
Proceedings of Machine Learning Research vol 195:1–47, 2023 36th Annual Conference on Learning Theory

Semi-Random Sparse Recovery in Nearly-Linear Time

Jonathan A. Kelner KELNER@MIT.EDU
MIT

Jerry Li JERRL@MICROSOFT.COM
Microsoft Research

Allen Liu CLIU568@MIT.EDU
MIT

Aaron Sidford SIDFORD@STANFORD.EDU
Stanford University

Kevin Tian TIANKEVIN@MICROSOFT.COM

Microsoft Research

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
Sparse recovery is one of the most fundamental and well-studied inverse problems. Standard statis-
tical formulations of the problem are provably solved by general convex programming techniques
and more practical, fast (nearly-linear time) iterative methods. However, these latter “fast algo-
rithms” have previously been observed to be brittle in various real-world settings.

We investigate the brittleness of fast sparse recovery algorithms to generative model changes
through the lens of studying their robustness to a “helpful” semi-random adversary, a framework
for testing overfitting to input assumptions. We consider the following basic model: let A 2 Rn⇥d

be a measurement matrix containing an unknown subset of rows G 2 Rm⇥d which are bounded
and satisfy the restricted isometry property (RIP), but is otherwise arbitrary. Letting x?

2 Rd be
s-sparse, and given either exact or noisy measurements, b = Ax? or b = Ax? + ⇠, we design
algorithms recovering x? information-theoretically optimally in nearly-linear time. We extend our
algorithm to hold for weaker generative models relaxing our planted RIP row subset assumption to
a natural weighted variant, and show that our method’s guarantees naturally interpolate the quality
of the measurement matrix to, in some parameter regimes, run in sublinear time.

Our approach differs from that of prior fast iterative methods with provable guarantees under
semi-random generative models Cheng and Ge (2018); Li et al. (2020), which typically separate
the problem of learning the planted instance from the estimation problem, i.e. they attempt to first
learn the planted “good” instance (in our case, the matrix G). However, natural conditions on a
submatrix which make sparse recovery tractable, such as RIP, are NP-hard to verify and hence first
learning a sufficient row reweighting appears challenging. We eschew this approach and design
a new iterative method, tailored to the geometry of sparse recovery, which is provably robust to
our semi-random model. Our hope is that our approach opens the door to new robust, efficient
algorithms for other natural statistical inverse problems.
Keywords: Sparse recovery, semi-random models, robust statistics, stochastic gradient methods

© 2023 J. A. Kelner, J. Li, A. Liu, A. Sidford & K. Tian.

A. KELNER LI LIU SIDFORD TIAN

1. Introduction

Sparse recovery is one of the most fundamental and well-studied inverse problems, with numerous
applications in prevalent real-world settings Eldar and Kutyniok (2012). In its most basic form,
we are given an entrywise Gaussian measurement matrix G 2 Rm⇥d and measurements b = Gx?

for an unknown s-sparse x? 2 Rd; the goal of the problem is to recover x?. Seminal works by
Candès, Romberg, and Tao Candes and Romberg (2005); Candes and Tao (2006); Candes et al.
(2006) showed that even when the linear system in G is extremely underconstrained, recovery is
tractable so long as m = ⌦(s log d). Further they gave a polynomial-time algorithm known as basis
pursuit based on linear programming recovering x? in this regime.

Unfortunately, the runtime of linear programming solvers, while polynomial in the size of the
input, can still be prohibitive in many high-dimensional real-world settings. Correspondingly, a
number of alternative approaches which may broadly be considered first-order methods have been
developed. These methods provably achieve similar recovery guarantees under standard generative
models such as Gaussian measurements, with improved runtimes compared to the aforementioned
convex programming methods. We refer to these first-order methods through as “fast” algorithms
throughout and they may roughly be placed in the following (potentially non-disjoint) categories.

• Greedy algorithms, e.g. Mallat and Zhang (1993); Pati et al. (1993); Needell and Vershynin
(2010), greedily find elements in the support of x? using combinatorial search criteria.

• Non-convex iterative algorithms, e.g. Needell and Tropp (2009); Blumensath and Davies
(2009, 2010); Maleki and Donoho (2010); Foucart (2011), directly optimize a (potentially
non-convex) objective over a non-convex domain.

• Convex iterative methods, e.g. Figueiredo and Nowak (2003); Daubechies et al. (2004);
Combettes and Wajs (2005); Beck and Teboulle (2009); Becker et al. (2011); Negahban et al.
(2012); Agarwal et al. (2012) solve the convex objective in basis pursuit via iterative methods.

We also note that theoretically, when n is sufficiently large, recent interior point method (IPM)
advances by van den Brand et al. (2020, 2021) obtain fast runtimes for the relevant linear pro-
gramming objective. The fastest IPM for the noiseless sparse recovery objective runs in time1

eO(nd+ n2.5) which is nearly-linear when A is dense and n⌧ d2/3. For a range of (superlogarith-
mic, but sublinear) n, these runtimes are not nearly-linear; further, IPMs are second-order and our
focus is on designing first-order sparse recovery methods, which are potentially more practical.2

It has often been observed empirically that fast first-order methods can have large error, or
fail to converge, in real-world settings Davenport et al. (2013); Jain et al. (2014); Polania et al.
(2014) where convex programming-based algorithms (while potentially computationally cumber-
some) perform well statistically Zhang et al. (2016); Aich and Palanisamy (2017). This may be
surprising, given that in theory, fast algorithms essentially match the statistical performance of the
convex programming-based algorithms under standard generative assumptions. While there have
been many proposed explanations, one compelling argument is that fast iterative methods used in
practice are more brittle to changes in modeling assumptions. We adopt this viewpoint in this paper,

1. We use eO to hide polylogarithmic factors in problem parameters for brevity of exposition throughout the paper.
2. We also note that these IPM results do not immediately apply to natural (nonlinear) convex programs for sparse

recovery under noisy observations, see Appendix D.

2

SEMI-RANDOM SPARSE RECOVERY

and develop fast sparse recovery algorithms which achieve optimal statistical rates under a semi-
random adversarial model Blum and Spencer (1995); Feige and Kilian (2001), a popular framework
for investigating the robustness of learning algorithms under changes to the data distribution.

Semi-random adversaries. Semi-random adversaries are a framework for reasoning about algo-
rithmic robustness to distributional shift. They are defined in statistical settings, and one common
type of semi-random adversary corresponds to generative models where data has been corrupted in a
“helpful” or “monotone” way. Such a monotone semi-random adversary takes a dataset from which
learning is information-theoretically tractable, and augments it with additional information; this
additional information may not make the problem more challenging from an information-theoretic
perspective,3 but may affect the performance of algorithms in other ways. We consider a semi-
random adversary which makes the computational problem more difficult without affecting the
problem information-theoretically, by returning a consistent superset of the unaugmented obser-
vations. This contrasts with other adversarial models such as gross corruption Anscombe (1960);
Tukey (1960); Huber (1964); Tukey (1975), where corruptions may be arbitrary, and the corrupted
measurements incorrect. It may be surprising that a “helpful” adversary has any implications on a
learning problem, from either an information-theoretic or computational standpoint.

Typically, convex programming methods for statistical recovery problems are robust to these
sorts of perturbations, because constraints to a convex program that are met by an optimum point
does not change the optimality of that point. However, greedy and non-convex methods — such
as popular practical algorithms for sparse linear regression — can be susceptible to semi-random
adversaries. Variants of this phenomenon have been reported in many common statistical estima-
tion problems, such as stochastic block models and broadcast tree models Moitra et al. (2016), PAC
learning Blum (2003), matrix completion Moitra (2017); Cheng and Ge (2018), and principal com-
ponent regression Bhaskara et al. (2021). This can be troubling, as semi-random noise is a relatively
mild form of generative model misspecification: in practice, the true distribution is almost always
different from the models considered in theory. Consequently, an algorithm’s non-robustness to
semi-random noise is suggestive that the algorithm may be more unreliable in real-world settings.

We consider a natural semi-random adversarial model for sparse recovery (see e.g. page 284 of
Awasthi and Vijayaraghavan (2018)), which extends the standard restricted isometry property (RIP)
assumption, which states that applying matrix A approximately preserves the `2 norm of sparse
vectors. Concretely, throughout the paper we say matrix A satisfies the (s, c)-restricted isometry
(RIP) property if for all s-sparse vectors v, 1

c
kvk22  kAvk22  c kvk22. We state a basic version of

our adversarial model here, and defer the statement of the fully general version to Definition 4.4 We
defer the introduction of notation used in the paper to Appendix A.

Definition 1 (pRIP matrix) We say A 2 Rn⇥d is ⇢-pRIP (planted RIP) if there exists G 2 Rm⇥d

for m  n such that each row of G is also a row of A, 1p
m
G is (⇥(s),⇥(1))-RIP for appropriate

constants, and kGkmax  ⇢.5 When ⇢ = eO(1) for brevity we say A is pRIP.

Under the problem parameterizations used in this paper, standard RIP matrix constructions sat-
isfy ⇢ = eO(1) with high probability. For example, when G is entrywise Gaussian and m =

3. There are notable exceptions, e.g. the semi-random stochastic block model of Moitra et al. (2016).
4. When clear from context, as it will be throughout the main sections of the paper, s will always refer to the sparsity

of a vector x? 2 Rd in an exact or noisy recovery problem through A 2 Rn⇥d. For example, the parameter s in
Definition 1 is the sparsity of the vector in an associated sparse recovery problem.

5. We use k · kmax to refer to the maximum magnitude of any entry of a matrix.

3

A. KELNER LI LIU SIDFORD TIAN

⇥(s log d), a tail bound shows that with high probability a matrix A with G inducing a subset of its
rows as in Definition 1 is ⇢-pRIP, for ⇢ = O(

p
log d).

pRIP matrices can naturally be thought of as arising from a semi-random adversarial model as
follows. First, an RIP matrix G 2 Rm⇥d is generated, for example from a standard ensemble (e.g.
Gaussian or subsampled Hadamard). An adversary inspects G, and forms A 2 Rn⇥d by reshuffling
and arbitrarily augmenting rows of G. Whenever we refer to a “semi-random adversary” in the
remainder of the introduction, we mean the adversary provides us a pRIP measurement matrix A.

The key recovery problem we consider in this paper is recovering an unknown s-sparse vector
x? 2 Rd given measurements b 2 Rn through A. We consider both the noiseless or exact setting
where b = Ax? and the noisy setting where b = Ax? + ⇠ for bounded ⇠. In the noiseless set-
ting in particular, the semi-random adversary hence only gives the algorithm additional consistent
measurements of the unknown s-sparse vector x?. In this sense, the adversary is only “helpful,” as
it returns a superset of information which is sufficient for sparse recovery (formally, this adversary
cannot break the standard restricted nullspace condition which underlies the successful performance
of convex programming methods). We note n may be much larger than m, i.e. we impose no con-
straint on how many measurements the adversary adds.

2. Our results

In this section, we summarize our results, deferring formal claims and proofs to the appendices.

Semi-random sparse recovery in nearly-linear time. We devise algorithms which match the
nearly-linear runtimes and optimal recovery guarantees of faster algorithms on fully random data,
but which retain both their runtime and the robust statistical performances of convex programming
methods against semi-random adversaries. In this sense, our algorithms obtain the “best of both
worlds.” We discuss and compare more extensively to existing sparse recovery algorithms under
Definition 1 in the following section. We first state our result in the noiseless observation setting.

Theorem 2 (informal, see Theorem 5) Let x? 2 Rd be an unknown s-sparse vector. Let A 2
Rn⇥d be pRIP. There is an algorithm, which given A and b = Ax?, runs in time eO(nd), and
outputs x? with high probability.

Since our problem input is of size nd, our runtime in Theorem 2 is nearly-linear in the problem size.
We also extend our algorithm to handle perturbed linear measurements of x? from a pRIP matrix.

Theorem 3 (informal, see Theorem 18) Let x? 2 Rd be an unknown s-sparse vector, and let ⇠ 2
Rn be arbitrary. Let A 2 Rn⇥d be pRIP. There is an algorithm, which given A and b = Ax? + ⇠,
runs in time eO(nd), and with high probability outputs x satisfying

kx� x?k2  O

✓
1
p
m

��⇠(m)

��
2

◆
,

where ⇠(m) denotes the largest m entries of ⇠ by absolute value, with other coordinates set to 0.

The error scaling of Theorem 3 is optimal in the semi-random setting. Indeed, when there is no
semi-random noise, the guarantees of Theorem 3 exactly match the standard statistical guarantees in
the fully-random setting for sparse recovery, up to constants; for example, when A =

p
mI (which

is clearly RIP, in fact an exact isometry, after rescaling), it is information-theoretically impossible

4

SEMI-RANDOM SPARSE RECOVERY

to obtain a better `2 error.6 The error bound of Theorem 3 is similarly optimal in the semi-random
setting because in the worst case, the largest entries of ⇠ may correspond to the rows of the RIP
matrix from which recovery is information-theoretically possible.

Performance of existing algorithms. To contextualize Theorems 2 and 3, we discuss the per-
formance of existing algorithms for sparse recovery under the semi-random adversarial model of
Definition 1. First, it can be easily verified that our semi-random adversary never changes the
information-theoretic tractability of sparse recovery. In the noiseless setting for example, the perfor-
mance of the minimizer to the classical convex program based on `1 minimization, minAx=b kxk1,
is unchanged in the presence of pRIP matrices (as x? is still consistent with the constraint set, and
in particular a RIP constraint set), and hence the semi-random problem can be solved in polyno-
mial time via convex programming. This suggests the main question we address: can we design a
near-linear time algorithm obtaining optimal statistical guarantees under pRIP measurements?

As alluded to previously, standard greedy and non-convex methods we have discussed may fail
to converge to the true solution against appropriate semi-random adversaries generating pRIP ma-
trices. We give explicit counterexamples to several popular methods such as orthogonal matching
pursuit and iterative hard thresholding in Appendix D. Further, it seems likely that similar coun-
terexamples also break other, more complex methods commonly used in practice, such as matching
pursuit Mallat and Zhang (1993) and CoSaMP Needell and Tropp (2009).

Additionally, while fast “convex” iterative algorithms (e.g. first-order methods for solving ob-
jectives underlying polynomial-time convex programming approaches) never fail to converge to
the correct solution given pRIP measurements, the analyses yielding fast runtimes for these algo-
rithms Negahban et al. (2012); Agarwal et al. (2012) rely on properties such as restricted smoothness
and strong convexity (a specialization of standard conditioning assumptions to numerically sparse
vectors). These hold under standard generative models but again can be broken by pRIP measure-
ments; hence, standard analyses of “convex” first-order methods may yield arbitrarily poor rates.

One intuitive explanation for why faster methods fail is that they depend on conditions such as
incoherence Donoho and Stark (1989) or the restricted isometry property Candes and Tao (2006),
which can be destroyed by a semi-random adversary. For instance, RIP states that if S is any subset
of m = ⇥(s) columns of A, and AS is the submatrix formed by taking those columns of A, then
A>

S
AS is an approximate isometry (i.e. it is well-conditioned). While it is well-known that RIP is

satisfied with high probability when A consists of ⇥(s log d) Gaussian rows, it is not too hard to see
that augmenting A with additional rows can easily ruin the condition number of submatrices of this
form. In contrast, convex methods work under weaker assumptions such as the restricted nullspace
condition, which cannot be destroyed by the augmentation used by pRIP matrices. Though these
weaker conditions (e.g. the restricted nullspace condition) suffice for algorithms based on convex
programming primitives, known analyses of near-linear time “fast” algorithms require additional
instance structure, such as incoherence or RIP. Thus, it is plausible that fast algorithms for sparse
recovery are less robust to the sorts of distributional changes that may occur in practice.

Beyond submatrices. Our methods naturally extend to a more general setting (see Definition 4,
wherein we define “weighted RIP” (wRIP) matrices, a generalization of Definition 1). Rather than
assuming there is a RIP submatrix G, we only assume that there is a (nonnegative) reweighting of
the rows of A so that the reweighted matrix is “nice,” i.e. it satisfies RIP. Definition 1 corresponds to

6. In the literature it is often standard to scale down the sensing matrix A by
p
m; this is why our error bound is

similarly scaled. However, this scaling is more convenient for our analysis, especially when stating weighted results.

