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Abstract
This paper is concerned with the computational and statistical complexity of learning the Hidden
Markov model (HMM). Although HMMs are some of the most widely used tools in sequential
and time series modeling, they are cryptographically hard to learn in the standard setting where
one has access to i.i.d. samples of observation sequences. In this paper, we depart from this setup
and consider an interactive access model, in which the algorithm can query for samples from the
conditional distributions of the HMMs. We show that interactive access to the HMM enables
computationally efficient learning algorithms, thereby bypassing cryptographic hardness.

Specifically, we obtain efficient algorithms for learning HMMs in two settings:

1. An easier setting where we have query access to the exact conditional probabilities. Here our
algorithm runs in polynomial time and makes polynomially many queries to approximate any
HMM in total variation distance.

2. A  harder setting where we can only obtain samples from the conditional distributions. Here the
performance of the algorithm depends on a new parameter, called the fidelity of the HMM. We
show that this captures cryptographically hard instances and previously known positive results.

We also show that these results extend to a broader class of distributions with latent low rank
structure. Our algorithms can be viewed as generalizations and robustifications of Angluin’s L
algorithm for learning deterministic finite automata from membership queries.

1. Introduction

Hidden Markov Models (HMMs) are among the most fundamental tools for modeling temporal and
sequential phenomena. These probabilistic models specify a joint distribution over a sequence of
observations generated via a Markov chain of latent states. This structure enjoys the simultaneous
benefits of low description complexity, sufficient expressivity to capture long-range dependencies,
and efficient inference algorithms. For these reasons, HMMs have become ubiquitous building
blocks for sequence modeling in varied fields, ranging from bioinformatics to natural language
processing to finance. A  long-standing challenge, in both theory and practice, is the computational
difficulty of learning an unknown HMM from samples. In this paper, we are interested in the
computational complexity of this estimation/learning task.
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K A K A D E  K R I S H NA M U RT H Y M A H A JA N ZH A NG

Although one can consider several notions of learnability, we focus on distribution learning,
in total variation (TV) distance. In the standard realizable formulation, we are given observation
sequences generated by an underlying HMM and are asked to efficiently compute a distribution
that is close to the HMM in T V  distance. Maximum likelihood estimation is known to be statis-
tically efficient, and therefore the central challenge is computational. Indeed, HMMs can encode
the parity with noise problem (Mossel and Roch, 2005), which is widely believed to be compu-
tationally hard (Blum et al., 1994b; Kearns et al., 1994; Alekhnovich, 2003). Recent works have
therefore focused on obtaining computationally efficient algorithms under structural assumptions
which evade these hard instances (Cryan et al., 2001; Hsu et al., 2012; Kontorovich et al., 2013;
Weiss and Nadler, 2015; Huang et al., 2015; Sharan et al., 2017).

This work takes a different perspective. We ask: can we evade computational hardness by allow-
ing the learner to access the HMM interactively? Specifically we consider a conditional sampling
oracle: we allow the learner to sample a “future sequence” from the HMM conditioned on a “past
sequence” or history. This approach is closely related to recent work in distribution testing (e.g.,
Chakraborty et al., 2013; Canonne and Rubinfeld, 2014; Canonne et al., 2015; Bhattacharyya and
Chakraborty, 2018; Chen et al., 2021), which demonstrates improvements in various property test-
ing tasks via conditional sampling. One conceptual difference is that we use conditional sampling
to evade computational hardness, rather than obtaining statistical improvements.

From a practical perspective, we are motivated by potential applications of interactive learn-
ing to training language models or world models more generally. Indeed, it is quite natural to
fine-tune a language model by asking annotators to complete prompts generated by the model; this
precisely corresponds to conditional sampling if we view the annotators as representative of the pop-
ulation (Zhang et al., 2022). When training world models for decision making, it may be possible to
request expert demonstrations starting from a particular state, which again is effectively conditional
sampling. This latter approach is closely related to interactive imitation learning (Ross et al., 2011).

We are further motivated by two theoretical considerations. First, it is not hard to show that
parity with noise can be efficiently learned in this model, as we can sample the label conditioned on
each history with a single observation set to 1 and naively denoise these samples (we describe this in
more detail in Appendix C). However, this approach is quite tailored to noisy parity, and so it is
natural to ask if it can be generalized to arbitrary HMMs. Second, learning HMMs with conditional
samples can be seen as a statistical generalization of learning deterministic finite automata (DFAs)
with membership queries, for which Angluin’s seminal L  algorithm provides a strong computa-
tional separation between interactive and non-interactive PAC learning (Angluin, 1987). We believe it
is natural to ask if L  can be extended to HMMs and be made robust to sampling, thereby provid-ing
further evidence for the computational benefits of interactive learning.

Contributions. In this paper, we develop new algorithms and techniques for learning Hidden
Markov models when provided with interactive access. As our first result, we show how a gener-
alization of Angluin’s L  algorithm can efficiently learn any HMM in the stronger access model
where the learner can query for exact conditional probabilities. As our main result, we consider the
more natural conditional sampling access model and obtain an algorithm that is efficient for all
HMMs with “high fidelity” a new property we introduce. We show that this property captures the
cryptographically hard instances and the prior positive results, but we leave open the question of
efficiently learning all HMMs via conditional sampling. Our results require a number of new algo-
rithmic ideas and analysis techniques, most important among them: an efficient representation for
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distributions over exponentially large domains and a new perturbation argument for mitigating error
amplification over long sequences. We hope these techniques find application in other settings.

1.1. Preliminaries

Notation. Let O : =  f1; : : : ; Og denote a finite observation space and let Ot; Ot and O denote
observation sequences of length t, observation sequences of length  t and observation sequences of
arbitrary length respectively. We consider a distribution Pr[] over T random variables x1; : : : ; xT with
a sequential ordering, and we use xt 2  O to denote the value taken by the tth random vari-able.
For convenience, we often simply write Pr[x1; x2; : : : ; xT ] in lieu of Pr[x1=x1; : : : ; xT = x T  ],
omitting explicit reference to the random variables themselves.

When considering conditionals of this distribution, we always condition on assignment to a
prefix of the random variables and marginalize out a suffix. For example, we consider condi-

tionals of the form Pr[xt+1 =xt+1 ; : : : ; xt+k =xt+k jx1 =x1 ; : : : ; xt =xt ], and we will write this as
Pr[xt+1; : : : ; xt+k jx1; : : : ; xt ]. Similarly, when considering tuples f  : =  (x0 ; : : : ; x0 )  2  Ok and
h : =  (x1; : : : ; xt) 2  Ot, we write Pr[xt+1 =x0 ; : : : ; xt+k =x0 jx1=x1; : : : ; xt=xt] as Pr[f jh], not-
ing that the random variables assigned to f  are determined by the length of h.

We lift this conditioning notation to sets of observation sequences in the following manner. If
F  : =  ff1 ; f2 ; : : :g and H  : =  fh1; h2; : : :g where each f i ; hj  2  O, we write Pr[F jH ] to denote
the jF j  jH j matrix whose (i; j )th entry is Pr[fi jhj ]. We allow the sequences in F  and H  to have
different lengths, but always ensure that len(fi ) +  len(hj )  T so that this matrix is well-defined.
We refer to rows and columns of this matrix as Pr[f jH ] and Pr[F jh] respectively.1

Lastly, for h =  (x1; : : : ; xt) we use ho =  (x1; : : : ; xt; o) to denote concatenation, and we lift
this notation to sequences and sets. For instance, if H  =  fh1; h2; : : :g then H o =  fh1o; h2o; : : :g.

1.1.1. H I D D E N M A R K O V  M O D E L S A N D L OW R A N K  D I S T R I B U T I O N S

Hidden Markov Models provide a low-complexity parametrization for distributions over observation
sequences. These models are defined formally as follows.

Definition 1 (Hidden Markov Models) Let S  : =  f1; : : : ; Sg. An HMM with S  2  N hidden states is
specified by (1) an initial distribution  2  (S ), (2) an emission matrix O 2  R O S ,  and (3) a state
transition matrix T  2  R S S ,  and defines a distribution over sequences of length T via:

Pr[x1; : : : ; xT ] : =
X

(s1 )
Y

O[xt ; st ]T[st+1 ; st ]: (1)
s 1 ; : : : ; s T + 1 2S T + 1                       t=1

Here M [i; j ] represents the (i; j )th entry of a matrix M.

As the name suggests, HMMs parameterize the distribution with a Markov chain over a hidden
state sequence along with an emission function that generates observations. While this specific
model is particularly natural, our analysis only leverages a certain low rank structure present in
HMMs. To highlight the importance of this structure, we define the rank of a distribution.

1. We always refer to rows, columns, and entries of these matrices in this manner, so no confusion arises when con-
structing these matrices from (unordered) sets of sequences.
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Definition 2 (Rank of a distribution) We say distribution Pr[] over observation sequences of
length T has rank r  if, for each t 2  [T ], the conditional probability matrix Pr[OT  tjOt] has rank
at most r.

It is not hard to verify that an HMM with S  hidden states has rank at most S , using the fact that
the hidden states form a Markov chain.2 More generally, the rank identifies a low dimensional
structure in the distribution: we have exponentially many vectors Pr[OT  tjh], one for each history h,
in an r-dimensional subspace of an exponentially larger ambient space. Thus, we are interested in
algorithms that exploit the low dimensional structure and admit statistical and computational
guarantees scaling polynomially with the rank.

1.1.2. L E A R N I N G M O D E L S

To circumvent computational hardness, we allow the learner to access conditional distributions of
the underlying distribution Pr[]. We specifically consider two different access models formalized
with the following two oracles:

Definition 3 (Exact conditional probability oracle) The exact conditional probability oracle is
given as input: observation sequences h and f  of length t  T and T   t respectively, chosen by the
algorithm, and returns the scalar Pr[f jh].

Definition 4 (Conditional sampling oracle) The conditional sampling oracle is given as input: an
observation sequence h of length t  T , chosen by the algorithm, and returns an observation
sequence f  of length T   t such that the probability that f  is returned is Pr[f jh], independently of all
other randomness.

When considering the exact probability oracle, we also allow the learner to obtain independent
samples from the joint distribution Pr[]. Note that this oracle equivalently provides access to exact
(unconditional) probabilities of length T sequences. We view this as a noiseless analog of the
conditional sampling oracle, which is the main model of interest. This is analogous to noiseless
oracles in distribution testing literature (e.g., Canonne and Rubinfeld, 2014).

