input matrix. For simplicity, we denote by A1,..., Ay the
eigenvalues of the input matrix, and by A; the (privatized) eigenvalues of the output matrix.

Projection matrices. We first consider the case when the input matrix M is a scalar multiple of
a projection matrix of some rank k£ > 0. In this case, the first k£ eigenvalues of the input matrix all
have the same value as the top eigenvalue A1, and the remaining d — k eigenvalues are all 0.

Upper bound (Theorem 2.3): When the input matrix is a rank-k projection matrix, Theorem 2.3
gives a bound of | M — H|% < ( %) with probability at least 1 — /3, where O hides logarithmic
factors of L and k. When the input matrix is a scalar multiple of a rank-k projection matrix with

top e1genvalue A1, Theorem 2.3 gives a bound of |[M — H|% < (dk (A1 + 1)) with probability
atleast 1 — .

Upper bound in Amin et al. (2019) (Theorem A.1): When the input matrix is a rank-% projection
matrix, the error bound in Theorem A.1 is just |[M — H|% < E’, where E' = O (E% + Zle E%)
This bound is minimized (up to a constant factor) by setting the privacy budget to t(;e go = 5 and
€; = 57 foreachi > 1. Hence, E' > Q(de)

More generally, when the input matrix is a scalar multiple of a rank-k projection matrix with
top eigenvalue )\, the upper bound E’ in Theorem A.1 has £/ > Q(kd L) Thus, our bound in
Theorem 2.3 is smaller than the bound E’ of Theorem A.1 by a factor of O(d).

Lower bounds (Theorem 2.4 and Corollary 2.5): When the input matrix is a scalar multiple of a
rank-k projection matrix, our error lower bound is |M — H|% > Q(min(=“" kd=k) ,A?k)). Note that
the r.h.s. of the lower bound cannot be greater than kAf, since sup s yeo, HM H|% = O(kM})
if A is rank-k. In this case our lower bound matches our upper bound up to a factor of % if
A = Q(v/d) and a factor of )\ils if A1 < O(v/d). While Corollary 2.5 is stated in terms of
the Frobenius norm, we can also get a bound for error defined in the spectral norm by using the
fact that [M — A(M)|r < +/2min(k,d — k)||M — A(M)|2 since M and A(M) are rank-k
matrices. Thus our Corollary 2.5 also implies a lower bound of |[M — A(M)[2 > (%) with
probability at least % when the input matrix is a scalar multiple of a rank-%£ projection matrix. In
comparison, the lower bound from Kapralov and Talwar (2013), which also considers the setting
where the input and output of the algorithm are (scalar multiples of) rank-k projection matrices, is

A€ A€
|M — A(M)2 = Qe Ha-m) A1). Thus, our lower bound is larger by a factor of %e el

Matrices with condition number O(1) and large eigenvalue gaps. We consider the case where
the eigenvalues Aq, ..., \q of the input matrix M are such that the input matrix has rank k with
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condition number ’\1 = O(1) (and more generally when we may only have )\1 = O(1)) and also
2

has a gap in the elgenvalues of A\, — /\% = Q(\1).

4

Upper bound (Theorem 2.3): Theorem 2.3 gives a bound of HM H|% < ( (A + 1)) with
probability at least 1 — 3, where O hides logarithmic factors of 1 3 A1, and k.
Upper bound in Amin et al. (2019) (Theorem A.1): By letting £ = O(¢) in Theorem A.1, the term

in the error due to eigenvalue approximation is the same as O E% for both algorithms and can
0

thus be ignored. The remaining term in the bound in Theorem 2.3 is E := 0 (%) and that in
Theorem A.1is E' := O (Z?Zl %Ai) which, in turn, depends on how the total privacy budget ¢ is
distributed among the £;s. With probability 1 — £, 5\1 ~ O\ + % log %) Thus, when A1 > % log %,
A1 = ©()\1). In this case, E = O(dk)‘l) When )‘1 = 0(1) (or even if we just have the weaker
condition that ;\—; = 0(1)), E' = (dzZ 1z ) > Q(d Y2, = 1), Since 3% & = ¢, the
2
k

quantity > 2 5—11 E' is minimized when ¢; := O(%) for each i < g and ; = 0 for i > % Hence,
E > Q(dzk%) Thus, in this case, the bound E from our Theorem 2.3 is O(d) smaller than the
bound E’ from Theorem A.1.

Lower bounds (Theorem 2.4 and Corollary 2.5): If the input matrix is rank-k (A\; = 0 for ¢ > k), and
)\§ —/\% = Q(\1), then the bound in Corollary 2.5 implies that | M —A(M)[2% > Q(min(%, kA?))
with probability at least % Thus, our lower bound matches our upper bound from Theorem 2.3 up
to a factor of % if A1 > Q(+/d) and a factor of 5% - if A < O(Vd).

Wishart random matrices. We consider the setting where the input matrix M is a random sample
covariance matrix from the Wishart distribution Wishart (1928) (that is M = éX TX, where X is
an m x d matrix with i.i.d. standard Gaussian entries). As in the previous examples, we denote by
A1, ..., Aq the eigenvalues of the input matrix.

Upper bound (Theorem 2.3): Theorem 2.3 gives a bound of |M — H||% < ( (A + )) with
probability at least 5 Where O hides logarithmic factors of + 3 A1, and k.

Upper bound in Amin et al. (2019) (Theorem A.1): From concentration results for random matrices,
we have, with high probability, that A\; = O(\x) for any m, d, where k = min(m,d) is the rank

2

of M. From the discussion in the previous section we have that, whenever A\; = O (A ), the bound
2

E' of Theorem A.1 on the error | M — H|?% satisfies E' > Q(ds%) Thus, if the input matrix is a
Wishart random matrix, with high probability, the bound given in our Theorem 2.3 is O(d) smaller
than the bound E’.

Lower bound (Theorem 2.4 and Corollary 2.5): From concentration results for random matrices,
we also have that, with high probability, there is a large eigenvalue gap Ar — Az = (A1) for any
m, d, where k = min(m, d) is the rank of M. Thus, from the discussioil in th‘:e previous section,
the bound in Corollary 2.5 implies that |[M — A(M)|% > Q(min(%, kA?)) with probability at
least % Thus, our lower bound matches the upper bound from Theorem 2.3 up to a factor of % if
A1 = Q(+/d) and a factor of )%'1{6 if \y < O(+Vd).

18
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Appendix B. Preliminaries
B.1. Notation

For any vector v € C%, we denote by ||v| its Euclidean (¢2-norm) and by |v|, its £,-norm. For any
matrix M € C™*", we denote by | M || its spectral norm (¢2-operator norm), by || M |, its £,-operator
norm, and by || M |  its Frobenius norm. We use the standard definition in the Euclidean space for
inner products. For two vectors u, v € C?, we denote the inner product of them as (u, v) := u*v. For
two matrices M, N € C™*", we denote their Frobenius inner product by (M, N) := Tr (M*N).
For any d € Z, we denote by Sﬁlr — R the set of d x d positive semi-definite (PSD) real matrices.
For any d € Z,., we denote by ”Hi < C? the set of d x d PSD Hermitian matrices.

