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Abstract

We provide an efficient unified plug-in approach for estimating symmetric prop-
erties of distributions given n independent samples. Our estimator is based on
profile-maximum-likelihood (PML) and is sample optimal for estimating various
symmetric properties when the estimation error € > n~'/3. This result improves
upon the previous best accuracy threshold of € 3> n~'/4 achievable by polynomial
time computable PML-based universal estimators [ACSS21||/ACSS20]. Our esti-
mator reaches a theoretical limit for universal symmetric property estimation as
[Han21] shows that a broad class of universal estimators (containing many well
known approaches including ours) cannot be sample optimal for every 1-Lipschitz
property when e < n~1/3,

1 Introduction

Given n independent samples %1, ..., 4, € D from an unknown discrete distribution p € AP the
problem of estimating properties of p, e.g. entropy, distance to uniformity, support size and coverage
are among the most fundamental in statistics and learning. Further, the problem of estimating
symmetric properties of distributions p (i.e. properties invariant to label permutations) are well
studied and have numerous applications [[Cha84, BF93,(CCG™ 12, TES7, [Fiir05, [KLR99, PBGT01,
DST13][RCS*09,GTPB0O7, HHRBOT].

Over the past decade, symmetric property estimation has been studied extensively and there have
been many improvements to the time and sample complexity for estimating different properties,
e.g. support [VV11b, WY135], coverage [ZzVVt16,/0SW16], entropy [VV1lb, WY16,UJVHW15],
and distance to uniformity [VV1la,JHW16]. Towards unifying the attainment of computationally-
efficient, sample-optimal estimators a striking work of [ADOS17] provided a universal plug-in
approach based on a (approximate) profile maximum likelihood (PML) distribution, that (approxi-
mately) maximizes the likelihood of the observed profile (i.e. multiset of observed frequencies).

Formally, [ADOS17] showed that given y1, ..., y,, if there exists an estimator for a symmetric property
f achieving accuracy € and failure probability §, then this PML-based plug-in approach achieves
error 2¢ with failure probability ¢ exp (31/n). As the failure probability § for many estimators for
well-known properties (e.g. support size and coverage, entropy, and distance to uniformity) is roughly
exp (—€2n), this result implied a sample optimal unified approach for estimating these properties
when the estimation error € > n~1/4,
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This result of [ADOS17] laid the groundwork for a line of work on the study of computational and
statistical aspects of PML-based approaches to symmetric property estimation. For example, follow
up work of [HS21] improved the analysis of [ADOS17] and showed that the failure probability of
PML is at most '€ exp(—n'/3+¢), for any constant ¢ > 0 and therefore it is sample optimal in
the regime ¢ >> n~'/3. The condition € > n /3 on the optimality of PML is tight [Han21], in the
sense that, PML is known to be not sample optimal in the regime e < n~!/3. In fact, no estimator
(that obeys some mild conditions), is sample optimal for estimating all symmetric properties in the
regime € < n~'/3; see Section [2|after Theorem [2.6|for details.

We also remark that the statistical guarantees in [ADOS17, [HS21]] hold for any S-approximate
PM for suitable values of 8. In particular, [HS21] showed that any S-approximate PML for
B > exp(—n'~¢") and any constant ¢ > 0, has a failure probability of §'~¢exp(n!/3+c 4 pl=<")
for any constant ¢ > 0. These results further imply a sample optimal estimator in the regime
€ > n~min(1/3.¢'/2) for properties with failure probability less than exp(—e2n). Note that better
approximation leads to a larger range of e for which the estimator is sample optimal.

Regarding computational aspects of PML, [CSS19a] provided the first efficient algorithm with a
non-trivial approximation guarantee of exp(—n?/3logn), which further implied a sample optimal
universal estimator for € > n~'/6. This was then improved by [ACSS21] which showed how to
efficiently compute PML to higher accuracy of exp(—/nlogn) thereby achieving a sample optimal
universal estimator in the regime € > n~!/4. The current best polynomial time approximate PML
algorithm by [ACSS20] achieves an accuracy of exp(—k logn), where k is the number of distinct
observed frequencies. Although this result achieves better instance based statistical guarantees, in the
worst case it still only implies a sample optimal universal estimator in the regime € > n /4,

In light of these results, a key open problem is to close the gap between the regimes € > n~'/3 and
€ > n~ /4, where the former is the regime in which PML based estimators are statistically optimal
and the later is the regime where efficient PML based estimators exist. In this work we ask:

Is there an efficient approximate PML-based estimator that is sample optimal for € > n~1/3.

In this paper, we answer this question in the affirmative. In particular, we give an efficient PML-based
estimator that has failure probability at most ' ~¢ exp(n'/3+¢ 4+ n1=<"), and consequently is sample
optimal in the regime ¢ > n~'/3. As remarked, this result is tight in the sense that PML and a broad
class of estimators are known to be not optimal in the regime e < n~1/3.