5

A. KELNER LI LIU SIDFORD TIAN

the special case of this assumption where the weights are constrained to be either 0 or 1 (and hence
must indicate a subset of rows). In our main technical sections (Appendices B and C), our results are
stated for this more general semi-random model, i.e. sparse recovery from wRIP measurements. For
simplicity of exposition, throughout the introduction, we mainly focus on the simpler pRIP sparse
recovery setting described following Definition 1.

Towards instance-optimal guarantees. While the performance of the algorithms in Theorems 2
and 3 is already nearly-optimal in the worst case semi-random setting, one can still hope to improve
our runtime and error bounds in certain scenarios. Our formal results, Theorems 5 and 18, provide
these types of fine-grained instance-optimal guarantees in several senses.

In the noiseless setting (Theorem 5), if it happens to be that the entire matrix A is RIP (and not
just G), then standard techniques based on subsampling the matrix can be used to solve the problem
in time eO(sd) with high probability. For example, if A is pRIP where, following the notation of
Definition 1, G is entrywise Gaussian, and the adversary chose to give us additional Gaussian rows,
one could hope for a runtime improvement (simply by ignoring the additional measurements given).
Theorem 5 obtains a runtime which smoothly interpolates between the two regimes of a worst-case
adversary and an adversary which gives us additional random measurements from an RIP ensemble.
Roughly speaking, if there exists a (a priori unknown) submatrix of A of m � e⇥(s) rows which
is RIP, then we show that our algorithm runs in sublinear time eO(nd ·

s

m
), which is eO(sd) when

m ⇡ n. We show this holds in our weighted semi-random model (under wRIP measurements,
Definition 4) as well, where the runtime depends on the ratio of the `1 norm of the (best) weight
vector to its `1 norm, a continuous proxy for the number of RIP rows under pRIP.

We show a similar interpolation holds in the noisy measurement setting, both in the runtime
sense discussed previously, and also in a statistical sense. In particular, Theorem 18 achieves (up
to logarithmic factors) the same interpolating runtime guarantee of Theorem 5, but further attains a
squared `2 error which is roughly the average of the m largest elements of the squared noise vector
⇠ (see the informal statement in Theorem 3). This bound thus improves as m � e⇥(s); we show it
extends to weighted RIP matrices (Definition 4, our generalization of Definition 1) in a natural way
depending on the `1-`1 ratio of the weights.

A generic algorithmic framework. As presented in the main body, our main Algorithm 1 (used
to prove Theorem 2) can be viewed as a carefully-reweighted variant of projected gradient de-
scent against a sequence of `1 balls. We show that our main geometric insights actually underlie a
generic algorithmic framework based around a structural phenomenon known as short-flat decom-
positions, which we introduce in the following section. In Appendix E, we show how to leverage
this framework in a different way, recovering the guarantees of Theorem 2, which resembles the
Lasso regularization strategy Tibshirani (1996), adapting it to the semi-random setting.

More generally, sparse linear regression can be seen as the simplest of a sequence of non-convex
optimization problems which can be solved via convex relaxation strategies, including low-rank ma-
trix regression, phase retrieval, and matrix completion Agarwal et al. (2010). We are optimistic that
our general strategy of exploiting locally verifiable progress conditions (as discussed in the follow-
ing section), which are captured through structural properties such as short-flat decompositions, can
prove useful in designing algorithms for more challenging problems on this hierarchy as well.

6

SEMI-RANDOM SPARSE RECOVERY

3. Our techniques

Our overall approach for semi-random sparse recovery is fairly different from two recent works in
the literature which designed fast iterative methods succeeding under a semi-random adversarial
model Cheng and Ge (2018); Li et al. (2020). These two algorithms were both based on the follow-
ing natural framework, which separates the “planted learning” problem (e.g. identifying the planted
benign matrix) from the “estimation” task (e.g. solving a linear system or regression problem).

1. Compute a set of weights for the data (in linear regression for example, these are weights on
each of the rows of a measurement matrix A), such that after re-weighting, the data fits the
input assumptions of a fast iterative method which performs well on a fully random instance.

2. Apply said fast iterative algorithm on the reweighted data in a black-box manner.

To give a concrete example, Li et al. (2020) studied the standard problem of overdetermined linear
regression with a semi-random adversary, where a measurement matrix A is received with the
promise that A contains a “well-conditioned core” G. The algorithm of Li et al. (2020) first learned
a re-weighting of the rows of A by a diagonal matrix W

1
2 , such that the resulting system in A>WA

is well-conditioned and hence can be solved using standard first-order methods.
In the case of semi-random sparse recovery, there appear to be significant barriers to reweighting

approaches (which we will shortly elaborate on). We take a novel direction that involves designing a
new nearly-linear time iterative method for sparse recovery tailored to the geometry of the problem.

Why not (globally) reweight the rows? There are several difficulties immediately encountered
when trying to use the aforementioned reweighting framework for sparse recovery. First of all, there
is no effective analog of condition number for an underdetermined linear system. The standard as-
sumption on the measurement matrix A to make sparse recovery tractable for fast iterative methods
is that A satisfies RIP, i.e. A is roughly an isometry when restricted to O(s)-sparse vectors. How-
ever, RIP is NP-hard to verify Bandeira et al. (2013) and this may suggest that it is computationally
hard to try, say, learning a reweighting of the rows of A such that the resulting reweighted matrix is
guaranteed to be RIP (though it would be very interesting if this were achievable). More broadly, al-
most all explicit conditions (e.g. RIP, incoherence etc.) which make sparse recovery tractable for fast
algorithms are conditions about subsets of the columns of A. Thus, any approach which reweights
rows of A such that column subsets of the reweighted matrix satisfy an appropriate condition results
in optimization problems that seems challenging to solve in nearly-linear time.

We circumvent these difficulties in two steps. First, we propose a new analysis of an iterative
method based on (reweighted) projected gradient descent, which obtains a fast convergence rate
whenever each step satisfies certain locally verifiable properties. Next, our algorithm computes a
sequence of local reweightings (which can be different in each iteration) of the rows of our mea-
surement matrix, such that each local reweighting satisfies our requisite progress conditions for that
step. We use the existence of a global reweighting satisfying RIP to demonstrate that each local
reweighting subproblem has a good solution, and design an efficient method for computing each
local reweighting. Our framework of bypassing hardness of computing a global reweighting to re-
cover planted statistical information, by instead designing an iterative method capable of exploiting
local reweightings with (computationally tractable) certifiable progress conditions, is quite general,
and we hope it will find uses in semi-random settings beyond our particular problem.

7

A. KELNER LI LIU SIDFORD TIAN

Short-flat decompositions: the geometry of sparse recovery. We now explain our new ap-
proach, and how we derive deterministic conditions on the steps of an iterative method which certify
progress by exploiting the geometry of sparse recovery. We focus on the clean observation setting
in this technical overview. Suppose that we wish to solve a sparse regression problem Ax? = b
where x? is s-sparse, and we are given A and b. To fix a scale, suppose for simplicity that we know
kx?k1 =

p
s and kx?k2 = 1. Also, assume for the purpose of conveying intuition that A is pRIP,

and that the planted matrix G in Definition 1 is an entrywise random Gaussian matrix.
Our starting point is the observation that in the simpler case when we are given a Gaussian

matrix G with rows {gi}i2[m] ⇢ Rd, we can compute the vector

v :=
1

m
G>b =

1

m
G>Gx? =

1

m

X

i2[m]

gig
>
i x

?.

We remark v is the gradient of the regression objective 1
2m kGx� bk22 at x = 0. Moreover, since

each gi ⇠ N (0, I) independently, we have Ev = x?, and hence it is natural to hope v has good
correlation in the x? direction which we can use to make progress. Unfortunately, v also contains
information in the subspace orthogonal to x?, and moreover it is not hard to show that most of the
`2 mass of v is in fact orthogonal to x?. In particular, it is very likely that kvk22 = ⌦(d

n
), whereas

kx?k2 = 1 (implying it is unlikely hv, x?i is superconstant). In the underconstrained setting where
d� n, this suggests that the orthogonal “noise” overwhelms the signal towards x?.

To bypass this issue, we identify a key structural property of the “noise” v�x?: it is very “flat”,
meaning it is likely to be spread out amongst coordinates, such that kv � x?k1 = O(

p
log dp
n

) =

O(1p
s
). More generally, we say a vector v 2 Rd has a (C2, C1) short-flat decomposition if

v = p+ e for p, e 2 Rd with kpk2  C2, kek1  C1.

It is helpful to view p as the “signal” component towards x?, and e as the “noise” component. As
discussed, in the Gaussian setting a typical v has an (O(1), O(1p

s
))-short flat decomposition, as

witnessed by p = x?. Unfortunately, typically in this decomposition kek2 � kpk2.
Our second main observation is that projection against an `1 ball preserves most of the signal

p, but removes almost all of the noise e. Intuitively, this is because the `1 ball is very “thick” (i.e.
has large `2 diameter) in sparse directions such as the progress direction x?, due to their small `1
to `2 ratios. On the other hand, the `1 ball is very “thin” in generic directions with large `1 to `2
ratios, which is typical of our noise. Hence, a natural algorithm is to start from xt = 0, and take the
steps yt xt �

⌘

m
G>b, xt+1 ⇧(yt), where ⇧ projects against an `1 ball of radius O(

p
s) and

⌘ = ⇥(1) is a step-size parameter. A diagram of the induced movement is presented in Figure 1.
We show in Appendix B.3 that more generally, whenever G is RIP, 1

m
G>Gv has a short-flat

decomposition whenever kvk1 = O(
p
s kvk2) (i.e. v is “numerically sparse”). By occasionally

rounding our iterate to be s-sparse, and redrawing an `1 ball accordingly, we can guarantee that the
progress direction always satisfies this numerical sparsity property.

We next build upon intuition that projected gradient steps succeed when the gradient has good
correlation in the progress direction (towards x?) and has “flat” orthogonal movement. It is not
difficult to demonstrate (via `1-`1 Hölder) that restarted projected gradient descent against an `1
ball linearly converges to x?, as long as two properties (with appropriate parameters) hold.

1. The gradient step has constant correlation with the x? direction.

8

SEMI-RANDOM SPARSE RECOVERY

xt x?

xt+1

yt

q
d

n

1

Figure 1: The effect of `1 projection on iterate progress. The dashed line represents a facet of the
`1-ball around xt of radius kxt � x?k1.

2. The gradient step admits a short-flat decomposition.

We formalize this intuition in Appendix B.1, where we analyze our main framework, Algo-
rithm 1, by bounding the progress made by projected descent along directions with short-flat de-
compositions. The sufficiency of these two properties is desirable for two important reasons. First,
it continues to hold in the semi-random setting (e.g. when the observation matrix we receive satis-
fies Definition 1). Second, it bypasses the potential hardness of learning a globally RIP reweighting,
by instead requiring locally verifiable properties of a reweighting which are sufficient to guarantee
progress. By exploiting these characteristics, we extend our framework to the semi-random setting.

Finding short-flat decompositions: semi-random sparse recovery. The last piece of our algo-
rithm is an optimization method for recovering the planted structure of a progress direction un-
der semi-random observations. Concretely, consider now the case where A satisfies Definition 1.
From an iterate xt such that kxt � x?k2 = 1 and kxt � x?k1 = O(

p
s), we consider a family of

reweighted projected gradient descent algorithms, where we take

�t Axt � b = A(xt � x?),

gt A>diag (wt)�t,

xt+1 ⇧(xt � ⌘gt),

for some reweighting vector wt. This is motivated by the fact that (as argued in the previous section)
setting wt to be 1

m
times the indicator of the rows of G recovers the fully-RIP method. Of course,

we do not know which rows belong to G, so it remains to show how to choose a “competitive” wt.
In Appendix B.2, we set up a potential function which captures the correlation with the xt � x?

direction of our reweighted gradient step, and where approximate optimality implies the existence

9

A. KELNER LI LIU SIDFORD TIAN

of a short-flat decomposition. Finally, we design a stochastic gradient method to approximately
optimize this potential function in nearly-linear time, completing our algorithm.

4. Related work

Sparse recovery. Sparse recovery, and variants thereof, are fundamental statistical and algorith-
mic problems which have been studied in many of settings, including signal processing Levy and
Fullagar (1981); Santosa and Symes (1986); Donoho and Stark (1989); Blumensath and Davies
(2009); Baraniuk et al. (2010), and compressed sensing Candes and Romberg (2005); Candes and
Tao (2006); Candes et al. (2006); Donoho (2006); Rudelson and Vershynin (2006). A full review
of the extensive literature on sparse recovery is out of the scope of the present paper; we refer the
reader to e.g. Eldar and Kutyniok (2012); Davenport et al. (2012); Kutyniok (2013); Schmidt (2018)
for more extensive surveys.

Within the literature on sparse recovery, arguably the closest line of work to ours is the line
of work which attempts to design efficient algorithms which work when the restricted condition
number of the sensing or measurement matrix is large. Indeed, it is known that many nonconvex
methods fail when the restricted condition number of the sensing matrix is far from 1, which is often
the case in applications Jain et al. (2014). To address this, several works Jain et al. (2014); Schmidt
(2018) have designed novel non-convex methods which still converge, when the restricted condition
number of the matrix is much larger than 1. However, these methods still require that the restricted
condition number is constant or bounded, whereas in our setting, the restricted condition number
could be arbitrarily large due to the generality of the semi-random adversary assumption.

Another related line of work considers the setting where, instead of having a sensing matrix
with rows which are drawn from an isotropic Gaussian, have rows drawn from N (0,⌃), for some
potentially ill-conditioned ⌃ Bickel et al. (2009); Raskutti et al. (2010); Van de Geer and Lederer
(2013); Jain et al. (2014); Koltchinskii and Minsker (2014); Dalalyan et al. (2017); Zhang et al.
(2017); Bellec (2018); Kelner et al. (2021). This setting is related to our semi-random adversarial
model, in that the information-theoretic content of the problem does not change, but obtaining
efficient algorithms which match the optimal statistical rates is very challenging. However, there
does not appear to be any further concrete connection between this “ill-conditioned covariance”
setting and the semi-random model we consider in this paper. Indeed, the ill-conditioned setting
appears to be qualitatively much more difficult for algorithms: in particular, Kelner et al. (2021)
shows evidence that there are in fact no efficient algorithms that achieve the optimal statistical rates,
without additional assumptions on ⌃. In contrast in the semi-random setting, polynomial-time
convex programming approaches, while having potentially undesirable superlinear runtimes, still
obtain optimal statistical guarantees.

Finally as discussed earlier in the introduction, there is a large body of work on efficient algo-
rithms for sparse recovery in an RIP matrix (or a matrix satisfying weaker or stronger analogous
properties). These works e.g. Candes and Romberg (2005); Candes and Tao (2006); Candes et al.
(2006); Mallat and Zhang (1993); Pati et al. (1993); Needell and Vershynin (2010); Needell and
Tropp (2009); Blumensath and Davies (2009, 2010); Maleki and Donoho (2010); Foucart (2011);
Figueiredo and Nowak (2003); Daubechies et al. (2004); Combettes and Wajs (2005); Beck and
Teboulle (2009); Becker et al. (2011); Negahban et al. (2012); Agarwal et al. (2012) are typically
based on convex programming or different iterative first-order procedures.

10

SEMI-RANDOM SPARSE RECOVERY

Semi-random models. Semi-random models were originally introduced in a sequence of inno-
vative papers Blum and Spencer (1995); Feige and Kilian (2001) in the context of graph coloring.
In theoretical computer science, semi-random models have been explored in many settings, for in-
stance, for various graph-structured Feige and Krauthgamer (2000); Feige and Kilian (2001); Chen
et al. (2012); Makarychev et al. (2012, 2014) and constraint satisfaction problems Kolla et al. (2011).
More recently, they have also been studied for learning tasks such as clustering problems and com-
munity detection Elsner and Schudy (2009); Mathieu and Schudy (2010); Makarychev et al. (2013);
Chen et al. (2014); Globerson et al. (2014); Makarychev et al. (2015, 2016); Moitra et al. (2016),
matrix completion Cheng and Ge (2018), and linear regression Li et al. (2020). We refer the reader
to Roughgarden (2021) for a more thorough overview of this vast literature. Finally, we remark that
our investigation of the semi-random sparse recovery problem is heavily motivated by two recent
works Cheng and Ge (2018); Li et al. (2020) which studied the robustness of fast iterative methods
to semi-random modeling assumptions.

