
Quantum Speedups for Zero-Sum Games

via Improved Dynamic Gibbs Sampling

Adam Bouland
1

Yosheb Getachew
1

Yujia Jin
1

Aaron Sidford
1

Kevin Tian
2

Abstract

We give a quantum algorithm for computing an
✏-approximate Nash equilibrium of a zero-sum
game in an m ⇥ n payoff matrix with bounded
entries. Given a standard quantum oracle for ac-
cessing the payoff matrix our algorithm runs in
time eO(

p
m+ n ·✏

�2.5+✏
�3) and outputs a clas-

sical representation of the ✏-approximate Nash
equilibrium. This improves upon the best prior
quantum runtime of eO(

p
m+ n·✏

�3) obtained by
(van Apeldoorn & Gilyén, 2019) and the classical
eO((m+ n) · ✏�2) runtime due to (Grigoriadis &
Khachiyan, 1995) whenever ✏ = ⌦((m+ n)�1).
We obtain this result by designing new quantum
data structures for efficiently sampling from a
slowly-changing Gibbs distribution.

1 Introduction

For a wide range of machine learning and numerical
linear algebra problems, quantum algorithms (in certain
parameter regimes) yield faster runtimes than classical
counterparts (Biamonte et al., 2017).1 Leveraging quantum
algorithmic primitives, e.g. (Brassard et al., 2002; Harrow
et al., 2009; Gilyén et al., 2019), these algorithms obtain
runtimes which improve upon the dimension dependence
of classical algorithms, but often at the cost of a worse
dependence on the error tolerance and/or implicit access
to the solution (e.g. query or sampling access for solution
entries). Consequently, this paper is motivated by the
following question.

1Stanford University, Stanford, CA, USA. 2Microsoft Research,
Redmond, WA, USA. Correspondence to: Yosheb Getachew
<yoshebg@stanford.edu>.

Proceedings of the 40 th
International Conference on Machine

Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1Note that quantifying the end-to-end speedups obtained by
these methods can be subtle due to I/O overheads, different access
models (Aaronson, 2015), and classical de-quantization algorithms
(Tang, 2019; Chia et al., 2020; Gharibian & Le Gall, 2022).

What accuracy versus dimension-dependence

tradeoffs are inherent in quantum optimization?

What techniques improve this tradeoff?

We consider this question for the fundamental optimization
problem of computing ✏-approximate Nash equilibrium in
zero-sum games. Our main result is an improved depen-
dence on ✏ for quantum algorithms solving zero-sum games,
which is very close to that of its classical counterpart. Fur-
ther, we show that for our algorithms, obtaining a classical
representation of the solution is obtainable at no additional
asymptotic cost. Our work builds upon (van Apeldoorn &
Gilyén, 2019; Li et al., 2019), which already took a large
and important step towards answering the above question
by designing quantum data structures for efficiently imple-
menting algorithms for solving zero-sum games.

To obtain our result we provide improved quantum algo-
rithms for solving a dynamic data structure problem of
sampling from a slowly-changing Gibbs distribution. Such
dynamic sampling problems arise as a natural component
of stochastic gradient methods for solving zero-sum games.
We obtain our speedups by improving a Gibbs sampling
subroutine developed in (van Apeldoorn & Gilyén, 2019).
We design a new dynamic quantum data structure perform-
ing the necessary sampling in time eO(✏�

1
2), faster than the

corresponding eO(✏�1) runtime achieved by (van Apeldoorn
& Gilyén, 2019). Beyond the intrinsic utility of solving
this problem, we hope our improved Gibbs sampler show-
cases algorithmic insights that can be gleaned by seeking
improved error dependencies for quantum optimization al-
gorithms. Moreover, we hope this work encourages the
study of quantum data structures for efficient optimization.

1.1 Zero-sum games

For matrix A 2 Rm⇥n its associated zero-sum game is the
pair of equivalent optimization problems

min
u2�m

max
v2�n

u
>Av = max

v2�n
min
u2�m

u
>Av,

where �k := {x 2 Rk

�0 :
P

i2[k] xi = 1}.

In such a game, we refer to A as the payoff matrix and view
the m and n-dimensional simplices, i.e. �m and �n, as the

1

Quantum Speedups for Zero-Sum Games

space of distributions over [m] and [n] respectively. From
this perspective u

>Av, known as payoff or utility of (u, v),
is the expected value of Aij when sampling i 2 [m] and
j 2 [n] independently from the distributions corresponding
to u and v. Thus, a zero-sum game models a two-player
game where one player seeks to minimize the payoff while,
simultaneously, the other seeks to maximize it.

We consider the canonical problem of computing an approx-
imate Nash equilibrium of a zero-sum game. Given the
payoff matrix A 2 Rm⇥n we call a pair (u, v) 2 �m

⇥�n

an ✏-approximate Nash equilibrium (NE) for ✏ 2 R>0 if
✓
max
v02�n

u
>Av

0
◆
�

✓
min

u02�m
(u0)>Av

◆
 ✏.

We assume the payoff matrix A and the error-tolerance
are given as input to an algorithm, and kAkmax  1, i.e.
the largest entry of A has magnitude at most 1 (without
loss of generality, by rescaling A kAk�1

max A and ✏

kAk�1
max ✏). Our main goal is to design improved zero-sum

game solvers, i.e. algorithms computing ✏-approximate NEs.

Zero-sum games are foundational to optimization, eco-
nomics, and computer science. Solving zero-sum games is
a natural formulation of linear programming (LP) and thus
it is a prominent testbed for new optimization techniques.
There have been numerous advances in the computational
complexity of solving zero-sum games under various as-
sumptions on problem parameters (see Section 1.3). Re-
cent advancements in interior point methods (IPMs), e.g.
(van den Brand, 2020; van den Brand et al., 2021) and ref-
erences therein (discussed in Section 1.3), solve zero sum-
games in time eO(mn + min(m,n)2.5) or eO((m + n)!),
where ! < 2.372 is the current matrix multiplication con-
stant (Duan et al., 2023).2 In this paper, our focus is on
sublinear-time algorithms for approximating NEs.

A well-known algorithm by (Grigoriadis & Khachiyan,
1995) achieves a runtime of eO((m + n) · ✏�2), the state-
of-the-art sublinear runtime amongst classical algorithms,
without further problem assumptions. Recently it has been
shown that quantum algorithms can yield striking runtime
improvements for solving zero-sum games and their general-
izations (Li et al., 2019; van Apeldoorn & Gilyén, 2019; Li
et al., 2021). In particular, Li, Chakrabati and Wu (Li et al.,
2019) gave a quantum algorithm for zero-sum games in time
eO(
p
m+ n · ✏

�4), and simultaneously van Apeldoorn and
Gilyen (van Apeldoorn & Gilyén, 2019) obtained a runtime
of eO(

p
m+ n ·✏

�3). These algorithms yield a quadratic im-
provement in the dimension dependence of the best classical
algorithm, at the cost of a higher ✏ dependence.

The algorithms of (Li et al., 2019; van Apeldoorn & Gilyén,

2We eO to hide polylogarithmic dependences, and “with high
probability” to indicate a polylogarithmic dependence on the fail-
ure probability; see Section 1.4 for a more detailed statement.

2019; Li et al., 2021) operate using a standard quantum ora-
cle for querying entries of A (formally stated in Section 1.4).
We focus on discussing the algorithm of (van Apeldoorn
& Gilyén, 2019), as our focus is error dependence. The
(van Apeldoorn & Gilyén, 2019) algorithm generalizes the
classical algorithm of (Grigoriadis & Khachiyan, 1995), and
improves it by speeding up a key dynamic Gibbs sampling
subroutine. As we survey in Section 2, van Apeldoorn and
Gilyen give a quantum data structure to efficiently perform
this sampling in time quadratically faster in the dimension,
the core of their algorithmic speedup.

Our result. We give a new quantum algorithm for solv-
ing zero-sum games, improving the prior state-of-the-art
quantum runtime, due to (van Apeldoorn & Gilyén, 2019).

Theorem 1.1 (informal, see Theorem 2.3). Let A 2 Rm⇥n

with kAkmax  1, and ✏ 2 (0, 1). Given a quantum oracle

for A (cf. Section 1.4), there is an eO(
p
m+ n · ✏

�2.5+ ✏
�3)

time algorithm which yields a classical output (u, v) 2
�m
⇥�n

that is an ✏-approximate NE with high probability.

Our new algorithm simultaneously improves the best known
quantum (van Apeldoorn & Gilyén, 2019) and classical
(Grigoriadis & Khachiyan, 1995) algorithms in the pa-
rameter regime where IPMs do not dominate sublinear
algorithms. In particular, it is faster than the classical
eO((m + n) · ✏�2) runtime of (Grigoriadis & Khachiyan,

1995) whenever ✏
�1 = eO(m + n), which includes the

regime where (Grigoriadis & Khachiyan, 1995) offers ad-
vantages over the eO((m + n)!) runtime of the (van den
Brand, 2020) IPM, as ! < 3. This is in contrast to (van
Apeldoorn & Gilyén, 2019), which does not achieve an im-
provement upon (Grigoriadis & Khachiyan, 1995) in the full
parameter range where sublinear algorithms are currently
preferable to IPMs. For example, when m ⇡ n and (up to
logarithmic factors) ✏ 2 [n�c

, n
� 1

2] where c = 1
2 (! � 1),

the rate of (Grigoriadis & Khachiyan, 1995) is favorable to
that of (van Apeldoorn & Gilyén, 2019) and state-of-the-art
IPMs (van den Brand, 2020; Cohen et al., 2021).3

1.2 Dynamic Gibbs sampling

We obtain our improved zero-sum game solver by producing
a new, faster quantum data structure to perform the Gibbs
sampling used in the (van Apeldoorn & Gilyén, 2019) algo-
rithm, of possible independent interest. Gibbs sampling is a
fundamental algorithmic primitive — the basic task is, given
vector v 2 Rn, sample proportionally to exp(v). It is used
as a subroutine in many quantum and classical optimization
algorithms, e.g. (Brandao & Svore, 2017) and follow-ups.
Quantum amplitude estimation can speed up this task, by
boosting the acceptance probability of rejection sampling

3There is evidence that ! = 2 cannot be achieved with current
techniques, e.g. (Alman, 2021).

2

Quantum Speedups for Zero-Sum Games

subroutines. This strategy was used by (van Apeldoorn &
Gilyén, 2019), and is discussed in Section 2.2.

By storing partial information about the Gibbs distribution,
namely an efficiently-computable overestimate to its entries
which remains valid across many consecutive iterations, we
obtain an improved dynamic Gibbs sampler, which we also
provide a detalied overview of in Section 2.2.

We now define our notion of an approximate Gibbs sampler,
and state the dynamic sampling problem we consider, aris-
ing naturally in sublinear-time zero-sum game algorithms.
Definition 1.2 (Approximate Gibbs oracle). For v 2 Rn

, its

associated Gibbs distribution is pv 2 �n
such that [pv]i /

exp(vi), 8i 2 [n]. We say O
gibbs
v is a �-approximate Gibbs

oracle if it samples from p̃ 2 �n
with kp̃� pvk1  �.

Problem 1 (Sampling maintenance). Let ⌘ > 0, � 2 (0, 1),
and suppose we have a quantum oracle for A 2 Rm⇥n

.

Consider a sequence of T Update operations to a dynamic

vector x 2 Rm

�0, of the form xi xi + ⌘ for i 2 [m].
In the sampling maintenance problem, in amortized Tupdate
time per Update we must maintain a �-approximate Gibbs

oracle, Osamp, for A>
x queryable in worst-case time Tsamp.