B.2. Preliminaries on Differential Privacy

The Laplace distribution with mean 0 and parameter b is defined over R as Lap(z) := %be_‘””'.

Definition B.1 (Sensitivity) Given collection of datasets D with a notion of neighboring datasets,
the sensitivity of a query function q : D — R is denoted by Aq and defined as

Ag = sup l¢(D) — a(D")h.
D,D'eD
D,D’ are neighbors

Theorem B.2 (Laplace mechanism and its differential privacy (Dwork, 2006)) For a given col-
lection of datasets D and a privacy budget € > 0, given any function f : D — RY, define the
Laplace mechanism M : D — R% as M(D) := f(D) + (Y1,...,Yy), where Y;’s are i.i.d. random
variables drawn from Lap(Af /). Then, M is e-differentially private.

Theorem B.3 (Exponential mechanism (McSherry and Talwar, 2007)) For a given collection
of datasets D with a notion of neighboring datasets, a measurable set of all possible results R,
and a privacy budget ¢ > 0, given any query function q : D x R — R, define the exponential
mechanism M : D — R as follows: For any dataset D € D, M(D) outputs an r € R sampled
from a distribution with probability density proportional to

ey [ E9(D:7)
P 2Aq ’
Then, M is e-differentially private.

Theorem B.4 (Utility guarantee for exponential mechanism (McSherry and Talwar, 2007)) As
in the setting in Theorem B.3, given a dataset D, a query function q and privacy budget ¢, let S; =
exp (— ﬁt)

{r:q(D,r) > OPT — t}, where OPT := max, q(D,r). Then, we have P[r ¢ S;] < M

where [ is the base measure of the R, the set of all possible results.

Neighboring datasets. In our setting, I/ is the universe of users. For each u € U, we have a
vector v, € C? such that |v,[2 < 1. Given a dataset D € U, define A :== Y _, v, 0¥ Twod x d
Hermitian PSD matrices A and A’ are said to be neighbors if and only if there exists u, v € C? such
that |ul, [|v]| < 1and A’ = A — uu™ + vv*.

19



MANGOUBI WU KALE THAKURTA VISHNOI

Appendix C. Differentially Private Optimization on Orbits: Proof of Theorem 2.2

The proof of Theorem 2.2 consists of four parts: the algorithm, its privacy guarantee, its utility
guarantee, and its running time.

C.1. Algorithm

We first present the algorithm in Theorem 2.2.

Algorithm 1: Differentially private unitary orbit approximation

Input : A matrix M € ’Hi c C%*4 with eigenvalues y; > --- > 4 > 0, the output matrix’s
maximum rank k € [d], a list of top k eigenvalues of the output matrix
A1 = -+ = Mg = 0, aprivacy budget e > 0

Output: A matrix H € ’Hi c Cdxd

Algorithm:

1. Define A « diag(A1,..., M\, 0,...,0) e C¥*4

2. Sample H € Oy from a distribution that is -close in infinity divergence distance to the
distribution dv(H )oc exp (ﬁ (M, H)) dup(H)

3. Output H

C.2. Privacy guarantee

To prove the privacy guarantee we first need to bound the sensitivity of the utility function (M, H ).

Lemma C.1 (Sensitivity bound) Given d and a list of eigenvalues \1 = --- = A\ = 0 for some
ke [d], let A := diag(\1, ..., A, 0,...,0) € C¥*? For any two neighboring d x d PSD Hermitian
A, A" € HY such that A" = A — uu* + vv* for some u, v such that ||ulls, [v]s < 1, and for any
PSD Hermitian matrix H € Oy, we have

|<A7H>_<A/,H>‘ < Ar

Proof Since min(0, \;) < v*Hv < max(0, A1) for any v with |[v]2 < 1,

|(A,H) — (A", H)| = [u*Hu — v*Hv| < \.

With Lemma C.1, we can prove the privacy guarantee for Algorithm 1.

Lemma C.2 (Privacy guarantee for Algorithm 1) The randomized algorithm M as described in
Algorithm 1 is e-differentially private, for the given privacy budget ¢ > (.
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Proof Given neighboring d x d PSD Hermitian matrices A, A’ € H% such that A’ = A —uu* +vv*
for some u, v with ||u|2, |v|2 < 1, and any matrix H € Oy, we want to bound the ratio of probability
density of M at H for A and A’. Let U4(H) be the output density of H for M(A) and v4(H) be
the target density of H, which is given by exp(5; (A, H)). We have Doy (74]va) < §.

e TCAH) -
va(H) SQeoA eIV, (Q) (AN SQGOA eilA ,Q)d’uA(Q)
- ecal =€ ’ . _
VA’(H) eaCALH) 61<A,Q>d
Soeon B NG, SQEOA 1A (Q)
S(AQ+EA-AQ)
<ei- SQEOA el E jl dup(Q)
Saco, 614V dua(Q)
< el max e1lA-AQ
QeOn
< e%

Using the infinity divergence bounds between v 4 and 4, we then further have that

valH) _ pa(H)/ua(H)  palH) _ ei 3

va(H)  va(H)/va(H) pa(H) = ei

C.3. Utility guarantee

In this section we prove a guarantee on the utility of Algorithm 1. Towards this end, we first prove
a covering number lemma for the unitary orbit.

Lemma C.3 (Covering number for Oy) For any ( > 0, the covering number of Oy is at most
N(Op, | - |2:¢) < (1 + %)26”‘3, with A defined in Algorithm 1.

Proof

First consider Sy, the set of k x d complex matrices with orthonormal rows. Fix any M € Si and
let U be a unitary matrix such that the first k rows of U are the rows of M. Letting || - |2 denote the
2 — 2 operator norm, we have that | M|z = |M*|2 = 1 since M*M is a PSD projection. Hence,
the set Sy can be considered a subset of the unit sphere in a dk-dimensional complex normed vector
space. By a standard result (see e.g., Lemma 6.27 in Mohri et al. (2018)), we can cover the complex
unit ball in such a space with respect to any norm by at most (1 + %)Qdk balls of radius ¢ for any
¢ > 0. By replacing each such ball B with a ball of radius 2( centered about any M € B n S}, (if
such a point exists), we have that we can cover S by at most (1 + %)de balls centered in Sy, of
radius ¢ for any ( > 0.
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Consider the map ¢ : M — M* diag(\)M, which maps Sy to Op. Given any M, M’ with
|M — M|y < ﬁ, we have

[¢(M) — (M)]2 | M* diag(A) M — M"™ diag(A) M’

< ||M*diag(A\) (M — M")|2 + (M — M')* diag(A) M|
¢ ¢
< - -
Moy Fhigy

Thus, for any ball B with radius % centered at some M € Sj, we have ¢(B n S);) contained in an

¢-ball centered at p(M) € Oy. Since ¢ is surjective, O can be covered with at most (1 + %)Qdk
balls centered in Oy of radius ¢ for any ¢ > 0. |

To prove our utility bound, we need the utility bound on the exponential mechanism (Theorem B.4).
We use the notation I' := 2?21 v;. The following lemma assumes that we can sample exactly from

the distribution proportional to exp(5; (M, H)).