We also note that the well-studied Massart noise model in PAC learning Massart and Nédélec
(2006) can be thought of as a semi-random variant of the random classification noise model. How-
ever, this setting appears to be quite different from ours: in particular, it was not until quite recently
that polynomial-time algorithms were even known to be achievable for a number of fundamental
learning problems under Massart noise Diakonikolas et al. (2019, 2020); Chen et al. (2020); Di-
akonikolas and Kane (2020); Diakonikolas et al. (2021b,c,d,a); Zhang and Li (2021).

5. Roadmap

In Appendix A, we state notation and preliminaries used throughout the paper. Our proof of The-
orem 5, a stronger variant of Theorem 2 which handles weighted RIP (wRIP) matrices (Defini-
tion 4) and obtains near-instance-optimal runtimes, is given in Appendix B. Further, our proof of
Theorem 18, a stronger variant of Theorem 3 which handles wRIP matrices and obtains both near-
instance-optimal runtimes and recovery guarantees, is given in Appendix C.

We demonstrate the failure of common greedy and non-convex heuristics in Appendix D, where
we also show the (computationally more expensive) convex programming-based methods extend
to handle our semi-random noise model. We interpret our algorithm as a generic framework and
show that it extends to handle Lasso-based regularization (in place of projected descent steps) in
Appendix E. Finally, we defer some technical proofs used in the paper to Appendix F.

Acknowledgments

JK was supported in part by NSF awards CCF-1955217, CCF-1565235, and DMS-2022448. AL
was supported in part by an NSF Graduate Research Fellowship and a Fannie and John Hertz Foun-
dation Fellowship. AS was supported in part by a Microsoft Research Faculty Fellowship, NSF
CAREER Award CCF-1844855, NSF Grant CCF-1955039, a PayPal research award, and a Sloan
Research Fellowship. KT was supported in part by a Google Ph.D. Fellowship, a Simons-Berkeley
VMware Research Fellowship, a Microsoft Research Faculty Fellowship, NSF CAREER Award
CCF-1844855, NSF Grant CCF-1955039, and a PayPal research award. This work was partially
done while AL was working as an intern at Microsoft Research, and JL and KT were visiting the
Simons Institute for the Theory of Computing.

11

A. KELNER LI LIU SIDFORD TIAN

References

Alekh Agarwal, Sahand N. Negahban, and Martin J. Wainwright. Fast global convergence rates
of gradient methods for high-dimensional statistical recovery. In Advances in Neural Informa-
tion Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems
2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada,
pages 37–45, 2010.

Alekh Agarwal, Sahand Negahban, and Martin J Wainwright. Fast global convergence of gradient
methods for high-dimensional statistical recovery. The Annals of Statistics, pages 2452–2482,
2012.

Abhishek Aich and P Palanisamy. On application of omp and cosamp algorithms for doa estimation
problem. In 2017 International Conference on Communication and Signal Processing (ICCSP),
pages 1983–1987. IEEE, 2017.

Frank J Anscombe. Rejection of outliers. Technometrics, 2(2):123–146, 1960.

Pranjal Awasthi and Aravindan Vijayaraghavan. Towards learning sparsely used dictionaries with
arbitrary supports. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 283–296. IEEE Com-
puter Society, 2018.

Afonso S Bandeira, Edgar Dobriban, Dustin G Mixon, and William F Sawin. Certifying the re-
stricted isometry property is hard. IEEE transactions on information theory, 59(6):3448–3450,
2013.

Richard G Baraniuk, Volkan Cevher, Marco F Duarte, and Chinmay Hegde. Model-based compres-
sive sensing. IEEE Transactions on information theory, 56(4):1982–2001, 2010.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Stephen Becker, Jérôme Bobin, and Emmanuel J Candès. Nesta: A fast and accurate first-order
method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

Pierre C Bellec. The noise barrier and the large signal bias of the lasso and other convex estimators.
arXiv preprint arXiv:1804.01230, 2018.

Aditya Bhaskara, Aravinda Kanchana Ruwanpathirana, and Maheshakya Wijewardena. Principal
component regression with semirandom observations via matrix completion. In International
Conference on Artificial Intelligence and Statistics, pages 2665–2673. PMLR, 2021.

Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and
dantzig selector. The Annals of statistics, 37(4):1705–1732, 2009.

Avrim Blum. Machine learning: My favorite results, directions, and open problems. In 44th Annual
IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages 2–2. IEEE,
2003.

12

SEMI-RANDOM SPARSE RECOVERY

Avrim Blum and Joel Spencer. Coloring random and semi-random k-colorable graphs. Journal of
Algorithms, 19(2):204–234, 1995.

Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing. Ap-
plied and computational harmonic analysis, 27(3):265–274, 2009.

Thomas Blumensath and Mike E Davies. Normalized iterative hard thresholding: Guaranteed sta-
bility and performance. IEEE Journal of selected topics in signal processing, 4(2):298–309,
2010.

Emmanuel J Candes and Justin K Romberg. Signal recovery from random projections. In Compu-
tational Imaging III, volume 5674, pages 76–86. International Society for Optics and Photonics,
2005.

Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE transactions on information theory, 52(12):5406–5425,
2006.

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from incomplete
and inaccurate measurements. Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences, 59(8):1207–1223, 2006.

Sitan Chen, Frederic Koehler, Ankur Moitra, and Morris Yau. Classification under misspecifi-
cation: Halfspaces, generalized linear models, and connections to evolvability. arXiv preprint
arXiv:2006.04787, 2020.

Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. arXiv preprint
arXiv:1210.3335, 2(5), 2012.

Yudong Chen, Ali Jalali, Sujay Sanghavi, and Huan Xu. Clustering partially observed graphs via
convex optimization. The Journal of Machine Learning Research, 15(1):2213–2238, 2014.

Yu Cheng and Rong Ge. Non-convex matrix completion against a semi-random adversary. In
Conference On Learning Theory, pages 1362–1394. PMLR, 2018.

Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pages 9–21. ACM, 2016.

Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

Arnak S Dalalyan, Mohamed Hebiri, and Johannes Lederer. On the prediction performance of the
lasso. Bernoulli, 23(1):552–581, 2017.

Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 57(11):1413–
1457, 2004.

13

A. KELNER LI LIU SIDFORD TIAN

Mark A Davenport, Marco F Duarte, Yonina C Eldar, and Gitta Kutyniok. Introduction to com-
pressed sensing., 2012.

Mark A Davenport, Deanna Needell, and Michael B Wakin. Signal space cosamp for sparse recov-
ery with redundant dictionaries. IEEE Transactions on Information Theory, 59(10):6820–6829,
2013.

Ilias Diakonikolas and Daniel M Kane. Hardness of learning halfspaces with massart noise. arXiv
preprint arXiv:2012.09720, 2020.

Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos. Distribution-independent pac learning
of halfspaces with massart noise. arXiv preprint arXiv:1906.10075, 2019.

Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Learning halfspaces with
massart noise under structured distributions. In Conference on Learning Theory, pages 1486–
1513. PMLR, 2020.

Ilias Diakonikolas, Russell Impagliazzo, Daniel Kane, Rex Lei, Jessica Sorrell, and Christos
Tzamos. Boosting in the presence of massart noise. arXiv preprint arXiv:2106.07779, 2021a.

Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Thresh-
old phenomena in learning halfspaces with massart noise. arXiv preprint arXiv:2108.08767,
2021b.

Ilias Diakonikolas, Daniel M Kane, and Christos Tzamos. Forster decomposition and learning
halfspaces with noise. arXiv preprint arXiv:2107.05582, 2021c.

Ilias Diakonikolas, Jongho Park, and Christos Tzamos. Relu regression with massart noise. arXiv
preprint arXiv:2109.04623, 2021d.

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–
1306, 2006.

David L Donoho and Philip B Stark. Uncertainty principles and signal recovery. SIAM Journal on
Applied Mathematics, 49(3):906–931, 1989.

Yonina C Eldar and Gitta Kutyniok. Compressed sensing: theory and applications. Cambridge
university press, 2012.

Micha Elsner and Warren Schudy. Bounding and comparing methods for correlation clustering be-
yond ilp. In Proceedings of the Workshop on Integer Linear Programming for Natural Language
Processing, pages 19–27, 2009.

Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. Journal of Computer and
System Sciences, 63(4):639–671, 2001.

Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique in a semirandom
graph. Random Structures & Algorithms, 16(2):195–208, 2000.

Mário AT Figueiredo and Robert D Nowak. An em algorithm for wavelet-based image restoration.
IEEE Transactions on Image Processing, 12(8):906–916, 2003.

14

SEMI-RANDOM SPARSE RECOVERY

Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM Journal on
Numerical Analysis, 49(6):2543–2563, 2011.

Amir Globerson, Tim Roughgarden, David Sontag, and Cafer Yildirim. Tight error bounds for
structured prediction. arXiv preprint arXiv:1409.5834, 2014.

Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Combinato-
rial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.

Peter J Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics,
pages 73–101, 1964.

Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding methods for
high-dimensional m-estimation. In NIPS, 2014.

Jonathan Kelner, Frederic Koehler, Raghu Meka, and Dhruv Rohatgi. On the power of precondi-
tioning in sparse linear regression. arXiv preprint arXiv:2106.09207, 2021.

Alexandra Kolla, Konstantin Makarychev, and Yury Makarychev. How to play unique games against
a semi-random adversary: Study of semi-random models of unique games. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, pages 443–452. IEEE, 2011.

Vladimir Koltchinskii and Stanislav Minsker. l1-penalization in functional linear regression with
subgaussian design. Journal de l’Ecole polytechnique-Mathématiques, 1:269–330, 2014.

Gitta Kutyniok. Theory and applications of compressed sensing. GAMM-Mitteilungen, 36(1):79–
101, 2013.

Shlomo Levy and Peter K Fullagar. Reconstruction of a sparse spike train from a portion of its
spectrum and application to high-resolution deconvolution. Geophysics, 46(9):1235–1243, 1981.

Jerry Li, Aaron Sidford, Kevin Tian, and Huishuai Zhang. Well-conditioned methods for ill-
conditioned systems: Linear regression with semi-random noise, 2020.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Approximation algo-
rithms for semi-random partitioning problems. In Proceedings of the forty-fourth annual ACM
symposium on Theory of computing, pages 367–384, 2012.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Sorting noisy data with
partial information. In Proceedings of the 4th conference on Innovations in Theoretical Computer
Science, pages 515–528, 2013.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Constant factor ap-
proximation for balanced cut in the pie model. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pages 41–49, 2014.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Correlation clustering
with noisy partial information. In Conference on Learning Theory, pages 1321–1342. PMLR,
2015.

15

A. KELNER LI LIU SIDFORD TIAN

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Learning communities
in the presence of errors. In Conference on learning theory, pages 1258–1291. PMLR, 2016.

Arian Maleki and David L Donoho. Optimally tuned iterative reconstruction algorithms for com-
pressed sensing. IEEE Journal of Selected Topics in Signal Processing, 4(2):330–341, 2010.

Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on signal processing, 41(12):3397–3415, 1993.

Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of Statistics,
34(5):2326–2366, 2006.

Claire Mathieu and Warren Schudy. Correlation clustering with noisy input. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 712–728. SIAM, 2010.

Ankur Moitra. What does robustness say about algorithms. ICML ’17 Tutorial, 2017. URL https:
//people.csail.mit.edu/moitra/docs/robusttutorialpt2.pdf.

Ankur Moitra, William Perry, and Alexander S Wein. How robust are reconstruction thresholds for
community detection? In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 828–841, 2016.

Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from incomplete and inaccu-
rate samples. Applied and computational harmonic analysis, 26(3):301–321, 2009.

Deanna Needell and Roman Vershynin. Signal recovery from incomplete and inaccurate measure-
ments via regularized orthogonal matching pursuit. IEEE Journal of selected topics in signal
processing, 4(2):310–316, 2010.

Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin Yu. A unified frame-
work for high-dimensional analysis of m-estimators with decomposable regularizers. Statistical
science, 27(4):538–557, 2012.

Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krishnaprasad. Orthogo-
nal matching pursuit: Recursive function approximation with applications to wavelet decompo-
sition. In Proceedings of 27th Asilomar conference on signals, systems and computers, pages
40–44. IEEE, 1993.

Luisa F Polania, Rafael E Carrillo, Manuel Blanco-Velasco, and Kenneth E Barner. Exploiting prior
knowledge in compressed sensing wireless ecg systems. IEEE journal of Biomedical and Health
Informatics, 19(2):508–519, 2014.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Restricted eigenvalue properties for correlated
gaussian designs. The Journal of Machine Learning Research, 11:2241–2259, 2010.

Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press,
2021.

Mark Rudelson and Roman Vershynin. Sparse reconstruction by convex relaxation: Fourier and
gaussian measurements. In 2006 40th Annual Conference on Information Sciences and Systems,
pages 207–212. IEEE, 2006.

16

https://people.csail.mit.edu/moitra/docs/robusttutorialpt2.pdf
https://people.csail.mit.edu/moitra/docs/robusttutorialpt2.pdf

SEMI-RANDOM SPARSE RECOVERY

Fadil Santosa and William W Symes. Linear inversion of band-limited reflection seismograms.
SIAM Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986.

Ludwig Schmidt. Algorithms above the noise floor. PhD thesis, Massachusetts Institute of Tech-
nology, 2018.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B (Methodological), 58(1):267–288, 1996.

Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements via orthogonal
matching pursuit. IEEE Transactions on information theory, 53(12):4655–4666, 2007.

John W Tukey. A survey of sampling from contaminated distributions. Contributions to probability
and statistics, pages 448–485, 1960.

John W Tukey. Mathematics and the picturing of data. In Proceedings of the International Congress
of Mathematicians, Vancouver, 1975, volume 2, pages 523–531, 1975.

Sara Van de Geer and Johannes Lederer. The lasso, correlated design, and improved oracle inequal-
ities. In From Probability to Statistics and Back: High-Dimensional Models and Processes–A
Festschrift in Honor of Jon A. Wellner, pages 303–316. Institute of Mathematical Statistics, 2013.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs
in nearly linear time. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 775–788, 2020.

Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao Song,
and Di Wang. Minimum cost flows, mdps, and 1-regression in nearly linear time for dense
instances. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 859–869, 2021.

Chicheng Zhang and Yinan Li. Improved algorithms for efficient active learning halfspaces with
massart and tsybakov noise. arXiv preprint arXiv:2102.05312, 2021.

Yuchen Zhang, Martin J Wainwright, and Michael I Jordan. Optimal prediction for sparse linear
models? lower bounds for coordinate-separable m-estimators. Electronic Journal of Statistics,
11(1):752–799, 2017.

Zhimin Zhang, Shoushui Wei, Dingwen Wei, Liping Li, Feng Liu, and Chengyu Liu. Compari-
son of four recovery algorithms used in compressed sensing for ecg signal processing. In 2016
Computing in Cardiology Conference (CinC), pages 401–404. IEEE, 2016.

17

A. KELNER LI LIU SIDFORD TIAN

Appendix A. Preliminaries

General notation. We let [n] := {i 2 N, 1  i  n}. The `p norm of a vector is denoted k·k
p
,

and the sparsity (number of nonzero entries) of a vector is denoted k·k0. For a vector v 2 Rd and
k 2 [d], we let v(k) be the vector equalling v on the largest k entries of v in absolute value (with
other coordinates zeroed out). The all-zeroes vector of dimension n is denoted 0n. The nonnegative
probability simplex in dimension n (i.e. kpk1 = 1, p 2 Rn

�0) is denoted �n.
For mean µ 2 Rd and positive semidefinite covariance ⌃ 2 Rd⇥d, N (µ,⌃) denotes the cor-

responding multivariate Gaussian. i ⇠unif. S denotes a uniform random sample from set S. For
N 2 N and p 2 �n we we use Multinom(N, p) to denote the probability distribution correspond-
ing to N independent draws from [n] as specified by p.