Our result. We provide a quantum algorithm for Prob-
lem 1, which improves upon the runtime implied by the cor-
responding subroutine in (van Apeldoorn & Gilyén, 2019).
Theorem 1.3 (informal, see Theorem 2.2). There is a quan-

tum algorithm which solves Problem 1 with high probability

with max(Tsamp, Tupdate) = eO
�p

n · T⌘
1.5
�

and an initial-

ization cost of eO
�
⌘
3
T

3
�
.

Theorem 1.3 improves upon the solution to the sampling
maintenance Problem 1 implied by (van Apeldoorn & Gi-
lyén, 2019) by a ⌘

� 1
2 factor; in the setting of the (Grigori-

adis & Khachiyan, 1995) solver, where T = eO(✏�2) and
⌘ = ⇥(✏), this is an ✏

� 1
2 -factor. Our improvement is ob-

tained by storing a hint consisting of a vector which over-
estimates the true Gibbs distribution, and an approximate
normalization factor, which are infrequently updated. Our
maintained hint satisfies the desirable properties that: (i)
it remains valid for a batch of consecutive iterations, and
(ii) the degree of overestimation is bounded. The former
property ensures a fast amortized update time, and the latter
ensures a fast sample time by lower bounding the acceptance
probability of our quantum rejection sampler. Our strategy
for maintaining improved hints is to call our sampling access
to estimate large entries of the Gibbs distribution, and to
exploit stability under the setting of Problem 1. We discuss
our sampler in more detail and compare it with previous
methods for solving Problem 1 in Section 2.2.

The initialization cost of Theorem 1.3 is due to the current
state-of-the-art in numerically stable implementations of the
quantum singular value transformation (SVT) framework

of (Gilyén et al., 2019). This cost is also the cause of the
additive eO(✏�3) term in Theorem 1.1. We discuss this cost
in Appendix E; improvements to numerically stable imple-
mentations of (Gilyén et al., 2019) would also be reflected
in the runtimes of Theorems 1.1 and 1.3.

1.3 Related work

Quantum optimization and machine learning. A wide
array of quantum algorithms for optimization and machine
learning makes use of fundamental algorithmic primitives
such as amplitude amplification (Brassard et al., 2002), the
HHL algorithm (Harrow et al., 2009), and the quantum
singular value transformation (Gilyén et al., 2019). For ex-
ample, a number of works gave HHL-based algorithms for
machine learning tasks such as PCA (Lloyd et al., 2014),
SVMs (Rebentrost et al., 2014), and recommendation sys-
tems (Kerenidis & Prakash, 2016). For more details see the
survey article of (Biamonte et al., 2017).

Most relevant to our work are quantum algorithms for op-
timization. For example, Brandao and Svore (Brandao &
Svore, 2017) gave a quantum semidefinite programming
(SDP) solver based on the Arora-Kale algorithm (Arora &
Kale, 2007), later improved by (Van Apeldoorn et al., 2020).
There have also been quantum IPM-based methods for LPs
and SDPs (Kerenidis & Prakash, 2020). Further, quantum
algorithms for general convex optimization have been devel-
oped (Chakrabarti et al., 2020; van Apeldoorn et al., 2020),
making use of Jordan’s algorithm for fast gradient estima-
tion (Jordan, 2005; Gilyén et al., 2019).

Regarding zero-sum games, in addition to the works (van
Apeldoorn & Gilyén, 2019; Li et al., 2019) on `1-`1 games
(where both players are `1-constrained), there have been sev-
eral works considering different variants. For example (Li
et al., 2019) gave quantum algorithms for `2-`1 games with
quadratic improvement on the dimension, later extended by
(Li et al., 2021) to `q-`1 games with q 2 (1, 2].

Zero-sum games. Zero-sum games are a canonical mod-
eling tool in optimization, economics and machine learn-
ing (Neumann, 1928). The classic extragradient method (Ne-
mirovski, 2004; Nesterov, 2007) computes an ✏-approximate
NE in eO(mn · ✏

�1) time and, as discussed, the stochastic
mirror descent method of (Grigoriadis & Khachiyan, 1995)
obtains the same accuracy in time eO((m + n) · ✏�2). An
improved ⌦(mn) runtime was recently obtained by (Car-
mon et al., 2019b) using variance reduction (see Table 1).
Improved runtimes are available under more fine-grained
assumptions on the matrix A, such as sparsity or continu-
ous analogs of sparsity (Carmon et al., 2020). It is worth
noting that the sampling strategies employed in this paper
are in a similar spirit as the variance reduction strategy em-
ployed by (Carmon et al., 2019b); each infrequently tracks
partial information from previous iterates to achieve com-

3

Quantum Speedups for Zero-Sum Games

Table 1: Algorithms for ✏-approximate NE of zero-sum games. Hides logarithmic factors, assumes A 2 Rm⇥n with
kAkmax  1.

Method Query model Total runtime

interior point method (Cohen et al., 2021) classical max(m,n)!

interior point method (van den Brand et al., 2021) classical mn+min(m,n)2.5

extragradient (Nemirovski, 2004; Nesterov, 2007) classical mn · ✏
�1

stochastic mirror descent (SMD) (Grigoriadis & Khachiyan, 1995) classical (m+ n) · ✏�2

variance-reduced SMD (Carmon et al., 2019b) classical mn+
p

mn(m+ n) · ✏�1

(van Apeldoorn & Gilyén, 2019) quantum
p
m+ n · ✏

�3

Theorem 1.1 (our work) quantum
p
m+ n · ✏

�2.5 + ✏
�3

Table 2: Solutions to Problem 1, T = ✏
�2

, ⌘ = ✏. Hides logarithmic factors.

Method Query model Tsamp Tupdate

explicit updates (Grigoriadis & Khachiyan, 1995) classical 1 m+ n

max-based rejection sampling (van Apeldoorn & Gilyén, 2019) quantum
p
m+ n · ✏

�1
p
m+ n · ✏

�1

Theorem 1.3 (our work) quantum
p
m+ n · ✏

� 1
2
p
m+ n · ✏

� 1
2

plexity improvements. In the case of variance reduction in
(Carmon et al., 2019b), this partial information is used to
obtain lower-variance estimators for lower iteration counts;
in our case, it is used to boost the success rate of rejection
sampling techniques. It is an interesting direction of future
work to see if the techniques of this paper could be com-
bined with the variance reduction tools used in (Carmon
et al., 2019b) to obtain improved runtimes. Finally, we note
that (Grigoriadis & Khachiyan, 1995) also offers runtime
improvements under a sparsity assumption, as does (van
Apeldoorn & Gilyén, 2019) when their are certain bounds
on the sparsity-to-accuracy ratio. We focus on the general
setting in this paper (without further sparsity assumptions),
but believe that developing techniques achieving more fine-
grained rates in terms of sparsity, or numerical sparsity as in
(Carmon et al., 2020), is another promising future direction.

In parallel, a long line of research improving IPMs for solv-
ing linear programming (Karmarkar, 1984; Renegar, 1988;
Lee & Sidford, 2014; 2019; van den Brand et al., 2020;
Jiang et al., 2021) has led to a number of different zero-sum
game solvers with polylogarithmic runtime dependencies
on the problem accuracy ✏. The current state-of-the-art vari-
ants of IPMs are (Cohen et al., 2021) and (van den Brand
et al., 2021), which achieve runtimes of eO(max(m,n)!)
and eO(mn +min(m,n)2.5) respectively: see Table 1. Fi-
nally, for strongly polynomial runtimes, which are outside
our scope, we refer readers to (Dadush et al., 2020).

Future work. Theorem 1.1’s ✏ dependence is within an

✏
� 1

2 factor of classical counterparts. To our knowledge,
removing this ✏� 1

2 overhead would represent the first quan-
tum algorithm for a natural optimization problem which
improves upon classical counterparts across all parameters.

Both our work and (van Apeldoorn & Gilyén, 2019)
solve Problem 1 by leveraging a powerful polynomial
approximation-based technique developed in (Gilyén et al.,
2019), known as the quantum singular value transform
(QSVT). In both cases, QSVT is used with a polynomial
of degree eO(✏�1). We note that in closely-related classical
settings (discussed in (Sachdeva & Vishnoi, 2014)), Cheby-
shev polynomial-based approximations yield a quadratically
smaller degree. However, a boundedness requirement (due
to the spectra of quantum gates) prevents straightforwardly
applying these constructions within QSVT. Sidestepping
this barrier is a natural avenue for improvement. More gen-
erally, establishing optimal oracle query complexities of
dynamic Gibbs sampling (Problem 1) and solving zero-sum
games are key problems left open by our work. These ora-
cle complexity questions are potentially more approachable
than establishing tight time complexity characterizations.

1.4 Preliminaries

General notation. eO hides logarithmic factors in problem
dimensions (denoted m and n), target accuracies (denoted
✏), and failure probabilities (denoted ↵). When discussing
Problem 1, we additionally use eO to hide logarithmic factors

4

Quantum Speedups for Zero-Sum Games

in ⌘, T . For all i 2 [n] we let ei 2 Rn denote the ith standard
basis vector for i 2 [n] when n is clear. k·k

p
denotes the

`p norm of a vector. For A 2 Rm⇥n, its i
th row and j

th

column are respectively Ai:,A:j . For v 2 Rn, diag (v) is
the diagonal n⇥n matrix with v as the diagonal. Conjugate
transposes of A are denoted A⇤; when the matrix is real we
use A>. The all-ones and all-zeros vectors of dimension
n are 1n and 0n. Finally, throughout a := dlog2 me and
b := dlog2 ne, so [m] ✓ [2a] and [n] ✓ [2b].

Computation models. We assume entries of A are w-bit
reals for w = O(log(mn)), and work in the word RAM
model where w-bit arithmetic operations take O(1) time;
for simplicity, we assume mathematical operations such
as trignometric functions and radicals can also be imple-
mented exactly for w-bit words in O(1) time. Throughout,
“quantum states” mean unit vectors, and “quantum gates” or
“oracles” O mean unitary matrices. We follow standard no-
tation and identify a standard basis vector ei for i 2 [n] with
|ii, an a-qubit state, in which i is represented in binary (i.e.
more formally, |ii = |bin(i)i, and bin is omitted for brevity).
We consider the standard model of quantum access to ora-
cles, in which the oracle O, which is defined by its operation
on |si for all {0, 1}⇤-valued s (where length is clear from
context), can be queried in superposition. If O is queried
on |vi :=

P
s
↵s|si, the result is O|vi =

P
s
↵i(O|si).

We use |gi, |g0i, etc. (when clear from context) to denote
arbitrary sub-unit vectors, which represent garbage states
(unused in computations). The tensor product of states |ui
and |vi on a and b qubits is denoted |ui|vi, an (a+ b)-qubit
state. The runtime of a quantum circuit is its maximum
depth (in arithmetic gates on w-bit words).

Access model. Throughout the paper, we assume a standard
quantum oracle for accessing A (recall kAkmax  1). In
particular, by a quantum oracle for A we mean an oracle
OA which, when queried with |ii|ji|si for i 2 [m], j 2
[n], s 2 {0, 1}w, reversibly writes Aij (in binary) to the
third register in O(1) time, i.e. OA|ii|ji|si = |ii|ji|s �

Aiji where � is bitwise mod-2 addition.

Given a quantum oracle for A, with two queries, by standard
constructions one can construct an oracle which places the
value in the amplitude of the state rather than the register
itself. More formally, one can construct4 an O

0
A, which

operates as: for (i, j) 2 [m]⇥ [n],

O
0
A|0i|ii|ji =

p
Aij |0i|ii|ji+

q
1� |Aij ||1i|gi.