To obtain this result we depart slightly from the previous approaches in [ADOS17,/CSS19a,|ACSS21].
Rather than directly compute an approximate PML distribution we compute a weaker notion of
approximation which we show suffices to get us the desired universal estimator. We propose a notion
of a S-weak approximate PML distribution inspired by [HS21] and show that an exp(—n'/?log n)-
weak approximate PML achieves the desired failure probability of §1—¢ exp(nl/ 3+¢) for any constant
¢ > 0. Further, we provide an efficient algorithm to compute an exp(—n'/? log n)-weak approximate
PML distribution. Our paper can be viewed as an efficient algorithmic instantiation of [HS21].

Ultimately, our algorithms use the convex relaxation presented in [CSS19a,|/ACSS21] and provide
a new rounding algorithm. We differ from the previous best exp(—klogn) approximate PML
algorithm [[ACSS20] only in the matrix rounding procedure which controls the approximation
guarantee. At a high level, the approximation guarantee for the rounding procedure in [ACSS20] is
exponential in the sum of matrix dimensions. In the present work, we need to round a rectangular
matrix with an approximation exponential in the smaller dimension, which may be infeasible for
arbitrary matrices. Our key technical innovation is to introduce a swap operation (see Section[4.1)
which facilitates such an approximation guarantee. In addition to a better approximation guarantee
than [[ACSS20], our algorithm also exhibits better run times (see Section .

Organization: We introduce preliminaries in Section|1.1} In Section|2, we state our main results
and also cover related work. In Section E, we provide the convex relaxation to PML studied in
[CSS19a, |ACSS21]. Finally, in Section E, we provide a proof sketch of our main computational
result. Many proofs are then differed to the appendix.

! B-approximate PML is a distribution that achieves a multiplicative S-approximation to the PML objective.



1.1 Preliminaries

General notation: For matrices A,B € R**!, we use A < B to denote that A;; < Byj for all
i € [s] and j € [t]. We let [a,b] and [a, b]r denote the interval > a and < b of integers and reals
respectively. We use O(+), Q(-) notation to hide all polylogarithmic factors in n and N. We let
ap > by, to denote that a,, € Q(b,n°) or b, € O(n"“a,,), for some small constant ¢ > 0.

Throughout this paper, we assume we receive a sequence of n independent samples from a distribution

p € AP, where AP e {q € [0,1]F|||q||, = 1} is the set of all discrete distributions supported on

domain D. Let D" be the set of all lengt]h n sequences of elements of D and for y" € D" let y
denoting its ith element. Let f(y™, x) def [{i € [n] | y? = x}| and p,, be the frequency and probability
of x € D respectively. For a sequence y" € D", let M = {f(y", z) },ep\{0} be the set of all its
non-zero distinct frequencies and my, my, . .., mpy be these distinct frequencies. The profile of a
sequence y" denoted ¢ = ®(y™) is a vector in ZMI, where ¢; e H{z € D|f(y",2) = m,;}| is
the number of domain elements with frequency m;. We call n the length of profile ¢ and let ®"
denote the set of all profiles of length n. The probability of observing sequence y™ and profile ¢ for

distribution p are P(p, ") = [[,cp P ) and P(p, ¢) = Do (yrenn | d(ymy—et PP Y").

Profile maximum likelihood: A distribution p, € AP is a profile maximum likelihood (PML)
distribution for profile ¢ € ®" if p, € argmax,cap P(p, ¢). Further, a distribution pg is a (-

approximate PML distribution if P(pi, ¢) > B - P(p,, ¢). For a distribution p and a length n, let X

be a random variable that takes value ¢ € ®™ with probability P (p, ¢). We call H(X) (entropy of X)
the profile entropy with respect to (p, n) and denote it by H(®", p).

Probability discretization: Let R ef {ri}ie[1,q be a finite discretization of the probability space,

where r; € [0,1]g and ¢ def IR|. We call q € [0,1]F a pseudo-distribution if ||q||; < 1 and a

discrete pseudo-distribution with respect to R if all its entries are in R as well. We use Agscudo and
AP to denote the set of all pseudo-distributions and discrete pseudo-distributions with respect to R
respectively. In our work, we use the following most commonly used [[CSS19a,|/ACSS21}|ACSS20]

probability discretization set. For any o > 0,
1 » 1 A
R,. < {1}U {W(l +n~%)" [foralli € Zsg such that o (1 +n"?)" < 1} NG

For all probability terms defined involving distributions p, we extend those definitions to pseudo
distributions q by replacing p,, with q_, everywhere.

