
Probabilistic Uncertainty Quantification of Prediction Models with

Application to Visual Localization

Junan Chen∗†, Josephine Monica∗†, Wei-Lun Chao‡, and Mark Campbell†

AbstractÐ The uncertainty quantification of prediction mod-
els (e.g., neural networks) is crucial for their adoption in
many robotics applications. This is arguably as important
as making accurate predictions, especially for safety-critical
applications such as self-driving cars. This paper proposes our
approach to uncertainty quantification in the context of visual
localization for autonomous driving, where we predict locations
from images. Our proposed framework estimates probabilistic
uncertainty by creating a sensor error model that maps an inter-
nal output of the prediction model to the uncertainty. The sensor
error model is created using multiple image databases of visual
localization, each with ground-truth location. We demonstrate
the accuracy of our uncertainty prediction framework using the
Ithaca365 dataset, which includes variations in lighting, weather
(sunny, snowy, night), and alignment errors between databases.
We analyze both the predicted uncertainty and its incorporation
into a Kalman-based localization filter. Our results show that
prediction error variations increase with poor weather and
lighting condition, leading to greater uncertainty and outliers,
which can be predicted by our proposed uncertainty model.
Additionally, our probabilistic error model enables the filter to
remove ad hoc sensor gating, as the uncertainty automatically
adjusts the model to the input data.

I. INTRODUCTION

The evolution of modern prediction models (e.g., neural

networks) has revolutionized the performance of applica-

tions ranging from medical diagnostics, business analysis

to robotics. However, much of the research in this field

has focused primarily on enhancing performance (e.g., av-

erage prediction accuracy) through better data collection and

architectures. Despite these advancements, one significant

weakness of many models is their inability to provide a sense

of confidence in individual predictions. Predictive accuracies

of these models can vary based on factors such as the amount

and diversity of training data, the model architecture details,

and the complexity of the test environment [1], [2].

In certain applications, such as medical imaging or self-

driving, probabilistic uncertainty quantification of prediction

outputs is crucial. Realizing uncertainty models for these

networks will not only facilitate their integration into formal

probabilistic perception and planning frameworks but also

enable better reasoning over the outputs. For example, in

medical diagnosis, doctors should intervene when the neu-

ral network lacks confidence in its prediction [3]. While

some modern neural networks attempt to output probabilistic

uncertainty, the reliability of the uncertainty prediction is
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still insufficient for safety-critical decision-making [4]. Most

modern neural networks are deterministic or produce only

non-probabilistic confidence, such as the softmax function.

Current uncertainty modeling methods can generally be

divided into three categories: Bayesian neural networks,

ensemble, and post-processing methods. Bayesian neural

networks [5], [6] construct an inherent uncertainty estimation

framework by formalizing a probability distribution over

the model parameters [7]. However, they are difficult to

train and often output poorly calibrated confidence scores

[8]. Ensemble methods [9] typically train multiple neural

networks with different training data or architectures, and the

variance of the networks’ output can indicate the uncertainty

level. However, these methods require larger networks and

additional training and inference steps. Post-processing meth-

ods, such as neural network calibration, are general enough

to be used with different networks. However, they require

uncalibrated uncertainty as an input and cannot predict un-

certainty directly. Examples include histogram binning [10]

and isotonic regression [11]. Some post-processing methods,

such as Platt scaling [12], can predict uncertainty directly

but require additional layers to be trained. The output of

these methods is typically a simple confidence score, which

is calibrated to be an approximate probability of correctness.

This paper presents a general uncertainty prediction

framework that does not require additional training of the

network or changes in network architecture. The framework

is probabilistically formulated to provide both probabil-

ity/confidence and an uncertainty distribution across the

outputs. To achieve this, we leverage the concept of sensor

models in estimation frameworks (e.g., Kalman filter). For

traditional sensors, manufacturers typically provide error

model specifications that indicate the accuracy of the sensor

under different conditions, e.g. the accuracy of LiDAR as

a function of range or the covariance of pseudo-ranges for

GPS in various weather conditions. We propose creating an

error uncertainty model for the network predictions using the

internal network outputs and analysis across datasets.