It is standard to (using ancilla qubits to store the output
register where Aij is written) construct O0

A from OA under

4This follows by calling OA to obtain Aij in binary (as a
signed number 2 [0, 1]), adding an ancilla qubit, computing the
rotation angle needed on that ancilla, applying controlled rotation
gates to an ancilla using that angle, then calling OA a second time
to uncompute Aij . See e.g. (Grover & Rudolph, 2002) for details.

our classical model of computation, see e.g. (Grover &
Rudolph, 2002), and so we assume direct access to O

0
A.

Organization. In Section 2, we give a brief technical
overview of the core components of our algorithm used
to prove Theorem 1.1: the stochastic gradient method our
method is built on, and an efficient quantum implementation
of a key subroutine using a new dynamic Gibbs sampler.
Finally in Section 3 we give our new quantum sampler, and
prove Theorem 1.3. We aim to give a self-contained descrip-
tion of our algorithm in Section 2 to improve readability for
readers with an optimization background unfamiliar with
quantum computing, and vice versa. In particular, we ab-
stract away the core optimization machinery (stochastic
mirror descent) and quantum machinery (quantum SVT)
developed in prior work into Propositions 2.1 and 2.5, and
focus on using these statements black-box to build a faster
algorithm. We defer proofs to Appendices A to C.

2 Overview of approach

We now overview our approach for obtaining our main re-
sults: an improved quantum runtime for solving zero-sum
games (Theorem 2.3) and an improved quantum data struc-
ture for dynamic Gibbs sampling (Theorem 2.2). In Sec-
tion 2.1, we state Algorithm 1, the optimization framework
we use to solve zero-sum games, generalizing the algorithm
of (Grigoriadis & Khachiyan, 1995). We state its guaran-
tees in Proposition 2.1, proven in Appendix A. Algorithm 1
assumes access to an approximate Gibbs oracle (Defini-
tion 1.2) for sampling from the distributions stated in Prob-
lem 1. Much of our work is devoted to obtaining an efficient
quantum implementation of such an oracle (Theorem 2.2),
used to prove Theorem 2.3 at the end of Section 2.1. In
Section 2.2, we overview the main technical innovation of
this paper, an improved solution to Problem 1. The only
quantum components of our algorithm are abstracted away
by Proposition 2.5, proven in Appendix B.

2.1 Solving matrix games via Gibbs sampling

Our proof of Theorem 2.3 uses an efficient implementation
of the framework in Algorithm 1, based on stochastic mirror
descent. In specifying Algorithm 1, we recall our earlier
Definition 1.2, which captures the approximate sampling
access we require for Algorithm 1’s execution.

The main skeleton of Algorithm 1 (Lines 5-6) using exact or-
acles is identical to the method of (Grigoriadis & Khachiyan,
1995). We build upon (Grigoriadis & Khachiyan, 1995) in
the following three ways: we (1) tolerate total variation error
in the sampling procedure via �-approximate Gibbs oracles,
(2) provide a high-probability guarantee on the duality gap
using martingale arguments, and (3) subsample the output to
obtain a sparse solution yielding a comparable duality gap.

5

Quantum Speedups for Zero-Sum Games

Algorithm 1: MatrixGameSolver(�, ⌘, T)
1 Input: A 2 Rm⇥n, desired accuracy ✏ 2 (0, 1),
�-approximate Gibbs oracles for the (dynamic) vectors
�A>

xt and Ayt

2 Parameters: Gibbs sampler parameter � 2 (0, 1), step
size ⌘ > 0, iteration count T

3 Initialize û 0m, v̂ 0n, x0 0m, and y0 0n

4 for t = 0 to T � 1 do

5 Independently sample jt, j
0
t
2 [n] using O

gibbs
�A>xt

and it, i
0
t
2 [m] using O

gibbs
Ayt

6 Update yt+1 yt + ⌘ejt and xt+1 xt + ⌘eit

7 Update û û+ 1
T
ei0t

and v̂ v̂ + 1
T
ej0t

8 return (û, v̂)

Several of these improvements have appeared previously
in the literature. For example, an approximation-tolerant
stochastic gradient method was given in (Carmon et al.,
2020), and our proofs of the high-probability guarantees
are based on arguments in (Allen-Zhu & Li, 2017; Carmon
et al., 2019a). For completeness we give a self-contained
proof of the following guarantee in Appendix A.
Proposition 2.1. Let A 2 Rm⇥n

satisfy kAkmax  1 and

✏,↵ 2 (0, 1). Let � 
✏

20 , ⌘ = ✏

60 , and T = ⇥(✏�2 log mn

↵
)

for an appropriate constant. With probability � 1 � ↵,

Algorithm 1 outputs an ✏-approximate NE for A.

Given Proposition 2.1, we simply need to efficiently im-
plement the Gibbs sampling in Line 5. As introduced in
Section 1, Problem 1 describes a dynamic approximate
Gibbs oracle sampling problem sufficient for this task. By
combining Proposition 2.1 with the following Theorem 2.2
(our solution to Problem 1), we prove our main result.
Theorem 2.2. Let ↵ 2 (0, 1), �  ⌘. Given a quantum ora-

cle for A 2 Rm⇥n
with kAkmax  1, we can solve Prob-

lem 1 with probability � 1� ↵, and max(Tsamp, Tupdate) =

O(1 +
p
nT⌘ log4 mn

�
· (
q
⌘ log n⌘T

↵
+ ⌘ log n⌘T

↵
)), and

an initialization cost of O(⌘3T 3 log4 n⌘T

�
+ log7 n⌘T

�
).

Theorem 2.3. Let A 2 Rm⇥n
satisfy kAkmax  1, and

let ✏,↵ 2 (0, 1). Given a quantum oracle for A, there is an

algorithm returning a classical output (u, v) 2 �m
⇥�n

that is an ✏-approximate NE for A with probability � 1�↵

in time, for ` := log mn

✏
and � := log mn

↵✏
,

O

✓p
m+ n

✏2.5
`
4
�
2.5 +

p
m+ n

✏2
`
4
�
3 +

1

✏3
`
7

◆
.

Proof. We apply two instances of Theorem 2.2 to imple-
ment the �-approximate Gibbs oracle for �A>

xt and Ayt,
to implement each iteration of Algorithm 1 in amortized
O(1 + Tsamp + Tupdate) time. Using the settings of pa-
rameters T, ⌘ in Proposition 2.1 and setting � = ⇥(✏),

which suffices for Algorithm 1 and Theorem 2.2, we have
max(Tsamp, Tupdate) = O(

p
m+n

✏
`
4
�·(✏�+

p
✏�)). The con-

clusion follows since Algorithm 1 costs O(T · (1 + Tsamp +
Tupdate)). The additive runtime term comes from the cost of
stably implementing a quantum circuit required in the use
of Theorem 2.2, discussed in Appendix E.

We note despite the extra additive term, the runtime proven
in Theorem 2.3 improves over the classical eO((m + n) ·
✏
�2) runtime of (Grigoriadis & Khachiyan, 1995) whenever
✏
�1 = eO(m+ n).

2.2 Dynamic sampling maintenance via hints

We now overview our proof of Theorem 2.2 which pro-
ceeds in two steps. First, we reduce sampling maintenance
(Problem 1) to a problem we call hint maintenance. This
latter problem is a specialization of the sampling mainte-
nance problem where suitable advice, the hint, is provided.
Second, we solve hint maintenance as required by Propo-
sition 2.5 in Theorem 2.2, by recursively calling Proposi-
tion 2.5, allowing us to maintain hints of suitable quality.

Reducing to hint maintenance. First, we introduce a data
structure for maintaining the x variable in Problem 1, which
was used crucially in (van Apeldoorn & Gilyén, 2019) for
dynamic Gibbs sampling. This data structure allows effi-
cient queries to subsets of the coordinates of x.

Lemma 2.4 (Sampler tree). Let ⌘ 2 R�0 and m 2 N.

There is a classical data structure, SamplerTree, supporting

a tree on O(m) nodes such that [m] corresponds to leaves,

with the following operations.

• Init(m, ⌘fixed): initialize x 0m and ⌘ ⌘fixed

• Update(i): xi xi + ⌘

• SubtreeSum(v): return
P

i in subtree of v
xi

The total runtime of T calls to Update is O(T logm), and

calls to SubtreeSum cost O(1).

An implementation of SamplerTree based on propagating
subtree sums upon updates is a standard classical data struc-
ture. Next, we state our first building block towards solving
Problem 1, which can be thought of as quantum sampling
with a hint. We defer its proof to Appendix B, as it is based
on generalizing dynamic block-encoding strategies with
bounded-degree polynomial approximations, pioneered by
(Gilyén et al., 2019; van Apeldoorn & Gilyén, 2019).

Proposition 2.5. Let x 2 Rm

�0 correspond to an instance of

SamplerTree, and � � kxk1. Let p be the Gibbs distribu-

tion associated with A>
x, let Z :=

P
j2[n] exp([A

>
x]j)

and eZ 2 [Z,CZ] for some C � 1. Finally, let q 2 Rn
have

6

Quantum Speedups for Zero-Sum Games

entries classically queriable in O(1) time, satisfy q � p

entrywise, qj 2 [�
n
, 1] for all j 2 [n], and kqk1 = ⇢. Sup-

pose eZ, C, ⇢, and � are explicitly known. Given a quan-

tum oracle for A 2 Rm⇥n
(defined in Section 1.4) with

kAkmax  1, we can implement a �-approximate Gibbs

oracle which has query cost O(
p
⇢C · � log4

�
Cmn

�

�
). The

total additional cost incurred if x undergoes T Update calls

which preserve the invariants on eZ,C, ⇢,� is O(T logm).

Proposition 2.5 makes use of an overestimating hint vector
q and approximate normalization constant eZ, which we
collectively call the hint. The acceptance probability of our
rejection sampling is governed by two primary parameters:
⇢ = kqk1, which reflects the degree of overestimation (and
can be thought of as a hint quality), and C � 1, which
reflects our inability to accept with probability pj

qj
when

p is implicit (which can be thought of as a normalization
quality). In particular, the rejection sampling scheme used
in Proposition 2.5 will instead accept with probability pj

Cqj
.5

We elaborate briefly on the implementation of Proposi-
tion 2.5 (for details, see Appendix B). We follow notation
of Proposition 2.5, and let w := A>

x so the unnormalized
Gibbs distribution is exp(w), and p = exp(w)

Z
. Proposi-

tion 2.5 is a rejection sampler which first loads the hint q
into superposition, and then filters. Our scheme has the form

sample j ⇠
q

⇢
, and accept with probability

pj

Cqj
, (1)

which results in an accepted sample with probability ⇡ 1
⇢C

,
and hence requires ⇡

p
⇢C trials to succeed after applying

quantum amplitude amplification, a generalization of Grover
search (Brassard et al., 2002).6 The latter filtering step is
implemented using appropriate block-encoding technology.

This discussion suggests that the hint and normalization
qualities, parameterized by ⇢ and C, are crucial in control-
ling the acceptance probability of our scheme. Concretely,
in our applications of Proposition 2.5, � = ⌘T = eO(1

✏
),

which is the bound on the `1 norm of the xt and yt iterates in
Algorithm 1 under the parameter settings of Proposition 2.1.
Overall, the cost of implementing an approximate Gibbs
oracle is then (up to logarithmic factors)

p
⇢C ·

1
✏
. Propo-

sition 2.5 hence reduces Problem 1 to maintaining the hint
consisting of a vector q and a normalization estimate eZ. We
mention that Proposition 2.5 is a strict generalization of a
corresponding building block in (van Apeldoorn & Gilyén,
2019), which only used the all-ones vector as q.

Approaches for Problem 1. We now overview our im-
5Exactly computing Z may require time ⌦(n) in standard

implementations, an obstacle to runtimes /
p
n.

6The � in Proposition 2.5 comes from loading exp(wj) into a
quantum oracle via polynomials of degree ⇡ �.

proved solution to Problem 1 via efficient use of Proposi-
tion 2.5. To motivate our solution, we outline three solu-
tions to Problem 1 offering different tradeoffs in the overall
quality ⇢C. The first only uses classical information and
does not use Proposition 2.5 at all, the second uses Propo-
sition 2.5 but maintains no history across iterates, and the
third (building upon the first two) is our approach.