See ?? for the definition of an estimator and optimal sample complexity.

2 Results

Here we provide our main results. In our first result (Theorem @, we show that a weaker notion of
approximate PML suffices to obtain the desired universal estimator. Later we show that these weaker
approximate PML distributions can be efficiently computed (Theorem [2.3).

Definition 2.1. Given a profile ¢, we call a distribution p’ € AP B-approximate PML distribution
with respect to Rif P (p', ¢) > 3 - maxgcap P (m, (Z)) .

The above definition generalizes S-approximate PML distributions which is simply the special case
when R = [0, 1]g. Using our new definition, we show that for a specific choice of the discretization
set R,, 1 /3, a distribution p’ that is an approximate PML with respect to R,, ; /5 suffices to obtain a
universal estimator; this result is formally stated below.

Theorem 2.2 (Competitiveness of an approximate PML w.r.t R). For symmetric property f, suppose
there exists an estimator f that takes input a profile ¢ € ®" drawn fromp € AP and satisfies,

P(If(p) — Flo) = ) <4



then for R = R,, 1 /3 (See Equation ), a discrete pseudo distribution ¢' € AY such that q'/||q'|1 is
an exp(—O(|R|log n))-approximate PML distribution with respect to the R satisfies,

* (b (i) -1

The proof of the above theorem is implicit in the analysis of [HS21]], however we provide a short
simpler proof using their continuity lemma (Lemma 2 in [HS21]). Note that the bound on the failure
probability we get is the same asymptotically as that of exact PML from [HS21], which is known to
be tight [Han21]. Furthermore, to achieve such an improved failure probability bound all we need
is an approximate PML distribution with respect to R, for some R which is of small size. Taking
advantage of this fact and building upon [[CSS19a, ACSS21], we provide a new rounding algorithm
that outputs the desired approximate PML distribution with respect to R.

> 26) < ote eXp(O(n1/3+C)), for any constant ¢ > 0.  (2)

Theorem 2.3 (Computation of an approximate PML w.r.t R). We provide an algorithm that given
a probability discretization set R = R,, o, for oo > 0 (See Equation (]I)) and a profile ¢ with k

distinct frequencies, runs in time O (\R| + m(ETRD (min(|R|,n/k)k* + min(|R|, k:)k;Q)), where

w < 2.373 is the current matrix multiplication constant [Will2,\Gall4, |AW21]] and returns a pseudo
distribution ¢' € AY such that,

P < q// ,¢> > exp (—O(min(k, |R|)logn)) - max P (q,¢> .
lg'[1 gscaf  \llglh

When R = R,, ;, our algorithm computes an exp(—O(klogn)) approximate PML distribution,
therefore our result is at least as good as the previous best known approximate PML algorithm due
to [ACSS20]]. In comparison to [ACSS20], our rounding algorithm is simpler and we suspect, more
practical. We provide a more detailed comparison to it later in this section.

Applications: Our main results have several applications which we discuss here. First note that,
combining Theorem 2.2]and 2.3]immediately yields the following corollary.

Corollary 2.4 (Efficient unified estimator). Given a profile ¢ € ®™ with k distinct frequencies, we
can compute an approximate PML distribution q' that satisfies Equation (2) in Theoremin time

O <m (min(n'/3,n/k)k* + min(n'/3, k:)k;Q))

For many symmetric properties the failure probability is exponentially small as stated below.

Lemma 2.5 (Lemma 2 in [ADOS17], Theorem 3 in [HS21])). For distance to uniformity, entropy,
support size and coverage, and sorted {1 distance there exists an estimator that is sample optimal
and the failure probability is at most exp(—e*n'~%) for any constant o > 0.

The above result combined with Corollary immediately yields the following theorem.

Theorem 2.6 (Efficient sample optimal unified estimator). There exists an efficient approximate
PML-based estimator that for € > n~'/3 and symmetric properties such as, distance to uniformity,
entropy, support size and coverage, and sorted {1 distance achieves optimal sample complexity and
has failure probability upper bounded by exp(—n'/?).

As our work computes an exp(—O(klogn)) approximate PML, we recover efficient version of
Lemma 2.3 and Theorem 2.4 from [ACSS20]. The first result uses exp(—O(klogn)) approximate
PML algorithm to efficiently implement an estimator that has better statistical guarantees based on
profile entropy [HO20] (See Section[I.T). The second result provides an efficient implementation of
the PseudoPML estimators [[CSS19b,|HO19]. Please refer to the respective papers for further details.

Tightness of our result: Recall that [HS21]] showed that the failure probability of an (approximate)
PML based estimator is upper bounded by 6'~¢ exp(—n'/3%¢), for any constant ¢ > 0. This result
further implied a sample optimal universal estimator in the regime € > n~!/3 for various symmetric
properties (Theorem [2.6). In our work, we efficiently recover these results and a natural question to
ask here is if these results can be improved.