We demonstrate the effectiveness of our uncertainty pre-

diction approach using the problem of visual localiza-

tion [13]. We focus on this problem for two reasons: first, the

neural network outputs a 2D position from an image, making

it easy to analyze, and second, the network’s performance

is known to degrade in poor weather and lighting condi-

tions [14], [15]. We build upon a typical visual localization

model [16] which predicts the pose of a query image by

searching the most similar image from a database of images

with known poses using keypoint matching [17]. Firstly, we
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analyze the performance of a baseline neural network to

understand its performance over different databases (weather

and lighting). We then create a statistical error model using

the internal outputs of the network (number of keypoint

matches between the query and retrieved images) as the cue

to predict visual localization error uncertainty. Importantly,

the matched keypoints of each model/database can be cali-

brated and binned based on both a probability and 2D error.

During inference, given the number of keypoint matches

from an image, the sensor error model can directly return

an uncertainty estimate in the form of a 2D error covariance

(analogous to a traditional sensor) and a formal confidence.

We can also incorporate the error model output in a Kalman-

based localization filter, which provides a range of formal

evaluation tools such as filter integrity and sensor hypothesis

testing. We evaluate our approach using Ithaca365 [18],

a large-scale real-world self-driving dataset that includes

multiple traversals along repeated routes, varying weather

and lighting conditions, and high precision GPS.

Our main contributions are three-folded: First, we analyze

a state-of-the-art neural network for visual localization across

a comprehensive dataset that includes multiple routes, light-

ing, and weather conditions to understand how errors vary

across these key conditions. Second, we propose an approach

to predict well-calibrated uncertainty without modifying the

base neural network or requiring additional training. Third,

we validate our method in the visual localization problem on

a large real-world dataset under various settings and demon-

strate that it consistently produces well-calibrated uncertainty

estimates and high integrity filters without ad hoc fixes.

II. RELATED WORKS

A. Uncertainty Modeling.

Modern prediction models are known for their high per-

formance in various tasks, but they often lack the ability

to tell the uncertainty in their predictions. While some

models, such as classification neural networks, can produce

a confidence score, it is not probabilistic and therefore may

not be entirely reliable. Ensembles [9], [19], [20] offer a

solution by training multiple networks and combining their

predictions to calculate variance and represent uncertainty.

However, ensembles require more costly training steps for

training multiple networks, as well as more inference time.

Bayesian neural networks (BNNs) [5], [6] offer another

potential solution by treating neural network weights as

random variables instead of deterministic values, with pre-

dictions in the form of an expectation over the posterior

distribution of the model weights. Two prominent methods

in BNN are Bayes by Backprop [21] and Monte Carlo (MC)

Dropout [22]. Bayes by Backprop regularises the weights

by minimising the expected lower bound on the marginal

likelihood. MC Dropout interprets dropout approximately as

integrates over the models’ weights. However, BNN requires

specifying a meaningful prior for the parameters which can

be challenging. Additionally, the uncertainty is often poorly

calibrated, necessitating post-processing methods [8], [23],

[24] to map poorly calibrated uncertainty to well-calibrated

uncertainty. For instance, temperature scaling is a widely

used post-processing methods due to its simplicity and effec-

tiveness [23] . [8] extends the technique from just classifica-

tion tasks to regression tasks. However, such post-processing

methods either require inputs of uncalibrated uncertainty or

re-training some layers. In contrast, our method differs from

these methods in that we do not alter the prediction model’s

structure, hence preserving its performance. Furthermore, our

method can output accurate uncertainty with no additional

training and can be applied to any prediction models.

B. Visual Localization

Visual localization aims to predict the pose of a query

image using environmental information such as images and

point clouds. Two main branches of visual localization are

image-based localization and 3D-structure-based localiza-

tion. Image-based localization [25]±[27] can be understood

as an image retrieval problem, i.e. retrieving the most similar

image from an image database/library with known poses and

taking the pose of the retrieved image as the predicted pose.