Lemma C.4 (Probability bound assuming exact sampling for the sampling step in Algorithm 1)
Let the input and output be as listed in Algorithm 1. Assume H € Oy is sampled exactly from the
distribution exp(z5; (M, H)), then we have

i=1"Vi

k
T ET
P (M, ) < /\m—T] <N<0A7 I la, ) x exp (—) (a7
2 237 DY

Proof Using Theorem B.4 in this case, we have
k
S, = {H :(M,H) > me —t}.
i=1

Let Hy = UAU*, where U is the unitary matrix obtained by diagonalizing A = U diag(y)U*.
Hy is the optimal output and we have (A, Hy) = Zle Aivi. We fix any H € Op such that
|Ho — H|2 < 5. We can then apply the Holder’s inequality to get

(M, H) = <M, Hoy —{M,Ho — H)

k
> Y Ay — | Ho — H|2 Tr(M) (Using Holder’s inequality)
=1
k
= > N\ivi — [Hy — H||oT (Substitute definitions)
=1
k
>3 Ay — %F (Substitute | Ho — H|2)
i=1
k T
> 2 AYi = 5

@
Il
—
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Thus, if [Hy — H|2 < 5, then H € S%. Thus, every H contained in the ball of radius o
centered at M is also in S z. Letp be the unitarily invariant probability measure on Oy. By the
definition of covering number, the number of balls centered in O, of radius % required to cover
the set Oy is at most N(Oy, || - |2, 7). Thus, there exists some ball B= (H') centered at H' with

((Bz (H')) = N(O4, | - |2, 5p)~". Thus, since 4 is unitarily invariant,

M(Sg> > wWBx ()
= Bz

T \-1
= 2y =) -

Using Theorem B.4, with query function q(M, H) = (M, H), we have

k
P[<M,H><2Am—fl — P[H ¢S]
i=1

_ exp (_4€T17>
n(5)

T ET
N P _sr
(Oxl- I ) < exp ()

A

This gives the following alternative form of the utility bound.
Lemma C.5 (Utility bound for Algorithm 1) Let the input and output be as listed in Algorithm

1. For any (5 € (0,1), with probability at least 1 — 3, the randomized algorithm M in Algorithm 1
outputs a matrix H € Oy satisfying

k d
A 1
ik — (M, H) < O (1 (dklogZ% + 10g)> .
: £ : p
=1 =1
Proof We can choose a suitable 7 to give a utility bound on (M, H ). By letting

4dk
(2+ ZF) > o

Y

T=—
£

log <e +

since € € (0, 1), we have

Thus,

< 8. (18)
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Since H is sampled from a distribution which is §-close to the distribution exp(45; (M, H)) in
infinity divergence, by plugging in this choice of 7 together with the covering number bound of
Lemma C.3 into equation 17, we have

k
9 ET T
P [<M7 H> < Z:l)‘i%‘ - 7'] < exp <Z> X €exp <—4>\1> x N <OA7 H ) H2a 226{)

i=1"Yi

(From equation 17)

Y 1671 24
< exp (—6(7-4)\11)) (1 + 6 ) (From Lemma C.3)

T

‘We then substitute 7,

P [<M, H) < Z Nivi — <A <dk logT" + log ;) )] (Substitute 7)
<P [<M, H) < Z Nivi — T]
=1

o et =) (), 16uT 2dk
P 4\ T

( ) (1+ 16I)** (From equation 18)
= exp <— log ( (1+ 1§F)4dk)> (14 16T (Substitute 7)
- (e + W) (1 + 16T)2%
< (1+166F)4dk (1 + 16T)%%*

= ﬂ
Thus, with probability at least 1 — 3, we have

(M,H) > Z Nivi — ( (dkz log ' + log ;))

C.4. Running time

Lemma C.6 (Running time for Algorithm 1) The number of arithmetic operations required by
the algorithm Algorithm 1 is polynomial in log % AL, Y1 — Ya, and the number of bits representing

A= ()‘15)‘2,"'7)‘14:) and’y: (717727"‘7761)'

Proof This follows directly by using the algorithm from Corollary 2.7 of (Mangoubi and Vishnoi,
2021) in Algorithm 1. |
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C.5. Completing the proof of Theorem 2.2

Proof (of Theorem 2.2) The privacy Guarantee for Algorithm 1 is provided in Lemma C.2. The
utility guarantee is Lemma C.5. The running time bound for Algorithm 1 is from Lemma C.6.
|

Appendix D. Differentially Private Rank-%4 Approximation: Proof of Theorem 2.3

Our algorithm in the proof of Theorem 2.3 has two parts. The first part approximates the eigenvalues
of M and the second part is just Algorithm 1.

D.1. Algorithm

Algorithm 2: Differentially private rank-%k approximation

Input : A data matrix M € ’H‘i < €%, the rank of output matrix k € [d], a privacy budget
e>0

Output: A matrix H € H¢ < C4*4

Algorithm:

1. Compute the eigenvalues of M and let thembe A; = --- = Aq4.
2. Compute \; — \; + Lap (1), for all i € [k]
3. Sort 5\,-5 so that 5\1 =2 S\k

4. Define A «— diag(f\l,...,j\k,o, ...,0)eCdxd

5. Sample H € O, from a distribution that is g-close in infinity divergence distance to the

distribution dv(H)oc exp (m (M, H>> dp(H)

6. Output H and the list of estimated eigenvalues 5\1, ce, Ak

This algorithm has two parts. The first part (Step 1 to 2) approximates eigenvalues and is shown
to be 5-differentially private in Theorem D.1. The second part (Step 3 to 6) is Algorithm 1 with
privacy budget 5.

D.2. First part: Differentially private eigenvalue approximation

Theorem D.1 (Differentially private approximation of eigenvalues) Given a positive semidefi-
nite (PSD) Hermitian input matrix M € Hi and a privacy budget € > 0. Let the eigenvalues of M
be A1, ..., g € R. Outputting A, A, where Ny = A\ + Lap (%) is an e-differentially private
algorithm for approximating the eigenvalues of M. In addition, for any i € [d], E[\;] = \;. With
probability at least 1 — 8, |\; — A\i| = O (% log %) for all i.
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Since we need to deal with the eigenvalues, we use the following notation: For any matrix M €
C4*4, we denote A\(M) = (A1 (M), ..., \g(M)) as its eigenvalues with A\; (M) > --- = \g(M).
To prove Theorem D.1, we need the following lemma.

Lemma D.2 (Inequality for eigenvalues) Given a positive semi-definite Hermitian matrix M €
HE < C™4 and a vector v e CL Let A := M — vv*. Foranyi € [d], \i(A) < N(M). In
addition, |[\(M) — X(A)|1 = |jv]3.