As remarked earlier, [Han21|] showed that the condition for optimality of PML (e > nt 3)isin
some sense tight. More formally, they showed that PML is not sample optimal in estimating every



1-Lipschitz property in the regime e < n~'/3. In fact, the results in [Han21] hold more broadly for
any universal plug-in based estimator that outputs a distribution p satisfying,

max E[[p — p[;*"**! < A(n)V/k/n
peAD

where A(n) < n? for every v > 0 and ||p — q[5ted def MiNpermutations o ||P — 4, /|1 denotes the

sorted ¢, distance between p and q. In other words, if an estimator is based on a reasonably good
estimate of the true distribution p (in terms of sorted-¢; distance), then it cannot be sample optimal
for every 1-Lipschitz property. Furthermore, many well-known universal estimators including PML
and LLM [HJW 18] indeed provide a reasonably good estimate of the true distribution and therefore
cannot be sample optimal in the regime ¢ < n~'/3. Please refer to [Han21] for further details.

Comparison to approximate PML algorithms: All prior provable approximate PML algo-
rithms [[CSS19a, | ACSS21} |ACSS20] have two key steps: (Step 1) solve a convex approximation to
the PML and (Step 2) round the (fractional) solution to a valid approximate PML distribution.

A convex approximation to PML was first provided in [CSS19a] and a better analysis for it is shown in
[ACSS21]. In particular, [CSS19a] and [[ACSS21] showed that an integral optimal solution to step 1
approximates the PML up to accuracy exp(—n?/3logn) and exp(— min(k, |R|) log n) respectively,
where k and |R| are the number of distinct frequencies and distinct probability values respectively.
In addition to the loss from convex approximation, the previous algorithms also incurred a loss in
the rounding step (Step 2). The loss in the rounding step for the previous works is bounded by
exp(—n?/3logn) [CSS19a], exp(—+/nlogn) [ACSS21] and exp(—k log n) [ACSS20].

In our work, we show that there exists a choice of R (=R, 1 /3) that is of small size (R| < nt/3)
and suffices to get the desired universal estimator. As |R| < n'/3, our approach only incur a loss of
exp(—min(k, |R|)logn) € exp(—n'/3logn) in the convex approximation step (Step 1). Further-
more for the rounding step (Step 2), we provide a new simpler and a practical rounding algorithm
with a better approximation loss of exp(—O(min(k, |R|)logn)) € exp(—O(n~/3logn)).

Regarding the run times, both [ACSS20] and ours have run times of the form 7so1ve +7sparsity + Trounds
where the terms correspond to the time required to solve the convex program, sparsify and round
a solution. In our algorithm, we pay the same cost as [ACSS20] for the first two steps but our run
time guarantees are superior to theirs in the rounding step. In particular, the run time of [ACSS20] is
shown as a large polynomial and perhaps not practical as their approach requires enumerating all the
approximate min cuts. In contrast, our algorithm has a run time that is subquadratic.

Other related work PML was introduced by [OSS™04]]. Many heuristic approaches have been pro-
posed to compute approximate PML, such as the EM algorithm in [OSS™04], an algebraic approaches
in [ADM™ 10|, Bethe approximation in [Von12]| and [Von14], and a dynamic programming approach
in [PJW17]. For the broad applicability of PML in property testing and to estimate other symmetric
properties please refer to [HO19]. Please refer to [HO20] for details related to profile entropy. Other
approaches for designing universal estimators are: [VV11b] based on [ET76], [HIW 18] based on
local moment matching, and variants of PML by [CSS19b, [HO19] that weakly depend on the target
property that we wish to estimate. Optimal sample complexities for estimating many symmetric prop-
erties were also obtained by constructing property specific estimators, e.g. support [VV11b, WY135],
support coverage [OSW16, ZVVT16], entropy [VVIIb, WYT16, JVHW13], distance to unifor-
mity [VVI11al THW16], sorted ¢; distance [VV11a, HIW18], Renyi entropy [AOST14,[AOST17],
KL divergence [BZLV 16, HIW16] and others.

Limitations of our work One of the limitations of all the provable approximate PML algo-
rithms [[CSS19a, IACSS21, |IACSS20] (including ours) is that they require the solution of a convex
program that approximates the PML objective and all these previous works use the CVX solver which
is not practical for large sample instances; note that our results hold for small error regimes which
lead to such large sample instances. Therefore, designing a practical algorithm to solve the convex
program is an important future research direction. As discussed above, local moment matching
(LLM) based approach is another universal approach for property estimation. It is unclear which of
the two (PML or LLM) can lead to practical algorithms.