As a learning goal, we consider distribution learning in total variation distance as studied in
prior works (Kearns et al., 1994; Mossel and Roch, 2005; Hsu et al., 2012; Anandkumar et al.,
2014). Given access to a target distribution Pr[] we want to efficiently compute an estimate Pr[] that
is close in total variation distance. Formally, we want an algorithm that, when given parameters ";  >
0, computes an estimate Pr[] such that with probability at least 1  we have

TV(Pr; Pr)  : = Pr[x1; : : : ; xT ]      Pr[x1; : : : ; xT ]  "
x1 ;:::;xT 2 O T

The algorithm is efficient if its computational complexity (and hence number of oracle calls) scale
polynomially in r; T; O; 1=" and log(1=). As the support of Pr[] is exponentially large in T , it is not
possible to write down all OT values of Pr efficiently. Instead, the goal is to return an efficient
representation from which we can evaluate Pr[x1; : : : ; xT ] for any sequence x1; : : : ; xT efficiently.

2. In fact the rank of the HMM can be much smaller, since the decomposition alluded to above realizes the non-negative
rank of the matrix, which can be exponentially larger than the rank.
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1.2. Our results

Our first result studies the computational power provided by the exact probability oracle (Defini-
tion 3). We show how a generalization of Angluin’s L  algorithm can efficiently learn any HMM
given access to this oracle. The result is summarized in the following theorem:3

Theorem 1 (Learning with exact conditional probabilities) Assume O =  f0; 1g. Let Pr[] be
any rank r  distribution over observation sequences of length T . Pick any 0 <  ";  <  1. Then
Algorithm 1 with access to an exact probability oracle and samples from Pr[], runs in
poly(r; T; 1=", log(1=)) time and returns an efficiently represented approximation Pr[] satisfy-ing
TV(Pr; Pr)   " with probability at least 1 .

The main technical challenge is finding a succinct and observable parametrization of the dis-
tribution, so that we can infer all conditional distributions using polynomially many queries. This
observable parameterization plays a central role in our main result, and in this sense Theorem 1 can be
seen as an insightful warmup.

Our main contribution is in extending these results to the more natural interactive setting where
the learner only accesses conditional samples via the oracle in Definition 4. Our algorithm here can
be viewed as a robust version of L ,  and we obtain the following guarantee:

Theorem 2 (Learning with conditional samples) Let Pr[] be any rank r  distribution over obser-
vation sequences of length T . Assume distribution Pr[] has fidelity . Pick any 0 <  ";  <  1. Then
Algorithm 2 with access to a conditional sampling oracle runs in poly(r; T; O; 1=; 1="; log(1=))
time and returns an efficiently represented approximation Pr[] satisfying TV(Pr; Pr)   " with
probability at least 1 .

The theorem provides a robust analog to Theorem 1 in the much weaker conditional sampling
access model. The caveat is that the guarantee depends on a spectral property of a distribution,
which we call the fidelity. The definition of fidelity (Definition 6) requires further development of
the algebraic structure in Pr[] and is deferred to Section 2. Nevertheless, we can show that the
cryptographically hard examples of HMMs and positive results from prior work on learning
HMMs have favorable fidelity parameters and thus are efficiently learnable by our algorithm (see
Appendix C). On the other hand, there are HMMs with exponentially small fidelity parameter,
and we have no evidence that these instances are computationally intractable when provided with
conditional samples. This leads to the main open question stemming from our work.

Open Problem 1 Is there a computationally efficient algorithm for learning any low rank distri-
bution given access to a conditional sampling oracle?

We discuss this problem in more detail in Section 3 after introducing our techniques in Section 2.

2. Technical overview

To explain the central challenges with learning low rank distributions and how we overcome them, let
us introduce the following notation: let Ht  : =  Ot and Ft  : =  OT  t denote the observa-tion
sequences of length t and T   t respectively. Then the matrix Pr[Ft jHt ] is a submatrix of

3. As this result is a warmup for our main result, we focus on the setting where O  =  f0; 1g for simplicity.
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Pr[OT  tjOt] and hence is rank at most r  by assumption. If we define these matrices for each
length t 2  [T ], then clearly we have encoded the entire distribution. Hence, estimating these matri-ces
in an appropriate sense would suffice for distribution learning. Although the matrices all have rank
at most r, they are exponentially large, so the low rank property does not immediately yield an
efficient representation of the distribution. Indeed, we must leverage further structure to obtain
efficient algorithms.

2.1. Background: Observable operators and hard instances

For HMMs, we can hope to leverage the explicit formula for the probability of a sequence (Equa-
tion (1)) to obtain an efficient algorithm. Indeed, this is the approach adopted by Hsu, Kakade, and
Zhang (Hsu et al., 2012). Specifically, they use the observable operator representation (Jaeger, 2000):
if we define S   S  matrices fAo go 2 O  as Ao : =  Tdiag(O[o; ]) then we can write the proba-bility of any
observation sequence as

Pr[x1; : : : ; xT ] =  1 > A x T  : : : Ax1 ;

where 1 is the all-ones vector and recall that  is the initial state distribution. Hsu, Kakade and
Zhang show that these operators can be estimated, up to a linear transformation, whenever T  and O
have full column rank. In fact, under their assumptions, these operators can be recovered from
Pr[x1 =; x2 =; x3 =] alone; no higher order moments of the distribution are required.

Unfortunately, this approach fails if either T  or O are (column) rank deficient, and it is conjec-
tured that the rank deficient HMMs are precisely the hard instances (Mossel and Roch, 2005). On the
other hand, many interesting HMMs are rank deficient. For example, any overcomplete HMM— one
with fewer observations than states—cannot have a full column rank O matrix. This captures all
deterministic finite automata where the alphabet size is smaller than the number of states as well as the
parity with noise problem.

Learning parity with noise is a particularly interesting case. The standard formulation is that
we obtain samples of the form (z; y) 2  f0; 1gT  1  f0; 1g where z is uniformly distributed on
the hypercube and y = zi with probability 1    and y =  1  zi with the remaining
probability. Here denotes the parity operation, I  is a secret subset of indices I   [T   1], and
2  (0; 1=2) is a noise parameter. We want to learn the subset I ,  given samples from this process.
This problem is widely believed to be computationally hard and can be encoded as an HMM with
O =  f0; 1g and 4T states (see Appendix C). This HMM exhibits two particularly challenging
features. First, many states have identical observation distributions, or are aliased; characterizing
the learnability (as well as basic structural properties) of aliased HMMs remain long-standing open
problems (Weiss and Nadler, 2015). Second, it is quite apparent that low degree moments, like
those used by Hsu, Kakade, and Zhang, reveal no information about the subset I .  In particular, the
observable operators Ao are not identifiable from low degree moments. One must use higher order
information, i.e., statistics about long sequences, to solve this problem.

2.2. Efficient representation

For rank deficient HMMs, it is not clear how to identify the observable operators and it is not even
clear that such operators exist for the more general case of low rank distributions. So, we must
return to the question of how to efficiently represent the distribution. Here, our first observation is
that any submatrix of Pr[Ft jHt ] that has the same rank as the entire matrix can be used to build
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h Bt Bt+1 Bto1 Bto2

β(h) β(Bto1) β(Bto2)
1 t+1

Pr[Ft+1 � Ht+1]

o2Ft+1

Pr[o2Ft+1 � Bt] =  Pr[Ft+1 � Bto2]diag(Pr[o2 �
Bt])

Figure 1: Schematic of the circulant
structure relating the Pr[Ft jHt ] and
Pr[Ft+1 jHt+1 ] matrices. Columns of
Pr[Ft j Ht ] can be represented linearly
in basis B t  using coefficients (). The
blocks Pr[oFt+1     j Bt ] appear in the
next matrix Pr[Ft+1  j Ht+ 1 ]  (up to scal-
ing), so they can be represented in basis
Bt + 1 ,  yielding operators Ao;t.

Pr[Ft � Ht]

an efficient representation. To see why, suppose we have such a submatrix, and let us index the
columns/histories of the submatrix by Bt , which we refer to as the basis. It follows that Pr[Ft jBt ]
spans the column space of Pr[Ft jHt ], which implies that for any history h 2  Ht  there exists coeffi-
cients (h) 2  R j B t j  such that

Pr[Ftjh] =  Pr[Ft jBt ](h):

The main observation toward obtaining an efficient representation is to exploit a certain circulant
structure in the matrices fPr[Ft jHt ]gtT to model the evolution of the coefficients (visualized in
Figure 1). The circulant structure is simply that for basis Bt , observation o, and future f  2  F t + 1  (i.e.,
of length T   t   1) the vector Pr[Bt of ] appears in two of the matrices (albeit with differ-ent
scaling). It appears in the matrix Pr[Ft jHt ] in row of  and columns Bt , and it appears in the matrix
Pr[Ft+1 jHt+1 ] in row f  and columns Bto. Thus, if we learn how to represent the columns
Pr[Ft+1 jBt o] in terms of the columns Pr[Ft+1 jBt+1 ]—which we can do via the coefficients—the
circulant property provides a connection between the matrices Pr[Ft+1 jHt+1 ] and Pr[Ft jHt ].

Formally, we can define operators fAo;tg for each observation o 2  O and sequence length
t 2  [T ] satisfying

Pr[Ft+1 jBt+1 ]Ao;t  =  Pr[oFt+1 jBt ]; (2)

which can then be used to express sequence probabilities by iterated application. Indeed, we have

Pr[x1; : : : ; xT ] =  Pr[x1; : : : ; xT jB0 ] =  Pr[x2; : : : ; xT jB1 ]Ax1 ;0 =  : : :
: : : =  Pr[xT jB T  1 ]Ax T      1 ;T  2 : : : Ax1 ;0 =  A x T  ;T  1 : : : Ax1 ;0 ; (3)

where by an explicit choice of B0 , B T  and F T  , the matrices A x  ;0 and A x  ;T  1 are column and row
vectors respectively, and so the right-hand side is a scalar (see Proposition 8 for details4). More
importantly, these operators can also be viewed as evolving the coefficients via the identity:

8h 2  Ht; o 2  O : (ho) =  
Pr[ojh]

)
: (4)

4. We define B 0 ,  B T  and F T  to be singleton sets. B 0  and F T  contain the empty string ’  and B T  contains any length T
observation sequence. These new definitions, in conjunction with Proposition 8 imply: A x T  ; T      1  =  Pr[x T  j B T      1 ]
and therefore will be a row vector. Similarly, A x 1 ; 0  is a solution of Pr[F 1 jB 1 ]A x 1 ; 0  =  Pr [ x 1 F 1 j ’ ]  and is therefore a
column vector.
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This identity is proved in Propositions 8 and 24. We highlight the scaling, which results in a non-
linear update equation and appears because the coefficients express conditional rather than joint
probabilities. This viewpoint of operators evolving coefficients will play a central role in our error
analysis.

Thus, it remains to find the bases fBt gtT  , estimate the operators fAo;t go2O;tT , and control the
error amplification from iteratively multiplying these estimates. We turn to these issues next.