Several approaches [28], [29] have been proposed to extract

image features for this purpose In contrast, 3D-structure-

based localization [16], [30]±[35] predicts the location by

finding the pose that best matches the detected 2D keypoints

in the query image with the 3D keypoints in a pre-constructed

3D model. However, to the best of our knowledge, few works

have considered the uncertainty associated with the predicted

location. While some works [17], [36] output confidence

scores on detected keypoints and their matching, they do

not provide any information about the uncertainty of the

predicted location.

III. METHOD

In this section, we discuss our method for uncertainty

quantification of prediction models, using visual localization

as the application task. We start by defining a baseline

visual localization framework, then present our approach

to modeling the errors and calibrating the uncertainties of

the predictive network, and finally, we define a full visual

localization pipeline, with a filter and sensor gating, to be

used in the validation steps.

A. Location Prediction from Image Retrieval

Let X = {ki}
N
i=1 be a set of database images with known

GPS locations r(ki). Given a query image q, our goal is

to estimate the location where the image was taken. As

images taken from close-by poses should preserve some

content similarity, we find the closest image fclosest(q;X)
from database X and use its corresponding location as the

predicted location r̂(q) = r(fclosest(q;X)). We define the

closest image as the image with the most number of keypoint

matches nkpm to the query image. However, performing

keypoint matching of the query image to all N database

images is computationally expensive. Therefore, more effi-

cient global feature matching (NetVLAD [29]) is performed

first, followed by neural keypoint matching (SuperPoint [36]
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Location prediction
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Fig. 1: Pipeline for location prediction form image-retrieval using multiple traversals.

+ SuperGlue [17]) on the top n << N candidate images.

This pipeline is shown in Figure 1 (top, green).

A standard location prediction from image retrieval

pipeline typically uses a database from just one traver-

sal (passing the route once). We propose to use multiple

databases from multiple traversals, motivated by several key

observations. First, a query image has a non-zero distance to

even its closest image from a database (see Figure 2). Using

multiple traversals increases the database image options and

thus lowers the average error. Second, as the query image for

localization can originate from different weather and lighting

conditions, it is important to diversify the database images

to reduce potential errors (those from the traversal and from

keypoint mismatches). Finally and most importantly, data

from multiple traversals can be used to provide a localization

uncertainty prediction, as will be shown in III-B.

One naive approach is to simply treat the additional data

from multiple traversals X1, X2, . . . , XL as one combined

(large) database, and apply the same pipeline. However, this

is not effective, as the candidate images retrieved by global

feature matching often are biased to come from a single

database whose color or even foreground object appearance

is most similar to the query image. This motivates our new

approach that encourages retrieval of candidate images from

each traversal as shown in Figure 1.

Fig. 2: GPS locations of several traversals (zoomed in for il-
lustration; full trajectory is not shown). Using multiple traversals
increases the chances that a database image is closer to the query
image location (i.e., smaller theoretical error).

B. Uncertainty Prediction and Quantification

1) Problem Definition: We formally define the uncertainty

quantification problem as predicting the error bound σc(q) ∈
R

+ of image q and confidence level c ∈ [0, 1] such that the

error between the predicted location r̂ = r(f(q;X)) and the

ground-truth rgt is below σc by c probability:

p (∥r̂ − rgt∥ < σc(q)) = c (1)

2) Sensor Error Model: We propose to create a sensor

error model to determine the confidence of the prediction

(e.g. neural network output). A sensor error model maps key

attributes of prediction to error bound σc and confidence c

estimates; for example, the error of stereo depth sensor is

quadratic to range [37]. We first analyze the performance of

visual localization prediction as a function of the number

of keypoint matches nkpm by performing cross-validation

using different databases. As an example, Figure 3 shows

scatter plots of the location error between images from two

databases (sunny and night) and their closest images from

another database (sunny) as a function of the number of

keypoint matches.