Solution 1: (Grigoriadis & Khachiyan, 1995). A standard
way to solve Problem 1 is to explicitly update w = A>

x

and exp(w), and exactly maintain the normalizing constant
Z. This allows us to sample from p in eO(1) time. Since w

changes by one row of A under a 1-sparse Update operation
to x, this is implementable in O(n) time per iteration. We
can view this as an instance of the scheme (1) with q = p,
C = 1, and ⇢ = 1. It yields the (unbalanced) tradeoff for
Problem 1 of Tsamp = eO(1) and Tupdate = O(n).

Solution 2: (van Apeldoorn & Gilyén, 2019). A recent
work (van Apeldoorn & Gilyén, 2019) introduced a quan-
tum implementation of the scheme (1) with an improved
tradeoff. The (van Apeldoorn & Gilyén, 2019) scheme first
uniformly samples, which in the language of (1) means
q = 1n and ⇢ = n. It then applies quantum maximum
finding (Dürr & Høyer, 1996) to obtain an approximate max-
imum entry of w, which they show takes time eO(� ·

p
n);

for the sake of simplicity here, we assume this exactly
yields wmax := maxj2[n] wj . Finally, the acceptance prob-
ability pj

Cqj
is set to exp(wj � wmax). For q = 1n, this

translates to pj · exp(wmax � wj) = exp(wmax)
Z

 1, im-
plying C = 1 suffices. We note this bound on C can
be tight when w is very non-uniform. Overall, the (van
Apeldoorn & Gilyén, 2019) scheme’s update time requires
maximum finding, and its sampling time (via Proposi-
tion 2.5) requires time eO(� ·

p
⇢C) = eO(� ·

p
n). For

� = eO(1
✏
) as in Algorithm 1, this yields the balanced trade-

off max(Tsamp, Tupdate) = eO
�p

n · ✏
�1
�
. Our key insight is

to improve upon this specific choice of hint in (van Apel-
doorn & Gilyén, 2019), for use of Proposition 2.5.

Solution 3: this work. We design better hints for Proposi-
tion 2.5 by executing our algorithm in phases corresponding
to batches of ⇡ 1

⌘
iterations. At the start of each phase, we

use the Gibbs access afforded by Proposition 2.5 to produce
a suitable hint for efficiently implementing the next phase.
Our execution of this strategy, parameterized by an integer
k 2 [n], relies on the following observations.

First, during d 1
⌘
e iterations t 2 {⌧ + s}

s2[d 1
⌘ e] (where ⌧

starts the phase), the dynamic Gibbs distribution pt (where
t is the iteration index) changes by O(1) multiplicatively,
since w entrywise changes by O(1) additively. Thus, the
quality of a hint vector deteriorates by at most a constant in
the phase, so it suffices to give a good hint at the phase start.

7

Quantum Speedups for Zero-Sum Games

Next, using access to Proposition 2.5 at the end of the pre-
vious phase, we can efficiently estimate large entries of p⌧ .
More precisely, we sample eO(k) times from p⌧ , and let
the empirical distribution be q̃. Chernoff bounds show any
large entry [p⌧]j = ⌦(1

k
) will be accurately reflected in the

empirical sample. Hence, we set the hint to

qj =

(
q̃j ·O(1) q̃j = ⌦(1

k
)

1
k
·O(1) q̃j = O(1

k
)
,

for appropriate constants. This yields an improved hint
quality of ⇢ ⇡ n

k
, since large hint entries sum to O(1) (as

q̃j ⇡ pj), and small entries sum to O(n
k
). Finally, we show a

similar strategy of using empirical concentration, combined
with a testing variant of Proposition 2.5, yields C = O(1).

This yields Tsamp = eO(�·
p
n/k) and Tupdate = eO(Tsamp·k⌘)

(since we amoritize Tupdate over ⇡ 1
⌘

iterations). Optimizing
k for the parameter settings of Algorithm 1 gives our result.
Specifically, using Theorem 2.2 for the parameter settings
T = eO(✏�2), ⌘ = ⇥(✏), as stated in Proposition 2.1, this
equates to max(Tsamp, Tupdate) = eO(

p
n · ✏

� 1
2).

3 Gibbs sampling oracle implementation

We now prove Theorem 2.2, giving our solution to Prob-
lem 1. To do so, we follow the outline in Section 2.2, and
solve Problem 1 in batches of d 1

⌘
e iterations, each called a

“phase.” In Section 3.1 we discuss a single phase, consisting
of iterations ⌧ + s for s 2 [d 1

⌘
e] and some initial iteration ⌧ ,

assuming the invariants stated here hold at the phase start.

Invariant 1 (Approximate normalization access). We explic-

itly have eZprev with eZprev 2 [Z⌧ , CZ⌧] for some C = O(1).

Invariant 2 (Initial sampling maintenance). We have O⌧

solving Problem 1 in iteration ⌧ .

In Section 3.1 we show that assuming Invariants 1 and 2
hold at a phase start, we can perform preprocessing used to
construct our hint, consisting of the estimated normalization
eZ and vector q, in an application of Proposition 2.5. This
gives the cost of Tsamp in Problem 1. We then show that at
the phase end we can maintain Invariants 1 and 2 for use in
the next phase, giving Tupdate. In Section 3.2, we recursively
call the subroutine of Section 3.1 to prove Theorem 2.2. We
defer most proofs to Appendix C.

3.1 Maintaining invariants

We now show how to construct the “hint” q used throughout
a phase (starting in iteration ⌧) given access to O⌧ , and
bound ⇢ = kqk1 which quantifies the quality of our hint,
assuming Invariants 1 and 2 hold. We use a multiplicative
stability property of the relevant distributions within a phase,
whose proof is standard and in Appendix C.

Lemma 3.1. For all s 2 [d 1
⌘
e], Z⌧+s 2

⇥
1
3Z⌧ , 3Z⌧

⇤
and

p⌧+s 2
⇥
1
9p⌧ , 9p⌧

⇤
entrywise.

Our computation of the overestimating vector q is parame-
terized by k 2 [n] fixed throughout this section. We set q to
an upscaled empirical distribution of ⇡ k draws from O⌧ .
Lemma 3.2. Let k 2 [n], ↵ 2 (0, 1), and suppose � 

1
16k .

Draw N = ⇥(k log n⌘T

↵
) samples from O⌧ for an appro-

priately large constant, and let q̃ 2 �n
be the empirical

distribution over these N samples. Define B := {i 2 [n] |
q̃i �

1
2k}. Then with probability � 1� ↵

2d⌘Te , for

qj =

(
18q̃j j 2 B

18
k

j 62 B
,

kqk1 = O(n
k
) and q � p⌧+s entrywise, for all s 

1
⌘

.

The proof is based on Chernoff bounds for handling j 2 B

and j 62 B separately, and is deferred to Appendix C. We
then obtain the following by combining the hint quality in
Lemma 3.2 with Invariant 1 and Proposition 2.5.
Corollary 3.3. Assume Invariants 1, 2 hold for the phase

consisting of iterations ⌧ + s, s 2 [d 1
⌘
e]. We can solve

Problem 1 for the phase with probability � 1� ↵

2d⌘Te , and

Tsamp := O
�p

n

k
· T⌘ log4 mn

�

�
.

We next show how to maintain Invariant 1 at iteration
⌧
0 := ⌧ +d 1

⌘
e, for use in the next phase, and bound the cost;

Invariant 2 follows immediately from Corollary 3.3. By
combining Lemma 3.1 with Invariant 1, Z⌧ 0 2 [

eZprev
3C , 3 eZprev],

which suggests using 3 eZprev = eZ for the next phase. How-
ever, this would lead to an exponential blowup in the multi-
plicative range C. To sidestep this, we develop a tester for
a hidden parameter governing a success probability, used
to give a refined estimate eZ. We require a corollary of
Proposition 2.5, whose proof is in Appendix C.
Corollary 3.4. Following notation of Proposition 2.5, let

R :=
eZ
Z

. There is a quantum oracle Otest which can be

implemented under T Update calls to x in O(T logm) time,

and has query cost O(
p
⇢C ·� log4 Cmn

`�
). Furthermore, for

explicitly known constants C` and Cu, Otest returns “success”

with probability p for
C`p
R⇢
 p 

Cup
R⇢

.

Corollary 3.4 differs from Proposition 2.5 in that it returns a
Boolean-valued answer (as opposed to a sample), and has a
success probability parameterized by explicit constants. We
use Corollary 3.4 to maintain Invariant 1; the proof is again
based on Chernoff bounds, and deferred to Appendix C.
Lemma 3.5. Assume Invariants 1, 2 hold for iterations ⌧+s,

s 2 [d 1
⌘
e], and suppose C �

4C2
u

C2
`

for C = O(1), where

Cu and C` are the constants from Corollary 3.4. Further,

suppose we have obtained q satisfying the conclusion of

8

Quantum Speedups for Zero-Sum Games

Lemma 3.2 (i.e. that the algorithm in Lemma 3.2 succeeded).

We can determine eZ such that eZ 2 [Z⌧ 0 , CZ⌧ 0] with proba-

bility � 1� ↵

2d⌘Te , in time O

⇣p
n

k
· T⌘ log4 mn

�
log ⌘T

↵

⌘
.

3.2 Proof of Theorem 2.2

Theorem 2.2. Let ↵ 2 (0, 1), �  ⌘. Given a quantum ora-

cle for A 2 Rm⇥n
with kAkmax  1, we can solve Prob-

lem 1 with probability � 1� ↵, and max(Tsamp, Tupdate) =

O(1 +
p
nT⌘ log4 mn

�
· (
q
⌘ log n⌘T

↵
+ ⌘ log n⌘T

↵
)), and

an initialization cost of O(⌘3T 3 log4 n⌘T

�
+ log7 n⌘T

�
).

Proof. For any k 2 [n], we can solve Problem 1 with
probability � 1 � ↵ and Tsamp = O

�p
n

k
· T⌘ log4 mn

�

�
,

Tupdate = O

⇣�p
n

k
· T⌘ log4 mn

�

�
· k⌘ log n⌘T

↵

⌘
. This fol-

lows from combining Lemma 3.2 (amoritized over d 1
⌘
e

iterations), Corollary 3.3, and Lemma 3.5, and taking a
union bound over at most d⌘T e phases. Here we note the
cost of logm per iteration to support Update costs to x

in Lemma 2.4, Proposition 2.5, and Corollary 3.4 is not
dominant. By choosing k = ⇥(max(1, (⌘ log mn

↵✏
)�1)), we

balance the costs of Tsamp and Tupdate, yielding the conclu-
sion. By picking an appropriate constant in the definition of
k, we have �  ⌘ =) � 

1
16k as required by Lemma 3.2,

the only component specifying a bound on �.

Acknowledgments

We thank András Gilyén for communication regarding the
prior work (van Apeldoorn & Gilyén, 2019), and the anony-
mous reviewers for their valuable comments. AB was sup-
ported in part by the DOE QuantISED grant DE-SC0020360,
by the AFOSR under grant FA9550-21-1-0392, and by the
U.S. DOE Office of Science under Award Number DE-
SC0020266. YG was supported in part by the Stanford
MS&E DE&I Research program. YJ was supported in part
by a Stanford Graduate Fellowship and a Danzig-Lieberman
Graduate Fellowship. AS was supported in part by a Mi-
crosoft Research Faculty Fellowship, NSF CAREER Award
CCF1844855, NSF Grant CCF-1955039, a PayPal research
award, and a Sloan Research Fellowship. KT thanks Ewin
Tang for her expertise on quantum linear algebra and for
fielding many of our questions.

References

Aaronson, S. Read the fine print. Nature Physics, 11(4):
291–293, 2015.