Remark 5 The approach of Hsu, Kakade, and Zhang can also be viewed as estimating operators via
Equation (2) with the particular choice of basis. They show that conditional distribution of futures
given any history can be written in the span of the conditional distributions of the single
observation histories, so that O itself forms a basis. This is implied by their assumptions and it
permits using only second and third degree moments to estimate the operators. However, in
general we will need to use long sequences in our bases and interactive access will be crucial for
estimation. Additionally, under their choice of bases and their assumptions they show that the
solution of Equation (2) is related to the observable operators (Jaeger, 2000), explicitly given by T
and O, by an invertible and bounded transformation, which is instrumental in their error analysis.
When considering general basis B ,  we do not have such a connection and will require a novel error
propagation argument.

2.3. Error propagation

Although finding the bases B t  and estimating corresponding operators Ao;t is nontrivial, even if
we have estimated these operators accurately, we must address the error amplification issues from
repeated application of the learned operators. This challenge makes up the majority of our technical
analysis. We discuss estimating operators Ao;t in Section 2.4 and how to find the basis in Section 2.5.

To explain this challenge, suppose for now that we are given bases fBt gtT  and subsequently
estimate the operators Ao;t in ‘2 norm, i.e., we have estimate Ao;t satisfying kAo;t   Ao;tk2  ".

We first define our estimated model Pr in terms of the estimated operators Ao;t. Considering Equa-
tion (3) the natural estimator is

Pr[x1; : : : ; xT ] =  A x T  ;T  1 : : : Ax2 ;1Ax1 ;0 ; (5)

where as before, the matrices Ax1 ;0 and A x T  ;T  1 are column and row vectors respectively, so the
right-hand side is a scalar. To simplify notation for this section, we omit the time indexing on the
operators.

Given this estimate, the total variation distance is

A x T  : : : Ax1      A x T  : : : Ax1 :
x1 ;:::;xT 2 O T

Let us first discuss two strategies for bounding this expression that can work in some cases, but do
not seem to work in our setting. One idea is to pass to the ‘2  norm and use a telescoping argument to
obtain several terms of the form

X
kA x T  : : : Axt + 2 k2  k A x t + 1  A x t + 1 A x t  : : : Ax1 k2

x1 ;:::;xT 2 O T
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These terms are convenient because the matrix products only disagree in the tth operator. How-
ever, both the “incoming” product A x t  : : : Ax1 that pre-multiplies this difference and the “outgoing”
product A x T  : : : Ax t + 2  whose norm we must bound can be rather poorly behaved. For example, the
product A x t  : : : Ax1 can have ‘2 norm that grows exponentially with t, since the ‘2 norm of the
individual matrices can be much larger than 1. An even worse problem is that we have exponen-
tially many terms in the sum, so that even bounding each term by " (which would be possible if the
incoming and outgoing products were well behaved) is grossly insufficient.

The other approach is the strategy adopted by Hsu, Kakade, and Zhang (Hsu et al., 2012), which
uses the definition of the observable operators (Jaeger, 2000), A x  =  Tdiag(O[x; ]), explicitly. This
allows them to control the incoming and outgoing products in a decomposition based on the ‘1 norm
version. For instance

k A x t + 1  A x t + 1        A x t  : : : ; Ax1 k1 .  O" kAx t  : : : ; Ax1 k1  O":
x1 ;:::;xt+1 x1 ;:::;xt

The idea is that each term in the final sum can be seen as a joint probability of the history x1; : : : ; xt

and the hidden state st+1, so we can sum over all histories with no error amplification. Unfor-
tunately, there is no hidden state in the more general setting (and for the rank deficient case, the
observable operators can not be learned accurately as discussed in Section 2.1), so we cannot ap-
peal to an argument of this form. Indeed, our main technical contribution is a new perturbation
analysis that relies on no structural assumptions.

At a more technical level, the issue with both of these arguments is that passing to any norm,
seems to be too coarse to adequately control the error amplification. Instead, our argument carefully

tracks the error in the space of the coefficients. Precisely, given estimates Ao;t that satisfy kAo;t

Ao;tk2  ", we can show, via an inductive argument, that for any x1; : : : ; xt

(A x t  : : : Ax1 A x t  : : : Ax1 ) =  
X  

(h)h +  
X  

vv;
h 2 H t v2Vt

where Vt     is an orthonormal basis for the kernel of Pr[Ft j Bt ] and h; v are scalars. Moreover, the T V
distance between Pr[] and Pr[] is exactly equal to the sum of these scalars over all sequences
x1; : : : ; xT . Even though there could be exponentially many terms in this sum, we show that this
sum is small via an inductive argument. This makes up the most technical component of our proof,
and we give a more detailed overview in Appendix B.1.2 with the formal proofs in Appendix E.3.

2.4. Estimating operators

We next discuss estimating the operators fAo;t go2O;tT using the conditional sampling oracle. A
natural idea is to use samples to estimate both sides of the system in Equation (2) and solve the
noisy version via linear regression. Unfortunately, this system may have exponentially small (in T
t) singular values, making it highly sensitive to perturbation. There is also a cosmetic issue when
working with Pr[Ft+1 jBt+1 ], namely this matrix is exponentially large.

To address these challenges, we introduce a particular preconditioner that stabilizes the system.
Specifically, we instead estimate and solve

Pr[Ft + 1 jBt + 1 ] > Dt + 1  Pr[Ft+1 jBt+1 ]Ao;t  =  Pr[Ft + 1 jBt + 1 ]> Dt + 1  Pr[oFt+1 jBt ] ;
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where D t + 1  is a diagonal matrix with entries dt+ 1 (f )  : =  jB
1      

j 
P

b 2 B t + 1  
Pr[f jb] on the diagonal.5

One benefit of this preconditioner is that the new matrices are of size jBt+1 j  jBt+1 j rather than
exponentially large, and yet they can still be estimated efficiently using the conditional sampling
oracle. To see why the latter holds, observe that the (i; j )th entry of the matrix on the LHS is

h
Pr[Ft+ 1 jBt+ 1 ]

>
Dt+ 1  Pr[Ft+ 1 jBt+ 1 ]

i

i ; j  
=  

X  
dt+1 (f )

Pr[f jbi ] Pr[f jbj ]
;

t + 1

where B t + 1  =  fb1; b2; : : : ; g. Intuitively, we can estimate this entry by sampling futures f  from
Pr[jb] to approximate any term in the sum and sampling futures from dt+1 () to approximate the sum
itself. While this is true, there is one technical issue to overcome: to estimate the ratio to additive
accuracy, we must estimate the individual probabilities Pr[f  j bi], Pr[f  j bj ] and dt+ 1 (f )  to relative
accuracy. We can obtain (1 ) relative error estimates using conditional samples as long as the one-step
probabilities are at least
(=T ), but this is challenging when even a single one-step probability is small. To address this issue,
we show that such futures actually contribute very little to the overall sum, and we design a test to
safely ignore them. See Appendix E.6 for details.

While the ability to estimate the entries is clearly important, the hope with preconditioning is
that it dramatically amplifies the singular values of the matrix on the left hand side. In particular, we
want that the matrix Pr[Ft + 1 jBt + 1 ] > D  1 Pr[Ft+1 jBt+1 ] has large (non-zero) eigenvalues, as this
will allow us to estimate the operators Ao;t in the ‘2 norm. Our choice of preconditioner does
achieve this in the important example of parity with noise: we can show that Pr[Ft+1 jBt+1 ] has
exponentially small (in T   t) singular values for every choice of Bt + 1 ,  while there exists a basis
B t + 1  for which the eigenvalues of the preconditioned matrix are
(1) (see Appendix C). Unfortunately, in general, a basis which ensures the preconditioner has large
eigenvalues might not exist, and we address this by introducing the notion of fidelity.

Definition 6 (Fidelity) We say that distribution Pr[] has fidelity  if there exists some basis
fBtgt2[T ] , such that maxt jBt j  1= and

8t 2  [T ] : + St Pr[Ft jHt ]> Dt 1 Pr[Ft jHt ]St

where + (M ) denotes the magnitude of the smallest non-zero singular value of M, Dt  is a diagonal
matrix of size jFt j  jFt j with entries dt (f ) : =  j B

 
j b 2 B t  

Pr[f jb], and St is a diagonal matrix of
size jHtj  jHt j with entries st(h) : =  Pr[h].

Importantly, we only assume the existence of a basis with this property, not that it is given to us
or otherwise known in advance. Note that, although the matrix with large singular values according
to the fidelity definition is not the same as the preconditioned matrix we care about for learning
operators, nevertheless when the distribution has high fidelity (i.e.,  is large), we can find a basis
for which Pr[Ft + 1 jBt + 1 ] > D  1 Pr[Ft+1 jBt+1 ] has large singular values. This, combined with our
approach for estimating entries of the preconditioned matrix, allow us to learn operators Ao;t in the
‘2 norm. We provide details in Appendix E.2.

5. This choice of D t + 1  ensures there is no division-by-zero issue, see Remark 11.
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Remark 7 Although we still require an assumption, the parity with noise example suggests that the
fidelity definition, which can lead to a favorable preconditioned system, is more appropriate than
directly assuming Pr[Ft+1 jBt+1 ] has large singular values. Indeed, we can also show that fidelity
captures all previously studied positive results for learning HMMs.

2.5. Finding the basis

The only remaining challenge is to find the basis fBt gt2[T ] . Recall that, when considering the
conditional sampling oracle, we want a basis for which the preconditioned matrix has large eigen-
values. It turns out that when the distribution has high fidelity a random sample of polynomially
many histories will form a basis with this property with high probability. Given that the other as-
pects of our analysis seem to require high fidelity, this random sampling approach thus suffices to
prove Theorem 2.

On the other hand, for low fidelity distributions, random sampling will fail to cover the direc-
tions with small eigenvalue, and so basis finding becomes an intriguing aspect of learning with the
conditional sampling oracle. Basis finding is also the final issue to address for Theorem 1, using the
exact oracle. In both cases, we provide adaptations of Angluin’s L  algorithm that finds a basis for any
low rank distribution. We defer discussion of the conditional sampling version to Appendix F and
hope that it serves as a starting point toward resolving Open Problem 1.

Adapting L  for basis finding with the exact oracle. We close this section by explaining how
to find a basis when provided with the exact probability oracle. As a first observation, note that we
need not construct the entire system in Equation (2) to identify operators Ao;t. It suffices to find a set
of futures t  Ft  such that Pr[t j Ht ] spans the row space of Pr[Ft j Ht ]. In other words, we just need B t

and t for which Pr[t j Bt ] has the same rank as Pr[Ft j Ht ].
The difficulty is that there is no universal choice of Bt ; t for general low rank distributions, and

finding these sets poses a challenge search problem in an exponentially large space. We address this
challenge using the exact probability oracle and an adaptation of Angluin’s L  algorithm for learning
DFAs. The basic idea is as follows: given sets Bt ; t whose submatrix is not of the required rank, we can
still solve the (underdetermined) system

Pr[t jBt]Ao;t =  Pr[otjBt]

and obtain an estimate Pr[] via Equation (5). Then, we can sample sequences x1; : : : ; xt  Pr[] and
check if our estimate makes the correct predictions on these sequences. In particular, we check

Pr[x1; : : : ; xt; t] =  Pr[x1; : : : ; xt; t]

If the prediction are accurate (i.e., these equalities hold) for each t and for polynomially many
random sequences, then we can show that Pr[] is close Pr[] in total variation distance.