Proof Let S?~! be the sphere of unit vectors in C%. For any u € S*~!, we have
u* Au = u* Mu — u*ov*u = u* Mu — (v*u)? < u*Mu.
Thus, pick any i € [d] and any subspace U < C? with dimension 4, we have

min v Au < min u*Mu. (19)
uelUnSd—1 uelUnSd—1

Thus, using the min-max theorem (Courant—Fischer—Weyl min-max principle), we have

Ai(A) = max min  u*Au
UcC¥*e: dim(U)=i ueUnSd—1

N

max min  u*Mu (equation 19 holds for any U € C?*9)
UcC¥>4: dim(U)=i ueUnS4—1

= \i(M).

This leads to \;(A) < A\;(M) for any i € [d]. In addition,

Il
0=
>
5

|
g
—

N
=

[ACM) = A(A) |
=1
d
= > (M(M) = Mi(A)) (Ni(A4) < Ai(M)
i=1
= Tr(M) — Tr(A)
= Tr(vv™)
= [v].

Using this lemma, we can then prove Theorem D.1.
Proof (of Theorem D.1) Given two neighboring PSD Hermitian matrix M, M’ € ’Hi c C¥4 50
that there exist u, v € C¢ with ||ul|a, |v]2 < 1 such that M’ = M —uu* +vv*. Let A :== M — uu®*.
Using Lemma D.2, we have

IAM) = X A1 = [ull3 < 1.

Similarly, we have
IAM') = XA 1 = [v]3 < 1.

Thus,
IMM) = MM 1 < [AMM) = MA) 1 + [AM) = MA) |1 < 2. (20)
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Thus, for any neighboring PSD Hermitian matrix M, M’ € Hi, the ¢; distance between their eigen-
value vector is at most 2. According to Defintion B.1, the sensitivity of the eigenvalue computation
is 2. Thus, outputting A; = \; + Lap (2) follows exactly the Laplace mechanism in Theorem B.2.
Thus, the eigenvalue approximation satisfies e-differential privacy.

In addition, for any S € (0, 1), with probability 1 — 3,

2 2 1 1.1
Lap ()| <ZIn==0(=1log= ).
w(2)] <2ng -0 (Gue5)

Thus, with probability at least 1 — 5,

forall i € [d]. [ |

D.3. Second part: Completing the proof

Combining Theorem D.1 and Theorem 2.2, we can prove Theorem 2.3.
Proof (of Theorem 2.3)

Running time: From Theorem D.1, the number of arithmetic operations required by the first part
of Theorem 2 (eigenvalue approximations) is O(d). From Theorem 2.2, the number of arithmetic
operations required by the second part of the algorithm is polynomial in log %, A1, and the number
of bits representing A = (A1, A2, ..., Ag).

Privacy guarantee: The first part (eigenvalue approximation) in Algorithm 2 is done by letting
each \; := )\; + Lap (). Theorem D.1 implies that this approximation is £-differentially private.
The second part of Algorithm 2 is just Algorithm 1 where we set the privacy budget to be 5. Thus,
from Lemma C.2, the second part is §-differentially private. From the composition theorem of

differential privacy (Dwork and Roth, 2014), it follows that Algorithm 2 is e-differentially private.

Utility bound: From Theorem D.1, it follows that for any /3 € (0, 1), with probability at least 1 — 3,
for all i € [k], we have |\; — \;j| < O (% log %) . Note that the values A = ()1, ..., \;) may not

be sorted. Let \ be the vector generated by sorting the entries of \in non-increasing order. For the

second part, we note that Theorem 2.2 (applied with A;s for v;s) implies that, for any 5 € (0, 1),

with probability at least 1 — 3,
koo Ay d 1

(M,H) > > Aidi — O (8 (dk: log > A; + log B)) (21)

i=1

=1
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Thus, with probability at least 1 — 5,

|M — H| = M5+ | H|F - 2(M, H)

d ko koo 5\1 d 1
< DAY AT -2 AA +20 (8 (dklogZ/\i+logﬁ>>

=1 =1 i=1 i=1
d k k N d
= A+, <A§ + A2 _zgjmz) +0 (Al (dklogZ)\i +logl>)
i=k+1 i=1 i=1 € i=1 p
d k N d
- > A%JFZ(A%»—XZ»)QJw(Al (dklogZ)\i+log1>). (22)
i=k+1 i=1 € i B

We would like to replace A1 in the last term by A1 and use Theorem D.1 to prove an upper bound

on the second term. For the former, observe that: Since with probability at least 1 — /3, ‘5\1 — )\i‘ =
0] (é log %) for all 7, and 5\1 = max; 5\1-, it follows that with probability at least 1 — £, 5\1 =

A +0 (é log %) For the latter, notice that for any vector v € R¥, Zle (N — vi)2 is minimized

when the entries in v are sorted in non-increasing order. Using these, along with equation 22, we
get that

k 1 1 d
IM-Hp < )] A?+Z(Ai—ﬂi)2+o(h+zbgﬁ (dklogZAﬁlog;))

i=k+1 i=1 =1

1 A+ Llog 4 d 1

2 € B

— |1 +0| ———= [ dklo A; + log —

5) ( e g; 5
)q—l—%log% d 1
— 2 [ dk1 i + log —

+ - ogz + ogﬁ

i=1
d
~-(k dk 1
o (ke (1)
. g 13 g
i=k+1

where O hides logarithmic factors of 2?:1 A; and % The above equation uses the fact that with

N
>
el
_l_
&
Q
PR

|
=)
[0S

Il
D=~
>

= DN
_l_

Q
N
mw‘w
5}

o0
[\o}
™|~

I
[

probability at least 1— 3, [A; — A;| = O (% log %) for all 4. Thus, we have proved the utility bounds
for Algorithm 2.

Combining the running time, the privacy guarantee, and the utility bound, we have proved The-
orem 2.3. |

Appendix E. Packing Number Lower Bound: Proof of Theorem 2.7

We will use the following result from (Szarek, 1982) which bounds the covering number N (G 1, ¢)
for the (complex) Grassmannian G4, with respect to the metric induced by the operator norm on
the projection matrices Py for the subspaces V' € G 1. (see Proposition 8 of (Szarek, 1998), and the
note about about extension to complex spaces).
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Lemma E.1 (Covering number of (complex) Grassmannian G ; ;. (Szarek, 1982, 1998)) There

exist universal constants C > ¢ > 0 such that for every unitarily invariant norm || - || and every
0 < ¢ < Dy, the covering number N(Ga, || - ||, ¢) of the (complex) Grassmannian G 4, satisfies
eDy. (gd,k) 2k(d—k) CDy. (gd,k) 2k(d—k)
(L < NG 1,0) < (FALEE)

where Dy (Ga,k) 1= subPy yeg, , [[Fu — Pv|| is the diameter of Gq ; with respect to || - ||.