Sparsity. We say v is s-sparse if kvk0  s. We define the numerical sparsity of a vector by
NS(v) := kvk21 / kvk

2
2. Note that from the Cauchy-Schwarz inequality, if kvk0  s, then NS(v) 

s.

Matrices. Matrices are in boldface throughout. The zero and identity matrix of appropriate di-
mension from context are 0 and I. For a matrix A 2 Rn⇥d, we let its rows be Ai:, i 2 [n] and its
columns be A:j , j 2 [d]. The set of d ⇥ d symmetric matrices is Sd, and its positive definite and
positive semidefinite restrictions are Sd�0 and Sd⌫0. We use the Loewner partial order � on Sd. The
largest entry of a matrix A 2 Rn⇥d is denoted kAkmax := maxi2[n],j2[d] |Aij |. When a matrix
A 2 Rn⇥d is clear from context, we refer to its rows as {ai}i2[n].

Short-flat decompositions. Throughout we frequently use the notion of “short-flat decomposi-
tions.” We say v 2 Rd has a (C2, C1) short-flat decomposition if v = p+ e for some e 2 Rd with
kek2  C2 and p 2 Rd with kpk1  C1. Further, we use trunc(v, c) 2 Rd for c 2 R�0 to denote
the vector which coordinatewise [trunc(v, c)]i = sgn(vi)max(|vi| � c, 0) (i.e. the result of adding
or subtracting at most c from each coordinate to decrease the coordinate’s magnitude). Note that
v 2 Rd has a (C2, C1) short-flat decomposition if and only if ktrunc(v, C1)k2  C2 (in which
case p = trunc(v, C1) and e = v � p is such a decomposition).

Restricted isometry property. We say that matrix A 2 Rn⇥d satisfies the (s, c)-restricted isom-
etry property (RIP) or (more concisely) A is (s, c)-RIP, if for all s-sparse vectors v 2 Rd,

1

c
kvk22  kAvk22  c kvk22 .

Appendix B. Exact recovery

In this section, we give an algorithm for solving the underconstrained linear system Ax? = b given
the measurement matrix A 2 Rn⇥d (for n  d) and responses b 2 Rn (i.e. noiseless or “exact”
regression), and x? is s-sparse. Our algorithm succeeds when A is weighted RIP (wRIP), i.e. it
satisfies Definition 4, a weighted generalization of Definition 1.

Definition 4 (wRIP matrix) Let w?
1 2 [0, 1]. We say A 2 Rn⇥d is (⇢, w?

1)-wRIP if kAkmax  ⇢,
and there exists a weight vector w?

2 �n satisfying kw?
k1  w?

1, such that diag (w?)
1
2 A is

(⇥(s),⇥(1))-RIP for appropriate constants. When ⇢ = eO(1) for brevity we say A is w?
1-wRIP.

18

SEMI-RANDOM SPARSE RECOVERY

As discussed after Definition 1, a wRIP matrix can be thought of as arising from a “semi-random
model” because it strictly generalizes our previously-defined pRIP matrix notion in Definition 1 with
w?
1 = 1

m
, by setting w? to be 1

m
times the zero-one indicator vector of rows of G. The main result

of this section is the following theorem regarding sparse recovery with wRIP matrices.

Theorem 5 Let � 2 (0, 1), r > 0, and suppose R0 � kx?k2 for s-sparse x? 2 Rd. Then with
probability at least 1� �, Algorithm 1 using Algorithm 2 as a step oracle takes as input a (⇢, w?

1)-
wRIP matrix A 2 Rn⇥d and b = Ax?, and computes x̂ satisfying kx̂� x?k2  r in time

O

✓✓
nd log3(nd⇢) log

✓
1

�
· log

R0

r

◆
log

✓
R0

r

◆◆
·
�
w?

1s⇢2 log d
�◆

.

Under the wRIP assumption, Theorem 5 provides a natural interpolation between the fully ran-
dom and semi-random generative models. To build intuition, if a pRIP matrix contains a planted RIP
matrix with eO(s) rows (the information-theoretically minimum size), then by setting w?

1 ⇡
1

eO(s)
,

we obtain a near-linear runtime of eO(nd). However, in the fully random regime where w?
1 ⇡

1
n

(i.e. all of A is RIP), the runtime improves eO(sd) which is sublinear for n� s.
The roadmap of our algorithm and its analysis are as follows.

1. In Appendix B.1, we give an algorithm (Algorithm 1) which iteratively halves an upper bound
on the radius to x?, assuming that either an appropriate step oracle (see Definition 6) based
on short-flat decompositions can be implemented for each iteration, or we can certify that the
input radius bound is now too loose. This algorithm is analyzed in Lemma 9.

2. We state in Assumption B.1 a set of conditions on a matrix-vector pair (A,�) centered around
the notion of short-flat decompositions, which suffice to provide a sufficient step oracle im-
plementation with high probability in nearly-linear time. In Appendix B.2 we analyze this
implementation (Algorithm 2) in the proof of Lemma 7 assuming the inputs satisfy Assump-
tion B.1.

3. In Appendix B.3, we show Assumption B.1, with appropriate parameters, follows from A
being wRIP. This is a byproduct of a general equivalence we demonstrate between RIP, re-
stricted conditioning measures used in prior work Agarwal et al. (2010), and short-flat de-
compositions.

B.1. Radius contraction using step oracles

In this section, we provide and analyze the main loop of our overall algorithm for proving Theo-
rem 5. This procedure, HalfRadiusSparse, takes as input an s-sparse vector xin and a radius bound
R � kxin � x?k2 and returns an s-sparse vector xout with the guarantee kxout � x?k2 

1
2R. As a

subroutine, it requires access to a “step oracle” Ostep, which we implement in Appendix B.2 under
certain assumptions on the matrix A.

Definition 6 (Step oracle) We say that Ostep is a (Cprog, C2, �)-step oracle for � 2 Rn and A 2
Rn⇥d, if the following holds. Whenever there is v 2 Rd with 1

4  kvk2  1 and kvk1  2
p
2s

19

A. KELNER LI LIU SIDFORD TIAN

such that � = Av, with probability � 1 � �, Ostep returns w 2 Rn

�0 such that the following two
conditions hold. First, X

i2[n]

wi�
2
i � Cprog. (1)

Second, there exists a (C2,
Cprog
6
p
s
) short-flat decomposition of A>diag (w)�:

����trunc
✓
A>diag (w)�,

Cprog

6
p
s

◆����
2

 C2. (2)

Intuitively, (2) guarantees that we can write � = p+ e where p denotes a “progress” term which
we require to be sufficiently short in the `2 norm, and e denotes an “error” term which we require to
be small in `1. We prove that under certain assumptions on the input A (stated in Assumption B.1
below), we can always implement a step oracle with appropriate parameters.

The matrix A 2 Rn⇥d satisfies the following. There is a weight vector w?
2 �n satisfying

kw?
k1  w?

1, a constant L, ⇢ � 1, and a constant K (which may depend on L) such that for all
v 2 Rd with 1

4  kvk2  1 and kvk1  2
p
2s we have, defining � = Av:

1. A is entrywise bounded by ±⇢, i.e. kAkmax  ⇢.

2.
1

L


X

i2[n]

w?

i�
2
i  L. (3)

3. For W? := diag (w?), the vector A>W?� =
P

i2[n]w
?

i
�iai has a (L, 1

K
p
s
) short-flat

decomposition: ����trunc
✓
A>W?�,

1

K
p
s

◆����
2

 L. (4)

Our Assumption B.1 may also be stated in a scale-invariant way (i.e. with (3), (4) scaling with
kvk2), but it is convenient in our analysis to impose a norm bound on v. Roughly, the second
property in Assumption B.1 is (up to constant factors) equivalent to the “restricted strong convexity”
and “restricted smoothness” assumptions of Agarwal et al. (2010), which were previously shown
for specific measurement matrix constructions such as random Gaussian matrices. The use of the
third property in Assumption B.1 (the existence of short-flat decompositions for numerically sparse
vectors) in designing an efficient algorithm is a key contribution of our work. Interestingly, we show
in Appendix B.3 that these assumptions are up to constant factors equivalent to RIP.

More specifically, we show that when A is wRIP, we can implement a step oracle for � = Av
where v = 1

R
(x � x?) for some iterate x of Algorithm 1, which either makes enough progress to

advance the algorithm or certifies that v is sufficiently short, by using numerical sparsity properties
of v. We break this proof into two parts. In Lemma 7, we show that Assumption B.1 suffices
to implement an appropriate step oracle; this is proven in Appendix B.2. In Lemma 8, we then
demonstrate the wRIP assumption with appropriate parameters implies our measurement matrix
satisfies Assumption B.1, which we prove by way of a more general equivalence in Appendix B.3.

Lemma 7 If A satisfies Assumption B.1 then Algorithm 2 is a (Cprog, C2, �) step oracle StepOracle
for (�,A) with Cprog = ⌦(1), C2 = O(1) running in time

O

✓✓
nd log3(nd⇢) log

1

�

◆
·
�
w?

1s⇢2 log d
�◆

.

20

SEMI-RANDOM SPARSE RECOVERY

Lemma 8 Suppose A 2 Rn⇥d is (⇢, w?
1)-wRIP with a suitable choice of constants in the RIP

parameters in Definition 4. Then, A also satisfies Assumption B.1.

We now give our main algorithm HalfRadiusSparse, assuming access to the step oracle Ostep
from Appendix B.2 with appropriate parameters, and that A obeys Assumption B.1.

Algorithm 1: HalfRadiusSparse(xin, R,Ostep, �,A, b)

Input: s-sparse xin 2 Rd, R � kxin � x?k2 for s-sparse x? 2 Rd, (Cprog, C2, �)-step oracle
Ostep for all (�,A) with � 2 Rn, � 2 (0, 1), A 2 Rn⇥d, b = Ax? 2 Rn ;

Output: s-sparse vector xout that satisfies kxout � x?k2 
1
2R with probability � 1� T � ;

Set x0 xin, X {x 2 Rd
| kx� xink1 

p
2sR}, T

l
12C2

2
C2

prog

m
, ⌘ Cprog

2C2
2

;

for 0  t  T � 1 do
wt Ostep(�t,A) for �t

1
R
(Axt � b), �t A>diag (wt)�t =

P
i2[n][wt]i[�t]iai ;

if
P

i2[n][wt]i[�t]2i < Cprog or
���trunc(�t,

Cprog
6
p
s
)
���
2
> C2 then

Return: xout [xt](s)
end
else xt+1 argmin

x2X kx� xt � ⌘R�tk2 ;
end
Return: xout [xt](s)

Lemma 9 Assume A satisfies Assumption B.1. With probability at least 1 � T �, Algorithm 1
succeeds (i.e. kxout � x?k2 

1
2R).

Proof Throughout this proof, condition on the event that all step oracles succeed (which provides the
failure probability via a union bound). We first observe that x? 2 X because of Cauchy-Schwarz,
the 2s-sparsity of xin � x?, and the assumption kxin � x?k2  R.

Next, we show that in every iteration t of Algorithm 1,

kxt+1 � x?k22 

1�

C2
prog

4C2
2

!
kxt � x?k22 . (5)

As x? 2 X , the optimality conditions of xt+1 as minimizing kx� (xt � ⌘R�t)k
2
2 over X imply

2 hxt+1 � xt + ⌘R�t, xt+1 � x?i  0

=) kxt � x?k22 � kxt+1 � x?k22 � 2⌘R h�t, xt+1 � x?i+ kxt � xt+1k
2
2 .

(6)

Hence, it suffices to lower bound the right-hand side of the above expression. Let �t = pt + et
denote the (C2,

Cprog
6
p
s
) short-flat decomposition of �t which exists by Definition 6 assuming the step

oracle succeeded. We begin by observing

2⌘R h�t, xt+1 � xti+ kxt � xt+1k
2
2 = 2⌘R het, xt+1 � xti+ 2⌘R hpt, xt+1 � xti+ kxt � xt+1k

2
2

� �2⌘R ketk1 kxt+1 � xtk1 � ⌘2R2
kptk

2
2

� �⌘R2Cprog � ⌘2R2C2
2 .

(7)

21

A. KELNER LI LIU SIDFORD TIAN

The first inequality followed from Hölder on the first term, Cauchy-Schwarz on the second term,
and then applying Young’s inequality on the latter two terms in the preceding line. The second
followed from the `1 radius of X , and the bounds on et and pt from (2). Next, from Definition 6,
for � = �t =

1
R
(Axt � b) and v = 1

R
(xt � x?),

2⌘R h�t, xt � x?i = 2⌘R
X

i2[n]

wi�i hai, vi = 2⌘R2
X

i2[n]

wi�
2
i � 2⌘R2Cprog. (8)

Finally, (5) follows from combining (6), (7), and (8), with our choice of ⌘, and the fact that inducting
on this lemma implies the `2 distance to x? of the iterates is monotone decreasing.

Next, we claim that regardless of whether Algorithm 1 terminates on Line 7 or Line 11, we have
kxt � x?k2 

1
4R. Note that the vector v = 1

R
(xt � x?) satisfies Av = � := 1

R
(Axt � b). By

assumption the condition kvk1  2
p
2s is met (since xt, x? 2 X), and upon iterating (5) on our

radius bound assumption, this implies that the condition kvk2  1 is met. Hence, if the algorithm
terminated on Line 7, we must have kvk2 

1
4R =) kxt � x?k2 

1
4R, as otherwise the

termination condition would have been false. On the other hand, by (5), after T steps we have

kxT � x?k22  exp

�
TC2

prog

4C2
2

!
kx0 � x?k22 

1

16
R2.

We conclude that at termination, kxt � x?k2 
1
4R. Now, s-sparsity of x? and the definition of

xout = argminkxk0s
kx� xtk2 imply the desired

kxout � x?k2  kxout � xtk2 + kx
?
� xtk2  2 kx? � xtk2 

1

2
R. (9)

We pause here to remark that the proof in Lemma 9 used very little about the structure of the
step in Line 1. In particular, any step in place of Line 1 which guarantees that enough progress is
made (in terms of the `22 potential) and maintains an `1 radius bound to x? suffices. We record this
observation in the following corollary, and briefly justify it.

Corollary 10 Suppose Line 1 is replaced with any update xt+1 F (xt, �t) which maintains the
invariants that under the success of the call to Ostep used to define �t,

kxt � x?k22 � kxt+1 � x?k22 = ⌦(R2),

kxt+1 � x?k1 = O(R
p
s).

Then, up to constants in the kvk1 upper bounds in Definition 6, Assumption B.1 and the iteration
bound T in Algorithm 1, the modified algorithm maintains the same guarantees.

Proof By our step oracle definition (Definition 6), assuming that the `1 upper bounds in Defini-
tion 6, Assumption B.1 have been suitably modified, any time the algorithm terminates on Line 1
it succeeds in halving the radius, by the same arguments as in Lemma 9. On the other hand, the
analysis of the other case (termination on Line 1) only uses monotonicity of the `22 potential, and
the progress guarantee in (5). Both of these requirements still hold under our new assumption.

22

SEMI-RANDOM SPARSE RECOVERY

We will demonstrate in Appendix E that Corollary 10 lets us treat Algorithm 1 as a generic
framework which is compatible with other types of iterative updates which may be simpler or more
practical, including the Lasso (explicit `1 regularization on an unconstrained domain) and sparsi-
fying the gradient (which is reminiscent of the iterative hard thresholding method Blumensath and
Davies (2009)).

B.2. Designing a step oracle

In this section, we design a step oracle Ostep(�,A) (see Definition 6) under Assumption B.1 on the
input matrix A 2 Rn⇥d. Our step oracle iteratively builds a weight vector w̄ 2 Rn

�0. It will be
convenient to define

�w̄ :=
X

i2[n]

w̄i�iai. (10)

Note that a valid step oracle always exists (although it is unclear how to implement the following so-
lution): namely, setting w̄ = w? satisfies the oracle assumptions by the second and third conditions
in Assumption B.1. In order to ensure Algorithm 2 is indeed a step oracle, we track two potentials
for some µ, C we will define in Algorithm 2:

�2(w̄) :=
X

i2[n]

w̄i�
2
i and �sqmax(w̄) :=

✓
min

kpk2Lkw̄k1
sqmax

µ
(�w̄ � p)

◆
+
kw̄k1
4CLs

,

where sqmax
µ
(x) := µ2 log

0

@
X

j2[d]

exp

x2
j

µ2

!1

A .