On the other hand, if these equalities do not hold for some sample x1; : : : ; xt, then we can use
it as a counterexample to improve our basis. Indeed, if the equalities do not hold, there must exist
some index   t 1 such that

Pr[x1; : : : ; x ;  ] =  Pr[ j B  ]Ax  ; 1 : : : Ax1 ;0                                                           (6) Pr[x1 : : : x

x + 1 + 1 ]  =  Pr[ + 1 jB+ 1 ]Ax + 1 ;  A x  ; 1 : : : Ax1 ;0                               (7)

11
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Let  2  + 1  index a row in Equation (7) where equality does not hold. We update  =   [  f x + 1 g  and B
=  B  [  fx1; : : : ; x g and we claim that the rank of the submatrix Pr[ j B  ] is greater than that of Pr[
j B  ]. To see why, note that this matrix has a new row, indexed by x + 1  and a new column indexed by
x1; : : : ; x .

We prove that this new row is linearly independent of the previous ones as follows. First note
that, we have Pr[+1 j B + 1 ] A x + 1 ;  =  Pr[x+ 1 + 1  j B  ], by the way we define our estimated operators.
Using this fact, the two equations above become:

Pr[x1; : : : ; x ;  ] =  Pr[ j B  ]Ax  ; 1 : : : Ax1 ;0; Pr[x1 : : : x

x+ 1 ]  =  Pr[x+ 1 jB  ]Ax  ; 1 : : : Ax1 ;0:

Observe that the product of estimated operators on the right hand side is identical for both equations. In
the first equation, this product gives the coefficients for writing Pr[ j x1; : : : ; x ] in the basis Pr[ j
B  ] (up to scaling). But the same coefficients do not express Pr[x+ 1  j x1; : : : ; x ] in terms of the row
vector Pr[x+ 1  j B  ], and this implies that the row Pr[x+ 1  j B  ] cannot be in the span of the previous
ones. We provide all the details in Appendix A.

3. Discussion

In this paper we show how interactive access to hidden Markov models (and more generally low rank
distributions) can circumvent computational barriers to efficient learning. In particular, we show that
all low rank distributions with a certain fidelity property can be efficiently learned assuming access to
a conditional sampling oracle. In Appendix C, we show that fidelity captures the assumptions
considered in prior work on (non-interactive) learning of HMMs, specifically:

• Parity with noise admits bases B t  each of cardinality 2 with fidelity (1 22)=2, where  is the
noise parameter.

• Full rank HMMs, where T  and O are full column rank, admit bases of size O with fidelity
bounded by the minimum singular value of the second moment matrix Pr[x2 =  ; x1 =  ]. This
parameter also appears polynomially in the analysis of Hsu et al. (2012).

• The overcomplete setting of Sharan et al. (2017), where sequences of length log S  are used
for estimation, admits bases of size S  with fidelity 1= poly(S), matching their parameters.

Despite this, the reliance on the fidelity parameter is the main limitation of our results. We
believe this dependence is not necessary, which leads to the main open problem, Open Problem 1.
We close the paper with some final remarks regarding this open problem.

As we have mentioned previously, although fidelity greatly simplifies the basis finding aspect
of our algorithm, it is not necessary for this part and refer the reader to Appendix F where we
give a general algorithm for basis finding. Indeed the only place where fidelity is required is in
our error propagation analysis, where our techniques require that operators Ao;t are estimated in ‘2
norm. In the general case, we will only be able to learn operators in the directions for which the
preconditioned matrix has large eigenvalues, and ideally we should be able to ignore the directions
with small eigenvalues. This strategy would work if we can show that ignoring the small directions
preserves the low rank property, which is the linear-algebraic analog of approximating an HMM by
one with fewer states. Unfortunately, we do not know if the latter holds, and we believe this is the
key challenge to resolving Open Problem 1. We look forward to further progress on this problem.
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Appendix A. Warmup Setting: Learning with exact conditional probabilities

Before, we show how to learn a low rank distribution in total variation distance using only condi-
tional samples, we first introduce our overall approach on an easier setting: when the learner has
access to exact conditional probability oracle (Definition 3).

We first recall some definitions. Here our notation will differ from the technical ideas section
(Section 2) since we will be building basis for each sequence length t 2  [T ] separately. We will
refer to set Ht  : =  Ot as the set of histories of length t. Similarly, we will refer to set Ft  : =  OT  t as the
set of futures (notice the discrepancy of t and T   t). Note that one could append elements from
futures Ft  in front of elements from histories Ht  and get a valid observation sequence of total length
T . Throughout, we will denote the target low rank distribution by p. Furthermore, our low rank
assumption on p  implies that the conditional probability matrix Pr[Ft jHt ] has rank rt at most r. We
can interpret this geometrically, as the vectors Pr[Ftjh] for history h 2  Ht  span an rt-dimensional
subspace.

A  crucial implication of this assumption is that there exists rt special histories of length t,
henceforth denoted by Bt , such that the submatrix Pr[Ft jBt ] is also rank rt. This means, for any
history x  2  Ot, there exists coefficients (x)  2  R j B t j  such that

Pr[Ft jx] =  Pr[Ft jB ](x) :

As discussed in Section 2.2, even though there are exponentially many histories for which we
may have to learn the coefficients, because of the circulant structure of the conditional probability
matrix, we can generate all of them using a small matrix with O(r2 ) entries.

Notation. To clean up the notation, we define B 0  =  f ’ g  where ’  is the empty string. We de-fine
probabilities associated to empty string as: ( ’ )  =  1, Pr[x1 : : : xT j ’ ]  =  Pr[x1 : : : xT ] and Pr[ ’ jx 1
: : : xT ] =  1 for any T-length sequence x1; : : : ; xT . Let F T  =  T  =  f ’g .  Then, because Pr[FT  jHT  ] is
all ones matrix, we can set B T  =  fhg for any observation sequence h 2  H T  . These new definitions,
in conjunction with the proposition below imply: A x T  ;T  1 =  Pr[xT jB T  1] and therefore will be
a row vector. Similarly, Ax1 ;0 is a solution of Pr[F1 jB1 ]Ax1 ;0 =  Pr[x1 F1 j ’ ]  and is therefore a
column vector.

Proposition 8 (Existence of efficient representation) Let B0 , B T  and F T  be as defined above.
For t 2  [T   1], let B t   Ht  be any set of histories of length t such that column vectors Pr[Ft jBt ] span
the column space of Pr[Ft jHt ]. Then, the probability distribution p  can be written as6:

Pr[x1 : : : xT ] =  A x T  ;T  1 A x T      1 ;T  2 : : : Ax1 ;0

where matrices Ao;t for every o 2  O and t +  1 2  [T ] which satisfy7

Pr[Ft+1 jBt+1 ]Ao;t  =  Pr[oFt+1 jBt ] (8)

6. Here by choice of basis B 0  and B T  , A x 1 ; 0  and A x T  ; T      1  are column and row vectors respectively
7. and we will see that this equation always has a solution.
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Proof We first show there exists a solution Ao;t for Equation (8). We claim Ao;t defined using basis
B t  =  fb1; : : : ; bng and B t + 1  as follows is a solution:

2
Pr[ojb ] 0 0

3

Ao;t =  (b1o)     (b2o)     (bn o)
6 0 Pr[ojb2]     0 7

0 0 Pr[ojbn]

Here (x)  and (xo) are the coefficients associated to history x  of length t under B t  and history xo of
length t +  1 under B t + 1  respectively. By definition of Ao;t,

Pr[Ft+1 jBt+1 ]Ao;t

= Pr[Ft+1 jBt+1 ] (b1 o)

2
Pr[ojb1]

= Pr[Ft+ 1 jBt o]
4 .

0
= Pr[oFt+1 jBt ]

2
Pr[ojb1]

(b2o)     (bn o) 4 .

0 0
3

0

.        . . . 0 5
0 Pr[ojbn]

0                 0       
3  

.
. . .            0       5
0 Pr[ojbn]

(by definition of (bio))

(by Bayes rule)

Since oFt+1  is a subset of Ft , by repeatedly applying this equation, we get

Pr[FT  jB T  ]A x T  ;T  1 A x T      1 ;T  2 : : : Ax1 ;0 =  Pr[x1 x2 : : : xT j ’ ]

Noting Pr[FT  jB T  ] =  1 and Pr[x1 x2 : : : xT j ’ ]  =  Pr[x1 x2 : : : xT ] completes the proof.
We do point here that A x T  ;T  1 =  Pr[xT jB T  1] by definition and is therefore a row vector.

Similarly, Ax1 ;0 is a solution of Pr[F1 jB1 ]Ax1 ;0 =  Pr[x1 F1 j ’ ]  and is therefore a column vector.

With exact conditional probabilities, we can learn Ao;t exactly if we know any set of histories B t
which form r  independent columns of Pr[Ft jHt ]. So the goal is to find such a set of histories. This
presents an issue: since there are exponentially many columns in Pr[Ft jHt ], finding the independent
columns is tricky. In fact, even checking if two histories form independent columns would require
checking exponentially many entries in the matrix.

To solve these issues, we iteratively build set of basis histories B t  and tests t. Basis histories
B t  as the name suggests is a set of independent columns in Pr[Ft jHt ] we have identified till now.
Tests are the subset of futures/rows which witness the independence. We will always maintain that
the submatrix Pr[tjBt] is an invertible square matrix and therefore Equation (8) will always have a
solution.

How do we improve the set of basis histories and tests? Suppose, we start with sets Bt ; t such that
submatrix Pr[t jBt] is not rank rt. We can then compute matrices Ao;t using our current guess of basis
and tests:

Pr[t+1 jBt+1 ]Ao;t =  Pr[ot+1jBt ] ;

and let p  be the induced distribution:

Pr[x1 : : : xT ] =  A x T  ;T  1 A x T      1 ;T  2 : : : Ax1 ;0
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We will often use Pr and Prp  interchangeably. The main observation here is that if we observe a
counterexample to p  being close to p  in T V  distance, then we can use this counterexample to
improve our basis and tests.

Proposition 9 (Finding basis histories and futures) If x1 : : : xt is a counterexample, that is, it
satisfies the following:

Pr[x1; : : : ; xt; t] =  Pr[x1; : : : ; xt; t] (9)

then for some  2  [t], we find a new test 0 and representative history b0 and set 0 =   [  fg  and B0

=  B  [  f0g such that rank(Pr[0 jB0 ]) =  rank(Pr[ jB  ]) +  1.