In the case of the Frobenius norm, we have D . = supy veq, , [Fu—Pv[r = min(vVk, vd — k),
and in the case of the operator norm we have D)., = suby yeg, [Py — Pyl2 =1
We will also make use of the following Sin-© theorem of (Davis and Kahan, 1970):

Let A and A be two Hermitian matrices with eigenvalue decompositions

ES

A=UAU* = (U, Us) ( M Ay > ( gl* ) (23)
2

R A R A Tk

A=UAU* = (U, ) ( M i, ) < gl* ) (24)
2

(although when we apply the Sin-Theta theorem we will only need the special case where A =A).

Lemma E.2 (sin-© Theorem (Davis and Kahan, 1970)) Let A, A be two Hermitian matrices with
eigenvalue decompositions given in equation 23 and equation 24. Suppose that there are a« > 3 > 0
and A > 0 such that the spectrum of Ay is contained in the interval [c, ] and the spectrum of As
lies entirely outside of the interval (a — A, B + A). Then

14 — Al

* T OTT® <
lowt - w07 < S

where || ||| denotes the operator norm or Frobenius norm (or, more generally, any unitarily invariant
norm).

Lemma E.3 Suppose that I, is the d x d diagonal matrix with the first k diagonal entries 1 and the
remaining d — k diagonal entries 0, and let Iy, be the first k columns of Ii.. Let P be any Hermitian
rank-k projection matrix. Then there exists a d x k matrix W with orthonormal columns such that

WW* = Pand |W — It|p < |P — Ii| p.

Proof Denote by Z;, the column space of I and P the column space of P. Let §; < --- < 6 be
the k principal angles between Z;, and P. Let u1, ..., ug and vy, . . ., vg, form an orthonormal basis
for Z;, and P respectively, and where the angles between corresponding vectors u; and v; in the
two bases are equal to the i’th principle angle 0; for every ¢ € [k]. The existence of such a basis is
guaranteed by the the variational definition of principle angles between subspaces (see e.g. Bjorck
and Golub (1973)).

Let Ikl and P be the orthogonal complements of 7, and P, respectively. Let uy, 1, ..., uqbea
basis for IkL, and let vy 41, . . .,vq be a basis for PL. Let Uy = [uy,...,ux] and Vi = [v1, ..., v].
And let Us = [uk+1, R ,ud] and Vo = [Uk+1, ce ,’Ud] LetU = [Ul, UQ] and V = [Vl, VQ]

29



MANGOUBI WU KALE THAKURTA VISHNOI

Therefore, we have that

UL = Va|% = tr((Ur = VA)*(Ur — V1))
= e (UFUy — UFVi — ViUL + VEVA)
tr(UyUh) — 2tx(U Vi) + (Vi VA)
= 2k — 2tr(U;V4)

k
= 2k—22u;“vi
i=1

k
=2k — 2 cos(6;). (25)
=1

But, by the variational definition of principal angles, we also have that the largest singular values of
I}, P* are also cos(6) = cos(f2) = - - - = cos(fy), with the remaining singular values equal to 0.
Therefore, we have that
ViV = Il = [V = DhUF |7
= tr((ViVi" = UWUF)* (M Vi = UhUy))
= tr(ViV7")?) — tr((U1UF) (Vi V) — te((ViVi) (DA UT)) + te((ULUF)?)
= 2k = 2tr((ULU7)(V1VY))
= 2k — 2tr(I, P*)

k
> 2k —2 2 cos(6;), (26)
i=1

where the inequality holds since tr((U1U7) (V1V7*)) is the sum of the eigenvalues of (U U5 ) (V1 Vy*),
and the sum of the singular values of any matrix is at least as large as the sum of its eigenvalues.
Therefore, combining equation 25 a equation 26 we have that

1U1 = Villr < [VAVY" — Ii| P (27
But, since V; = V1U{'U; we also have that

Vi = Ui = [VWUF UL — DU UL P
= (ViU = L) U 7
= tr((ViUY — I)Ur)* (VU7 = 1) Un)
= tr(Uy (VWUY — I)* (ViUy — 1) Uh)
= tr((VUT — I)* (VWU — L) UL UY)
=tr((ViUy — I)* O Uy — Iy))
= |ViUf — Ii| 3
= VU OLUY — L%
= ViU Iy — Ii| %
= ViU I — I % (28)
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Therefore, combining equation 27 and equation 28 we have that
IViUE Ly, = Ikl e < ViV = Lilr 29)

Now, since U is a unitary matrix, VU™ is also unitary. But, since U1U{" = I, U; must have
all zeros below the k’th row, and Us must have all zeros above the k& + 1’st row. Therefore, the
first k& columns of VU™ are the same as the first k& columns of V;U{". Thus, the first k£ columns of
ViU must be orthonormal to each other. Since the columns of V; U7 I . are the same as the first k
columns of V1 U7, the columns of ViU I, must be orthonormal to each other as well. Therefore,
setting W = WU 1*f 1» and since V1 V" = P, from equation 29 we have that

|W — Ii|r < |P— Ik|F

where W = ;U T Iy, is a matrix with orthonormal columns.
The remaining d — k orthonormal columns of the unitary matrix W (with the first £ columns
being the columns of W) can be found by diagonalizing the projection matrix for the subspace P~.
|

Lemma E.4 (Packing number of ball inside Op) For any M € Oy, any unitarily invariant norm
Il - ||, and any § > r > 0, and denoting by B(x, || - ||,d) a ball of radius § centered at M with

respect to the normm ||| - ||, we have
PO, |l - [l )
PBOL]-11,6) 1 06 - 117 > oot
N(On, |l - 1Il, 6)
Proof Let M, M’ € Oy. Then there exists U € U(d) such that M’ = UMU*. Since || - || is
unitarily invariant, ||[WW; — Wa|| = [|U (W1 = Wo)U*|| = ||[UWLU* — UWoU*|| for any Wy, Ws €
Op. Thus, for any n € N, we have that a collection of matrices M, ..., M, is an r-packing of
B(M,|| - ||,0) if and only if UM, U*, ..., UM,U* is an r-packing of B{UMU*, || - ||, d). Thus,
for every M, M’ € O, we have that
PEBOL |- 11,8), I - 1, 7) = PBOL, |- 11,8), I - [l 7). (30)
Let My,..., My, where @ = P(O,,|| - ||,7), be an r-packing of Op. And let C, ..., Cs where
C1,...,Cp are balls of radius § centered in Op and 8 < N(Oa, || - ||, ), be a -covering of O, .

Then by the pigeonhole principle there exists ¢ € [3] such that a subset of My, ..., M, of size > %
is an r-packing of C;. Hence, P(C;,r) > % and by equation 30 we have that

PBOL - 18]l - l.r) = P(Cir)
> o
3
POl - 1l.7)
> 31
N TL8) G
|
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For any ¢ > 0 and norm ||| - ||, we define the packing number P (.S, || - ||, ) of a subset S < E of a
normed space E with metric p induced by the norm || - || to be the largest subset {x1, ..., z,}, for
any n € N, such that p(z;,z;) > .

We will now use the covering number for the Grassmannian and the Sin-O theorem to prove
Theorem 2.7.