3 Convex relaxation to PML

Here we restate the convex program from [CSS19a] that approximates the PML objective. The
current best analysis of this convex program is in [ACSS21]. We first describe the notation and later
state several results from [CSS19a, ACSS21] that capture the guarantees of the convex program.

Notation: For any matrices X € R**¢ and Y € R"*¢, we let concat(X,Y) denote the matrix
W € R0 %€ that satisfies, W, ; = X, j forall i € [a] and j € [c] and W, ; ; = Y;; forall i € [b]

and j € [c]. Recall we let R def {ri}ic[q be a finite discretization of the probability space, where

r; € [0,1]g and £ f IR|. Let r € [0, 1]§ be a vector whose 4’th element is equal to r;.

Lemma 3.1 (Lemma 4.4 in [CSS19a]). Let R = R,, , for some o > 0. For any profile ¢ € ®" and
distribution p € AP, there exists a pseudo distribution ¢ € AY that satisfies P(p, ¢) > P(q, ¢) >
exp (—an — 6) P(p, ¢) and therefore,

max P(p, ¢) > max P(q,®) > exp (—an — 6) max P(p, o) .
PEAP

pEAD qEA,?

For any probability discretization set R, profile ¢ and pseudo distribution q € AR, define:
7p {x e REOH ) X1€ 7, [X1]; = ¢, forall j € [1,k] and r" X1 < 1} 0

zZ e &t {X e RO ’ X1]; = ¢, forall j € [1,k] and r' X1 < 1} . @)

The j’th column corresponds to frequency m; and we use mg 100 capture the unseen elements.
Without loss of generality, we assume my < m; < --- < my. Let C;; def m, logr; for all i € [{]
and j € [0, k]. The objective of the optimization problem is follows: for any X € Rgo[o’k] define,

def
g(X) & exp( 3 [CiXy — Xy logXig) + Z[Xl]ilog[Xl]i) . )
i€[4],7€[0,k] i€[{]

For any q € AR, the function g(X) approximates the P(q, ¢) term and is stated below.

Lemma 3.2 (Theorem 6.7 and Lemma 6.9 in [ACSS21]). Let R be a probability discretization
set. For any profile ¢ € ®" with k distinct frequencies the following statements hold for a =
min(k, |R|) logn: exp (—O(a)) - Cy - maxy o g(X) < maxear P(g,¢) < exp (O (a)) - Cy -
Maxy. ;o g(X) and max,c np P(g, ¢) < exp (O (min(k, [R|) logn)) -C(b-maXXeZlq;,frac g(X) , where

def n!

Cy = = is a term that only depends on the proﬁle.

[Tep,m(ms)®

The proof of concavity for the function g(X) and a running time analysis to solve the convex program
are provided in [CSS19a]. For any X € 7%, a pseudo-distributions associated with it is defined below.

Definition 3.3. For any X € Z2, the discrete pseudo-distribution qx associated with X and R is

defined as follows: for arbitrary [X1]; number of domain elements assign probability r;. Further

Px def qx/|lax]|1 is the distribution associated with X and R.

Note that qy is a valid pseudo-distribution because of the third condition in Equation (E) and these
pseudo distributions pyx and qy satisfy the following lemma.

Lemma 3.4 (Theorem 6.7 in [ACSS21]). Let R and ¢ € ®" be a probability discretization set

and a profile with k distinct frequencies. For any X € Z%, the discrete pseudo distribution qy
and distribution py associated with X and R satisfy: exp (—O(klogn)) Cy - g(X) < P(gy,¢) <

]P)(pX7¢) .

The theorem statement in [ACSS21] is only written with an approximation factor of exp(O(klogn)).
However, their proof provides a stronger approximation factor which is upper bounded by the non-negative
rank of the probability matrix, which in turn is upper bounded by the minimum of distinct frequencies and
distinct probabilities. Therefore the theorem statement in [ACSS21] holds with a much stronger approximation
guarantee of exp (O (min(k, |R|) logn)).




4 Approximate PML algorithm

Here we provide a proof sketch of Theorem [2.3]and provide a rounding algorithm that proves it. Our
rounding algorithm takes as input a matrix X € Zﬁ’frac which may have fractional row sums and
round it to integral values. This new rounded matrix Xg,,) corresponds to our approximate PML
distribution (See Definition[3.3). The description of our algorithm is as follows.

Algorithm 1 ApproximatePML(¢,R = R,, )
Let X be any solution that satisfies, log g(X) > maxy s mac logg(Y) — O (min(k, [R|) logn).
R

X' = sparsify(X).

(A,B) = swapmatrixround(X').