Proof For clarity, in the poof, we will abuse notation and not explicitly mention the sequence length
when writing the operator Ao;t i.e. we will use A x t  instead of Ax t ;t  1. First, we find a time  2  [t]
where the following equations hold:

Pr[x1 : : : x  ] =  Pr[ jB  ]Ax  : : : Ax1

Pr[x1 : : : x x + 1 + 1 ]  =  Pr [ + 1 jB + 1 ] A x + 1 A x  : : : Ax1

This is true because the first equation is true for  =  0 by definition, and the second equation is true for
=  t   1 because of the counterexample (Equation (9)). Now, we can simplify the equations above
by substituting vector v  =  (Pr[x1 : : : x ]) 1 Ax  : : : Ax1 which gives

Pr[ jx1 : : : x ] =  Pr[ jB  ]v                                                                           (10) Pr[x+1 +1 jx1

: : : x ] =  Pr [ + 1 jB + 1 ]A x + 1 v  =  Pr[x+ 1 + 1 jB  ]v               (11)

where the last step holds by definition of A x + 1  (Equation (13)). Let x + 1 + 1  be the row where the
inequality holds. Define  =  x + 1 + 1  and b =  x1 : : : x . We will now show that the equations above
imply vector Pr[x+1 +1 jB 0 ] is independent of rows of Pr[ jB0 ]. This will be enough to prove our
claim i.e. rank(Pr[0 jB0 ]) =  rank(Pr[ jB  ]) +  1.

We prove this independence by contradiction. Assume, they are linearly dependent, that is there
exists a vector w such that :

Pr[x+1 +1 jB 0 ] =  w >  Pr[ jB0  ] : (12)

Then, we reach a contradiction as

Pr[x+1 +1 jx1 : : : x ] =  w >  Pr[ jx1 : : : x ] =  w >

Pr[ jB  ]v
=  Pr[x+ 1 + 1 jB  ]v
=  Pr[x+1 +1 jx1 : : : x ]

where the first and third equality follows from linear dependence (Equation (12)), second equality
follows from Equation (10) and last inequality follows from Equation (11).

Since, each B t  can be at most size r, and this process expands our basis every iteration, it
must terminate after rT iterations, hence proving Theorem 1. We present the remaining proofs in
Appendix D.
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Algorithm 1: Learning low rank distributions using exact conditional probabilities.
1 Set B t  =  f0 : : : 0g and t =  f0g for all t 2  [T ].

t times
2 for round 1; 2; : : : do
3 Choose Ao;t for each o 2  O and t 2  [T 1] which satisfies

Pr[t+1 jBt+1 ]Ao;t =  Pr[ot+1 jBt ] (13)

4 Let Pr be a function defined on observation sequence (x1 : : : xt) for t 2  [T ] as,

Pr[x1; : : : ; xt; t] =  Pr[t jBt ]Axt ;t 1 : : : Ax1 ;0

5 Sample n sequences (x1; : : : xt) each of length t 2  [T ] and check if any one of them is a
“counterexample” i.e. satisfies

Pr[x1; : : : ; xt; t] =  Pr[x1; : : : ; xt; t]

6 if we find such a counterexample (x1; : : : ; xt) then
7 Use Proposition 9 to find a new test 0 and representative history b0 and update

: =   [  fg and B  : =  B  [  f0g for some  2  [t].
8 else
9 return fAo;t go2O;t2[T  1]

A.1. Algorithm

We now present our algorithm. The user furnishes ", the accuracy with which the distribution is to be
learned; and , a confidence parameter. The parameter n depends on the input and is detailed in the
proof of Theorem 1 below. Note that Line 3 of the algorithm is valid as we will always maintain that
Pr[t+1 jBt+1 ] is invertible.

Appendix B. Main Setting: Learning with conditional samples

In this section, we consider our main setting: learn a low rank distribution in total variation distance
with only access to conditional sampling oracle. We use the same notation as the previous section,
except we abuse notation for the set of futures Ft  and redefine it as Ft  : =  OT  t (so instead of all
futures of length up to T   t, now its only futures of length exactly T   t). Note that this only
decreases the rank of matrix Pr[Ft jHt ]. We now formally define a basis for distribution p.

Definition 10 (Basis of a distribution) Fix a distribution p  over observation sequences of length
T . Consider a set fBt gt2[T ]  where each B t  is a subset of histories of length t. Then, we say
fBt gt2[T ]  forms a basis for distribution p, if for every observation sequence x  2  O , there exists
coefficients (x)  such that:

Pr[Ft jx] =  Pr[Ft jBt ](x)
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with jj(x)jj2  c for some universal constant c  18.

In the previous setting, when we had access to exact conditional probability oracle, the main
challenge was finding a set of basis histories. Now, in comparison to our warmup setting, we will
also have errors coming from the samples, and therefore even if we know a set of basis histories, we
will only be able to learn Ao;t approximately by solving a noisy version of this equation:

Pr[Ft+1 jBt+1 ]Ao;t  =  Pr[oFt+1 jBt ] ;

This presents us with three difficulties: (i) how do we learn a good estimate for Ao;t, (ii) how does
error in estimates of Ao;t propagate to error in estimating p  in T V  distance, and (iii) how do we find a
good basis to do the above tasks robustly?

B.1. Error propagation

In this section, we show how to estimate the operators Ao;t so that the induced probability distribu-
tion is not too far from p  in total variation distance. For this, we would need the basis to be robust to
small errors. We explain this in detail now.

Suppose, we already have a set of histories B t  of length t such that columns of Pr[Ft jBt ] span
the column space of Pr[Ft jHt ] or in other words fBt gt2[T ]  forms a basis for distribution p. Then,
as noted in Proposition 8, Ao;t can be written as the solution of the following equation:

Pr[Ft+1 jBt+1 ]Ao;t  =  Pr[oFt+1 jBt ]

To estimate this operator accurately, we need to learn the subspace spanned by the right singular
vectors of Pr[Ft+1 jBt+1 ]. The issue however is that the entries in this matrix can be very small: and
therefore almost all of its singular values can be pretty small. For example, as noted in the
techniques section (Section 2.4), for HMM simulating noisy parity, all its singular values would be
exponentially small in T . And therefore, we will not be able to estimate its right singular vectors
accurately. Instead, we consider the following conditioned matrix

Pr[Ft + 1 jBt + 1 ] > Dt + 1  Pr[Ft+1 jBt+1 ] ;

where D t + 1  is a diagonal matrix of size jFt+1 j  jFt+1 j with entries dt+1 (f )  : =  E b 2 B t + 1  Pr[f jb] on
the diagonal. Here E B t + 1 [ ]  for set B t + 1  refers to expectation under uniform distribution on set Bt + 1 .

Remark 11 We note here that since we invert the diagonal matrix Dt+ 1 ,  we need to be careful
about futures f  where dt+ 1 (f )  =  0. This is not an issue however as by definition of a basis,
dt+1 (f )  =  0 implies Pr[f jh] =  0 for all histories h 2  Ht+ 1 .  As we will see in Appendix E.6, these
futures do not affect the spectrum of above matrix.

This matrix shares the same right singular vectors as the original matrix and is more likely to
have large singular values because of the preconditioning. As an example, for the noisy parity, there
exists a basis for which this matrix has only large non-zero singular values (see Appendix C  for
details). We further define such basis as robust basis of distribution p.

8. Note that by repeating elements in the basis, we can always make the norm smaller than 1. So, this norm bound is
without loss of generality.
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Definition 12 (Robust basis of a distribution) Fix a distribution p  over observation sequences of
length T . Consider a set fBt gt2[T ]  which forms a basis for distribution p. Then, we say fBt gt2[T ]  is -
robust basis for distribution p  if for every sequence length t 2  [T ]:

+      Pr[Ft jBt ] D t Pr[Ft jBt ]

where + (M ) denotes the minimum non-zero eigenvalue of M and D t  is a diagonal matrix of size
jFtj  jFt j with entries dt (f ) : =  E b 2 B t  Pr[f jb] on the diagonal.

A  priori, it is unclear if such a basis exists for arbitrary low rank distributions. Moreover, even if
such a robust basis exists, how do we find it? For now, we will ignore these issues and assume we
have access to a -robust basis Bt .

B.1.1. E S T I M AT I N G T H E O P E R AT O R S

With access to a -robust basis Bt , we first show that we can estimate Ao;t in ‘2 norm.

Lemma 13 (Estimating operators Ao;t) Fix a distribution p  over observation sequences of length
T . Assume the distribution p  has rank r, and we know a -robust basis fBt gt2[T ]  for distribution p.
Then, using poly(r, jOj, T , 1=", 1=, log(1=)) queries to the conditional sampling oracle, we can
learn an approximation Ao;t such that with probability 1   , for all observations o 2  O and t 2  [T ]

jjAo;t Ao;tjj2  " :

We provide proofs in Appendices E.2 and E.6. This lemma follows from standard arguments
once we can estimate the matrix Pr[Ft jBt ]> D  1 Pr[Ft jBt ] accurately. To estimate this matrix, first
note that each entry of this matrix can be written as:

h
Pr[Ft jBt ]> D  1 Pr[Ft jBt ]

i

i ; j  
=  E f d  

Pr[f jbi ] Pr[jbj ]
 
;

Because using conditional sampling oracle, we can estimate each Pr[f jbi ] to multiplicative accu-
racy, we can estimate each entry of abovementioned matrix to additive accuracy. There are some
new technical issues with ignoring futures and histories with low probabilities, which can be easily
tested for and ignored.

B.1.2. E R R O R  P RO PAG AT I ON

The main technical challenge is in analyzing how the error in estimating Ao;t matrices propagate to
errors in induced distributions. In the previous section, we learned an estimate Ao;t of operator Ao;t

such that they were close in ‘2 sense. Now, we show that this implies that the induced distributions
are also close in total variation error.

We first define some more notation. Let Vt be the subspace formed by the right singular vectors
(with non-zero singular value) of Pr[Ft jBt ]> D  1 Pr[Ft jBt ] and V ?  be its orthogonal complement. In
Lemma 13, we learned an estimate Ao;t of operator Ao;t such that they were close in ‘2 sense. We
can actually do much better!
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Let B t + 1  =  fb1; b2; : : : ; bng and Vt+1 =  fv1; v2; : : : ; vmg. Then, we can show that for any unit
vector u 2  R j B t j

(Ao;t Ao;t)u =  
X

i ( b i )  +  
X

j  vj (14)
i = 1 j = 1

where the coefficients i  and ?  are bounded in ‘1 norm: i.e kk1; k?k1  ". Using this struc-tured
error, we can show how to bound the T V  distance between the induced distributions.