Proof (of Theorem 2.7)

Bounding the packing number of a ball in the Grassmannian: Denote by I, € Py, the matrix
with its first k& diagonal entries 1 and each all other entries 0. Plugging in the upper and lower
bounds for the covering number in E.1 into Lemma E.4, for any k£ > 0, we get that the packing
number of any ball of radius ¢ inside any Grassmannian manifold G, ;, (which we represent by the
set of rank-k projection matrices Pg ), with center I}, € Py, 2 satisfies

Lemma E.4 P(PdJ{;’ H . HF, C)
P(B(Ii, | lF,w) 0 Pag, |- [F, Q) = NPak, | - |F,w)

_ P(Pass| - I, <)
NP | - |7, w)
N(Gak, | - |r,2¢)
~ NGaw | Ir,w)
Lemma E.1 min(w,DH,HF(gtm)c 2k(d—k)
)
min(w, vk, vVd — k)c A
= < 2C ) . (32)

Constructing the map from the Grassmannian to the orbit: For any projection matrix M €
Pa—jti+1,: defineamap v : Py_jyit1, s — U(d — j + i+ 1), from Pg_ji41, ; to the group of
(d—j+i+1) x(d—j+i+ 1) unitary matrices U(d — j + i + 1), as follows:

e (I;) = I, where [;isthe (d — j + i+ 1) x (d — j + i + 1) diagonal matrix with the first 4
diagonal entries 1 and all other entries 0, and I is the (d —j +i+ 1) x (d — j + i + 1) identity
matrix.

e (M) = U, where U € U(d — j + i + 1) is a unitary matrix such that its first ¢ columns U;
satisfy U1Uf = M, and |U — I|r < 2|M — L;| F.

We still need to show that a matrix (M) = U satisfying the above conditions exists. We can
construct the matrix ¢ (M) = U by applying Lemma E.3 twice. First, we apply Lemma E.3 which
guarantees the existence of matrix U; with orthonormal columns such that U; Uy = M and |U; —
Ii|p < | M—I;|| . Next, we apply Lemma E.3 a second time to obtain a matrix U with orthonormal
columns such that UsU5 = I — M is a projection matrix for the orthogonal complement of the space
spanned by the columns of M, and |[Uy — (I — I)||r < |(I = M) — (I — L)|r = |M — L||r.

2. Note that the choice of center here is arbitrary, and we would get the same bound regardless of choice of center since
| - || 7 is unitarily invariant.
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Define the matrix U := [Uy, Uz]. Then we have that

Uy = Lilp + U2 — (I = L)|p
2|M — L|| .

IU—=1I|r <
<

Moreover, since U;U; = M and UUS = I — M, we have that the columns of U; and U are
orthogonal to each other and hence that the matrix U isa (d —j + i+ 1) x (d — j + i + 1) unitary
matrix.

Showing that the map preserves Frobenius norm distance (lower bound): For convenience, we
denote the submatrix of any matrix H consisting of the entries in rows k,...,¢ by H|[k : ¢]. For
convenience, in the remainder of the proof, we denote the restriction of 1 to the first ¢ columns of its
output by ¥; (M) = U;. And we denote the last d — j + 1 columns of U by Us, and the restriction
of 1) to these columns by 1)3(M) = Us.

Next, consider the map ¥ : P; q_ ;441 — U(d) defined as follows:

Yr(M)[1 : i 0 Yo (M)[1 : i
V(M) := 0 I i1yx(j—i-1) 0 ;
Vi(M)[i+1:d—j+1] 0 Yo(M)[i+1:d—j+1]

where [(;_;_1)x(j—i—1) denotes the (j —i—1) x (j —i— 1) identity matrix. And define the map
Pi.a—j+i+1 — On as follows:

G(M) = V(M)A U(M)* (33)

Define A := diag(A1, ..., Ai, Aj, ..., Aq). For any projection matrices M, M’ € P; 4_j1it1, We
have

le(M) = ¢(M")|F = @ (M)AT(M)* — T (M)AT(M')* |

A
= |p(M)AY(M)* — (M )AY(M')*| ¢
> (i = Aj) % [ (M)hy (M)* — oy (M")hr (M")* ||
= (\i = Aj) x [M — M|, (34)

where the inequality holds by the Sin-© Theorem of (Davis and Kahan, 1970) (restated above as
Lemma E.2), since || - |7 is a unitarily invariant norm.
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Showing that the map preserves Frobenius norm distance (upper bound): Moreover, we also

have that

[o(M) = Alr = [6(M) — 6(Li)|
= [W(M)AY(M)* =W (L)AY (L) |

= [ (M)Ap(M)* — (L) A (L) * |

= [ (M)Ap(M)* — IAT*|

= (W (M) = D)Ap(M)* — IA(I* — (M))| F
< (M) = DAY(M)*|[p + |TA(I* = (M))|

= 2|(¥(M) — DAY(M)*|r

< 2|((M) = DA|lp x [$(M)*2

< 2|((M) = DA|r

< 2w(M) — I|F x A2

< 20 [p(M) = I F,

(35

where the second and fourth inequalities hold because the Freobenius norm is sub-multiplicative

with respect to the operator norm, and the third inequality holds because [ (M)*|2 =

1(M)* is a unitary matrix.

Bounding the packing number (subset of orbit): From equation 32, we have that

¢
P(B|(I d—jti AE s/ ) =
( < kol - HF’QA ) N Pia—jrirt, |- |F, NN J

where

min(w, M4, Aiv/d — § + De x (A — ) 2ix(d=5+1)
J = .
20 (C

Therefore, we have that there exists a {My,... My} © P; 4 j1iq1 of size J such that,

M, ~ Myl >

Vs, te[J]

and

|Ms — Ix|p < —— Vs e [J].

2)\
Therefore, plugging by equation 34 into that equation 36 we have that,

|¢(Ms) = o(My)|r > ¢ Vs, te[J]]

and, moreover, plugging equation 35 into equation 36 we have that

[o(Ms) — A|p < w Vs e [J].

34

1 since

(36)

(37)

(38)

(39)
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Since by equation 33, ¢(M), ... (M) are all in the unitary orbit O, equation 38 and equation 39
imply that ¢(M7), ... (M) is a ¢ packing for B(A,w) n O,. Therefore, the packing number of
B(A,w) n Oy is

P(B(A,w) 0 Op, - 1I,¢) = . (40)

But since | - || is unitarily invariant, we have that
P(B(A,w) n Op, |- |F, Q) = P(B(X,w) " On, [ -[,¢) VX €Ox. 41

Therefore, equation 40 and equation 41 together imply that

min(w, v, Aiv/d — 7+ De x (A — Ap)”x(d‘j*” @)

P(B(X,w) n Oz, |- |F,¢) < < 220 ¢C

forevery 1 < ¢ < j < d. Therefore, we have that

log P(B(X,w) n O, | - |lF: <)

> max 2ix(d—j+1)xlog

1<i<j<d

min(w, MV, Aivd = 5+ De x (A = )
( 2M¢C ) '

This completes the proof of equation 2.