Allen-Zhu, Z. and Li, Y. Follow the compressed leader:
Faster online learning of eigenvectors and faster MMWU.
In Precup, D. and Teh, Y. W. (eds.), Proceedings of

the 34th International Conference on Machine Learn-

ing, ICML 2017, Sydney, NSW, Australia, 6-11 August

2017, volume 70 of Proceedings of Machine Learning

Research, pp. 116–125. PMLR, 2017.

Alman, J. Limits on the universal method for matrix multi-
plication. Theory Comput., 17:1–30, 2021.

Arora, S. and Kale, S. A combinatorial, primal-dual ap-
proach to semidefinite programs. In Proceedings of the

thirty-ninth annual ACM symposium on Theory of com-

puting, pp. 227–236, 2007.

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe,
N., and Lloyd, S. Quantum machine learning. Nature,
549(7671):195–202, 2017.

Brandao, F. G. and Svore, K. M. Quantum speed-ups for
solving semidefinite programs. In 2017 IEEE 58th Annual

Symposium on Foundations of Computer Science (FOCS),
pp. 415–426. IEEE, 2017.

Brassard, G., Høyer, P., Mosca, M., and Tapp, A. Quantum
amplitude amplification and estimation. Quantum Com-

putation and Quantum Information, 305:53–74, 2002.

Bubeck, S. Convex optimization: Algorithms and complex-
ity. Foundations and Trends in Machine Learning, 8(3-4):
231–357, 2015.

Carmon, Y., Duchi, J. C., Sidford, A., and Tian, K. A rank-1
sketch for matrix multiplicative weights. In Beygelzimer,
A. and Hsu, D. (eds.), Conference on Learning Theory,

COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, vol-
ume 99 of Proceedings of Machine Learning Research,
pp. 589–623. PMLR, 2019a.

Carmon, Y., Jin, Y., Sidford, A., and Tian, K. Variance reduc-
tion for matrix games. In Wallach, H. M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett,
R. (eds.), Advances in Neural Information Processing

Systems 32: Annual Conference on Neural Information

Processing Systems 2019, NeurIPS 2019, December 8-14,

2019, Vancouver, BC, Canada, pp. 11377–11388, 2019b.

Carmon, Y., Jin, Y., Sidford, A., and Tian, K. Coordinate
methods for matrix games. In Irani, S. (ed.), 61st IEEE

Annual Symposium on Foundations of Computer Science,

FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pp. 283–293. IEEE, 2020.

Chakrabarti, S., Childs, A. M., Li, T., and Wu, X. Quantum
algorithms and lower bounds for convex optimization.
Quantum, 4:221, 2020.

Chia, N.-H., Gilyén, A., Li, T., Lin, H.-H., Tang, E., and
Wang, C. Sampling-based sublinear low-rank matrix
arithmetic framework for dequantizing quantum machine
learning. In Proceedings of the 52nd Annual ACM

9

Quantum Speedups for Zero-Sum Games

SIGACT symposium on theory of computing, pp. 387–
400, 2020.

Cohen, M. B., Lee, Y. T., and Song, Z. Solving linear pro-
grams in the current matrix multiplication time. Journal

of the ACM (JACM), 68(1):1–39, 2021.

Dadush, D., Natura, B., and Vègh, L. A. Revisiting tardos’s
framework for linear programming: faster exact solutions
using approximate solvers. In Irani, S. (ed.), 61st IEEE

Annual Symposium on Foundations of Computer Science,

FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pp. 931–942. IEEE, 2020.

Duan, R., Wu, H., and Zhou, R. Faster matrix mul-
tiplication via asymmetric hashing. arXiv preprint

arXiv:2210.10173, 2023.

Dürr, C. and Høyer, P. A quantum algorithm for finding the
minimum. CoRR, quant-ph/9607014, 1996.

Gharibian, S. and Le Gall, F. Dequantizing the quantum
singular value transformation: Hardness and applications
to quantum chemistry and the quantum pcp conjecture. In
Proceedings of the 54th Annual ACM SIGACT Symposium

on Theory of Computing, pp. 19–32, 2022.

Gilyén, A., Arunachalam, S., and Wiebe, N. Optimizing
quantum optimization algorithms via faster quantum gra-
dient computation. In Proceedings of the Thirtieth Annual

ACM-SIAM Symposium on Discrete Algorithms, pp. 1425–
1444. SIAM, 2019.

Gilyén, A., Su, Y., Low, G. H., and Wiebe, N. Quantum sin-
gular value transformation and beyond: exponential im-
provements for quantum matrix arithmetics. In Charikar,
M. and Cohen, E. (eds.), Proceedings of the 51st An-

nual ACM SIGACT Symposium on Theory of Computing,

STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pp.
193–204. ACM, 2019.

Grigoriadis, M. D. and Khachiyan, L. G. A sublinear-time
randomized approximation algorithm for matrix games.
Operation Research Letters, 18(2):53–58, 1995.

Grover, L. and Rudolph, T. Creating superpositions that cor-
respond to efficiently integrable probability distributions.
CoRR, abs/quant-ph/0208112, 2002.

Haah, J. Product decomposition of periodic functions in
quantum signal processing. Quantum, 3:190, 2019.

Harrow, A. W., Hassidim, A., and Lloyd, S. Quantum
algorithm for linear systems of equations. Physical review

letters, 103(15):150502, 2009.

Jiang, S., Song, Z., Weinstein, O., and Zhang, H. A faster
algorithm for solving general lps. In Proceedings of

the 53rd Annual ACM SIGACT Symposium on Theory of

Computing, STOC 2021, 2021, pp. 823–832, 2021.

Jordan, S. P. Fast quantum algorithm for numerical gradient
estimation. Physical review letters, 95(5):050501, 2005.

Karmarkar, N. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual

ACM symposium on Theory of computing, pp. 302–311,
1984.

Kerenidis, I. and Prakash, A. Quantum recommendation
systems. arXiv preprint arXiv:1603.08675, 2016.

Kerenidis, I. and Prakash, A. A quantum interior point
method for lps and sdps. ACM Transactions on Quantum

Computing, 1(1):1–32, 2020.

Lee, Y. T. and Sidford, A. Path finding methods for lin-
ear programming: Solving linear programs in o (vrank)
iterations and faster algorithms for maximum flow. In
2014 IEEE 55th Annual Symposium on Foundations of

Computer Science, pp. 424–433. IEEE, 2014.

Lee, Y. T. and Sidford, A. Solving linear programs
with sqrt (rank) linear system solves. arXiv preprint

arXiv:1910.08033, 2019.

Li, T., Chakrabarti, S., and Wu, X. Sublinear quantum
algorithms for training linear and kernel-based classifiers.
In International Conference on Machine Learning, pp.
3815–3824. PMLR, 2019.

Li, T., Wang, C., Chakrabarti, S., and Wu, X. Sublinear clas-
sical and quantum algorithms for general matrix games.
In Proceedings of the AAAI Conference on Artificial In-

telligence, volume 35, pp. 8465–8473, 2021.

Lloyd, S., Mohseni, M., and Rebentrost, P. Quantum princi-
pal component analysis. Nature Physics, 10(9):631–633,
2014.

Nemirovski, A. Prox-method with rate of convergence
O(1/t) for variational inequalities with lipschitz contin-
uous monotone operators and smooth convex-concave
saddle point problems. SIAM Journal on Optimization,
15(1):229–251, 2004.

Nemirovski, A., Juditsky, A. B., Lan, G., and Shapiro, A.
Robust stochastic approximation approach to stochastic
programming. SIAM J. Optim., 19(4):1574–1609, 2009.

Nesterov, Y. Dual extrapolation and its applications to solv-
ing variational inequalities and related problems. Mathe-

matical Programing, 109(2-3):319–344, 2007.

Neumann, J. V. Zur theorie der gesellschaftsspiele. Mathe-

matische Annalen, 100:295–320, 1928.

10

Quantum Speedups for Zero-Sum Games

Rebentrost, P., Mohseni, M., and Lloyd, S. Quantum support
vector machine for big data classification. Physical review

letters, 113(13):130503, 2014.

Renegar, J. A polynomial-time algorithm, based on new-
ton’s method, for linear programming. Mathematical

programming, 40(1):59–93, 1988.

Sachdeva, S. and Vishnoi, N. K. Faster algorithms via
approximation theory. Found. Trends Theor. Comput.

Sci., 9(2):125–210, 2014.

Tang, E. A quantum-inspired classical algorithm for recom-
mendation systems. In Proceedings of the 51st Annual

ACM SIGACT Symposium on Theory of Computing, pp.
217–228, 2019.

van Apeldoorn, J. and Gilyén, A. Quantum algorithms for
zero-sum games. CoRR, abs/1904.03180, 2019.

van Apeldoorn, J., Gilyén, A., Gribling, S., and de Wolf, R.
Convex optimization using quantum oracles. Quantum,
4:220, 2020.

Van Apeldoorn, J., Gilyén, A., Gribling, S., and de Wolf,
R. Quantum sdp-solvers: Better upper and lower bounds.
Quantum, 4:230, 2020.

van den Brand, J. A deterministic linear program solver in
current matrix multiplication time. In Proceedings of the

Thirty-first Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2020, 2020, pp. 259–278, 2020.

van den Brand, J., Lee, Y. T., Sidford, A., and Song, Z.
Solving tall dense linear programs in nearly linear time.
In Proceedings of the 52nd Annual ACM SIGACT Sympo-

sium on Theory of Computing, pp. 775–788, 2020.

van den Brand, J., Lee, Y. T., Liu, Y. P., Saranurak, T., Sid-
ford, A., Song, Z., and Wang, D. Minimum cost flows,
mdps, and `1-regression in nearly linear time for dense in-
stances. In Proceedings of the 53rd Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2021, 2021,
pp. 859–869, 2021.

11

Quantum Speedups for Zero-Sum Games

A Solving matrix games with a Gibbs sampling oracle

In this section, we prove Proposition 2.1, which shows how to solve a zero-sum matrix game using an approximate Gibbs
sampling oracle (via Algorithm 1). To briefly motivate the algorithm we use and our proof of its guarantees, we recall the
problem we consider is of the form

min
v2�n

max
u2�m

f(u, v) := u
>Av, where kAkmax  1, (2)

and we define the associated gradient operator as

g(u, v) = (�Av,A>
u). (3)

Taking (stochastic) mirror descent steps on the gradient operator in (2) is well-known to yield an approximate NE to the
matrix game (Bubeck, 2015). We show that an approximate implementation of this strategy, combined with appropriate
subsampling, efficiently yields an approximate NE. We begin by making the following observation.
Lemma A.1. Let u, ũ 2 �m

have ku� ũk1  �. Let g̃ := Ai: where i ⇠ ũ, and g := A>
u. Then, kg � Eg̃k1  �.

Proof. Note that Eg̃ = A>
ũ, and

��A>(u� ũ)
��
1  ku� ũk1  � since kAkmax  1.

We next present a variant of the classical mirror descent analysis, which bounds the expected approximation quality of
iterates of Algorithm 1 prior to subsampling.

Proposition A.2. Let � 
✏

20 , ⌘ = ✏

15 and T �
6 log(mn)

⌘✏
in Algorithm 1. Let the iterates of Algorithm 1 be {xt, yt}

T�1
t=0 ,

and denote ut :=
exp(Ayt)

kexp(Ayt)k1
, vt :=

exp(�A>
xt)

kexp(�A>xt)k1
for all 0  t < T . For (ū, v̄) := 1

T

P
T�1
t=0 (ut, vt), we have

E

max
u2�m

u
>Av̄ � min

v2�n
ū
>Av

�
 ✏. (4)

Proof. By definition of the updates, at every iteration 0  t  T � 1, we have

ut+1 = argmin
u2�m

8
<

:⌘h�A:jt , ui+
X

i2[m]

[u]i log
[u]i
[ut]i

9
=

; ,

vt+1 = argmin
v2�n

8
<

:⌘hAit:, vi+
X

j2[n]

[v]j log
[v]j
[vt]j

9
=

; .