Lemma 14 (Pertubation argument) Assume for each sequence length t 2  [T ] and observation o
2  O, we have an operator Ao;t which is close to Ao;t as defined above in Equation (14). Let p  be the
distribution induced by Ao;t given by

Pr[x1 : : : x ] =  A x T  : : : A x 1 ( ’ )

Then, for small enough ", the induced distributions p  and p  are close in TV distance:

T V (p; p)  2jOjT "

We provide the proof in Appendix E.3. We now give a rough idea of the main ideas. As mentioned in
the technical section, the main approach will be to analyze how the error written in terms of coef-
ficients evolves. To do this more formally, let’s define some more notation. For any set of histories S
of sequence length t, let (S )  denote a matrix whose columns are given by the coefficient (s) under
basis B t  for sequence s 2  S . Moreover, recall we assume B 0  =  f ’ g  and therefore ( ’ )  =  1.
Also, abusing notation, Vt+1 is also matrix representing the orthogonal complement of subspace
formed by the right singular vectors (with non-zero singular value) of Pr[Ft jBt ] D Pr[Ft jBt ].

To prove our claim inductively, assume

(Ax 1 : t      1  Ax 1 : t      1 ) ( ’ )  =  (B x 1 : t      1 )x 1 : t      1  +  Vt 1 x1:t      1 (15)

where B x 1 : t      1  is some subset of observation sequences of length t   1. Our goal is to understand
how the ‘1 norm of coefficients x 1 : t      1  grows. Ideally, we would want to show

X  
kx1:t k1  O(") +  (1 +  O("))

X
kx1:t      1 k1 (16)

x 1 : t 2 O t                                                                                                        x 1 : t      1 2 O t      1

Couple of remarks. First, the sum over all sequences x1:t is crucial: since the number of sequences is
exponentially growing, bounding this error for each sequence separately and summing will be
suboptimal. Second, we will also get some terms in the expression above from the error in the
orthogonal subspace Vt 1

? . Fortunately, we will show it also grows similar to expression
(Equation (16)) above.

We now show why Equation (16) holds true. Specifically, consider the following standard de-
composition of this error

(Ax 1 : t  A x 1 : t ) ( ’ )

=  (A x t  A x t )A x 1 : t      1 ( ’ )  +  A x t (A x 1 : t      1  Ax 1 : t      1 ) ( ’ )  +  (A x t  Ax t ) (Ax 1 : t      1  Ax 1 : t      1 ) ( ’ )
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We look at the three terms separately.
The first term is much simpler to bound: in words, the first term is looking at how the one-step

error (A x t  A x t )  acts on the true coefficients Ax 1 : t      1 ( ’ ) .  Here the main argument will be to note that
Ax 1 : t      1 ( ’ )  =  Pr[x1:t 1](x1:t 1). This scaling by the marginal distribution will ensure that summing
over all observation sequences will not blow up.

Bounding the other two terms are a bit more involved. The second term is looking at how the true
operator A x t  acts on the propagation error (Ax 1 : t      1  Ax 1 : t      1 ) ( ’ )  till now. Since, the propagation
error can be written in terms of coefficients (Bx 1 : t      1 ) (Equation (15)), we can actually show that A x t

will keep the error bounded.
The third term is looking at how (A x t    A x t )  acts on the propagation error. The most trou-

blesome component of this error is: (A x t    A x t ) ( (B x 1 : t      1 )x 1 : t      1 ). Here, we can think of each
column of (Bx 1 : t      1 )  as a vector and use how the one-step error propagates for each column. We fill
the details in Appendix E.3.

B.2. Finding robust basis

The last remaining step is to find a -robust basis. Such a basis might not exist, so we first define a
class of distributions where such basis exists.

Definition 6 (Fidelity) We say that distribution Pr[] has fidelity  if there exists some basis fBt gt2[T ] ,
such that maxt jBt j  1= and

8t 2  [T ] : + St Pr[Ft jHt ]> Dt 1 Pr[Ft jHt ]St

where + (M ) denotes the magnitude of the smallest non-zero singular value of M, Dt  is a diagonal
matrix of size jFt j  jFt j with entries dt (f ) : =  j B

 
j b 2 B t  

Pr[f jb], and St is a diagonal matrix of
size jHtj  jHt j with entries st(h) : =  Pr[h].

In Appendix C, we will go over few common examples of HMMs where fidelity is large. Next,
we show how existence of a basis under which a distribution has high fidelity is enough for us to
find a robust basis.

Lemma 15 (Finding robust basis) Fix a distribution p  over observation sequences of length T .
Assume distribution p  has rank r  and fidelity . Pick 0 <   <  1. Let n =  O(log r  8) and  =
(log r ()  11=2). Then, we can find sets fStgt2[T ] , each of size n, using n log(T =) conditional
samples such that with probability 1   , fSt gt2[T ] is a -robust basis for distribution p.

We provide a proof in Appendix E.4. According to this lemma, a random sample from a high
fidelity distribution forms a robust basis. This is contrast to our exact setting (Appendix A), where it
seemed necessary to search for a basis. Since, our motivation is to find algorithms which do not
require high fidelity, in Appendix F, we show how to build a robust basis for arbitrary low rank
distributions (without the high fidelity assumption).
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B.3. Algorithm

We are now ready to present our algorithm. For our algorithm, the user furnishes ", the accuracy
with which the distribution is to be learned; , a confidence parameter; , the fidelity of the
distribution and r, rank of the distribution. The parameters ; ; n and m depend on the input and are
detailed in the proof of Theorem 2 in Appendix E.5.

Algorithm 2: Learning low rank distributions using conditional samples.
1 for sequence length t =  0; 1; 2; : : : ; T do
2 Sample set B t  =  fb1; : : : ; bng of n observation sequences of length t using Lemma 15.
3 Build empirical estimates qb(bo) and B t  for all b 2  Bt , observations o 2  O using

Corollary 35 with m conditional samples.
4 Compute SVD of B t ,  and let Vt be the matrix of eigenvectors corresponding to

eigenvalues >  =2.
5 Compute the coefficients (bi o) for each observation o 2  O and sequence bi 2  B t  1 by

solving the program:

(bi o) =  argmin jjBt z qb(bi o)jj2 +  jjzjj2:

6 Compute model parameters Ao;t 1 for each observation o 2  O:

h
Ao;t 1 =  VtVt (b1o)     (b2o)

2

i 6
Pr[ojb1 ]

(b0 o) 6 .
0

0
Pr[ojb2]

.
 . . .

0

3
0

7

0 7 Vt 1Vt 1:

Pr[ojbn ]

7 return model parameters fAo;tg.

Appendix C.  Examples

In this section, we show that our parity with noise and all previously known positive results: full
rank HMMs from (Mossel and Roch, 2005; Hsu et al., 2012) and overcomplete HMMs from (Sharan et
al., 2017) can be learned by our algorithm using conditional sampling oracle. Note that we will use
the alternate form of fidelity which is more amenable to analysis given by

+  St Pr[Ft jHt ]> Dt  
1 Pr[Ft jHt ]St 

 
=  +  D

 1=2 Ex1 : t p 

h
Pr[Ft jx1:t ] Pr[Ft jx1:t ]>

i
D 1=2

C.1. Parity with noise

We first formally define the distribution induced by parity with noise which has been extensively
studied in the computational learning theory (Blum et al., 1994a).

Definition 16 (Parity with noise) Let (x1; : : : ; xT  1) be a vector in f0; 1gT  1, S  a subset of [T
1] and 0 <   <  1=2. The parity of (x1; : : : ; xT  1) on S  is the boolean function (x1; : : : ; xT  1)
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(z1 ; b1 ; 1) (z2 ; b2 ; 2) (z3 ; b3 ; 3) ( z T  ; bT ; T )

(z1 ) (z2 ) (z3 ) ( z T  )

Figure 2: Hidden Markov model for noisy parity. Each hidden state is of the form (zt; bt; t) where zt
represents the current bit to be output, bt is the parity of a secret subset of previous bits and t is the bit
position. b1 is always set to 0 and zT is set to bT with probability  and 1   bT otherwise for some
2  (0; 1=2). For other positions t 2  [T   1], transition from hidden state (zt; bt; t) goes uniformly
randomly to hidden states (1; bt+1; t +  1) and (0; bt+1; t +  1), where bt+1 =  bt  zt if t 2  I  and bt+1
=  bt otherwise.

which outputs 0 if the number of ones in the sub-vector (x i ) i 2 S  is even and 0 otherwise. Then the
distribution induced by HMM for parity with noise is such that the first T   1 bits are uniform over
f0; 1gT  1 and the last bit is (x1; : : : ; xT  1) with probability 1  and 1 (x1; : : : ; xT  1)
otherwise.

We now show that Parity with noise HMM satisfies the conditions of Theorem 2. Note that for
=  1=2, each bit becomes a random bit. And then as can be seen in the proof below, the fidelity is 1
(since the second eigenvalue goes to 0).

Proposition 17 The distribution induced by Parity with noise HMM has rank  2T and fidelity (1
2)2=2 under a basis of size  2 for every sequence length t 2  T .

Proof The claim about rank follows from noting that Pr[jx] =  Pr[jy] is same if both x  and y have
the same length t; and the subvectors (x i ) i 2 S \ [ t ]  and (yi ) i2S \ [t ]  have the same number of ones modulo
2.

We only need to show that the distribution has large fidelity. The proof is same for all t 2  [T ], so
we prove this for a particular t. For a fixed t, Pr[F jx] only depends on the parity of the secret subset
(xi )S \ [t ] ,  so there are only two options for Pr[F jx]. Let those be v1 and v2 and V be the matrix
with these vectors as columns. We choose the basis B t  to be any histories with probability vector v1
and v2. Note that if the last bit in the future f  matches the parity, then the corresponding probability
entry is (1 )=2T  t 1, otherwise it is =2T  t 1. Also, v1 (f ) =  (1 )=2T  t 1 ( )  v2 (f ) =
=2T  t 1. Therefore, each entry in d(f )  is 1=2T  t.

Our goal is to show that following matrix has large non-zero eigenvalues

diag(d) 1=2 E
h

Pr[F jx] Pr[F jx]>
i
diag(d) 1=2 =  

2
diag(d) 1=2V V > diag(d) 1=2:

Since diag(d) 1=2V V >diag(d) 1=2 has same eigenvalues as V >diag(d) 1V , we compute its eigen-
values. The diagonal entries of V >diag(d) 1V are 2 +  (1   )2 and the off-diagonal entries are 2(1
). Therefore, the eigenvalues of V >diag(d) 1V are 1 and (1  2)2. This gives us a lower bound on
(1 2)2=2.
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C.2. Full rank HMMs

We first define full rank HMMs studied in (Mossel and Roch, 2005; Hsu et al., 2012). Recall the
definition of HMMs (Definition 1).

Definition 18 (Full rank HMMs) We say an HMM is full rank, if its emission matrix O and state
transition matrix T  have full column rank.

We next show the distribution induced by full rank HMM can be learned by our algorithm in
Theorem 2. Let P2;1 be an O  O matrix with (i; j )th entry Pr[o2 =  i; o1 =  j ]. Note that the
previous result (Hsu et al., 2012) in this setting depend on smallest eigenvalues of P2;1.

Proposition 19 The distribution induced by full rank HMM has rank S  and fidelity min(P2;1)2

under a basis of size  O for every sequence length t 2  T .