(11)

Intuitively, �2(w̄) corresponds to progress on (1), and �sqmax(w̄) is intended to track the bounds
(2). We note the following fact about the sqmax function which follows from direct calculation.

Lemma 11 For all x 2 Rd, kxk21  sqmax
µ
(x), and sqmax

µ
(x) � µ2 log(d).

Also it will be important to note that �sqmax(w̄) can be computed to high precision efficiently.
We state this claim in the following and defer a full proof to Appendix F; we give a subroutine
which performs a binary search on a Lagrange multiplier on the `2 constraint on p, and then solves
for each optimal pj using another binary search based on the Lagrange multiplier value.

Lemma 12 Let � > 0 and ✓ � 0. For any vector � 2 Rd, we can solve the optimization problem

min
kpk2✓

sqmax
µ
(� � p)

to additive accuracy � in time

O

d log2

k�k22
µ
p
�

!!
.

We state the full implementation of our step oracle as Algorithm 2 below.
Our main helper lemma bounds the expected increase in �sqmax from choosing a row of A

uniformly at random, and choosing a step size according to w?. We do not know w?, but we argue

23

A. KELNER LI LIU SIDFORD TIAN

Algorithm 2: StepOracle(�,A, �)

Input: � 2 Rn,A 2 Rn⇥d satisfying Assumption B.1, � 2 (0, 1) ;
Output: w such that if there is v 2 Rd with 1

4  kvk2  1 and kvk1  2
p
2s such that

� = Av, with probability � 1� �, (1), (2) are satisfied with Cp = 1, C2 = O(1).

C 200, µ 1p
Cs log d

, ⌘ 1
Kw?

1s⇢2 log d , N 0
 dlog2

1
�
e ;

for 0  k  N 0 do
w0 0n, N d5Ln

⌘
e;

for 0  t  N do
if �2(wt) � 1 then Return: w wt ;
Sample i ⇠unif. [n] ;
Compute (using Lemma 12) dt 2 [0, ⌘w?

1] maximizing to additive O(⌘
n
)

�t(d) := �2(wt + dei)� Cs�sqmax(wt + dei) (12)

wt+1 wt + dtei ;
end

end
Return: w 0n ;

that our algorithm makes at least this much expected progress. Define the decomposition promised
by (4):

p? := trunc
✓
A>W?�,

1

K
p
s

◆
, e? := A>W?�� p?.

Furthermore, define for all i 2 [n],

z(i) := ⌘w?

i (�iai � p?), (13)

where p? is given above. We use {z(i)}i2[n] as certificates of �sqmax’s growth in the following.

Lemma 13 Assume that the constant K in Assumption B.1 is sufficiently large, and that � =
Av where v satisfies the norm conditions in Assumption B.1. Then for any w̄ 2 Rn

�0 such that
�sqmax(w̄)  C2µ2 log d, and ⌘  1

Kw?
1s⇢2 log d , we have

Ei⇠unif.[n]

⇥
�sqmax(w̄ + ⌘w?

i)
⇤
 �sqmax(w̄) +

1

2CLs
·
⌘

n
.

Proof We assume for simplicity L � 2
p
2 as otherwise we may set L max(2

p
2, L) and (3)

remains true. Let pw̄ be the minimizing argument in the definition of �sqmax(w̄) in (11). For any
i 2 [n], pw̄ + (⌘w?

i
)p? is a valid argument for the optimization problem defining �sqmax(w̄+ ⌘w?

i
).

This follows since kp?k2  L, and since kwk1 grows by ⌘w?

i
. Next, define

F (x) :=
X

j2[d]

exp

x2
j

µ2

!
(14)

24

SEMI-RANDOM SPARSE RECOVERY

such that �sqmax(w̄) = µ2 logF (x) +
kw̄k1
4CLs

for x = �w̄ � pw̄. As discussed earlier, since

kpw̄ + (⌘w?

i)p
?
k2  kpw̄k2 + ⌘w?

iL,

we conclude
�sqmax(w̄ + ⌘w?

i)  µ2 logF (x+ z(i)) +
kw̄ + ⌘w?

i
k1

4CLs
. (15)

We next compute

1

n

X

i2[n]

F (x+ z(i)) =
1

n

X

j2[d]

exp

x2
j

µ2

!0

@
X

i2[n]

exp

2xjz

(i)
j

+ (z(i)
j
)2

µ2

!1

A


1

n
F (x)max

j2[d]

0

@
X

i2[n]

exp

2xjz

(i)
j

+ (z(i)
j
)2

µ2

!1

A .

(16)

We now bound the right-hand side of this expression. For any i 2 [n] and j 2 [d], recalling (13),
���z(i)j

���  ⌘w?

i (|�i| kaik1 + kp?k2)  ⌘w?

1L(
p
s⇢2 + 1). (17)

The second inequality used our bounds from Assumption B.1; note that for � = Av where v
satisfies the norm conditions in Assumption B.1, |�i|  ⇢ kvk1  2

p
2s⇢. Hence, if we choose a

sufficiently large constant K in Assumption B.1, we have

1

µ

���z(i)j

��� 
p
C

K
p
s log d⇢2

·
�
L(
p
s⇢2 + 1)

�


1

4C
p
log d

.

Also by the assumption that �sqmax(w̄)  C2µ2 log d we must have that for all j 2 [d],

|xj |

µ
 C

p
log d.

Now, using exp(c)  1 + c+ c2 for |c|  1, we get

X

i2[n]

exp

2xjz

(i)
j

+ (z(i)
j
)2

µ2

!


X

i2[n]

0

@1 +
2xjz

(i)
j

µ2
+

(z(i)
j
)2

µ2
+

2xjz

(i)
j

+ (z(i)
j
)2

µ2

!2
1

A



X

i2[n]

1 +

2xjz
(i)
j

µ2
+ 10C2 log d ·

(z(i)
j
)2

µ2

!
.

(18)

We control the first-order term via the observation that
P

i2[n] z
(i) = ⌘e? which is `1-bounded

from (4), so taking the constant K in Assumption B.1 sufficiently large, we have
������

X

i2[n]

z(i)
j

µ

������


⌘

µ
ke?k1 

⌘
p
C log d

K

=)

������

X

i2[n]

2xjz
(i)
j

µ2

������
 2C

p
log d ·

⌘
p
C log d

K


⌘ log d

8L
.

(19)

25

A. KELNER LI LIU SIDFORD TIAN

In the last inequality we assumed K � 16C1.5L. We control the second-order term by using
(a+ b)2  2a2 + 2b2, kp?k1  kp

?
k2  L, and (3):

X

i2[n]

⇣
z(i)
j

⌘2
 2⌘2w?

1

0

@
X

i2[n]

w?

i [p
?]2j +

X

i2[n]

w?

i�
2
i ⇢

2

1

A  2⌘2w?

1(L⇢2 + L2). (20)

Putting together (18), (19), and (20), with the definition of µ, we conclude for sufficiently large K,

1

n

X

i2[n]

exp

2xjz

(i)
j

+ (z(i)
j
)2

µ2

!
 1 +

⌘ log d

8Ln
+

2⌘2w?
1(L⇢2 + L2)

nµ2

 1 +
⌘ log d

4Ln
.

Hence, combining the above with (16), and using log(1 + c)  c for all c,

µ2 log

0

@ 1

n

X

i2[n]

F (x+ z(i))

1

A  µ2 logF (x) +
µ2⌘ log d

4Ln
= µ2 logF (x) +

1

Cs
·

⌘

4Ln
. (21)

Finally, we compute via (15) and concavity of log,

Ei⇠unif.[n][�sqmax(w̄ + ⌘w?

i)] 
µ2

n

X

i2[n]

logF (x+ z(i)) +
kw̄k1
4CLs

+
1

4CLs

0

@ 1

n

X

i2[n]

⌘w?

i

1

A

 µ2 log

0

@ 1

n

X

i2[n]

F (x+ z(i))

1

A+
kw̄k1
4CLs

+
1

4CLs
·
⌘

n

 µ2 logF (x) +
kw̄k1
4CLs

+
1

Cs
·

⌘

2Ln
= B(w̄) +

1

Cs
·

⌘

2Ln
.

In the last line, we used the bound (21).

Finally, we can complete the analysis of Algorithm 2.

Lemma 14 If A satisfies Assumption B.1 then Algorithm 2 is a (Cprog, C2, �) step oracle StepOracle
for (�,A) with Cprog = ⌦(1), C2 = O(1) running in time

O

✓✓
nd log3(nd⇢) log

1

�

◆
·
�
w?

1s⇢2 log d
�◆

.

Proof It suffices to prove Algorithm 2 meets its output guarantees in this time. Throughout this
proof, we consider one run of Lines 5-10 of the algorithm, and prove that it successfully terminates
on Line 7 with probability � 1

2 assuming A satisfies Assumption B.1 and that � = Av for v
satisfying the norm bounds in Assumption B.1. This yields the failure probability upon repeating
N 0 times.

For the first part of this proof, we assume we can exactly compute �t, and carry out the proof
accordingly. We discuss issues of approximation tolerance at the end, when bounding the runtime.

26

SEMI-RANDOM SPARSE RECOVERY

Correctness. We use the notation At := �2(wt), Bt := �sqmax(wt), and �t := At � CsBt. We
first observe that At is 1-Lipschitz, meaning it can only increase by 1 in any given iteration; this
follows from ⌘w?

1�2
i


1
8s⇢2�

2
i
 1, since �2

i
= hai, vi

2
 8s⇢2 by `1-`1 Hölder.

Suppose some run of Lines 5-13 terminates by returning on Line 8 in iteration T , for 0  T 
N . The termination condition implies that AT � 1 = Cprog, so to show that the algorithm satisfies
Definition 6, it suffices to show existence of a short-flat decomposition in the sense of (2). Clearly,
�t is monotone non-decreasing in t, since we may always force �t = 0 by choosing dt = 0.
Moreover, �0 = �CsB0 = �Csµ2 log d = �1. The above Lipschitz bound implies that AT  2,
since AT�1  1 by the termination condition; hence,

AT � CsBT = �T � �0 = �1 =) BT 
AT + 1

Cs


3

Cs
 C2µ2 log d.

Note that the above inequality and nonnegativity of sqmax
µ

imply that kwT k1
4LCs


3
Cs

, so kwT k1 

12L. For the given value of C = 200, and the first inequality in Lemma 11, the definition of the first
summand in B implies there is a short-flat decomposition meeting (2) with C2 = L kwT k1 = O(1).

Hence, we have shown that Definition 6 is satisfied whenever the algorithm returns on Line 7.
We make one additional observation: whenever �t � 0, the algorithm will terminate. This follows
since on such an iteration,

At � CsBt � CsB0 = Csµ2 log d = 1,

since clearly the function B is minimized by the all-zeroes weight vector, attaining value µ2 log d.

Success probability. We next show that with probability at least 1
2 , the loop in Lines 5-10 will

terminate. Fix an iteration t. When sampling i 2 [n], the maximum gain in �t for dt 2 [0, ⌘w?
1] is

at least that attained by setting dt = ⌘w?

i
, and hence

E[�t+1 � �t | At  1] �
⌘

Ln
�

⌘

2Ln
=

⌘

2Ln
. (22)

Here, we used that the expected gain in At by choosing dt = ⌘w?

i
over a uniformly sampled i 2 [n]

is lower bounded by ⌘

Ln
via (3), and the expected gain in CsBt is upper bounded by Lemma 13.

Let Zt be the random variable equal to �t��0, where we freeze the value of wt0 for all t0 � t if
the algorithm ever returns on Line 8 in an iteration t. Notice that Zt  2 always: whenever Zt � 1,
we have �t � 0 so the algorithm will terminate, and Zt is 1-Lipschitz because At is. Moreover,
whenever we are in an iteration t where Pr[At � 1]  1

2 , applying (22) implies

E[Zt+1 � Zt] = E[Zt+1 � Zt | At  1] Pr[At  1] �
⌘

4Ln
.

Clearly, Pr[At � 1] is a monotone non-decreasing function of t, since At is monotone. After
N �

5Ln
⌘

iterations, if we still have Pr[At � 1]  1
2 , we would obtain a contradiction since

recursing the above display yields E[ZN] > 2. This yields the desired success probability.

Runtime. The cost of each iteration is dominated by the following computation in Line 9: we
wish to find d 2 [0, ⌘w?

1] maximizing to additive O(⌘
n
) the following objective:

�2(w + dei)� Cs�sqmax(w + dei).

27

A. KELNER LI LIU SIDFORD TIAN

We claim the above function is a concave function of d. First, we show �sqmax is convex (and
the result will then follow from linearity of �2). To see this, for two values wi and w0

i
, let the

corresponding minimizing arguments in the definition of �sqmax(w̄ + wi) and �sqmax(w̄ + w0
i
) be

denoted p and p0. Then, 1
2(p + p0) is a valid argument for w̄ + 1

2(wi + w0
i
), and by convexity of

sqmax
µ

and linearity of the `1 portion, we have the conclusion.
Next, note that all |�i| are bounded by 2

p
2s⇢ (proven after (17)) and all aij are bounded by ⇢

by assumption. It follows that the restriction of �2 to a coordinate is 8s⇢2-Lipschitz. Moreover the
linear portion of �sqmax is clearly 1

4CLs
-Lipschitz in any coordinate. Finally we bound the Lipschitz

constant of the sqmax part of �sqmax. It suffices to bound Lipschitzness for any fixed p of

sqmax
µ
(�w̄ � p+ di�iai)

because performing the minimization over p involved in two sqmax(�w̄�p+d�iai) and sqmax(�w̄�
p+d0�iai) can only bring the function values closer together. By direct computation the derivative
of the above quantity with respect to di is

X

j2[d]

�iaij
⇣
2 [�w̄ � p+ di�iai]j

⌘
qj

for some probability density vector q 2 �d. Further we have

|�w̄ � p+ di�iai|j  O
�p

s⇢2
�
+O(1) + 2

p
2s⇢2 · (⌘w?

1).

Here we used our earlier proof that we must only consider values of kpk2 = O(1) throughout the
algorithm (since kwtk1 = O(1) throughout) and this also implies no coordinate of �w̄ can be larger
than (maxi2[n] |�i|)(maxi2[n],j2[d] |aij |) kw̄k1 by definition of �w̄. Combined with our bounds on
linear portions this shows �2 and �sqmax are poly(nd⇢)-Lipschitz.

Hence, we may evaluate to the desired O(⌘
n
) accuracy by approximate minimization of a Lip-

schitz convex function over an interval (Lemma 33, Cohen et al. (2016)) with a total cost of
O(d log3(nd⇢)). Here we use the subroutine of Lemma 12 in Lemma 33 of Cohen et al. (2016),
with evaluation time O(d log2(nd⇢)).

The algorithm then runs in NN 0 iterations, each bottlenecked by the cost of approximating
�t; combining these multiplicative factors yields the runtime. We note that we do not precompute
� = Av; we can compute coordinates of � in time O(d) as they are required by Algorithm 2.

B.3. Equivalence between Assumption B.1 and RIP

The main result of this section is an equivalence between Assumption B.1 and the weighted re-
stricted isometry property, which requires two helper tools to prove. The first is a “shelling decom-
position.”

Lemma 15 Let v 2 Rd have NS(v)  �. Then if we write v =
P

l2[k] v
(l) where v(1) is obtained

by taking the s largest coordinates of v, v(2) is obtained by taking the next s largest coordinates and
so on (breaking ties arbitrarily so that the supports are disjoint), we have

X

2lk

���v(l)
���
2


r
�

s
kvk2 .

28

SEMI-RANDOM SPARSE RECOVERY

Proof Note that the decomposition greedily sets v(l) to be the s largest coordinates (by absolute
value) of v�

P
l02[l�1] v

(l0), zeroing all other coordinates and breaking ties arbitrarily. This satisfies

���v(l+1)
���
2

p
s
���v(l+1)

���
1


1
p
s

���v(l)
���
1
.