Bounding the packing number (entire orbit, with slightly stronger bound): We can get a slightly
better bound when bounding the entire unitary orbit, using the following argument. Since

P(Pig—jriv1s| - |7,

9

¢ ) > CDH'||F(gd—j+i+1, z) X ()\z — A]) 2ix(d—j+1)

. . Dy inint ) x (= 2ix (d—j+1)
there exits a subset { M1, ... Mp} S P g—jyiv1 of sizen = (C 11 (Ga—j+ 21, )x{ ]))

such that | M, — M| p > % for all r, s € [n]. Thus, by equation 34 we have that
i Aj

[o(M) — ¢(Ms)|r > ¢, Vr s € [n]. 43)

Since we have a subset {¢(M7),...d(My,)} S Op such that ||¢p(M,) — ¢(Ms)|| > ¢ for all
7, s € [n], the packing number of O, satisfies

Dy (Ga—jrivt, ) X (N — )\j)>275x(dj+1) s

¢

Finally, since equation 44 holds for every choice of 1 < i < j < d, and D, (Ga—jrit1,i) =

Q(min(v/1,/d — j + 1)), we have that

PO |- |5 ¢) > n = <

Crnin(\ﬁ7 Vd—7+1) x (N — )\j)>2i><(d—j+1)
¢ .

This completes the proof of equation 3. |

P(On, |- |7, ¢) >  max (

1<i<j<d
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Appendix F. Lower Bound on Utility: Proof of Theorem 2.4

To prove the lower bound on the utility, we will also use the following lemma:
Lemma F.1 Forany U,V € U(d) we have

|[UAU* — VAV*|%4 = AUAU*, UNU* — VAV*)
Proof

|[UAU* — VAV*|% = (UAU* — VAV*, UNU* — VAV*)
= tr((UAU* = VAVH*(UAU* — VAV*)))
= tr((UAU* — VAV*)?)
= tr(UAU* — UAU*VAV* — VAV*UAU* + VA2V*)
= 2tr(A?) — 2tr(UAU*VAV*)
= 2tr(UA*U* — UANU*VAV¥)
= 2tr(UAU*(UAU* — VAV*)).

Lemma F.2 (Lower utility bound for unitary orbit, as a function of packing number) Suppose,
for some o« >1n > 0, that \y = --- = A\g = 0 and € > 0 are such that

d
1
2
; )‘Z < o lOg(P(B(W, 20”') a OA? H : HF72777'))) - 16502

for some § > 0, where we define r := 1/ ZZZ:l )\% and W e Oy is any matrix in the unitary orbit.>
Then for any e-differentially private algorithm A which takes as input a Hermitian matrix and
outputs a matrix in the orbit Oy, there exists a Hermitian matrix M with eigenvalues \1 = --- = A\g
such that the output A(M) of the algorithm satisfies

Z 22— (M, AM)) = n*s Z i (45)
with probability at least %
Proof Let W € Oy be such that (M, W) = 22121 A7, Define r := 24/52?:1 AZ. By the

definition of packing number, there exists a 2nr-packing £ = {U;AU?st}!"  of B(W,2ar) for
n = P(B(W,2ar),| - |r,2nr)) such that for every i, j € [n], i # j, we have

B(U AU}, nr) 0 B(U;AUS ) = &.

3. The choice of W does not matter since unitary invariance means that the packing bound depend only on the radius
of the ball we are packing, not its center.
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Consider the matrices M; = U;AU;* for each i € [n]. We would like to show that equation 45
holds for one of these matrix M;. Suppose, on the contrary, that for every i € [n], the output of the
algorithm, A(M;) = V;AV;* (where we denote by V; € U(d) a unitary matrix which diagonalizes
M), satisfies

d
(Mi, A(M;)y > (1= 176) Y A, (46)
=1
with probability at least % Let F; be the event that equation 46 is satisfied. The P(E) > %
Suppose that the event E; occurs. Then, since (M;, M;) = Zle )\%, we have that
d
(M, AM;) — Myy = (M, AM;)y — (M, My > =16 3" A7,
=1
Therefore by Lemma F.1 we have that
d
0 Y A7 > (M;, M; — A(M;))
(=1
= (U; AU}, U;AU} — V;AV)
1
~ SITAUF — VAV
1
= 5IM; = A(M)| 7 47)

That is,

d
|M; — AM;)|[3 < 20%6 ) A7,
=1
whenever the event E; occurs. Thus, since P(E;) > 3, for every i € [n], we have that

d
1
P M — AM)|E <2076 ) N7 )| = 5.
=1 2
Hence, for every i € [n],
d 1
P | |M; = AQM;) [ < 20y |8 3,07 | = 5. (48)
/=1

Inequality 48 implies that the output A(M;) of Algorithm A falls inside the Frobenius-norm ball
B (M, r) with probability at least %

For any i, j € [n], we have that M; — M; = > | z,2% for some m < |M; — M;|3% + d and
data vectors 1, . .., &, € C? for which |x,||z < 1. Thus, one can modify the data matrix M; into
any other data matrix M by replacing at most | M; — M;|% + d points in the dataset.

Since by assumption, Algorithm A is e-differentially private, we have that for any ¢, j € [n],

P(A(M;) € BIM;,0r)) _ —e(|ni—My |3 +d)
P(A(M;) € B(M;,nr)) ~
> efs(d+16a2r2)

) (49)
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since M;, M; € B(W,2ar). But by equation 48 we have that P(A(M;) € B(M;,nr)) > 1.
Therefore, equation 49 implies that

—_

ZemeldH1607) yie ). (50)

P(A(M) € B(Mj,mr) > 5

Since Mj, ..., M, is a 2nr-packing of B(W,2ar), the balls B(M;,nr), j € [n], are pairwise
disjoint. Thus,

n
1> D PAM;) € B(Mj,nr)) = n x e~=(@+16077%) (51)
Rearranging equation 51, we have that

log(n) < e(d + 16a°r?)

and hence that

d
1
6ea og(n) 5 < 2 =9 Z A7,
/=1
In other words,
d

log(P(B 2 . 2 - — 2
Z)‘Z 168(50[2 Og( ( (Wa Oé?“),” HF7 777"))) 16502 (52)

Inequality 52 contradicts the theorem statement. Thus, our assumption that

d
P (<MZ7A(MZ)> > (1 —1n%)) Z A%) >
/=1

for every i € [n] is false, and we therefore have that for some i € [n] the utility for the matrix M;
satisfies

| =

(M, A(M;)y < (1= ZAK

with probability at least %

[ |
Proof (of Theorem 2.4) Consider any 1 <14 < j < d. Setw, (, o, n, 7,6 as follows
) . . (Ai — Aj)
¢ = min(w, \Vi, A\i/d — j + 1) x TSIV (53)
1

_ _ < _ 2 2 _ ¢
anda = £, 7= £ andr = 4/3 3%, \2. Then we have § = ST T aEsTow Thus, by
Lemma 2.7, we have that for any W € Oy,
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1 d
—— log(P(B(W,2 N, 2 - —
162002 Og( ( (W> Oé?“) N O, H HF7 777“))) 16502
Z€ 1 Z 1 O d d )\2
= Aow? og(P(B(W,w) n O, | - |F;())) — 2 Z 7
YL x (d—j+1)lo (2)—di)\2 (54)
Z dew? J & w? = ¢
Consider the following equation for any § > 0:
Z 3 < c og(P(B(W,2ar) 0 On, | - [, 20))) — = 55)
16¢ 5 162602 7 ’ ’ 166a?