Fig. 3: Relationship between number of keypoint matches and
location error for two different database traversals.

From this analysis, we learn two things. First, the number

of keypoint matches nkpm can serve as a good indicator for

uncertainty quantification. Second, the relationship between

number of keypoint matches and error can be different

for different databases (traversals); the scatter plots have

different distributions. Thus, we propose to build the sensor

error model as a function of number of keypoint matches,

and build one model for each different traversal. We can

utilize multiple traversals to learn this mapping as follows.

3) Creating Sensor Error Model: Key to our approach

is creating a sensor error model for each database/traversal.

For database l, we apply the image retrieval pipeline using

traversal X l as the query and another traversal Xm ̸=l as

the database. For every image kli ∈ X l, we find the closest

image f(kli;X
m) from database m and compute the location

error ∥r(f(kli;X
m)) − r(kli)∥. Thus, for each image, we
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Fig. 4: Pipeline for uncertainty prediction. Top: creating sensor error model. Bottom: using sensor error model in inference.

can compute the number of keypoint matches (to its closest

image) and location error. This process is repeated using all

L−1 different traversals (other than Xl). We divide the data

(number of keypoints vs error) into bins according to the

number of keypoint matches (e.g., bin 1 contains data points

with keypoint matches ranging from 0-200, bin 2 from 200-

400, and so on). For each bin, we empirically determine the

error bound σc for confidence c such that c fraction of data

in that bin has smaller error than σc. We repeat for each

traversal/database, as shown in Figure 4(top).

4) Model Prediction with Uncertainty and Confidence:

The inference process is shown in Figure 4(bottom). Given

a query image of unknown location, we retrieve the closest

image (as detailed in III-A); the location of the closest image

becomes the predicted location. To find the confidence of

the prediction, we use the database of the closest image (say

l, or X l). The corresponding (l) sensor error model is then

used; the bin associated with the number of keypoint matches

(between query and closest image) gives the corresponding

error bound σc at confidence level c.

Finally, we form a quantified uncertainty (in the form of a

2D estimation error covariance in this case). Specifically, we

compute the measurement covariance R ∈ R
2×2 from the

cross-validation data, per database, per number of keypoint

matches range (bin). The covariance matrices are formed and

expressed in the ego car (sensor) coordinates. This covari-

ance matrix will be used as the measurement covariance in

subsection III-C.

C. Full Visual Localization Pipeline

We build a full visual localization pipeline using the

location prediction (III-A) as the uncertain measurement,

the uncertainty prediction (III-B) as the error covariance,

within a formal estimation framework using the Sigma Point

(Unscented) filter (SPF) [38], [39]. Our goal is to estimate

the p(st|m1:t) of the state vector st at time t given observed

measurements m1:t. We define the state vector as follows:

s =
[

x y θ v θ̇
]T

(2)

where x, y, θ are the inertial, planar position and heading

angle, and v, θ̇ are the linear and angular velocity of the car.

In the prediction step of the SPF, we assume constant linear

and angular velocity (v and θ̇) with a small process noise. In

the measurement update, given an image input, we process

the image through the location and uncertainty prediction

pipeline (III-A and III-B) to give the (x, y) location measure-

ment and error covariance; the covariance is transformed to

the inertial coordinates for the filter.

Most modern estimation frameworks also typically employ

sensor measurement gating to decide whether to accept a

measurement (i.e., use it in the filter update) or reject the

measurement (i.e., it is an outlier, outside the nominal error

mode). Given a measurement vector m, we compute the

Mahalanobis distance dM defined as follows:

d2M = (m− m̂)T (HĈHT +R)−1(m− m̂) (3)

where R is the measurement covariance transformed to the

world coordinate, Ĉ is the estimated state covariance from

the SPF, H is the measurement matrix that maps the state

vector to the measurement, and m̂ = Hs is the expected

measurement. The measurement is rejected if it lies outside

of the validation gate,

if d2M > χ2
k,α → reject, (4)

where χ2
k,α is a threshold from the inverse chi-squared

cumulative distribution at a level α with k degrees of

freedom. The level α controls the validation gate, i.e. it

rejects (1−α)×100% of the measurements at the tail; typical

values are 0.99, 0.975, and 0.95.