Consequently, by the optimality conditions of ut+1 and vt+1 respectively, we have for any u 2 �m, v 2 �n, and letting
Vx(x0) :=

P
k
[x0]k log

[x0]k
[x]k

be the KL divergence between simplex variables of appropriate dimension,

h�A:j , ut � ui+ hAi:, vt � vi 
1

⌘

�
Vut(u)� Vut+1(u) + Vvt(v)� Vvt+1(v)

�

+

✓
h�A:j , ut � ut+1i �

1

⌘
Vut(ut+1)

◆

+

✓
hAi:, vt � vt+1i �

1

⌘
Vvt(vt+1)

◆


1

⌘

�
Vut(u)� Vut+1(u) + Vvt(v)� Vvt+1(v)

�

+
⌘

2
kA:jk

2
1 +

⌘

2
kAi:k

2
1 ,

(5)

where for the last inequality we use Hölder’s inequality and the fact that V is 1-strongly convex in the `1 norm (by Pinsker’s
inequality). Averaging the above for 0  t < T , and denoting wt := (ut, vt) and g̃t := (�A:jt ,Ait:), we obtain for any
w = (u, v) 2 �m

⇥�n,
1

T

T�1X

t=0

hg̃t, wt � wi 
1

⌘T
(Vu0(u) + Vv0(v)) + ⌘. (6)

12

Quantum Speedups for Zero-Sum Games

In the above, we further recalled the bound kAkmax  1 by assumption. In order to bound the deviation of the left-hand
side from its expectation, we use a “ghost iterate” argument following (Nemirovski et al., 2009; Carmon et al., 2019b). In
particular, we define iterates ũt, ṽt as follows: let ũ0 u0, ṽ0 v0, and then for each 0  t < T , define

ũt+1 := argmin
u2�m

8
<

:⌘h�Avt +A:jt , ūi+
X

i2[m]

[u]i log
[u]i
[ũt]i

9
=

; ,

ṽt+1 := argmin
v2�n

8
<

:⌘hA>
ut �A:it , v̄i+

X

j2[n]

[v]j log
[v]j
[ṽt]j

9
=

; ,

where i, j above are the same coordinates as were used in defining the updates to ut+1 and vt+1. By an analogous bound to
(5), where we note

��A:jt �A>
vt

��
1 , kAut �Ait:k1  2,

⌦
�A>

vt +A:jt , ũt � u
↵
+ hAut �Ait:, ṽt � vi 

1

⌘

�
Vũt(u)� Vũt+1(u) + Vṽt(v)� Vṽt+1(v)

�

+ 4⌘.

Averaging the above for 0  t < T , and denoting w̃t := (ũt, ṽt) and gt := g(wt) (see (2)), we obtain for any w = (u, v) 2
�m
⇥�n,

1

T

X

t2[T]�1

hgt � g̃t, w̃t � wi 
1

⌘T
(Vu0(u) + Vv0(v)) + 4⌘. (7)

Summing inequalities (6) and (7), and maximizing over w = (u, v) 2 �m
⇥�n, we have

max
w2�m⇥�n

1

T

T�1X

t=0

hgt, wt � wi  max
u2�n,v2�m

2

⌘T
(Vu0(u) + Vv0(v))

+ 5⌘ +
1

T

T�1X

t=0

hgt � g̃t, wt � w̃ti.

(8)

Taking expectations over the above, we have

E
"

max
w2�m⇥�n

1

T

T�1X

t=0

hgt, wt � wi

#
 max

u2�n,v2�m

2

⌘T
[Vu0(u) + Vv0(v)]

+ 5⌘ + E
"
1

T

T�1X

t=0

hgt � g̃t, wt � w̃ti

#

(i)


2 log(mn)

⌘T
+ 5⌘ +

1

T

X

t2[T]�1

hgt � Eg̃t, wt � w̄ti,

(ii)


2 log(mn)

⌘T
+ 5⌘ + 4�

(iii)
 ✏.

In the above, (i) used the diameter bound of the KL divergence from the uniform distribution, i.e. maxu2�m Vu0(u) = logm
(and a similar bound for Vv0(v)). Further, (ii) uses that g̃t is conditionally independent of wt and w̃t, and by the assumption
on the Gibbs sampler kgt � Eg̃tk1  � (via Lemma A.1), and Hölder, and (iii) uses our choices of T , ⌘ and �.

Finally, we note that the desired claim follows by linearity: for any w = (u, v),

1

T

T�1X

t=0

hgt, wt � wi =

*
g

1

T

T�1X

t=0

wt

!
,
1

T

T�1X

t=0

wt � w

+

= u
>Av̄ � ū

>Av.

13

Quantum Speedups for Zero-Sum Games

By using a simple martingale argument (inspired by those in (Allen-Zhu & Li, 2017; Carmon et al., 2019a)) to bound the
error term in (8), we show that the guarantee of Proposition A.2 holds with high probability.

Corollary A.3. Let ↵ 2 (0, 1), and let � 
✏

20 , ⌘ = ✏

20 and T �
8 log(mn)

⌘✏
+

2048 log 1
↵

✏2
in Algorithm 1. Then with probability

at least 1� ↵, following notation of Proposition A.2, (ū, v̄) are an ✏-approximate NE for A.

Proof. Consider the filtration given by Ft = �(u0, v0, g̃0, · · · , g̃t, ut+1, vt+1). We will bound the terms
P

T�1
t=0 hgt �

g̃t, wt � w̄ti in (4). To do so, we define a martingale difference sequence of the form Dt := hgt � g̃t, wt � w̄ti � hgt �

E [g̃t|Ft�1] , wt�w̄tiwhich is adapted to the filtration Ft. We first note that Dt�1  kgt�1 � g̃t�1k1 kwt�1 � w̄t�1k1  8
with probability 1. Consequently, applying the Azuma-Hoeffding inequality yields

T�1X

t=0

Dt 

r
128T log

1

↵
with probability � 1� ↵.

Plugging this back into (8) and using the KL divergence range bound, Lemma A.1 with our definition of Ogibbs, and choices
of parameters, we thus have with probability 1� ↵,

max
w2�m⇥�n

1

T

T�1X

t=0

hgt, wt � wi 
2 logmn

⌘T
+ 5⌘ + 4� +

s
128 log 1

↵

T
 ✏. (9)

The remainder of the proof follows analogously to Proposition A.2.

The Gibbs sampling oracles implicitly maintain access to ut / exp(Ayt) and vt / exp(�A>
xt), which by averaging

gives (ū, v̄) = 1
T

P
T�1
t=0 (ut, vt) as one approximate equilibrium as guaranteed in Corollary A.3. To turn the implicitly

maintained iterates into an actual classic output, we subsample the iterates. Below we formally show one can take the
empirical average of independent samples from distributions close to ū and v̄ to also obtain an approximate equilibrium
(with the same approximation factor up to constant factors) with high probability.
Lemma A.4. Suppose ū = 1

T

P
T�1
t=0 ut for {ut}

T�1
t=0 ⇢ �m

and v̄ = 1
T

P
T�1
t=0 vt for {vt}

T�1
t=0 ⇢ �n

are an ✏-approximate

NE for A. Further suppose that for some � 2 (0, 1), {ũt}
T�1
t=0 ⇢ �m

, {ṽt}
T�1
t=0 ⇢ �n

, and for all 0  t < T � 1, we have

kũt � utk1  � and kṽt � vtk1  �. Let û = 1
T

P
T�1
t=0 eit where each eit 2 Rm

is sampled independently according to

ũt; similarly, let v̂ = 1
T

P
T�1
t=0 ejt where each ejt 2 Rn

is sampled independently according to ṽt. Suppose T �
16 log mn

↵
✏2

.

Then with probability at least 1� ↵, (û, v̂) are a (2✏+ 2�)-approximate NE for A.

Proof. First, let ũavg = 1
T

P
T�1
t=0 ũt and ṽavg = 1

T

P
T�1
t=0 ṽt. By convexity of norms, we have kũavg � ūk1  � and

kṽavg � v̄k1  �, and hence under the NE approximation guarantee of (ū, v̄) and Hölder’s inequality,

max
u2�m

u
>Aṽavg � min

v2�m
ũ
>
avgAv  ✏+ 2�.

Let z be a fixed vector in [�1, 1]n. By Hoeffding’s inequality, since each random variable hz, ejti lies in the range [�1, 1]
and Ev̂ = ṽavg, we have that

Pr
h
|hz, v̂ � ṽavgi| �

✏

2

i
 2 exp

✓
�
T ✏

2

8

◆


↵

m+ n
. (10)

Next, note that maxu2�m u
>Aṽavg is achieved by a basis vector u = ei. Hence, applying a union bound over (10) for all

z = Ai: shows that with probability at least 1� ↵m

m+n
,

max
u2�m

u
>Av̂  max

u2�m
u
>Aṽavg +

✏

2
.

By symmetry, with probability at least 1� ↵n

m+n
,

min
v2�n

û
>Av � min

v2�n
ũ
>
avgAv �

✏

2
.

The conclusion follows from a union bound, and combining the above three displays.

14

Quantum Speedups for Zero-Sum Games

Finally, we put these pieces together to give a complete guarantee.
Proposition 2.1. Let A 2 Rm⇥n

satisfy kAkmax  1 and ✏,↵ 2 (0, 1). Let � 
✏

20 , ⌘ = ✏

60 , and T = ⇥(✏�2 log mn

↵
) for

an appropriate constant. With probability � 1� ↵, Algorithm 1 outputs an ✏-approximate NE for A.

Proof. We follow notation of Proposition A.2. By applying Corollary A.3 (up to constant factors), we have that with
probability at least 1� ↵

2 , ū := 1
T

P
T�1
t=0 ut and v̄ := 1

T

P
T�1
t=0 vt satisfy

max
u2�m

u
>Av̄ � min

v2�n
ū
>Av 

✏

3
.

Finally, Lemma A.4 (with failure probability ↵

2) and a union bound yields the desired conclusion.

B Quantum rejection sampling with a hint

In this section, we prove Proposition 2.5, which gives a dynamic quantum rejection sampling subroutine and bounds its cost
of implementation. Our result is an extension of analogous developments in (van Apeldoorn & Gilyén, 2019), but are stated
more generally to allow for the use of an appropriate “hint” vector in the rejection sampling procedure. We build up to our
main result in several pieces.

Amplitude amplification. First, for a quantum decision algorithm which applies unitary U and then measures, yielding
an accepting state with probability ↵, quantum amplification (Brassard et al., 2002) shows we can apply U ⇡ ↵

� 1
2 times to

obtain an accepting state with high probability.
Proposition B.1 (Theorem 3, (Brassard et al., 2002)). Let S ✓ {0, 1}s, let U be a s-qubit quantum oracle, and let ↵ be

the probability that measuring the result of applying U yields an accepting state. There is a (quantum) algorithm using

O(↵� 1
2 log 1

�
) queries to U and O(log s log 1

�
) additional time that returns s with s 2 S with probability � 1� �.

Loading from trees. Given a dynamic vector x 2 Rm

�0 which is supported in an appropriate efficient data structure
SamplerTree (see Lemma 2.4), and a known bound � � kxk1, we recall a result of (Grover & Rudolph, 2002) which allows
us to form a superposition of the entries in x (suitably rescaled).
Lemma B.2. Let x 2 Rm

�0 correspond to an instance of SamplerTree, and � � kxk1. We can maintain a quantum oracle

OSamplerTree which takes O(logm) time to apply, such that the total cost of building OSamplerTree after T calls to Update is

O(T logm), and

OSamplerTree|0i
⌦(a+1) =

X

i2[m]

r
xi

�
|0i|ii+

s

1�
kxk1

�
|1i|gi.