(Xﬁnala Rﬁnal) = Create(A7 Ba R)

Let p’ be the distribution with respect to Xgua1 and Rgpa1 (See Definition .
Return q = discretize(p’, ¢, R)

SAR AN A

We now provide a guarantee for each of these lines of Algorithm|[I] We later use these guarantees to
prove our final theorem (Theorem|[2.3). The guarantees of the approximate maximizer X computed in
the first step of the algorithm are summarized in the following lemma.

Lemma 4.1 ([CSS19a, ACSS21]). Line [ of the algorithm can be implemented in
O(IR|k* + |R|*k) time and the approximate maximizer X satisfies: C, - g(X) >
exp (—O (min(k, |R[) logn)) max,e ar P(g, ¢) -

The guarantees of the second step of our algorithm are summarized in the following lemma. Please
refer to [ACSS20] for the description of the procedure sparsify. We use this procedure so that we
can assume |R| < k + 1 as we can ignore the zero rows of the matrix X.

Lemma 4.2 (Lemma 4.3 in [ACSS20])). For any X € Zf;’frac, the algorithm sparsify (X) runs in time
O(IR| k) and outputs X' € Z3'™ such that: g(X') > g(X) and [{ieq] [X’?]i >0} <k+1.

To explain our next step, we need to define a new operation called the swap.
Definition 4.3. Given a matrix A, indices ¢; < 49, j1 < j2 and a parameter ¢ > 0, the operation
swap(A, i1, iz, j1, j2, €) outputs a matrix A’ that satisfies,

Ai’j—&—efori:il,j:jl Ai7j—efori:i1,j:j27

A;J: Aiyjfefori:ig,j:jl Ai7j+€f0ri:i2,j:j27 (6)

A;; otherwise.
Definition 4.4 (Swap distance). A’ is z-swap distance from A, if A’ can be obtained from A through
a sequence of swap operations and the summation of the value €’s in these operations is at most x,
i.e. there is a set of parameters {(i(ls), ig‘s),j§s),j§s), e(s))}se[t], where Zse[t] ¢®) < z, such that
A®) = swap(AGD 319 38 5 5 () for s € [t], where A® = A and A®) = A,

The following lemma directly follows from Definition 4.3]and Definition [4.4]

Lemma 4.5. For any matrices A,A" € R**?, ifA' is x-swap distance from A for some x > 0, then
e - T T

Al =Al andA" 1 =A 1.

Recall that our objective g(X) contains two terms: (1) the linear term Ziem E[0,K] C;;X;; and (2)

the entropy term .. [X?L log[X?]i = 2 icle,jelo.k) Xij log Xi;. The swap operation always

increases the first term, and in the following lemma we bound the loss due to the second term.

Lemma 4.6. IfA" € R/*[0H is x-swap distance from A € Zf;’frac, then, A’ € Z;Z;’frac and g(A') >
exp(~O(x log n))g(4).

One of the main contributions of our work is the following lemma, where we repeatedly apply swap
operation to recover a matrix A which exhibits several nice properties as stated below.



%
Lemma 4.7. For any matrix A € R®** (s < t) that satisfies A" 1 € ZL,. The algorithm
swapmatrixround runs in O(s?t) time and returns matrices A" and B such that,

- — —
« A is O(s)-swap distance from A, A’ T =A1 andA'" 1 =A" 1.

« 0<B;; <Aj,foralli € [s|and j € [t], BT €Z>0,BT1 € Zt yand |A'~ B[y < O(s).

The above lemma helps us modify our matrix X to a new matrix A that we can round using the create
procedure. The guarantees of this procedure are summarized below.

Lemma 4.8 (Lemma 6.13 in [ACSSZl]) Forany A € Zy™ C RO ana B € REOM

such that B < A, B T e zt, B'T € ZM and l|A —BJ|j1 <t The algorlthm create(A B.R)
runs in time O((k) and returns a solution A" and a probability discretization set R’ such that

IR'| < |R| + min(k +1,t), A’ € Zf;/ and g(A") > exp (—O (tlogn)) g(A) .

As our final goal is to return a distribution in AR, we also use the following discretization lemma.

Lemma 4.9. The function discretize takes as input a distribution p € AP with ¢’ distinct proba-
bility values, a profile ¢, a discretization set of the form R = R,, , for some o > 0 and outputs

a pseudo distribution ¢ € AY such that: P (ﬁ,gﬁ) > exp(—O(min(k, |R|) + min(k, ¢') +
0?n) log )P (5, 6) .