Proof We note that in the full rank case, we can simplify our algorithm considerably. By our as-
sumptions, rank(Pr[OjO]) =  S . And therefore instead of picking all distributions, we can replace
Pr[Ft jx] by one-step probabilities Pr[Ojx]. We can do this because Pr[Ojx] =  Pr[OjO](x) im-
plies Pr[Ft jx] =  Pr[Ft jO](x) as rank(Pr[Ft jHt]) =  rank(Pr[FtjO]) =  rank(Pr[OjO]) =  S  and
O  Ft  where Ht  and Ft  is the set of all observation sequences of length t  1 and  T   t respectively.
This also means we do not need a different basis for each t 2  [T ]. And only need to show that the
following matrix has large eigenvalues:

D  1=2Eop 

h
Pr[Ojo] Pr[Ojo]>

i
D 1=2

where D  is a diagonal matrix with d(o0) =  Eo2O [Pr[o0jo]]. Since, eigenvalues of D  1=2 are  1,
we are interested in eigenvalues of

Eo p  

h
Pr[Ojo] Pr[Ojo]>

i 
=  Pr[OjO]U Pr[OjO]>

where U is a diagonal matrix of size jOj  jOj with its diagonal entries given by Pr[o]. Then, by
definition, P2;1 =  Pr[OjO]U . Using this we can lower bound  by min(P2;1)2.

C.3. Overcomplete HMMs

We first define the class of overcomplete HMMs which can be learned using techniques in (Sharan et
al., 2017). In (Sharan et al., 2017), the authors were concerned with the stationary distribution
induced by HMMs. To define their assumptions, let S  be the number of hidden states and  =
O(dlogjOj S e). Moreover, let H  be the set of histories of length  of the form x   ; : : : ; x 1, F  be the
set of histories of length  of the form x0; : : : ; x , and S  =  f1; : : : ; Sg be the set of hidden states. Note
that by our setting of , H  , F  and S  are all size O(S ). Define Pr[F jS ] to be a matrix of size jF  j S whose
((x0; : : : ; x ); s) entry is given by probability Pr[x0; : : : ; x js0 =  s]. Similarly de-fine Pr[H jS ] as the
equivalent matrix for time-reversed Markov chain whose ( (x   ; : : : ; x 1); s) entry is given by
probability Pr[x  ; : : : ; x 1js0 =  s].
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Sharan et al. (2017) showed efficient algorithms for HMMs under assumptions which imply (a)
Pr[F  jS ] and Pr[H jS ] matrices are rank S , (b) the condition number of Pr[F  jS ] and Pr[H jS ] is
poly(S) and (c) every hidden state has stationary probability at least 1= poly(S).

We next show the distribution induced by these HMMs can be learned by our algorithm in
Theorem 2. We will not require the uniqueness of columns of Pr[O; S ].

Proposition 20 The distribution induced by HMMs defined above has rank S  and fidelity (poly(S )) 1

under a basis of size O(S ) for every sequence length t 2  T .

Proof Just like the full rank case (Proposition 19), we can simplify our algorithm considerably. We
choose B  to be the set H  . Let F  be the set of all observation sequences of length T    for some T >
2. Now, we can replace Pr[F jx] by probabilities Pr[F  jx] in our algorithm. We can do this because
Pr[F  jx] =  Pr[F  jB ](x)  implies Pr[F jx] =  Pr[F jB ](x)  as rank(Pr[F jB]) =  rank(Pr[F jB ]) =  S
and F   F .  Second, we do not need a different basis for each t 2  [T ] as Pr[F  jx] lives in the span of
Pr[F jB ] for every history x  as rank(Pr[F jB ]) =  rank(Pr[F jH ]) =  S  and B   H  where H  is the set of
all histories of length  T . This means we only need to show
that the following matrix has large eigenvalues:

D  1=2 Ex1:  p 

h
Pr[F jx1: ] Pr[F jx1: ] >

i
D  1=2

where D  is a diagonal matrix with entries d(f )  : =  E b 2 B  Pr[f jb] on the diagonal. Since, eigenvalues
of D  1=2 are  1, we are interested in eigenvalues of

Ex 1 :  p 

h
Pr[F jx1: ] Pr[F jx1: ] >

i  
=  Pr[F  j B ] K  Pr[F  jB ] >

where K  is a diagonal matrix of size jB j  jB j with diagonal entries given by k(b) =  Pr[b]. Define Pr[F
H  ] to be a matrix of size jF  j  jH  j whose ((x0; : : : ; x ); (x  ; : : : ; x 1 )) entry is given by probability
Pr[x  ; : : : ; x 1; x0; : : : ; x ]. Then, by definition, Pr[F  j B ] K  =  Pr[F  H  ]. Using this, each entry of K
<  1 and every hidden state has stationary probability at least 1= poly(S), we can lower bound  by
min (Pr[F H  ])2 =  1= poly(S).

Appendix D. Proofs for Appendix A

Theorem 1 (Learning with exact conditional probabilities) Assume O =  f0; 1g. Let Pr[] be any
rank r  distribution over observation sequences of length T . Pick any 0 <  ";  <  1. Then Al-gorithm 1
with access to an exact probability oracle and samples from Pr[], runs in poly(r; T; 1=", log(1=))
time and returns an efficiently represented approximation Pr[] satisfying TV(Pr; Pr)   " with
probability at least 1 .

Proof First, the total number of rounds are at most rT . This is because by Proposition 9, we increase
rank(Pr[ jB  ]) by 1 in every round for some  2  [T ], and rank(Pr[ jB  ]) can be at most r  by our low
rank assumption. So we only need to show that when the algorithm ends, we have found a good

estimate. Note that this happens when we can not find a counterexample in Line 5. By
Hoeffding’s inequality, for n =  O(log(T r=)="2), we get with probability 1      =T r for all t 2  [T ]: h

i
Pr Pr[x1:t] =  Pr[x1:t]  " (17)

1:t
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Moreover, define a probability distribution Pr over sequences of length up to T using Pr as follows:
for any t 2  [T ],

" #

Pr[0jx1 : : : xt] =  [0;1]      
b1 Pr[x 1  : : : xtt

]
 
1

t

Pr[1jx1 : : : xt] =  1 Pr[0jx1 : : : xt]

where [0;1] projects onto interval [0; 1] and where b 1  is an indicator vector such that (since each t
contains 0 string)

b1 Pr[x 1  : : : xtt] =  Pr[x1 : : : xt0]:

Note that for a sequence (x1 : : : xT ), if for all t 2  [T ], Pr[x1 : : : xtt] =  Pr[x1 : : : xtt], then Pr[x1
: : : xT ] =  Pr[x1 : : : xT ]. Therefore, together with Equation (17), we get for each t 2  [T ] and o 2  O,

Pr Pr[ojx1:t] =  Pr[ojx1:t]  2T " 1:t

which implies
Ex 1 : t  Pr[ojx1:t] Pr[ojx1:t]

 
 2T "

Using Lemma 21, we get for distribution p  corresponding to probability function Pr:

T V (p; p)  2T (T +  1)"

Re-substituting the value of ", we get T V (p; p)  " using at most O(rT 5 log(T r=)="2) samples
from Pr[] and queries to the exact conditional probability oracle.

Next, we need a technical lemma which allows us to test for T V  distance using just conditional
samples. This lemma will imply that if our algorithm does not find a violation, then with high
probability our estimate should be close to true distribution in T V  distance.

Lemma 21 (Substitute for T V  oracle) Let p  and p  be two probability distributions over obser-
vation sequences of length T with probability functions Pr and Pr respectively. Suppose we have for
all t 2  [T ] and for all o 2  O

Ex 1 : t p  Pr[ojx1:t] Pr[ojx1:t]
 
 " :

Then

T V (p; p) =  
1 X

 

j(Pr[x1:T ] Pr[x1:T ])j  
(T +  1)jOj"

x 1 : T

Proof We prove this by induction. Assume

X  
(Pr[x1:t 1] Pr[x1:t 1])  tjOj"

x 1 : t      1

28



X

X X

X  X

X

X X  

X

L E A R N I N G HIDDEN M A R K OV MO DE L S USING CO ND I T I O NA L S A M P L E S

Then,
X

( P r [ x 1 : t ]  Pr[x1:t])
x 1 : t

= Pr[x1:t 1] Pr[xtjx1:t 1] Pr[x1:t 1]Pr[xtjx1:t 1]
x 1 : t

Pr[x1:t 1]  Pr[xtjx1:t 1] Pr[xtjx1:t 1] + (Pr[x1:t 1] Pr[x1:t 1])  Pr[xtjx1:t 1]
x 1 : t                                                                                                                                                          x1 : t

We handle the two terms separately. The first term

X
P r [ x 1 : t  1]  Pr[xtjx1:t 1] Pr[xtjx1:t 1]

x 1 : t

= Pr[x1:t 1]  Pr[xjx1:t 1] Pr[xjx1:t 1]
x 2 O  x 1 : t     

 
1

= Ex 1 : t      1       Pr[xjx1:t 1] Pr[xjx1:t 1]
x 2 O

 jOj"

where the last step follows from our assumption. The second term

X
( P r [ x 1 : t  1] Pr[x1:t 1])  Pr[xtjx1:t 1]

x 1 : t

= Pr[x1:t 1] Pr[x1:t 1] Pr[xjx1:t 1]
x 1 : t      1                                                                                           x 2 O

Pr[x1:t 1] Pr[x1:t 1]
x 1 : t      1

 tjOj"

Appendix E.  Proofs for Appendix B

In this section, we introduce conditions for efficient learnability of low rank distributions using only
conditional sampling oracle. We will fill out missing details from Appendix B.

E.1. Properties of operator Ao

Let fBt gt2[T ]  be some basis of distribution p  (as defined in Definition 10). In the previous section,
we defined the operators Ao;t under basis fBt gt2[T ]  in Proposition 8. We now prove some properties of
this operator and the associated coefficients. We use the same notation as the previous section,
except we abuse notation for the set of futures Ft  and redefine it as Ft  : =  OT  t (so instead of all
futures of length up to T t, now its only futures of length exactly T t). Consider the eigenvalue
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decomposition of the covariance matrix associated to B t  where D t  is a diagonal matrix of size
jFtj  jFt j with entries dt (f ) : =  E b 2 B t  Pr[f jb] on the diagonal:

Pr[Ft jBt ]> Dt  
1 Pr[Ft jBt ] =  Vt Vt 

 

0
t

0
 
V >   0V

? >

Here, Mt is a set of all non-zero eigenvalues, Vt is the eigenspace corresponding to non-zero eigen-
values and Vt      is the eigenspace corresponding to zero eigenvalues. A  basic property of span(Vt )
follows from the definition of basis fBt gt2[T ]  as dt (f ) =  0 implies Pr(f jx)  =  0 for all f  of length T

t and x  of length t. For such future f ,  we define Pr(f jx)=dt (f ) =  1 for the proposition below
to make sense. And we will see in Appendix E.6 how these futures do not matter in the estimation.