IV. EXPERIMENTS

A. Dataset

We use the Ithaca365 dataset [18], containing data col-

lected over multiple traversals along a 15km route under

various conditions: snowy, rainy, sunny, and nighttime. We

utilize two types of sensor data, images, and GPS locations

for our experiments. For our database, we randomly select

nine traversals, with three traversals each from the sunny
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(X1, X2, X3), nighttime (X4, X5, X6), and snowy (X7,

X8, X9). We use three additional traversals (Qsunny, Qsnow

and Qnight), one from each condition, as queries for testing

and evaluation. To avoid double counting and ensure a

uniform spatial distribution across the scenes in evaluation,

we sample query images at an interval of ≈1m, except for

highways where the spacing is larger. This results in an

average of ≈10,000 images for each query traversal, Q(·).

B. Evaluation

1) Sensor Error Model: First, we evaluate the correctness

of our uncertainty prediction on location prediction using im-

age retrieval. Following [8], [23], we use reliability diagram

to compare the expected confidence level with the observed

confidence level. For a given expected confidence level c, the

observed confidence is obtained by computing the empirical

frequency p̂c that the location error ∥x̂(q)−xgt(q)∥ is below

the predicted uncertainty σc(q):

p̂c =
|{q ∈ Q s.t. ∥x̂(q)− xgt(q)∥ ≤ σc(q)}|

|Q|
. (5)

If the uncertainty quantification is accurate, the diagram

should plot the identity function (a straight line with a gra-

dient of one). The reliability diagram in Figure 5 shows that

our method produces accurate probabilistic confidence, as

evidenced by the small gaps between observed and expected

confidence at all levels and across all three conditions.

Fig. 5: Reliability diagrams for Qsunny, Qnight, and Qsnowy.

2) Visual Localization: Filter + Prediction/Error Model:

Next, we evaluate the full visual localization pipeline, which

uses the previous location predictions as measurements in

the SPF (subsection III-C). We evaluate both the localization

error and the uncertainty of the estimates. The localization

error derr is the average distance error between estimated

and ground-truth locations, whereas covariance credibility

measures the frequency that the 2D localization error lies

within an n-sigma covariance ellipse; we use 1-, 2- and 3-

sigma, corresponding to 68%, 95% and 99.7% probability

respectively in a 2D Gaussian distribution.

We present three sets of experiments in Table I. The

first set of experiments (rows 1-9) uses the original image

inputs. The second and the third sets simulate high sensor

error/failure by corrupting several images along the red paths

of Figure 6. Specifically, the second set (rows 10-15) applies

average blurring, and the third set (rows 16-21) applies salt

and pepper noise, as shown in Figure 7. Within each set, three

sets of measurement gating are evaluated, with 0, 1.0% and

2.5% probability gate. We compare our method to a constant

covariance baseline commonly used in Kalman filter, where

the constant covariance value is obtained by tuning on the

validation data, separately for each weather condition. Our

method and the constant covariance baseline receive the

same measurement vectors but use different measurement

covariance. Additionally, in the first experiment set, we

provide a comparison to the Monte Carlo (MC) Dropout

method. Specifically, we apply a dropout layer after the

final keypoint feature projection layer with a 0.3 dropout

probability and repeat the dropout process multiple times

until the SPF localization results stabilize. We report the

converged results.

Fig. 6: Data collection path (black), with corrupted images (red).

Fig. 7: Examples of corrupted images. Top: original images. Mid:
blurred images (average blur with kernel size 80, Bottom: images
corrupted with salt and pepper noise (noise amount is 0.5)).