By plugging equation 54 into equation 55, we get that equation 55 holds for any w > 0 such that
d 2 d
Y,
Z)\§<ZZ;1 x (d—j +1)log(2 Z (56)

Rearranging equation 56 we get
9o 1. .
wo < i (d—j+1)log(2) —d.
€

Thus, by Lemma F.2 we have that for any e-differentially private algorithm A which takes as input
a Hermitian matrix and outputs a matrix in the orbit Oy, there exists a Hermitian matrix M with
eigenvalues A1 > - -- > )4 such that, with probability at least %, the output A (M) of the algorithm
satisfies

Z)\g (M, A(M 262&
<2
T4
Eq.53 . . , A= Ay)?
L mln(mQ,)\%Z,A%(d*] +1)) x (6402;%)
(57)

Since equation 57 holds for any 1 < ¢ < j < d, we must have that any e-differentially private
algorithm 4 which takes as input a Hermitian matrix and outputs a matrix in the orbit Oy, there
exists a Hermitian matrix M with eigenvalues A\; > --- > Az such that, with probability at least %
the output A(M) of the algorithm satisfies
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S N =N 1
ZA€—<MA(M) > max S g xmin (- AQZ x (d— 7 +1)log(2) —

1<i<j<d

i, d—j+1>.
(58)

L3
A2

Plugging Lemma F.1 into equation 58, we get

2 (N —A))? . 1 d ,

M — AM)|7% = Kr?juj};dw xmin | - )\2z Xx(d—j+1)— pva i, d—j+1) (59
Taking the maximum over only pairs (7, j) where 1 < i < j < d and either j = %, ori = %, and
adjusting the universal constant C, we get

2 (X — Aa1)? (1 d . d
M — A(M)|% = 11;1;2(% ez Xmin E—)\%z xd— Ve i 5
and hence that
1
|M — AM)|% = Q (max (A — Ag—1)? x min <2i X d, z)) . (60)
1<z<2 8)\1
Inequality 60 implies that
M —H|% > Q d max i X (Aj — Ag—is1)> (61)
F max(A1+/z, Vd)? 1<i<g ’ ’

with probability at least %

Inequality 61 proves Theorem 2.4 when the output is in the unitary orbit Q4. The bound for the
setting when the output is a rank-%k matrix is a special case of Corollary 2.5, and we defer the proof
of this fact to the proof of Corollary 2.5.

|

Proof (of Corollary 2.5) Define A : \/max eV DA i i X (A — Ag—is1)%. Let Abe

any e-differentially private algorithm which takes as input a Herm1t1an matrix M and outputs a
matrix H = A(M).
Consider the algorithm A defined by

A

A(M) = argmingee, |2 — A(M)] F-

Since A is just a post-processing of the output of the e-differentially private algorithm A, A must
also be e-differentially private. Thus, by Theorem 2.4 there is a matrix M € O, such that the output
H := A(M) of the projection of H onto O, satisfies

|M — H|E > A%, (62)
with probability at least % Let E be the event that equation 62 holds. Then P(E) >

1
5
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In the remainder of the proof, we suppose that the event £ occurs. Then equation 62 holds and
we have
|M - HHF > A. (63)

We consider the following two cases: |H — H|z > 2 ,and |[H — H|p < 5. In the first case where
|H — H|p > A, we must have that, since M € O, and H = argmin ze o, HZ H|p,

|M —H|r>|H~H|F
A

> (64)

Next, we consider the second case where |H — H|p < %: By equation 63 we have that | M —

H |F = A. Thus, by the triangle inequality we have

|IM —~H|p=>|M~H|p—|H~-H|r

SN
2
A
= —.
; (65)

Therefore, from equation 64 and equation 65, we have that

A
HM_HHF>5

and hence that

|M—H|E > =

d
¢ max 7 X (>\z — )\d—z‘+1)2

T4 max(A /2, Vd)? 1<i<g

whenever the event F/ occurs. Thus, since c is a universal constant, we can choose a slightly different
universal constant ¢ such that

d
¢ max i x (N — Aa—ig1)? (66)

M—H|} >
| 7> max(A1+/2, Vd)? 1<i<d

with probability at least % since P(E) > 1.

Note that, since the output of this algorithm A is allowed to be any matrix (either full rank or
restricted to rank-k), the lower bound in equation 66 applies to both the setting when the output is
rank-k for any k € [d] and when the output is full rank. Moreover, in the setting where the output
has rank k < d, we have also have that [M — H|% > Z?: 4+1 A7 with probability 1. This fact,

together with equation 66 imply that

d
d
M-—H|%2>Q E A2+ max i x (A — Adi 2.
H 7 <g_k+1 et 4max(A14/c, f) 1<i<d ( d H))
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Proof (of Corollary 2.6) Theorem 2.4 guarantees that for any e-differentially private algorithm A’,
with output eigenvalues v; = --- = g = 0, there exists an input matrix M with eigenvalues
M = -+ = ¢ = 0 such that the output A’(M) of this algorithm (with the same eigenvalues
y1 = -+ = v = 0) satisfies

|M = A (D)F =

2. d 2 d ; ) 2
where ¢* := (Z£=k+1 Ve t+ max(yi A V)2 HaX i U X (Vi = Yd—i+1)

Let I' = diag(v1,...,7q4) and A = diag(A1,...,Aqg). Let M = UT'U* be the spectral de-

composition of M. And let M = UAU* be the matrix with eigenvalues \;, ¢ € [d], and the same
eigenvectors as M.

Recall from the statement of Corollary 2.6 that H = A(M) where A is an e-differentially
private algorithm .4 which takes as input a Hermitian matrix and outputs a rank-k£ Hermitian matrix
with eigenvalues Ap, . .., Ax. Consider the following two cases:

(@) |M—M|p>|M—H|p and (ii) |M—M|p<|M—H|g.
On the one hand, if () holds, then we have
|M —H|p =M~ M|r>|M-H|r>c, (67)

where the first inequality holds since M = argmin ;. M = Z||F.
On the other hand, if (i7) holds, we still have that

|M —M|p<|M-H|r
since M = argmingcp, ||M — Z||r. Thus
|M —Hlp < |M—H|p+ M~ M|p <2|M—H|p,

which implies that
1, - 1
M~ Hlr > 5|0 = H| > 3o (68)

Thus, equation 67 and equation 68 together imply that

d d :
|M—H| > Q (Ze:kH 7+ max(yi e V)2 AKX i U X (vi — ’7d—z’+1)2> :
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