The last inequality follows since every entry of v(l) is larger than the largest of v(l+1) in absolute
value. Finally, summing the above equation and using disjointness of supports yields

X

2lk

���v(l)
���
2


1
p
s
kvk1 

r
�

s
kvk2 .

The second bounds the largest entries of image vectors from the transpose of an RIP matrix.

Lemma 16 Let A 2 Rn⇥d be (s, c)-RIP, and let u 2 Rn. Then,
���[A>u](s)

���
2

p
c kuk2 .

Proof Let v = [A>u](s). The lemma is equivalent to showing kvk2 
p
c kuk2. Note that

kvk22 =
D
v,A>u

E
 kAvk2 kuk2 

p
c kvk2 kuk2 .

The first inequality used Cauchy-Schwarz, and the second applied the RIP property of A to v, which
is s-sparse by construction. The conclusion follows via dividing by kvk2.

Using these helper tools, we now prove the main result of this section.

Lemma 17 The following statements are true.

1. If A satisfies Assumption B.1 with weight vector w?, then (W?)
1
2A is (s, L)-RIP.

2. If the matrix (W?)
1
2A is RIP with parameters

12800L3K2s,

p
L

2

!

for L � 1, and kAkmax  ⇢, then A satisfies Assumption B.1.

Proof We prove each equivalence in turn.

Assumption B.1 implies RIP. The statement of RIP is scale-invariant, so we will prove it for
all s-sparse unit vectors v without loss of generality. Note that such v satisfies the condition in
Assumption B.1, since kvk2 = 1 and kvk1 

p
s by Cauchy-Schwarz. Then, the second condition

of Assumption B.1 implies that for � = Av, we have the desired norm preservation:

1

L


���(W⇤)
1
2Av

���
2

2
=
X

i2[n]

w?

i�
2
i  L.

29

A. KELNER LI LIU SIDFORD TIAN

Boundedness and RIP imply Assumption B.1. Let v 2 Rd satisfy 1
4  kvk2  1 and kvk1 

2
p
2s, and define � := Av. The first condition in Assumption B.1 is immediate from our assumed

entrywise boundedness on A, so we begin by demonstrating the lower bound in (3). Let

s0 = 12800L3K2s

and let v(1), . . . , v(k) be the shelling decomposition into s0-sparse vectors given by Lemma 15,
where � = 128s from the `1 and `2 norm bounds on v. By Lemma 15, we have

���v(2)
���
2
+ · · ·+

���v(k)
���
2


0.1

L
kvk2 .

In particular, the triangle inequality then implies 0.9 kvk2 
��v(1)

��
2
 kvk2. Next, recall that

P
i2[n]w

?
i
�2

i
=
���(W?)

1
2Av

���
2

2
. By applying the triangle inequality and since (W?)

1
2A is RIP,

���(W?)
1
2Av

���
2

2
�

 ���(W?)
1
2Av(1)

���
2
�

kX

l=2

���(W?)
1
2Av(l)

���
2

!2

�

5
p
L

· 0.9 kvk2 �

p
L

2
·
1

L
kvk2

!2

�
16

L
kvk22 �

1

L
.

In the second inequality, we applied the RIP assumption to each individual term, since all the vectors
are s0-sparse. Similarly, to show the upper bound in (3), we have

���(W?)
1
2Av

���
2

2


 ���(W?)
1
2Av(1)

���
2
+

kX

l=2

���(W?)
1
2Av(l)

���
2

!2



 p
L

2
· kvk2 +

p
L

2
·
1

L
kvk2

!2

 L.

It remains to verify the final condition of Assumption B.1. First, for u := W
1
2Av, by applying

the shelling decomposition to v into s0-sparse vectors {v(l)}l2[k],

kuk2 
X

l2[k]

���(W?)
1
2Av(l)

���
2


p

L kvk2 . (23)

Here, we used our earlier proof to bound the contribution of all terms but v(1). Applying Lemma 16
to the matrix (W?)

1
2A and vector u, we have for � = Av,
����
h
A>(W?)

1
2u
i

(s0)

����
2

=

����
h
A>W?�

i

(s0)

����
2



p

L.

By setting the `2 bounded component in the short-flat decomposition of A>W?� to be the top
s0 entries by magnitude, it remains to show the remaining coordinates are `1 bounded by 1

K
p
s
.

This follows from the definition of s0 and (23), which imply that the s0 + 1th largest coordinate (in
magnitude) cannot have squared value larger than L

2

s0 
1

K2s
without contradicting (23).

Finally, it is immediate that Lemma 8 follows from Lemma 17.

30

SEMI-RANDOM SPARSE RECOVERY

B.4. Putting it all together

At this point, we have assembled the tools to prove our main result on exact recovery.

Theorem 5 Let � 2 (0, 1), r > 0, and suppose R0 � kx?k2 for s-sparse x? 2 Rd. Then with
probability at least 1� �, Algorithm 1 using Algorithm 2 as a step oracle takes as input a (⇢, w?

1)-
wRIP matrix A 2 Rn⇥d and b = Ax?, and computes x̂ satisfying kx̂� x?k2  r in time

O

✓✓
nd log3(nd⇢) log

✓
1

�
· log

R0

r

◆
log

✓
R0

r

◆◆
·
�
w?

1s⇢2 log d
�◆

.

Proof With probability at least 1 � �, combining Lemma 7 and Lemma 8 implies that Assump-
tion B.1 holds for all v 2 Rd where 1

4  kvk2  1 and kvk1  2
p
2s, and that for N = O(log R0

r
),

we can implement a step oracle for N runs of Algorithm 1 in the allotted time, each with fail-
ure probability 1 � �

N
. Moreover, Algorithm 1 returns in O(1) iterations, and allows us to halve

our radius upper bound. By taking a union bound on failure probabilities and repeatedly running
Algorithm 1 N times, we obtain a radius upper bound of r with probability � 1� �.

Appendix C. Noisy recovery

In this section, we give an algorithm for solving a noisy sparse recovery problem in a wRIP matrix
A 2 Rn⇥d (where we recall Definition 4). In particular, we assume that we receive

b = Ax? + ⇠, (24)

for an arbitrary unknown ⇠ 2 Rn, and x? 2 Rd is s-sparse. Throughout this section, we will define

m :=
1

w?
1
, (25)

where w?
1 is an entrywise bound on w in Definition 4. We define the (unknown) “noise floor”

R⇠ :=
1
p
m

��⇠(m)

��
2
,

where we defined ·(m) in Appendix A. Our goal will be to return x such that kx� x?k2 = O(R⇠).
We now formally state the main result of this section here.

Theorem 18 Let � 2 (0, 1), and suppose R0 � kx?k2 for s-sparse x? 2 Rd. Further, suppose
A 2 Rn⇥d is (⇢, w?

1)-wRIP and b = Ax? + ⇠, and R1 � R⇠ :=
��⇠(m)

��
2
. Then with probability at

least 1� �, Algorithm 3 using Algorithm 5 as a noisy step oracle computes x̂ satisfying

kx̂� x?k2  Rfinal = ⇥(R⇠),

in time

O

✓✓
ndw?

1s log4(nd⇢) log2
✓
d

�
· log

✓
R0

Rfinal

◆
log

✓
R1

Rfinal

◆◆◆
⇢2 log

✓
R0

Rfinal

◆
log

✓
R1

Rfinal

◆◆
.

31

A. KELNER LI LIU SIDFORD TIAN

Similarly to Theorem 5, Theorem 18 provides a runtime guarantee which interpolates between
the fully random and semi-random settings, and runs in sublinear time when e.g. the entire measure-
ment matrix A satisfies RIP. Theorem 18 further provides a refined error guarantee as a function
of the noise vector ⇠, which again interpolates based on the “quality” of the weights w. This is
captured through the parameter m = 1

w?
1

: when m ⇡ n, the squared error bound R2
⇠

scales as the
average squared entry of ⇠, and more generally it scales as the average of the largest m entries.

We solve the noisy variant by essentially following the same steps as Appendix B and making
minor modifications to the analysis; we give an outline of the section here. In Appendix C.1, we
generalize the framework of Appendix B.1 to the setting where we only receive noisy observations
(24), while our current radius is substantially above the noise floor. We then implement an appro-
priate step oracle for this outer loop in Appendix C.2, and prove that the relevant Assumption C.1
used in our step oracle implementation holds when A is wRIP in Appendix C.3.

C.1. Radius contraction above the noise floor using step oracles

In this section, we give the main loop of our noise-tolerant algorithm, HalfRadiusSparseNoisy,
which takes as input s-sparse xin and a radius bound R � kxin � x?k2. It then returns an s-sparse
vector xout with the guarantee kxout � x?k2 

1
2R, as long as R is larger than an appropriate

multiple of R⇠. We give the analog of Definition 6 in this setting, termed a “noisy step oracle.”

Definition 19 (Noisy step oracle) We say that Onstep is a (Cprog, C2, C⇠, �)-noisy step oracle for
e� 2 Rn and A 2 Rn⇥d if the following holds. Whenever there is v 2 Rd with 1

12  kvk2  1 such
that e� = Av + ⇠ where

��⇠(m)

��
2


p
m

C⇠
, with probability � 1 � �, Onstep returns w 2 Rn

�0 such
that the following two conditions hold. First,

X

i2[n]

wi
e�i�i � Cprog. (26)

Second, there exists a (C2,
Cprog
6
p
s
) short-flat decomposition of A>diag (w)�:

����trunc
✓
A>diag (w)�,

Cprog

6
p
s

◆����
2

 C2.

We next characterize how a strengthened step oracle with appropriate parameters also is a noisy
step oracle. First, we will need a definition.

Definition 20 For distributions A,B on Rn, we say A stochastically dominates B if there is a
random variable C on Rn whose coordinates are always nonnegative such that the distribution of
A is the same as the distribution of B + C (where C may depend on the realization of B).

We now formalize the properties of the strengthened step oracle that we will construct.

Definition 21 (Strong step oracle) We say that Ostep is a (Cprog, C2, C⇠, �)-strong step oracle for
e� 2 Rn and A 2 Rn⇥d if it satisfies all the properties of a standard step oracle (Definition 6), as
well as the following additional guarantees.

32

SEMI-RANDOM SPARSE RECOVERY

1. For the output weights w, we have

kwk1 
CprogC2

⇠

4
· �. (27)

2. The distribution of w output by the oracle is stochastically dominated by the distribution

�

4s⇢2 log d

�

Multinom

0

B@

&
CprogC2

⇠
ns⇢2 log d

�

m

'
,

0

B@
1

n
, . . . ,

1

n| {z }
n

1

CA

1

CA

for some ⇢ � 1.

3. Compared to Definition 6 (the step oracle definition), we have the stronger guarantees that
A>diag (w)� admits a (C2,

Cprog
24

p
s
) short-flat decomposition in (2), and obtains its guaran-

tees using the bounds 1
12  kvk2  1 (instead of a lower bound of 1

4).

We next demonstrate that a strong step oracle is a noisy step oracle.

Lemma 22 Suppose Ostep is a (Cprog, C2, C⇠, �)-strong step oracle for e� 2 Rn and A 2 Rn⇥d.
Then, Ostep is also a (14Cprog, C2, C⇠, 2�)-noisy step oracle for (e�,A).

Proof In the definition of a noisy step oracle, we only need to check that
P

i2[n]wi
e�i�i �

1
4Cprog

for an arbitrary � = e�� ⇠ where
��⇠(m)

��
2

p
mC�1

⇠
, as all other conditions are immediate from

Definition 21. Note that
X

i2[n]

wi
e�i�i =

X

i2[n]

wi
e�i(e�i � ⇠i)

�
1

2

X

i2[n]

wi
e�2
i �

1

2

X

i2[n]

wi⇠
2
i .

where we used a2�ab � 1
2a

2
�

1
2b

2. The first sum above is at least 1
2Cprog by assumption. To upper

bound the second sum, we will use the second property in the definition of a strong step oracle. Let
S ⇢ [n] be the set consisting of the m largest coordinates of ⇠ (with ties broken lexicographically).
Let ↵ be drawn from the distribution

�

4s⇢2 log d

�

Multinom

0

B@

&
CprogC2

⇠
ns⇢2 log d

�

m

'
,

0

B@
1

n
, . . . ,

1

n| {z }
n

1

CA

1

CA .

Note that with 1 � 0.1� probability, by a Chernoff bound, we have that
P

i2S ↵i �
1
5�CprogC2

⇠
. If

this happens, then since S consists of the largest coordinates of ⇠, any vector � such that �  ↵
entrywise and k�k1 

1
4�CprogC2

⇠
must have

X

i2[n]

�i⇠
2
i 

5

4

X

i2S
↵i⇠

2
i .

33

A. KELNER LI LIU SIDFORD TIAN

Now note that for any S with |S| = m,

E
"
X

i2S
↵i⇠

2
i

#


�CprogC2
⇠

4m
·
��⇠(m)

��2
2


�Cprog

4
.

Combining the above two inequalities and Markov’s inequality and the fact that the distribution of
↵ stochastically dominates the distribution of w, we deduce that with at least 1� � probability,

X

i2[n]

wi⇠
2
i 

1

0.9�
· E

2

64 max
�↵

k�k1
1
4 �CprogC

2
⇠

X

i2[n]

�i⇠
2
i

3

75 
Cprog

2
.

Putting everything together, we conclude that we have
X

i2[n]

wi
e�i�i �

Cprog

4

with failure probability at most 2�, completing the proof.

In Appendix C.2, we prove that if A satisfies Assumption C.1 (a slightly different assump-
tion than Assumption B.1) then with high probability we can implement a strong step oracle with
appropriate parameters. This is stated more formally in the following; recall m is defined in (25).

The matrix A 2 Rn⇥d satisfies the following. There is a weight vector w?
2 �n with kw?

k1 
w?
1 = 1

m
, a constants L, ⇢ � 1, and constants K,C⇠ (which may depend on L) such that for all

v 2 Rd, ⇠ 2 Rn with

1

4
 kvk2  1, kvk1  2

p
2s,

��⇠(m)

��
2


p
m

C⇠

we have, defining e� = Av + ⇠:

1. A is entrywise bounded by ±⇢, i.e. kAkmax  ⇢.

2.
1

L


X

i2[n]

w?

i
e�2
i  L. (28)

3. There is a (L, 1
K
p
s
) short-flat decomposition of A>W? e�:

����trunc
✓
A>W? e�,

1

K
p
s

◆����
2

 L. (29)

Lemma 23 Suppose A satisfies Assumption C.1. Algorithm 5 is a (Cprog, C2, C⇠, �) strong step
oracle StrongStepOracle for (e�,A) with

Cprog = ⌦(1), C2 = O (1) , C⇠ = O(1), � =
1

2

✓
C2

105Cprog

◆2

,

running in time

O

✓✓
nd log3(nd⇢) log

1

�

◆
·

✓
w?

1s⇢2 log2
d

�

◆◆
.

34

SEMI-RANDOM SPARSE RECOVERY

Here, in contrast to the noiseless setting, we can only guarantee that the strong step oracle (and
thus also the noisy step oracle) succeeds with constant probability. In our full algorithm, we boost
the success probability of the oracle by running a logarithmic number of independent trials and
aggregating the outputs. We also show that for an appropriate choice of constants in Definition 4,
Assumption C.1 is also satisfied, stated in Lemma 24 and proven in Appendix C.3.

Lemma 24 Suppose A 2 Rn⇥d is (⇢, w?
1)-wRIP with a suitable choice of constants in the RIP

parameters in Definition 4. Then, A also satisfies Assumption C.1.