Analysis of Table I yields several observations. Firstly,

our method outperforms the MC Dropout and constant

covariance baselines in terms of localization accuracy (derr)

in nearly all cases, suggesting that a good uncertainty model

can improve localization accuracy, even with similar mea-

surement quality. Our method also produces more accurate

uncertainty estimates (indicated by covariance-credibility)

than the two baselines in nearly all cases. This is crucial

for making informed decisions in the future. Second, we

observe that formal sensor gating through hypothesis testing

with prediction networks is too sensitive and does not work

well. However, our adaptive covariance method removes

the need for sensor gating and standard outlier rejection in

filters. In the typical estimation framework, sensor gating

is used to reject bad measurements that could adversely

affect the performance. While outlier rejection may improve

performance, it is highly susceptible to threshold parameter

selection (χ2
k,α). We observe that there is hardly a single
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TABLE I: Evaluation result of Unscented Kalman Filter localization for sunny, night, and snowy conditions.

Row Method Gating (1− α) derr(m) ↓ Cov-credibility(%) nr(%) derr(m) ↓ Cov-credibility(%) nr(%) derr(m) ↓ Cov-credibility(%) nr(%)

Normal measurement Ð Average measurement error: 0.83m / 11.67m / 1.76m for MC dropout ± 0.87m / 8.68m / 1.42m for baseline and ours.

1 MC d.o 0 0.792 32.8 / 67.4 / 84.7 0 7.442 27.6 / 56.2 / 71.0 0 1.501 20.4 / 50.4 / 69.8 0
2 Baseline 0 0.766 46.1 / 81.2 / 92.3 0 8.425 38.5 / 67.0 / 78.9 0 1.302 30.5 / 61.8 / 79.6 0
3 Ours 0 0.569 62.2 / 91.4 / 97.4 0 3.075 75.9 / 94.6 / 98.6 0 0.811 55.4 / 86.4 / 95.9 0

4 MC d.o 1.0% 0.612 33.1 / 68.2 / 85.6 1.0 165.282 23.4 / 46.0 / 57.7 33.0 1.442 21.2 / 51.6 / 71.6 4.8
5 Baseline 1.0% 0.610 46.6 / 82.1 / 93.3 1.0 54.382 33.9 / 57.2 / 67.0 30.3 333.538 17.5 / 38.3 / 51.7 37.7
6 Ours 1.0% 0.570 62.3 / 91.4 / 97.5 0.2 2.926 76.2 / 94.6 / 98.7 0.3 222.608 34.5 / 56.4 / 63.9 33.2

7 MC d.o 2.5% 0.613 33.1 / 68.2 / 85.9 1.5 7607.294 3.6 / 8.5 / 11.5 86.7 8144.861 3.7 / 9.0 / 12.3 82.5
8 Baseline 2.5% 790.307 32.8 / 54.5 / 61.6 35.2 54.205 34.1 / 57.9 / 69.1 31.3 8169.233 5.1 / 11.2 / 14.8 82.3
9 Ours 2.5% 82.828 47.7 / 67.9 / 72.5 26.2 2.942 76.3 / 94.6 / 98.7 0.4 8121.261 7.6 / 14.1 / 16.7 82.0

Study case where 5.0% / 4.7% / 4.6% of data are corrupted with average blurring Ð Average measurement error: 108.21m / 121.78m / 108.66m

10 Baseline 0 107.163 41.9 / 74.6 / 85.4 0 121.370 36.3 / 63.5 / 74.4 0 108.080 29.2 / 58.9 / 75.3 0
11 Ours 0 3.371 61.0 / 90.3 / 96.9 0 7.702 72.9 / 92.7 / 97.2 0 3.351 56.4 / 87.0 / 95.7 0

12 Baseline 1.0% 1726.025 3.6 / 7.1 / 8.3 91.1 8776.021 1.8 / 2.6 / 3.4 97.2 726.828 14.9 / 28.9 / 37.0 58.7
13 Ours 1.0% 3.529 61.3 / 90.6 / 97.0 1.3 66.813 65.8 / 82.3/ 86.7 12.4 264.000 35.8 / 57.4 / 64.2 33.3