In Section[5} we use the guarantees stated above for each line of Algorithm[I]to prove Theorem
The description of the function discretize is specified in the proof of Lemmal4.9] We describe the
procedure swapmatrixround and provide a proof sketch of Lemma4.7|in Section 4.1}

4.1 Description of swapmatrixround and comparison to [ACSS20]

Here we describe the procedure swapmatrixround and compare our rounding algorithm to [ACSS20].
Both of [ACSS20] and our approximate PML algorithm have four main lines (I-f); we differ from
[ACSS20] in the key LmeL This line in [ACSS20] invokes a procedure called matrlxround that

takes as mput amatrrx A € RY*19*] and outputs a matrix B € R¥[%*] such that: B < A, B Te Z5,,

BT e Z[ >0 Jand |A —BJj1 < O(¢+ k). Such a matrix B is crucial as the procedure create uses B
to round fractional row sums of matrix A to integral values. The error incurred in these two steps is
at most exp(O(||A — B||1logn)) € exp(O((¢ + k)logn)). As the procedure sparsify allows us to
assume ¢ < k+ 1, we get an exp(—k log n) approximate PML using [ACSS20]. However, the setting
that we are interested in is when ¢ < k; for instance when ¢ € O(n'/?) and k € ©(y/n). In these
settings, we desire an exp(—O(min(¢, k) logn)) € exp(—O(£logn)) approximate PML. In order
to get such an improved approximation using [ACSS20], we need a matrix B satisfying the earlier
mentioned inequalities along with ||[A—B||; < O(min(k, £)). However, such a matrix B may not exist
for arbitrary matrices A and the best guarantee any algorithm can achieve is ||A — B||; € O(¢ + k).

To overcome this, we introduce a new procedure called swapmatrixround that takes as input, a
matrix A and transforms it to a new matrix A’ that satisfies: g(A") > exp(—O(min(k, £) log n))g(A)
Furthermore thrs transformed matrix A’ exhibits a matrix B that satisfies the guarantees: B < A,
BT z5,, BT e Zko and [|[A" — BJ||; < O({). These matrices A" and B are nice in that we can
invoke the procedure create, which would output a valid distribution with requrred guarantees. In the
following we provide a description of the algorithm that finds these matrices A" and B.

Algorithm 2 swapmatrixround(A)

Let A = A and D = 0.
forr=1...¢do
(Y, j) = partialRound(AT~Y | r)
A" = roundiRow(Y, 7, 7).
D™ — pr—1 +Y— AT
end for
Return A’ = D® + A and B = A,

AR A R ol ey




Our algorithm includes two main subroutines: partialRound and roundiRow. At each iteration
1, the procedure partialRound considers row ¢ and modifies it by repeatedly applying the swap
operation. This modified row is nice as the procedure roundiRow can round this row to have an
integral row sum while not affecting the rows in [¢ — 1]. By iterating through all rows, we get the
required matrices A’ and B that satisfy the required guarantees. In the remainder, we formally state
the guarantees achieved by the procedures partialRound and roundiRow.

Lemma 4.10. The algorithm partialRound takes as inputs X € RZ;O[O’H and i € [£—1] that satisfies

the following, [X?]i/ € Z> foralli' € [1,i—1] and [XTT)]J» € Z>g forall j € [0, k], and outputs

amatrix Y € Rixo[o’k]

and an index j' such that:
* Y is within 3-swap distance from X.
i—1 - -
* Y,y >oand Y, Yy + Y0 —o0 € Lso, whereo=[X1]; — [[X1];].
Furthermore, the running time of the algorithm is O(Lk).

Noti> that by Lemma IAQL if Y is within 3-swap distance from X, then Y? = X_1> and YT_1> =

X'T.

Lemma 4.11. The algorithm roundiRow takes as inputs Y € Rixo[o,k]’ an column index j € [0, k]
- - i—

and a row index i € [{ — 1] such that: Y' 1 € Z[S’Ok}, Yij >oand Y5 Yuj + Yij — 0 € Lo,

— — -
where o = [Y 1']; — |[Y 1);|. Outputs a matrix X € RZZXO[O’IC] such that,

* X<Yand | X-Y|1 <1

« X1y = Y1)y foralli' € [i —1], [X1; € Zso, and X' 1 € 7%,

We defer the description of all the missing procedures and proofs to appendix.

5 Proof of Main Result (Theorem [2.3)

Here we put together the results from the previous sections to prove, Theorem

Proof of Theorem[2.3] Algorithm [T achieves the guarantees of Theorem In the remainder of

the proof, we combine the guarantees of each step of the algorithm to prove the theorem. To-
ward this end, we first show the following two inequalities: Xgna € Zﬁﬁ y and g(Xgna) >

exp(—O(min(k, |R|)logn))g(X). By Lemma the Line 1 of Algorithm E returns a solution
¢,frac .
XeZy that satisfies,

C - 8(X) = exp (O (min(k, IR])log m)) max P(a.6) . )
qeAp

By Lemma the Line 2| of Algorithm takes input X and outputs X’ such that
X' € 2y and g(X') > g(X), ®)

and |{i € [{] | [X'_l)]i > 0}| < k + 1. As the matrix X' has at most k + 1 non-zero rows, without
loss of generality we can assume |R| < k + 1 (by discarding zero rows).