Algorithm 3: HalfRadiusSparseNoisy(xin, R,R⇠,Onstep, �,A, b)

Input: s-sparse xin 2 Rd, R � kxin � x?k2 for s-sparse x? 2 Rd, (Cprog, C2, C⇠, �0)-noisy
step oracle Onstep for all (�,A) with � 2 Rn, �0  (10�4Cprog

C2
)2, A 2 Rn⇥d,

b = Ax? + ⇠ 2 Rn for
��⇠(m)

��
2
 R⇠

p
m, with R � C⇠R⇠ ;

Output: s-sparse vector xout that satisfies kxout � x?k2 
1
2R with probability � 1� �

x0 xin, X {x 2 Rd
| kx� xink1 

p
2sR} ;

T
l
200C2

2
C2

prog

m
, ⌘ Cprog

2C2
2

;

Ntrials 10 log d

�
;

for 1  j  Ntrials do
xj0 x0 ;
for 0  t  T � 1 do

wj

t
 Onstep(�

j

t
,A) for �j

t

1
R
(Axj

t
� b),

�j
t
 A>diag

⇣
[wj

t
]
⌘
�j

t
=
P

i2[n][w
j

t
]i[�

j

t
]iai ;

if (wj

t
, �j

t
) do not meet all of (1), (2) and the additional criteria in Definition 21 then

xj
T
 [xj

t
](s) ;

Break: ;
end
xj
t+1 argmin

x2X

���x� xj
t
� ⌘R�t

���
2

;

end
end
xT Aggregate({x1

T
, . . . , xNtrials

T
}, R2) ;

Return: xout [xT](s) ;

Next, we give a guarantee regarding our geometric post-processing step, Algorithm 4.

Lemma 25 Aggregate(S, R) runs in O(k2d) time and meets its output guarantees.

Proof Let T be the subset of indices i 2 [k] such that kyi � zk  R

3 . Whenever the algorithm
tests yi for some i 2 T , it will be returned and satisfies the desired properties. Now consider any
yi returned by the algorithm. The ball of radius 2R

3 around yi intersects the ball of radius R

3 around
z, since otherwise it can only contain at most 0.49k points. Thus, kyi � zk2  R. The runtime is
dominated by the time it takes to do k2 distance comparisons of points in Rd.

35

A. KELNER LI LIU SIDFORD TIAN

Algorithm 4: Aggregate(S, R)

Input: S = {yi}i2[k] ⇢ Rd, R � 0 such that for some unknown z 2 Rd, at least 0.51k points
yi 2 S have kyi � zk2 

R

3 ;
Output: ez with kez � zk2  R ;
for 1  i  k do

if at least 0.51k points yj 2 S satisfy kyi � yjk2 
2R
3 then Return: ez yi ;

end

We remark that is possible that for k = ⌦(log 1
�
) as is the case in our applications, the runtime

of Lemma 25 can be improved to have a better dependence on k by subsampling the points and
using low-rank projections for distance comparisons.

Lemma 26 Assume A satisfies Assumption C.1. Then, Algorithm 3 meets its output guarantees in
time

O

✓�
nd log3(nd⇢)

�
·
�
w?

1s⇢2 log d
�
· log2

d

�

◆
.

Proof We claim that for each independent trial j 2 [Ntrials], except with probability 1 � T �0, the
output xj

T
satisfies kxj

T
�x?k2 

R

6 . Once we prove this, by Chernoff at least 0.51Ntrials of the trials
satisfy kxj

T
� x?k2 

R

6 except with probability at most �, and then we are done by Lemma 25.
It remains to prove the above claim. Fix a trial j, and drop the superscript j for notational

convenience. In every iteration t, e� := 1
R
(Axt� b) is given to Onstep. Since b = Ax?+ ⇠, we have

e� =
1

R
(A(x� x?) + ⇠) = Av + ⇠,

for kvk2  1, kvk1  2
p
2s, and k⇠k2,(m) 

p
m

C⇠
, where the last inequality used the assumed

bounds ��⇠(m)

��
2
 R⇠

p
m,

R⇠

R


1

C⇠

.

Hence, by the assumptions on Onstep, it will not fail for such inputs unless kvk2 �
1
12 is violated,

except with probability  �0. If the check in Line 10 fails, then except with probability  �0, the
conclusion kxT � x?k2 

R

6 follows analogously to Lemma 9, since v = 1
R
(x� x?).

The other case’s correctness follows identically to the proof of Lemma 9, except for one differ-
ence: to lower bound the progress term (8), we use the assumption (26) which shows

2⌘R h�t, xt � x?i = 2⌘R
X

i2[n]

wi
e�i hai, vi = 2⌘R2

X

i2[n]

wi
e�i�i � 2⌘R2Cprog.

Hence, following the proof of Lemma 9 (and adjusting for constants), whenever the algorithm does
not terminate we make at least a 50

T
fraction of the progress towards x?, so in T iterations (assuming

no step oracle failed) we will have kxT � x?k2 
R

6 .
Finally, the runtime follows from combining Lemma 23 (with constant failure probability) with

a multiplicative overhead of T ·Ntrials due to the number of calls to the step oracle, contributing one
additional logarithmic factor. We adjusted one of the log d terms to become a log d

�
term to account

for the runtime of Aggregate (see Lemma 25).

36

SEMI-RANDOM SPARSE RECOVERY

C.2. Designing a strong step oracle

In this section, we design a strong step oracle Ostep(e�,A) under Assumption C.1. As in Ap-
pendix B.2, our oracle iteratively builds a weight vector w̄, and sets

�w̄ :=
X

i2[n]

w̄i
e�iai.

We will use essentially the same potentials as in (11), defined in the following:

e�2(w̄) :=
X

i2[n]

w̄i
e�2
i , e�sqmax(w̄) :=

✓
min

kpk2Lkw̄k1
sqmax

µ
(�w̄ � p)

◆
+
kw̄k1
4CLs

. (30)

Algorithm 5: StrongStepOracle(e�,A, �)

Input: e� 2 Rn,A 2 Rn⇥d satisfying Assumption B.1, � 2 (0, 1) ;
Output: (w, �) such that � =

P
i2[n]wi

e�iai, and if there is v 2 Rd with 1
12  kvk2  1 such

that e� = Av + ⇠ where
��⇠(m)

��
2


p
m

C⇠
, with probability � 1� �, (1), (2) are satisfied with

Cprog = 1, C2 = O (1) .

Furthermore, the second condition in (2) is satisfied with the constant 24 rather than 6, and
there is C⇠ = O(1) such that (27) is also satisfied.

C 3200, µ 1p
Cs log d

, ⌘ 1
Kw?

1s⇢2 log d , N 0
 dlog2

2
�
e ;

for 0  k  N 0 do
w0 0n, N d5Ln

⌘
e ;

for 0  t  N do
if e�2(wt) � 1 then Return: �

P
i2[n][wt]i e�iai, w wt ;

Sample i ⇠unif. [n] ;
Compute (using Lemma 12) dt 2 [0, ⌘w?

1] maximizing to additive O(⌘
n
)

�t(d) := e�2(wt + dei)� Cse�sqmax(wt + dei)

wt+1 wt + dtei ;
end

end
Return: � 0d, w 0n

Algorithm 5 is essentially identical to Algorithm 2 except for changes in constants. We further
have the following which verifies the second property in the definition of strong step oracle.

Lemma 27 The distribution of w returned by Algorithm 5 is stochastically dominated by the dis-
tribution

⌘w⇤
1Multinom

0

B@
5Ln

⌘
,

0

B@
1

n
, . . . ,

1

n| {z }
n

1

CA

1

CA

37

A. KELNER LI LIU SIDFORD TIAN

Proof Every time we inspect a row, we change the corresponding entry of w by at most ⌘w⇤
1. The

result follows from the number of iterations in the algorithm and uniformity of sampling rows.

To analyze Algorithm 5, we provide appropriate analogs of Lemmas 13 and 7. Because Algo-
rithm 5 is very similar to Algorithm 2, we will largely omit the proof of the following statement,
which follows essentially identically to the proof of Lemma 13 up to adjusting constants.

Lemma 28 Assume that the constant K in Assumption C.1 is sufficiently large, and that e� =
Av + ⇠ where v, ⇠ satisfy the norm conditions in Assumption C.1. Then for any w̄ 2 Rn

�0 such that
B(w̄)  C2µ2 log d, we have

Ei⇠unif.[n][B(w̄ + ⌘w?

i)]  B(w̄) +
1

2CLs
·
⌘

n
.

Proof The analysis is essentially identical to that of Lemma 13; we discuss only the main difference.
To apply the Taylor expansion of the exponential, Lemma 13 required a bound that

1

µ

���z(i)j

��� = O

✓
1

p
log d

◆
(=

���z(i)j

��� = O

✓
1

p
s log d

◆
,

for all i 2 [n] and j 2 [d]. Note that in the setting of Lemma 13, we took z(i)
j

= ⌘w?

i
(�iaij � p?

j
).

Here, we will take z(i)
j

= ⌘w?

i
(e�iaij � p?

j
); bounds on all of these terms follow identically to in

Lemma 13, except that e�i = hai, vi+ ⇠i, so we need to show

⌘w?

i ⇢|⇠i| = O

✓
1

p
s log d

◆
.

This follows since ⌘  1
log d and |⇠i| = O(

p
m) by assumption. Hence, as w?

i


1
m

by definition of
m, this is equivalent to m = ⌦(s⇢2), an explicit assumption we make.

We now give a full analysis of Algorithm 5, patterned off of Lemma 7.

Lemma 29 Suppose A satisfies Assumption C.1. Algorithm 5 is a (Cprog, C2, C⇠, �) strong step
oracle StrongStepOracle for (e�,A) with

Cprog = ⌦(1), C2 = O (1) , C⇠ = O(1), � =
1

2

✓
C2

105Cprog

◆2

,

running in time

O

✓✓
nd log3(nd⇢) log

1

�

◆
·

✓
w?

1s⇢2 log2
d

�

◆◆
.

Proof The analysis is essentially identical to that of Algorithm 2 in Lemma 7; we discuss differences
here. First, the stochastic domination condition follows from Lemma 27 for sufficiently large C⇠,
K.

For the remaining properties, since the algorithm runs N 0
� log2

2
�

times independently, it suf-
fices to show each run meets Definition 21 with probability� 1

2 under the events of Assumption C.1,
assuming there exists the desired decomposition e� = Av+⇠ in the sense of Assumption C.1. Union
bounding with the failure probability in Lemma 27 yields the overall failure probability.

38

SEMI-RANDOM SPARSE RECOVERY

Correctness. As in Lemma 7, it is straightforward to see that e�2 is 1-Lipschitz, since the value of
⌘ is smaller than that used in Algorithm 2. The termination condition in iteration T then again im-
plies e�2(wT) � 1, and e�sqmax(wT) 

3
Cs

. For C = 3200, this implies the short-flat decomposition
with stronger parameters required by Definition 21, as well as the kwT k1 bound.

Success probability. As in Lemma 7, the expected growth in �t is � ⌘

4Ln in any iteration where
Pr[e�2(wt) � 1]  1

2 . Hence, running for � 5Ln
⌘

iterations and using �t��0  2 yields the claim.

Runtime. This follows identically to the analysis in Lemma 7.

C.3. Equivalence between Assumption C.1 and RIP

In this section, we prove Lemma 24, restated here for completeness. The proof will build heavily
on our previous developments in the noiseless case, as shown in Appendix B.3.

Lemma 30 Suppose A 2 Rn⇥d is (⇢, w?
1)-wRIP with a suitable choice of constants in the RIP

parameters in Definition 4. Then, A also satisfies Assumption C.1.

Proof The analysis is largely similar to the analysis of Lemma 17; we will now discuss the differ-
ences here, which are introduced by the presence of the noise term ⇠. There are three components
to discuss: the upper and lower bounds in (28), and the decomposition (29).

Regarding the bounds in (3), by changing constants appropriately in Definition 4, we can assume
that A satisfies the second property in Assumption B.1 with the parameters 4

L
and L

4 . In particular,
for � = Av, we then have

4

L


X

i2[n]

w?

i�
2
i 

L

4
.

Recall that e� = �+ ⇠ for some
��⇠(m)

��
2


p
m

C⇠
. Hence,

X

i2[n]

w?

i
e�2
i  2

X

i2[n]

w?

i�
2
i + 2

X

i2[n]

w?

i ⇠
2
i


L

2
+ 2

✓
1

m

��⇠(m)

��2
2

◆
 L,

for an appropriately large C2
⇠
�

4
L

. Here the first inequality used (a + b)2  2a2 + 2b2, and the
second inequality used that the largest

P
i2[n]w

?
i
⇠2
i

can be subject to kw?
k1 = 1 and kw?

k1 
1
m

is attained by greedily choosing the m largest coordinates of ⇠ by their magnitude, and setting
w?

i
= 1

m
for those coordinates. This gives the upper bound in Assumption C.1, and the lower bound

follows similarly: for appropriately large C2
⇠
�

L

2 ,

X

i2[n]

w?

i
e�2
i �

1

2

X

i2[n]

w?

i�
2
i �

1

2

X

i2[n]

w?

i ⇠
2
i

�
2

L
�

1

2

✓
1

m

��⇠(m)

��2
2

◆
�

1

L
.

39

A. KELNER LI LIU SIDFORD TIAN

Lastly, for the decomposition required by (29), we will use the decomposition of Lemma 8 for the
component due to

P
i2[n]w

?
i
�iai; in particular, assume by adjusting constants that this component

has a (L2 ,
1

2K
p
s
) short-flat decomposition. It remains to show that

X

i2[n]

w?

i ⇠iai = A>W?⇠.

also admits a (L2 ,
1

2K
p
s
) short-flat decomposition, at which point we may conclude by the triangle

inequality. Let u = (W?)
1
2 ⇠; from earlier, we bounded

kuk22 
1

m

��⇠(m)

��2
2
=) kuk2 

1

C⇠

.

Hence, applying Lemma 16 using the RIP matrix (W?)
1
2A with appropriate parameters yields the

conclusion, for large enough C⇠. In particular, the `2-bounded part of the decomposition follows
from Lemma 16, and the proof of the `1-bounded part is identical to the proof in Lemma 17.

C.4. Putting it all together

We now prove our main result on noisy recovery.

Theorem 18 Let � 2 (0, 1), and suppose R0 � kx?k2 for s-sparse x? 2 Rd. Further, suppose
A 2 Rn⇥d is (⇢, w?

1)-wRIP and b = Ax? + ⇠, and R1 � R⇠ :=
��⇠(m)

��
2
. Then with probability at

least 1� �, Algorithm 3 using Algorithm 5 as a noisy step oracle computes x̂ satisfying

kx̂� x?k2  Rfinal = ⇥(R⇠),

in time

O

✓✓
ndw?

1s log4(nd⇢) log2
✓
d

�
· log

✓
R0

Rfinal

◆
log

✓
R1

Rfinal

◆◆◆
⇢2 log

✓
R0

Rfinal

◆
log

✓
R1

Rfinal

◆◆
.

Proof Our algorithm will iteratively maintain a guess Rguess on the value of 1p
m

��⇠(m)

��
2
, initialized

at Rguess R1. For each value of Rguess � R⇠, the hypothesis of Algorithm 3 is satisfied, and
hence using a strategy similar to the proof of Theorem 5 (but terminating at accuracy R = O(Rguess)
where the constant is large enough to satisfy the assumption R � C⇠Rguess) results in an estimate
at distance R with probability at least 1� �, with runtime

O

✓✓
ndw?

1s⇢2 log4(nd⇢) log2
✓
d

�
· log

✓
R0

Rfinal

◆◆◆
· ⇢2 log

✓
R0

Rfinal

◆◆
.

The runtime above follows from Lemma 26.
Our overall algorithm repeatedly halves Rguess, and outputs the last point returned by a run of

the algorithm where it can certify a distance bound to x? of R = C⇠Rguess. We use Rfinal to denote
C⇠Rguess on the last run. Clearly for any Rguess � R⇠ this certification will succeed, so we at most
lose a factor of 2 in the error guarantee as we will have Rfinal  2C⇠R⇠. The final runtime follows
from adjusting � by a factor of O(log R1

Rfinal
) to account for the multiple runs of the algorithm.

40

SEMI-RANDOM SPARSE RECOVERY

Appendix D. Greedy and non-convex methods fail in the semi-random setting

In this section, we show how a few standard, commonly-used non-convex or greedy methods can
fail (potentially quite drastically) in the semi-random adversary setting. The two algorithms that
we examine are Iterative Hard Thresholding and Orthogonal Matching Pursuit Blumensath and
Davies (2009); Tropp and Gilbert (2007). We believe it is likely that similar counterexamples can
be constructed for other, more complex algorithms such as CoSaMP Needell and Tropp (2009).
For simplicity in this section, we will only discuss the specific semi-random model introduced in
Definition 1, where A is pRIP, i.e. it contains an unknown RIP matrix G as a subset of its rows.