14 Baseline 2.5% 1756.856 6.0 / 8.0 / 8.9 91.4 1510.11 6.0 / 11.4 / 15.6 84.1 8169.514 5.5 / 11.6 / 15.0 83.3
15 Ours 2.5% 110.299 51.3 / 73.2 / 78.2 20.6 70.659 65.9 / 82.0 / 86.5 13.2 820.152 16.0 / 29.0 / 34.8 62.1

Study case where 5.0% / 4.7% / 4.6% of data are corrupted with salt and pepper noise Ð Average measurement error: 66.09m / 103.63m / 85.26m

16 Baseline 0 65.365 42.0 / 74.9 / 85.6 0 102.887 36.8 / 63.9 / 75.0 0 84.738 29.1 / 58.7 / 75.1 0
17 Ours 0 1.971 61.9 / 91.1 / 97.4 0 7.083 73.1 / 92.2 / 97.1 0 2.468 57.0 / 87.4 / 96.1 0

18 Baseline 1.0% 0.985 45.8 / 80.4 / 92.1 5.5 3563.210 24.6 / 36.2 / 40.2 60.4 724.023 15.1 / 29.3 / 38.0 56.7
19 Ours 1.0% 1.719 62.3 / 91.3 / 97.5 0.6 437.251 28.7 / 40.6 / 48.0 39.5 1329.145 13.3 / 17.7 / 18.8 76.7

20 Baseline 2.5% 420.962 35.2 / 58.2 / 66.7 33.7 1308.586 2.2 / 3.2 / 7.9 96.1 1554.474 2.2 / 3.8 / 6.4 94.5
21 Ours 2.5% 81.392 48.3 / 68.4 / 74.0 25.4 408.598 27.6 / 38.7 / 46.6 42.8 1110.267 7.4 / 13.4 / 17.6 79.9

appropriate threshold value that works for different query

and measurement conditions. The analysis of the chi-square

test using errors and covariances indicates that the errors

produced by the DL algorithm do not conform1 to a Gaussian

error model, which is essential to the chi-square test. This

finding suggests potential future work in developing non-

Gaussian uncertainty models and associated gating tech-

niques that can better match the DL errors.

Fortunately, a key novelty of our approach is that it

does not require a formal outlier rejection method. Our

approach automatically adjusts the error covariance based

on the number of keypoints, which addresses the uncertainty

of the measurement, even if it is an outlier. We argue

that this is a key contribution for two reasons. First, it

is clear that outlier prediction is highly sensitive. Second,

even noisy, uncertain measurements can still contain useful

information. Our uncertainty modeling approach allows the

filter to incorporate all prediction outputs, resulting in better

performance and more robust applications.

3) Latency and Data Size: On a 1080Ti GPU, extracting

global features of an image using NetVLAD takes about

8ms, while performing keypoint matching for a single pair of

images using SuperPoint and SuperGlue takes approximately

112ms. Although keypoint matching is done between a query

image and ten candidate images, the GPU can simultaneously

process them in a batch without affecting the speed. The

database comprises 127,225 images with a total size of 417.7

1with exception in cases of sunny weather with many keypoints, where
the errors do fit the Gaussian error model

GB. Instead of storing the original images, we only need to

store the extracted global features (2.24GB) and the keypoint

features (161.9GB).

V. CONCLUSION

We present a general and formal probabilistic approach

for modeling prediction (e.g., neural network) uncertainties,

which we validate in the context of visual localization

problem. Our approach involves creating a sensor error

model that maps the output of the internal prediction model

(number of keypoint matches) to probabilistic uncertainty

for each database. During inference, we use the sensor

error model to map the number of keypoint matches to

confidence probability and 2D covariance. We evaluate our

approach using a large-scale real-world self-driving dataset

with varying weather, lighting, and sensor corruption condi-

tions, demonstrating accurate uncertainty predictions across

all conditions. Notably, our approach of creating a different

error covariance tailored to each measurement eliminates the

need for sensor gating, which is overly sensitive due to their

non-Gaussian nature. Our approach results in more robust

and better-performing perception pipelines.
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