Proof. This is implicit in (Grover & Rudolph, 2002). We first apply a 1-qubit gate to condition on selecting from the tree
(with probability kxk1

�
), and then apply the (Grover & Rudolph, 2002) procedure conditioned on the first qubit being |0i,

which controls for one qubit at a time while propagating subtree sums (provided by SamplerTree via SubtreeSum). The
cost to build the circuit follows because on an Update we need to change the gates corresponding to the relevant leaf-to-root
path.

Corollary B.3. Let x 2 Rm

�0 correspond to an instance of SamplerTree, and let � � kxk1, and suppose A 2 Rm⇥n
has

kAkmax  1. We can maintain a quantum oracle OA>x which takes O(logm) time to apply, with total building cost

O(T logm) after T calls to Update, such that for any j 2 [n],

OA>x|0i
⌦(a+2)

|ji = |0i

0

@
X

i2[m]

s
Aijxi

�
|0i|ii+ |1i|gi

1

A |ji.

Proof. We apply O
0
A (see Section 1.4) to the output of OSamplerTree, ignoring the additional qubit.

We remark here that the additional qubit in Corollary B.3 will shortly become useful in constructing an appropriate
block-encoding of a scaling of diag

�
A>

x
�
.

15

Quantum Speedups for Zero-Sum Games

Polynomial approximation. In order to give approximate Gibbs samplers for the types of dynamic vectors Algorithm 1
encounters, we further require some tools from polynomial approximation theory. We first state a helper result on boundedly
approximating the exponential, a variant of which was also used in (van Apeldoorn & Gilyén, 2019). We provide a proof in
Appendix D.

Lemma B.4 (Lemma 7, (van Apeldoorn & Gilyén, 2019)). Let � � 1, ⇠ 
1
10 . There is a polynomial P�,⇠ of degree

O(� log 1
⇠
) such that maxx2[�1,1] |P�,⇠(x)|  3 and maxx2[�1,0] |P�,⇠(x)� exp(�x)|  ⇠.

Next, we state a further corollary of Lemma B.4 to be used in our rejection sampler.

Corollary B.5. Let B, � � 0 and suppose v 2 Rn
has kvk1  B. Further, suppose for some c � 0,�c  maxj2[n] vj  0.

Let q 2 Rn

�0 satisfy qj 2 [`, 1] entrywise. Finally, define uj := vj

2B entrywise. There is a degree-� polynomial P , for

� = O(B · (c+ log n

`�
)), such that for wj := P(uj)2qj and zj := exp(2Buj)qj entrywise,

����
w

kwk1

�
z

kzk1

����
1

 �. (11)

Moreover, maxx2[�1,1] |P(x)|  1
2 , and kwk1 � 1��

36 kzk1.

Proof. Assume �  2 else the statement is clearly true. First, uj 2 [� 1
2 , 0] entrywise by the stated assumptions (since

vj 2 [�B, 0] entrywise). Let P�,⇠(·) be the polynomial given by Lemma B.4 which ⇠-approximates exp(�·) on [� 1
2 , 0].

We define

P(u) :=
1

6
PB,⇠ (u) , for ⇠ :=

�`

6n exp(c)
.

The degree bound and absolute value bound of this polynomial follows immediately from Lemma B.4, so it remains to show
the distance bound. The guarantees of Lemma B.4 then imply for all j 2 [n],

|6P(uj)� exp (Buj)|  ⇠. (12)

We further have that uj  0, so exp(Buj)  1. Hence, we also have

|6P(uj) + exp (Buj)|  2 + ⇠  3.

Combining yields for all j 2 [n], ��36P(uj)
2
� exp (2Buj)

��  3⇠. (13)

Next, let yj := 36wj for all j 2 [n], and note that y

kyk1
= w

kwk1
. We bound

����
w

kwk1

�
z

kzk1

����
1

=
X

j2[n]

����
yj

kyk1

�
zj

kzk1

���� 
X

j2[n]

����
yj

kyk1

�
yj

kzk1

����+
X

j2[n]

����
yj

kzk1

�
zj

kzk1

����



����1�
kyk1

kzk1

����+
ky � zk1

kzk1


2 ky � zk1

kzk1

.

(14)

By using the definitions of y, z and (13), as well as the assumed ranges on q,

ky � zk1  3n⇠, kzk1 � ` exp(�c).

The second inequality used that some vj = 2Buj is at least �c by assumption. Combining the above display with (14) and
the definition of ⇠ concludes the proof of (11). Finally, using the bounds on ky � zk1 , kzk1 above shows that

kwk1 =
1

36
kyk1 �

1� �

36
kzk1.

16

Quantum Speedups for Zero-Sum Games

Block-encoding. Our approximate Gibbs oracle follows an implementation strategy pioneered by (Gilyén et al., 2019)
termed “block-encoding.” Specifically, we follow (Gilyén et al., 2019) and say that U, an (a+ `)-qubit quantum gate, is an
`-bit block-encoding of M if the top-left 2a ⇥ 2a submatrix of U is M. Block-encoded matrices admit efficient composable
operations, such as the application of linear combinations and bounded polynomials. We summarize these properties in the
following.
Proposition B.6 (Lemma 52, (Gilyén et al., 2019)). Let U1 and U2 be `-bit block-encodings of M1, M2 of the same size.

There is an O(`)-bit block-encoding of
1
2M1 +

1
2M2 which takes the same asymptotic time to apply as applying U1 and

U2.

Proposition B.7 (Theorem 56, (Gilyén et al., 2019)). Let U be an `-bit block-encoding of M, and P : [�1, 1]! [� 1
2 ,

1
2]

be a degree-� polynomial. There is an O(`)-bit block-encoding of P(M) which can be applied in O(�) applications of U
and U†

and O(`�) additional time.

We also demonstrate that an application of Corollary B.3 yields a simple block-encoding of diag

⇣
A>

x

�

⌘
. A similar

construction previously appeared in (van Apeldoorn & Gilyén, 2019).

Corollary B.8. Let x 2 Rm

�0 correspond to an instance of SamplerTree, and � � kxk1. Let M := diag

⇣
A>

x

�

⌘
and

U := O
⇤
A>x

(SWAP12 ⌦ I)OA>x, where SWAP12 swaps the first two qubits and OA>x is from Corollary B.3. Then U is a

block-encoding of M, and can be applied in time O(logm), with total building cost O(T logm) after T calls to Update.

Proof. Define wij :=
Aijxi

�
for convenience. By the definition of OA>x, we have that

(SWAP12 ⌦ I)OA>x

⇣
|0i⌦(a+2)

|ji

⌘
=

0

@|00i
X

i2[m]

p
wij |ii+ |10i|gi

1

A |ji.

Hence, for j, j0 2 [n], we compute hj0|h0|⌦(a+2)U|0i⌦(a+2)
|ji as:

hj
0
|

0

@|00i
X

i2[m]

p
wij |ii+ |01i|gi

1

A
⇤0

@|00i
X

i2[m]

p
wij |ii+ |10i|gi

1

A |ji

=

(P
i2[m] wij =

[A>
x]j

�
j = j

0

0 j 6= j
0
.

In particular the |01i and |10i terms disappear, and |ji, |j0i are orthogonal unless j = j
0. In the above, we required that

p
wij

⇤p
wij = wij , which is only true if wij is nonnegative. To bypass this issue, we will implement the two copies

of OA>x in slightly different ways, to obtain the correct signing. For notational clarity, we let OL be the oracle which
is conjugated on the left and O

R be the oracle on the right, such that U = (OL)⇤(SWAP12 ⌦ I)(OR). Note that x is
entrywise nonnegative and � > 0, and hence the only factor determining the sign of wij is Aij . When Aij � 0, we will
define the oracles O0

A used to load
p
Aij for OL and O

R in a consistent way (i.e. use the same-signed square root), so
that pwij

2 = wij . When Aij < 0 we will define them in an inconsistent way, so that after the conjugation operation,
�
p
wij

p
wij = wij . We have thus shown that h0|⌦(a+2)U|0i⌦(a+2) = M which implies the first conclusion. To see the

second, all our gates are reversible (arithmetic circuits are reversible, and OA is its own inverse), and hence the complexity
of applying O

⇤
A>x

is the same as OA>x.

Finally, we put together the pieces and prove Proposition 2.5, which we use repeatedly throughout the paper to implement
our Gibbs sampling oracles.
Proposition 2.5. Let x 2 Rm

�0 correspond to an instance of SamplerTree, and � � kxk1. Let p be the Gibbs distribution

associated with A>
x, let Z :=

P
j2[n] exp([A

>
x]j) and eZ 2 [Z,CZ] for some C � 1. Finally, let q 2 Rn

have entries

classically queriable in O(1) time, satisfy q � p entrywise, qj 2 [�
n
, 1] for all j 2 [n], and kqk1 = ⇢. Suppose eZ, C, ⇢,

and � are explicitly known. Given a quantum oracle for A 2 Rm⇥n
(defined in Section 1.4) with kAkmax  1, we can

implement a �-approximate Gibbs oracle which has query cost O(
p
⇢C · � log4

�
Cmn

�

�
). The total additional cost incurred

if x undergoes T Update calls which preserve the invariants on eZ,C, ⇢,� is O(T logm).

17

Quantum Speedups for Zero-Sum Games

Proof. Throughout the proof, let � min(12 , �) and B := 4(� + log(Cn

�
)). Also define ` := �

n
(following notation of

Corollary B.5). We first observe that since maxj2[n][A
>
x]j  logZ  maxj2[n][A

>
x]j + log n,

� log(Cn)  max
j2[n]

[A>
x]j � log

⇣
eZqj

⌘
 0.

Here, the upper bound used that for all j 2 [n], exp([A>
x]j � eZqj) = pj

qj
·

Z

eZ
 1 by assumption. Hence, for

v := A>
x� log(eZq) entrywise,

�c  max
j2[n]

vj  0 for c := log(Cn).

Next, we note log(eZq) is entrywise bounded in magnitude by B

2 :

log(eZqj)  log(CZ)  log

✓
n ·max

j2[n]
exp([A>

x]j)

◆
+ logC 

B

2
,

log(eZqj) � logZ + log
�

n
� min

j2[n]
[A>

x]j � log
n

�
� �

B

2
.

Define M1 := diag

⇣
A>

x

2B

⌘
and M2 := diag

⇣
�

1
2B log(eZq)

⌘
. By the calculations above, we have kM2kop 

1
2 , and

similarly it is clear that kM1kop 
1
2 because

��A>
x
��
1  �. Moreover, by using Corollary B.8 with � B, we obtain

U1, a block-encoding of M1 applicable in O(logm) time. Using a similar construction as Corollary B.8, since q, B,
and eZ are all efficiently classically queriable, we obtain U2, a block-encoding of M2 applicable in O(1) time. Hence,
Proposition B.6 yields U, a block-encoding of

M1 +M2 = diag

⇣
v

2B

⌘
,

which can be applied in O(logmn) time. Next, let P be the degree-� = O(B log Cn

�
) polynomial from Corollary B.5,

parameterized by B, v, c, q, ` as defined earlier. Corollary B.5 shows that P : [�1, 1] ! [� 1
2 ,

1
2]. Thus, Proposition B.7

then yields U0, a block-encoding of diag
�
P(v

2B)
�

which can be applied in O(� · logmn) time. Furthermore, since q and
⇢ are efficiently classically queriable, we can define a gate Oq which is applicable in O(1) time and acts as

Oq|0i
⌦(b+1) = |0i

X

j2[n]

r
qj

⇢
|ji+ |1i|gi.

Applying U0 to the output of Oq with appropriate ancilla qubits then yields

|0i⌦O(1)
X

j2[n]

s
qjP(uj)2

⇢
|ji|gji+ |g

0
i, where uj :=

vj

2B
for all j 2 [n].