D.1. Iterative hard thresholding

The iterative hard thresholding algorithm Blumensath and Davies (2009) involves initializing x0 =
0 and taking

xt+1 = Hs

✓
xt �

1

n
A>(b�Axt)

◆

where Hs zeroes out all but the s largest entries in magnitude (ties broken lexicographically). We
can break this algorithm in the semi-random setting by simply duplicating one row many times.

Hard semi-random adversary. Let n = Cm for some sufficiently large constant C. The first m
rows of A are drawn independently from N (0, I). Now draw v ⇠ N (0, I), except set the first entry
of v to 1. We set the last (C � 1)m rows of A all equal to v. We will set the sparsity parameter
s = 1 and let x? = (1, 0, . . . , 0). We let b = Ax?.

Proposition 31 With A, b generated as above, with high probability, iterative hard thresholding
does not converge.

Proof With high probability, some coordinate of v is ⌦(
p
log d). We then have that some entry of

A>b has magnitude at least ⌦(n
p
log d) with high probability. Thus, the next iterate x1 must have

exactly one nonzero entry that has magnitude at least ⌦(
p
log d) and furthermore, this entry must

correspond to some coordinate of v that has magnitude at least ⌦(
p
log d). However, this means

that the residuals in all of the rows that are copies of v are at least ⌦(log d). In the next step, by the
same argument, we get that the residuals blow up even more and clearly this algorithm will never
converge. In fact, xt will never have the right support because its support will always be on one of
the entries where v is large.

D.2. Orthogonal matching pursuit

The orthogonal matching pursuit algorithm Tropp and Gilbert (2007) involves initializing x0 = 0
and keeping track of a set S (that corresponds to our guess of the support of x?). Each iteration,
we choose a column cj of A that maximizes |hcj ,rti|

kcjk22
and then add j to S (where rt = Axt � b is

the residual). We then add j to S and project the residual onto the orthogonal complement of all
coordinates in S. We show that we can again very easily break this algorithm in the semi-random
setting.

41

A. KELNER LI LIU SIDFORD TIAN

Hard semi-random adversary. Let n = 3m. First, we draw all rows of A independently from
N (0, I). Next, we modify some of the entries in the last 2m rows. Let s be the sparsity parameter.
Let x? = (s�

1
2 , . . . , s�

1
2 , 0, . . . , 0) be supported on the first s coordinates and set b = Ax?. Now

we modify the columns of A (aside from the first s so Ax? is not affected). We set the last 2m
entries of one of these columns cj to match those of b.

Proposition 32 With A, b generated as above, with high probability, orthogonal matching pursuit
does not recover x?.

Proof With high probability (as long as s � 10), the column cj is the one that maximizes |hcj ,bi|
kcjk22

because its last 2m entries exactly match those of b. However, j is not in the support of x? so the
algorithm has already failed.

We further make the following observation.

Remark 33 By modifying other columns of A as well, the semi-random adversary can actually
make the algorithm pick all of the wrong columns in the support.

D.3. Convex methods

Now we briefly comment on how convex methods are robust, in the sense that they can still be used
in the semi-random setting (but may have substantially slower rates than their fast counterparts). In
the noiseless observations case, this is clear because the additional rows of A are simply additional
constraints that are added to the standard `1 minimization convex program.

In the noisy case, let the target error be ✓ =
��⇠(m)

��
2
. We then solve the modified problem

min kxk1
subject to

��[Ax� b](m)

��
2
 ✓.

Note that the above is a convex program and thus can be solved in polynomial time by e.g. cutting
plane methods Grötschel et al. (1988). Also, note that x? is indeed feasible for the second constraint.
Now for the solution bx that we obtain, we must have kbxk1  kx?k1 and

��[A(x? � bx)](m)

��
2
 2✓.

Let G be the set of m randomly generated rows of A under our semi-random adversarial model.
The previous two conditions imply

• kbx� x?k1  2
p
s kx? � bxk2

• kG(x? � bx)k2  2✓

which now by restricted strong convexity of G (see Agarwal et al. (2010)) implies that kx? � bxk2 =
O(✓p

m
). We can furthermore round bx to s-sparse to obtain the sparse vector x0, and the above bound

only worsens by a factor of 2 for x0 (see Lemma 9 for this argument).

42

SEMI-RANDOM SPARSE RECOVERY

Slowdown of iterative methods. As alluded to earlier, the runtimes of standard iterative methods
for optimizing the convex relaxation (such as projected gradient descent against an `1 ball) never-
theless may be substantially hindered by a semi-random adversary. For example, consider a 2n⇥2d
matrix with the hard example in Proposition 31 in the top-left block, and a standard RIP matrix in
the bottom-right block. The same argument as in Proposition 31 shows that any step size that is at
least a constant fails to converge, but any smaller step size would cause overhead at the rate of con-
vergence for the RIP block. As another illustrative example, if the pRIP matrix contains the identity
as a submatrix, this satisfies Definition 1 with s = d. By taking d additional rows set to e1, any
PGD step size larger than 1

d
causes the iterates to diverge (because the smoothness of the augmented

matrix is d), but any smaller step size will take d iterations before converging if the target vector is
e2 (because the corresponding eigenvalue is 1).

Appendix E. Lasso-inspired method

We describe a different instantiation of Algorithm 1 which is more reminiscent of existing methods
in the literature, namely the Lasso Tibshirani (1996). We will analyze its correctness by showing that
these new updates satisfy the invariants required by Corollary 10. For simplicity, we only discuss
this alternative in the context of Algorithm 1, though it is straightforward to see that analogous
alternatives also suffice for Algorithm 3, as nothing about its analysis in Lemma 26 changes except
the part which is identical to Lemma 9.

Consider replacing Line 1 with the (unconstrained) update using the same ⌘ Cprog
2C2

2
,

xt+1 argmin
x

⇢
h�t, x� xti+

1

2⌘
kx� xtk

2
2 + � kx� xink1

�
, � :=

C4
2R

8
p
2sC3

prog
. (31)

This update may be preferable to the constrained update step in Line 1, because it is coordinate-
wise separable and hence reduces to one-dimensional optimization problems (with closed-form
solutions).

Lemma 34 The update (31) satisfies the requirements of Corollary 10.

Proof The first-order optimality condition of (31) implies (a slight modification to (6)):

2 hxt+1 � xt + ⌘R�t, xt+1 � x?i+ 2⌘� (kxt+1 � xink1 � kx
?
� xink1)  0

=) kxt � x?k22 � kxt+1 � x?k22 � 2⌘R h�t, xt+1 � x?i+ kxt � xt+1k
2
2

+2⌘� (kxt+1 � xink1 � kx
?
� xink1) .

(32)

As in the proof of Lemma 9 (see (7), (8)), we have

2⌘R h�t, xt+1 � x?i+ kxt � xt+1k
2
2 �

C2
2

4C2
prog

R2.

Moreover, clearly 2⌘� kxt+1 � xink1 is nonnegative, and

2⌘� kx? � xink1  2⌘� ·
p
2sR 

C2
2

8C2
prog

R2,

43

A. KELNER LI LIU SIDFORD TIAN

where we used kx? � xink2  R and x? � xin is 2s-sparse, both by assumption. Combining yields

kxt � x?k22 � kxt+1 � x?k22 �
C2
2

8C2
prog

R2,

which is the first requirement of Corollary 10. For the second requirement, by dropping terms we
have already demonstrated are nonnegative from (32), we have

2⌘� kxt+1 � xink1  kxt � x?k22 + 2⌘� kx? � xink1 .

Since 2⌘� = ⌦(Rs�
1
2), and kxt � x?k22  R2, kx? � xink1 

p
2sR, plugging these in above

yields
kxt+1 � xink1 = O(R

p
s).

The conclusion follows from kxin � x?k1 
p
2sR and triangle inequality.

Appendix F. Deferred proofs

Lemma 35 Let � > 0 and ✓ � 0. For any vector � 2 Rd, we can solve the optimization problem

min
kpk2✓

sqmax
µ
(� � p)

to additive accuracy � in time

O

d log2

k�k22
µ
p
�

!!
.

Proof Let P ⇢ Rd be the set of p such that p has the same sign as � entrywise and |pj |  |�j | for
all j 2 [d]. By symmetry of the sqmax and the `2 norm under negation, the optimal p lies in P .

Next we claim that the function smaxµ(� � p) is 2 k�k2-Lipschitz in the `2 norm as a function
of p, over P . To see this, the gradient is directly computable as

2(p� �) � x where x 2 �d with xi =
exp([�i � pi]2/µ2)P

j2[n] exp([�j � pj]2/µ2)
for all i 2 [n]

where � denotes entrywise multiplication. Thus, the `2 norm of the derivative is bounded by 2 k�k2
over P . In the remainder of the proof, we show how to find p 2 P which has `2 error �

2k�k2
to the

optimal, which implies by Lipschitzness that the function value is within additive � of optimal.
Next, since 0 2 P , we may assume without loss of generality that

✓ >
�

2 k�k2
. (33)

else we may just output 0, which achieves optimality gap at most 2 k�k2 ✓.
Now, by monotonicity of ln it suffices to approximately minimize

X

j2[d]

exp

[� � p]2

j

µ2

!
.

44

SEMI-RANDOM SPARSE RECOVERY

The sum above is always at least d. First we check if k�k2  ✓ +
p
�. If this is true then clearly we

can set p so that all entries of � � p have magnitude at most
p
�. This gives a solution such that

sqmax
µ
(� � p)  µ2 log

✓
d exp

✓
�

µ2

◆◆
= µ2 log d+ �

and since the value of sqmax is always at least µ2 log d, this solution is optimal up to additive error
�. Thus, we can assume k�k2 � ✓ +

p
� in the remainder of the proof. We also assume all entries

of � are nonzero since if an entry of � is 0 then the corresponding entry of p should also be 0.
Finally by symmetry of the problem under negation we will assume all entries of � are positive in
the remainder of the proof, such that each entry of p is also positive.

By monotonicity of sqmax in each coordinate (as long as signs are preserved) and the assump-
tion that k�k2 � ✓+

p
�, the optimal solution must have kpk2 = ✓. By using Lagrange multipliers,

for some scalar ⇣ and all j,

pj = exp(⇣) · [� � p]j exp

[� � p]2

j

µ2

!
. (34)

For the optimal ⇣ by taking `2 norms of the quantity above, we have

✓ = kpk2 = ⇣ k� � pk2 · C for some C 2

"
0, exp

k�k22
µ2

!#
.

Hence taking logarithms of both sides and using both the bounds (33) and k� � pk2 �
p
� at the

optimum, which follows from the previous discussion, we obtain

log
✓

k� � pk2
� ⇣ 2

"
0,
k�k22
µ2

#
=) ⇣ 2

"
�
k�k22
µ2
� log

2 k�k22

�

!
, log

✓
k�k2
p
�

◆#
.

We next show how to compute p to high accuracy given a guess on ⇣. Observe that if �j > 0, then
the right-hand side of (34) is decreasing in pj and hence by the intermediate value theorem, there is
a unique solution strictly between 0 and �j for any ⇣. Also, note that the location of this solution
increases with ⇣. Let p(⇣) be the solution obtained by exactly solving (34) for some given ⇣. We
have shown for all ⇣ that 0  [p(⇣)]j  �j entrywise and hence kp(⇣)k2  k�k2 for all ⇣.

For a fixed ⇣, we claim we can estimate p(⇣) to `2 error � in time O(d log
k�k2
�

). To see this,
fix some ⇣, µ, and �j , and consider solving (34) for the fixed point pj . We can discretize [0, �j] into
intervals of length �j�

k�k2
and perform a binary search. The right-hand side is decreasing in pj and

the left-hand side is increasing so the binary search yields some interval of length �j�

k�k2
containing

the fixed point pj via the intermediate value theorem. The resulting `2 error along all coordinates is
then �. We also round this approximate p(⇣) entrywise down in the above search to form a vector
p̃(⇣,�) such that p̃(⇣,�)  p(⇣) entrywise and kp̃(⇣,�)� p(⇣)k2  �. We use this notation and it
is well-defined as the search is deterministic.

In the remainder of the proof we choose the constants

↵ :=
�2

192 k�k42
, � := min

�2

192 k�k32
,

�

4 k�k2

!
.

45

A. KELNER LI LIU SIDFORD TIAN

Define p̃(⇣) := p̃(⇣,�) for short as � will be fixed. Discretize the range [�k�k22
µ2 �log

2k�k22
�

, log
k�k2p

�
]

into a grid of uniform intervals of length ↵. Consider the ⇣ such that ⇣  ⇣? < ⇣ + ↵. Because
p(⇣?) is entrywise larger than p(⇣) and hence the logarithmic term on the right-hand side of (34) is
smaller for p(⇣?) than p(⇣), we have

[p(⇣)]
j
 [p (⇣?)]

j
 exp (↵) [p (⇣)]

j
.

Moreover the optimal p(⇣?) has `2 norm ✓, so |⇣ � ⇣?|  ↵ and exp(↵)� 1  2↵ imply

kp(⇣)� p(⇣?)k2  2↵ kp(⇣?)k2  2↵ k�k2  � :=
�2

96 k�k32
.

Consider the algorithm which returns the ⇣alg on the search grid which minimizes |kp̃(⇣alg)k2 � ✓|
(we will discuss computational issues at the end of the proof). As we have argued above, there is a
choice which yields kp(⇣)k2 2 [✓ ��, ✓ +�] and hence

��p̃(⇣alg)
��
2
2 [✓ ��� �, ✓ +�+ �] . (35)

We next claim that ��p(⇣alg)� p(⇣?)
��
2


�

4 k�k2
. (36)

Suppose (36) is false and ⇣alg > ⇣?. Then letting u := p(⇣alg) and v := p(⇣?), note that u, v, and
u� v are all entrywise nonnegative and hence

kuk22 � kvk
2
2 +

X

i2[n]

2ui(ui � vi) + (ui � vi)
2 > kvk22 +

✓
�

4 k�k2

◆2

.

Hence, we have by
p
x2 + y2 � x+ y

2

3x for 0  y  x, (33), and ✓  k�k2,

��p(⇣alg)
��
2
= kuk2 > kvk2 +

⇣
�

4k�k2

⌘2

3 kvk2
� ✓ +

�2

48 k�k32
� ✓ +�+ 2�.

So, by triangle inequality
��p̃(⇣alg)

��
2
> ✓ +�+ � and hence we reach a contradiction with (35).

Similarly, suppose (36) is false and ⇣alg < ⇣?. Then for the same definitions of u, v, and using
the inequality

p
x2 � y2  x� y

2

3x for 0  y  x, we conclude

kvk22 > kuk
2
2 +

✓
�

4 k�k2

◆2

=) kuk2 

s

kvk22 �

✓
�

4 k�k2

◆2

< ✓ ��� 2�.

So we reach a contradiction with (35) in this case as well.
In conclusion, (36) is true and we obtain by triangle inequality the desired

��p̃(⇣alg)� p(⇣?)
��
2


�

4 k�k2
+ �
p

d 
�

2 k�k2
.

The complexity of the algorithm is bottlenecked by the cost of finding p̃(⇣alg). For each ⇣ on the grid

the cost of evaluating p̃(⇣) induces a multiplicative d log(
k�k22
�

) overhead. The cost of performing

46

SEMI-RANDOM SPARSE RECOVERY

the binary search on the ⇣ grid is a multiplicative log(
k�k22
µ
p
�
) overhead; note that a binary search

suffices because
��p̃(⇣alg)

��
2

is monotonic by our consistent choice of rounding down, and hence
|
��p̃(⇣alg)

��
2
� ✓| is unimodal.

47

	Introduction
	Our results
	Our techniques
	Related work
	Roadmap
	Preliminaries
	Exact recovery
	Radius contraction using step oracles
	Designing a step oracle
	Equivalence between Assumption B.1 and RIP
	Putting it all together

	Noisy recovery
	Radius contraction above the noise floor using step oracles
	Designing a strong step oracle
	Equivalence between Assumption C.1 and RIP
	Putting it all together

	Greedy and non-convex methods fail in the semi-random setting
	Iterative hard thresholding
	Orthogonal matching pursuit
	Convex methods

	Lasso-inspired method
	Deferred proofs