As matrix X' € Zﬁ’fmc, we have that X' has integral column sums and by invoking Lemmawith
parameters s = |[R| and ¢t = k + 1, we get matrices A and B that satisfy guarantees of Lemma

As[AT]; = [X'T]; foralli € [], [AT 1], = [X'T T, forall j € [0,k] and X' € ZL™ we
immediately get that A € Z%™™°. Further note that A is within O(|R|) = O(min(|R|, k))-swap

distance from X’ and by Lemma we get that g(A) > exp(—O(min(|R], k) logn))g(X'). To
summarize, we showed the following inequalities,

A € 25" and g(A) > exp(—O(min(|R], k) logn))g(X’) . )



Note that, Lemmaléﬁ‘also outputs a matrix B that satisfies: B < A, B? e 7t BT? € 70k and
|A — B|l; < O(min(|R], k)). These matrices A and B satisfy the conditions of Lemma [4.8| with
parameter value t = O(min(|R|, k)). Therefore, the procedure create takes in input matrices A, B
and returns a solution (Xgnal1, Ranal) such that |Rana| < |R| + min(R, k) < 2|R| and,

Xfinal € Zgy,  and g(Xgnal) > exp(—O(min(|R|, k) logn))g(A) . (10)

As Xgpal € Zﬁﬁm, by definition Deﬁnitionand Lemma the distribution p’ satisfies,
P (p’, ¢) > exp(—O(min(k, [Rgna|) log 7)) Cyg(Xenar) > exp(—O(min(k, [R[))logn))Cyg(A)

> exp(—O(min(k, |R]) log n))Cs8(X') > exp(—O(min(k, [R]) log n)) Cyg(X)

> exp(—O(min(k, |R]|) logn)) max P(q, @) .

qeAP

In the second inequality we used Equation (10) and |Rgnai| < 2|R|. In the third, fourth and fifth
inequalities, we used Equation (9), Equation (8) and Equation (7) respectively.

Recall we need a distribution that approximately maximizes maxge AP P(-31- Tal? ¢) instead of just
maXye AP P(q, ¢). In the remainder of the proof we provide a procedure to output such a distribution.

For any constant ¢ > 0, let ¢ - R e {c-r;|r; € R}. Forany q € A®, as ||q||; satisfies:
min < ||q|l1 < 1, we get that,

max , max max P(q, o) . (11
mag P d) = max | max Pla,0)

The above expression holds as the maximizer q* of the left hand side satisfies: q* € Aa Jllall) R

Define ¢ < {(1 + B)'}icfq for some 5 € o(1), where a € O(%log(l/rmin)) is such that

Imin(1 + 8)* = 1. For any constant ¢ € [1,1/ryn]r, note that there exists a constant ¢ € C
such that ¢(1 — 8) < ¢’ < c. Furthermore, for any distribution q € AR with ||q|; = 1/c, note
that the distribution ' = ¢/q € AL ; and satisfies: P(m,qﬁ) = P(c-q,9) = P(5q,¢) =

n , n
(£)"P(d',¢) . Therefore we get that, P(q',¢) = (%) ]P’(ﬁ,gﬁ) > (1 - ﬂ)”P(ﬁ,gﬁ) >
exp(—QBn)P(m, ¢) . Combining this analysis with Equation we get that,

,P).- 12)

For each ¢ > 0 as |R| = |¢ - R|, our algorithm (Algorithm|[I) returns a distribution p,, that satisfies,
P (., ¢) = exp(—O(min(k, [R|) log n)) max P(q,9).
qE8R
Let p* be the distribution that achieves the maximum objective value to our convex program among
the distributions {p,}.cc. Then note that p* satisfies: P (p*, ¢) > exp(—O(min(k, [R|)logn) —

24n) maxgeaP P(m, ¢) . Substituting 5 = M

max max P(q,®) > exp(—26n maxIP’
iy o P(0,9) 2 exp(~28n) ma P o

in the previous expression, we get,

i

As each of our distributions p, (including p*) have the number of distinct probability values upper
bounded by 2|R|, by applying Lemma @ we get a pseudo distribution ¢ € A% with the desired
guarantees. The final run time of our algorithm is O(|C|77) € O(m T1), where Ty is the
time to implement Algorithm [T, Further note that by Lemma [3.T] without loss of generahty we
can assume |R| < n/k. As all the lines of Algorlthm[are polynomial in n, our final running time
follows from the run times of each line and we conclude the proof. O

P (p*, ¢) > exp(—O(min(k, |R]|)logn)) max P(——
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