Post-selecting on the first register being the all-zeroes state and measuring on the register corresponding to j, we see that we
obtain a sample j 2 [n] with probability proportional to qjP(uj)2. By Corollary B.5, conditioned on the sample succeeding,
the resulting distribution is �-close in `1 to the distribution proportional to q � exp(v) / exp(A>

x), and hence the result is
a �-approximate Gibbs oracle. Finally, we bound the query cost of the oracle. Define wj := P(uj)2qj and zj := exp(vj)qj
as in Corollary B.5. By definition of v, eZ,

kzk1 =
X

j2[n]

exp
⇣⇥

A>
x
⇤
j

⌘

eZ
2
⇥
C

�1
, 1
⇤
.

Moreover, the last conclusion in Corollary B.5 shows kwk1 �
1
72 kzk1 � (72C)�1. Hence,

X

j2[n]

qjP(uj)2

⇢
=
kwk1

⇢
�

1

72C⇢
.

In other words, we have an oracle which we can apply in time O(� · logmn) which correctly returns a sample with
probability ↵ �

1
72C⇢

. By applying Proposition B.1 to improve the success probability, we obtain the desired conclusion at
a O(
p
C⇢ log 1

�
) overhead.

18

Quantum Speedups for Zero-Sum Games

C Deferred proofs from Section 3

In this section, we provide proofs for the lemmas and corollaries in Section 3.
Lemma 3.1. For all s 2 [d 1

⌘
e], Z⌧+s 2

⇥
1
3Z⌧ , 3Z⌧

⇤
and p⌧+s 2

⇥
1
9p⌧ , 9p⌧

⇤
entrywise.

Proof. Let ⌫t := exp(A>
xt) for all t, such that pt = ⌫t

Zt
. We have that for any j 2 [n],

[⌫⌧+s]j
[⌫⌧]j

= exp
⇣⇥

A> (x⌧+s � x⌧)
⇤
j

⌘

2 [exp (�kAkmax kx⌧+s � x⌧k1) ,

exp (kAkmax kx⌧+s � x⌧k1)]

2 [exp (�⌘s) , exp (⌘s)] 2


1

3
, 3

�
.

Similarly, Z⌧+s 2 [13Z⌧ , 3Z⌧], and combining yields the conclusion.

Lemma 3.2. Let k 2 [n], ↵ 2 (0, 1), and suppose � 
1

16k . Draw N = ⇥(k log n⌘T

↵
) samples from O⌧ for an appropriately

large constant, and let q̃ 2 �n
be the empirical distribution over these N samples. Define B := {i 2 [n] | q̃i �

1
2k}. Then

with probability � 1� ↵

2d⌘Te , for

qj =

(
18q̃j j 2 B

18
k

j 62 B
,

kqk1 = O(n
k
) and q � p⌧+s entrywise, for all s 

1
⌘

.

Proof. The first conclusion kqk1 = O(n
k
) is immediate from the definition of q, since kqk1  18 kq̃k1 +

18n
k

. In light of
Lemma 3.1 (which holds deterministically), to show the second conclusion, it suffices to show that with the desired success
probability, we have both

2q̃j � [p⌧]j for all j 2 B (15)

and
2

k
� [p⌧]j for all j 62 B. (16)

Denote ↵
0 := ↵

2d⌘Te for notational convenience, and let p̃ denote the distribution of samples from O⌧ , and recall that
kp̃� p⌧k1 

1
16k . Because we are taking ⇥(k log n

↵0) samples from p̃, we have by a standard Chernoff bound that with
probability at least 1� ↵

0 (union bounding over all coordinates j 2 [n]), both of the following hold.

1. For all j 2 [n] such that p̃j � 1
4k , q̃j �

2p̃j

3 .

2. For all j 2 [n] such that p̃j  1
4k , q̃j  1

2k .

Conditioning on these events; we now show (15), (16) in turn.

Proof of (15). To see (15), the second event above implies that if p̃j  1
4k , j 62 B. Hence, 8j 2 B, we have q̃j �

2p̃j

3 �
[p⌧]j
2

since kp̃� p⌧k1 
1

16k 
1
4 p̃j , 8j 2 B.

Proof of (16). To see (16), suppose for contradiction that j 62 B and [p⌧]j >
2
k

. This implies that p̃j > 1
k

, and hence by the
first event above, q̃j � 1

2k , contradicting j 62 B.

Corollary 3.3. Assume Invariants 1, 2 hold for the phase consisting of iterations ⌧ + s, s 2 [d 1
⌘
e]. We can solve Problem 1

for the phase with probability � 1� ↵

2d⌘Te , and Tsamp := O
�p

n

k
· T⌘ log4 mn

�

�
.

Proof. We will run the algorithm described in the proof of Lemma 3.2, and condition on it succeeding, giving the failure
probability. It then suffices to apply Proposition 2.5 with q defined in Lemma 3.2. For this q, we parameterize Proposition 2.5
with C = O(1) (see Invariant 1), ⇢ = O(n

k
) (see Lemma 3.2), and � = T⌘. It is clear the lower bound on entries of q in

Proposition 2.5 holds.

19

Quantum Speedups for Zero-Sum Games

Corollary 3.4. Following notation of Proposition 2.5, let R :=
eZ
Z

. There is a quantum oracle Otest which can be implemented

under T Update calls to x in O(T logm) time, and has query cost O(
p
⇢C · � log4 Cmn

`�
). Furthermore, for explicitly

known constants C` and Cu, Otest returns “success” with probability p for
C`p
R⇢
 p 

Cup
R⇢

.

Proof. Our oracle Otest is the oracle from Proposition 2.5, except we will choose a sufficiently small constant value of �. It
returns “success” when the sample is accepted by the rejection sampler after boosting by amplitude amplification. Before
boosting, the success probability from Proposition 2.5 is ⇥(1

R⇢
) where the constants in the upper and lower bounds are

explicit. Further, the constants from Proposition B.1 are explicit, and hence boosting by amplitude amplification improves
the success probability to ⇥(1p

R⇢
) with known constant bounds as required by the corollary statement.

Lemma 3.5. Assume Invariants 1, 2 hold for iterations ⌧ + s, s 2 [d 1
⌘
e], and suppose C �

4C2
u

C2
`

for C = O(1), where Cu

and C` are the constants from Corollary 3.4. Further, suppose we have obtained q satisfying the conclusion of Lemma 3.2 (i.e.

that the algorithm in Lemma 3.2 succeeded). We can determine eZ such that eZ 2 [Z⌧ 0 , CZ⌧ 0] with probability � 1� ↵

2d⌘Te ,

in time O

⇣p
n

k
· T⌘ log4 mn

�
log ⌘T

↵

⌘
.

Proof. Define eZ0 := 3 eZprev, R0 :=
eZ0
Z⌧0

, and note that eZ0 2 [Z⌧ 0 , 9CZ⌧ 0] by Invariant 1 and Lemma 3.1. Next, assuming

the success of Lemma 3.2, the success probability p of Otest from Corollary 3.4 using the estimate eZ0 satisfies (for the
unknown R0 2 [1, 9C], and known C`, Cu, ⇢)

C`
p
R0⇢

 p 
Cu
p
R0⇢

.

For N := 27 log 4d⌘Te
↵

·
3
p
C⇢

C`
, we first run Otest N times and check the number of successes, denoted by S, which fits

within the runtime budget by Corollary 3.4. By a Chernoff bound, we have that with probability � 1� ↵

2d⌘Te , we have

S �
2

3
pN � 54 log

4d⌘T e

↵
·

r
C

R0
,

S 
4

3
pN  108 log

4d⌘T e

↵
·
Cu

C`

·

r
C

R0
.

Hence, we can determine the quantity R0 up to a multiplicative factor of 4C2
u

C2
`
 C, which also implies the same multiplicative

approximation factor for Z⌧ 0 , as desired.

D Bounded approximation to exp on [�1, 1]

Here, we give a proof of a lemma (with slightly different constants) used in the prior work (van Apeldoorn & Gilyén,
2019). This section builds entirely off prior results on polynomial approximation in (Gilyén et al., 2019); we include it for
completeness because a proof was not given in (van Apeldoorn & Gilyén, 2019). As a reminder, we stated and used the
following result earlier when constructing our rejection sampler in Appendix B.

Lemma B.4 (Lemma 7, (van Apeldoorn & Gilyén, 2019)). Let � � 1, ⇠ 
1
10 . There is a polynomial P�,⇠ of degree

O(� log 1
⇠
) such that maxx2[�1,1] |P�,⇠(x)|  3 and maxx2[�1,0] |P�,⇠(x)� exp(�x)|  ⇠.

To obtain the lemma, we will utilize the following result from (Gilyén et al., 2019).

Proposition D.1 (Corollary 66, (Gilyén et al., 2019)). Let x0 2 [�1, 1], r 2 (0, 2], � 2 (0, r]. Let f : [x0�r��, x0+r+�]!
C be such that f(x0+x) =

P
`�0 a`x

`
for all x 2 [�r� �, r+ �]. Suppose B > 0 is such that

P
`�0(r+ �)`|a`|  B and

let ✏ 2 (0, 1
2B]. There is a polynomial P (see Appendix E for its numerically stable implementation) of degree O

�
1
�
log B

✏

�

such that

max
x2[x0�r,x0+r]

|f(x)� P (x)|  ✏ and max
x2[�1,1]

|P (x)|  ✏+B.

20

Quantum Speedups for Zero-Sum Games

Proof of Lemma B.4. We apply Proposition D.1 with f(x) := exp(�x) which has a convergent Taylor series everywhere,
and the parameter settings x0 = �1, r = 1, � = 1

�
, B = e. We have that f(x0 + x) =

P
`�0 exp(��)

�
`·x`

`! =
P

`�0 a`x
`

with a` = exp(��)�
`

`! for any integer ` � 0. We also check that our choice of B is valid, via

X

`�0

(r + �)`|a`| = exp(��)
X

`�0

✓
1 +

1

�

◆`
�
`

`!
= exp(��)

X

`�0

(� + 1)`

`!
= exp(� + 1� �) = e.

Hence by Proposition D.1, we have for any ⇠ 
1
2e , there is a polynomial P of degree O(� log 1

⇠
) such that

maxx2[�2,0] | exp(�x)� P (x)|  ✏ and maxx2[�1,1] |P̃ (x)|  e+ 1
6 + ⇠  3.

E Numerically stable implementation of polynomial approximation

In this section, we explain the derivation of the additive eO(poly(✏�1)) term in Theorem 2.3. When applying Proposition 2.5,
we assumed access to an implementation of the polynomial transform of our block-encoded matrix through the framework
of (Gilyén et al., 2019), whose complexity is bounded in that work. However, using the implementation in (Gilyén et al.,
2019) also requires that we have computed certain phase factors associated with the polynomial. These phase factors are
not available in closed form and hence must be numerically approximated, which we now discuss. Throughout, we let
� = O(1

✏
log2(mn

✏
)) be the degree of the polynomial used in the proof of Proposition 2.5 in Appendix B (specifically,

constructed in the proof of Proposition 2.5, where we have C = O(1) and � = O(✏) in our applications). Our polynomial is
constructed via a decomposition in the Fourier basis (see Lemmas 57 and 65, (Gilyén et al., 2019)). Furthermore, (Haah,
2019) shows that given such a decomposition in the Fourier basis, we can obtain a numerically-stable implementation of the
phase factors required resulting in a quantum circuit implementing the desired polynomial up to additive error ⇠, in time

O

✓
�3 log

✓
�

⇠

◆◆
.

In our setting (in the proof of Proposition 2.5), it is straightforward to check that 1
⇠
= poly(m,n, ✏

�1). This construction
hence results in the additive term in Theorem 2.3.

21