Proposition 22 span(V ? )  =  ker(Pr[Ft jBt ]> D  1 Pr[Ft jBt ]) =  ker(Pr[Ft jBt ])

Recall we denote the coefficients associated to history x  of length t under basis B t  by (x)  given
by:

Pr[Ft jBt ](x) =  Pr[Ft jx] : (18)

By Proposition 22, we can assume that (x)  2  span(Vt) without loss of generality. We now show
that the coefficients (x)  satisfy some nice properties.

Proposition 23 Let (x)  2  span(Vt) be coefficients associated to history x. Then, the following
statements are true:

1. The coefficients (x)  are uniquely defined in span(Vt). Formally, Let 0(x) be any other
coefficients which satisfy Equation (18). Then,

PVt
0(x) =  (x) ;

where PVt  is the projection matrix onto subspace Vt.

2. The coefficients sum to one, even though some of the entries could be negative

1> (x)  =  1

where 1 is all ones column vector.

Proof First, recall by definition, the coefficients satisfy Equation (18). The first claim follows from
span(V ? )  =  ker(Pr[Ft jBt ]) (Proposition 22). Finally, the last claim follows by multiplying both
sides in Equation (18) by all ones row vector 1 >

1 =  1 >  Pr[Ft jx] =  1 >  Pr[Ft jBt ](x) =  1> (x)

where the last equation follows by noting that 1 >  Pr[Ft jx] for any probability vector Pr[Ft jx] is 1
(recall Ft  is set of all futures of length exactly T t).

Even though, these are exponentially many coefficients, we next show existence of operators which
can be used to construct these coefficients.
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Proposition 24 Let Ao;t be defined using basis B t  =  fb1; : : : ; bng and B t + 1  as:
2

Pr[ojb1] 0 0
3

Ao;t =  (b1o)     (b2o)     (bn o)6 0 Pr[ojb2]     0 7 :

0 0 Pr[ojbn]

Then, it satisfies the following:

1. span(Ao;t)  span(Vt+1)

2. ker(Ao;t)  span(Vt )  3.

Ao;t (x) =  Pr[ojx](xo) 4.

1> Ao;t (x) =  Pr[ojx]

Proof The first two properties follow from the definition of Ao;t. Let Ft  be all observation sequences
of length T t. Similar to proof of Proposition 8, Ao;t satisfies

Pr[Ft+1 jBt+1 ]Ao;t  =  Pr[oFt+1 jBt ]PVt

Since oFt+1  is a subset of Ft , we get by multiplying (x)  on both sides, we get

Pr[Ft+1 jBt+1 ]Ao;t (x) =  Pr[oFt+1 jBt ](x) =
Pr[oFt+1 jx]

=  Pr[Ft+1 jxo] Pr[ojx]

(as (x)  2  span(Vt))
(as oFt+1  is a subset of Ft )

(by Bayes rule)
=  Pr[Ft+1 jBt+1 ](xo) Pr[ojx]

By uniqueness of (xo) (Item 1) and that span(Ao;t)  span(Vt+1) (Item 1), we get that

Pr[ojx]
) 

=  PV t + 1      Pr[ojx]
) 

=  (xo)

The last one follows from multiplying both sides above by all ones row vector and then using
1 > (x)  =  1 (Item 2).

1>  
Pr[ojx

] ) 
=  1> (xo)  =  1

E.2. Learning operators

In this section, we will assume knowledge of a -robust basis fBt gt2[T ]  (Definition 12) and show how
to learn an approximation of operators Ao  using it. For this, we need to learn approximations of
projections PVt  and coefficients (bi o) for the one-step extensions of basis B t  =  fb1; : : : ; bng.
Towards this end, we would have to solve for (x)  in the following linear equation: Pr[F jx] =
Pr[Ft jBt ](x). This requires estimating the following:

q (x) =  Pr[Ft jBt ]> diag(dt ) 1 Pr[F jx] and B t  =  Pr[Ft jBt ]> diag(dt ) 1 Pr[Ft jBt ]
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which we show how to do in Appendix E.6. Now, we use these estimates to learn approximations of
projection PVt . Recall B t  is the covariance matrix with rt <  r  non-zero eigenvalues and let B t  be an
approximation for covariance matrix B t  from Corollary 35. Compute SVD of B t ,  and let Vt be the
matrix of top rt eigenvectors (or equivalently corresponding to eigenvalues >  =2 according to the
proof of proposition below). Then, Vt is close to Vt using Davis-Kahan sin() theorem (Corollary
47):

Proposition 25 Let p  be any rank r  distribution over observation sequences of length T . Assume
knowledge of a -robust basis fBt gt2[T ]  for distribution p. Let Bt ; Bt ; Vt and Vt be as defined above.
Then, we can build an approximate projection P b such that

jjPVt P b jjF  O
p

r   jjBt  Bt jj2 

!

for jjBt  Bt jj2  =2.

Proof Let estimate B t  be such that

jjBt  Bt jj2  jjBt  B t j jF   (19)

The claim now follows from Davis-Kahan sin() theorem. From our assumptions, eigenvalues of Vt are
>   and rest are all 0. Moreover, from Equation (19) and Weyl’s inequality, all the eigenvalues
associated to V ?  are <  . Then, for  <  =2, we get using Corollary 47,

jjPVt P b jjF  
2

p
2r

To compute an approximation for operators Ao , we also need to get the coefficients for one-step
extensions of elements in the basis.

Proposition 26 Let p  be any rank r  distribution over observation sequences of length T . Assume
knowledge of a -robust basis fBt gt2[T ]  for distribution p. Also, assume the coefficients under basis
fBt gt2[T ]  are bounded i.e. jj(h)jj2  c for all histories h 2  OT . Suppose we have
estimates qb(bio) and B t  such that

n o
max jjqb(bio) q(bio)jj2 ; jjBt Bt jj2  :

Define (bio), approximation of (bio), for  =  42=c2:

(bi o) =  argmin jjBt qb(bio)jj2 +  jjzjj2 :

Then, the following are true:

1. the norm of the approximation (bi o) is bounded:

jj(bio)jj2  
p

2c
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2. the approximation (bi o) is accurate in the span(Vt+1):
jjPVt + 1 (bi o) PVt+1 (bi o)jj2  O 

    
 
:

Proof Let

jjqb(bio) q(bio)jj2 ; jjBt Bt jj2

 =  42=c2

We know that (bi o) satisfies
B t (bi o) =  q(bio)

and approximate it by the following program (for  =  42):

(bi o) =  argmin jjBt z qb(bio)jj2 +  jjzjj2

First, we can see that the above error is small as

jjBt (bi o) qb(bio)jj2 +  jj(bio)jj2  jjBt (bi o) qb(bio)jj2 +  jj(bio)jj2  82 as

jj(bio)jj2  c and

jjBt (bi o) qb(bio)jj2  jjBt (bi o) Bt (bi o)jj2 +  jjq(bio) qb(bio)jj2  2

Note that this also means

jj(bio)jj  

r
8 2 c 2  

=  
p

2c

Using these, we get

jjBt (bi o) Bt (bi o)jj

 jjBt (bi o) B t (bi o) +  B t (bi o) Bt (bi o)jj

 jjBt (bi o) Bt (bi o)jj +  jjBt (bi o) Bt (bi o)jj

 jjBt (bi o) q(bio) +  q(bio) qb(bio) +  qb(bio) Bt (bi o)jj +  jjBt  Bt jjjj(bio)jj

 jjBt (bi o) q(bio)jj +  jjq(bio) qb(bio)jj +  jjqb(bio) Bt (bi o)jj +  jjBt  Bt jjjj(bio)jj   +

2 2 +      2c  6

for c <  1. Now, using that our assumption on B t ,

jjPVt + 1 (bi o) PVt+1 (bi o)jj2  
6

Proposition 27 Let p  be any rank r  distribution over observation sequences of length T and
fBt gt2[T ]  be some basis of distribution p. Then, we can build an estimate diag(Pr[ojBt]) for
every o 2  O and t 2  [T ], such that with probability 1 

kdiag(Pr[ojBt]) diag(Pr[ojBt])k2  "

using O(jOjT n3="2 log(1=)) conditional samples.
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Proof This follows from Hoeffding’s inequality Proposition 45.

Using the approximations above, we are in position to present the approximation error for our
estimate of operator Ao;t. Let (Bt )  denote a matrix with the coefficients (bi ) as its columns. We also
show that the error can be written with small coefficients on the columns on matrix (Bt + 1 )  and
Vt+ 1.

Lemma 28 (Restatement of Lemma 13) Let p  be any rank r  distribution over observation se-
quences of length T . Assume knowledge of a -robust basis fBt gt2[T ]  for distribution p. Also,
assume the coefficients under basis fBt gt2[T ]  are bounded i.e. jj(h)jj2  c for all histories h 2  OT

. Then, we can build an estimate Ao;t using

e c8r3n21jOj3T 5 
log2

many conditional samples such that with probability 1 , for any unit vector v

(Ao;t Ao;t)v =  (Bt+1 )(o; v ) +  Vt+ 1 ? (o; v)

with bounded errors (here (o; v) and ? (o; v) are column vectors of size jBt+1 j and jVt+1j re-
spectively):

k(o; v)k1; k?(o; v)k1  " :

Proof Using P b , (Bt o) and diag(Pr[ojBt]) from Propositions 25 to 27, define operator Ao;t, an
approximation of Ao;t, as

Ao;t =  PVt + 1
(oBt )diag(Pr[ojBt ])PVt

Let

jjPVt + 1  
PVt + 1 jj2 ; jjP b PVt jj2  1 =  O

rn"

jjPVt + 1 (Bt o) PVt + 1 (Bt o)jj2  2  
p

n max jjPVt + 1 (bo) PVt+1 (bo)jj2  O
n3=2 "

!

jjdiag(Pr[ojBt]) diag(Pr[ojBt])jj2  3 =  "

Also, note that jj(bio)jj2  
p

2c, jjdiag(Pr[ojBt])jj2  2 and jjP b jj2 ; jjP b jj2  1. To prove
our main claim, we will first show that for any unit vector v

(Ao;t Ao;t)v =  Vt+1e(o; v) +  Vt+ 1
? (o; v)

with ke(o; v)k2; k?k2  4 2c1 + 2c3 +  2. To prove this, we will show that

o;t o;t

=  PVt+1
(oBt )diag(Pr[ojBt ])P b      PVt + 1 (oBt )diag(Pr[ojBt ])PVt

=  (P b + 1  
PVt + 1 )(oBt )diag(Pr[ojBt ])P b 

 +  PVt + 1 (oBt )diag(Pr[ojBt ])(P b PVt )

+  PVt + 1 (oBt )(diag(Pr[ojBt ]) diag(Pr[ojBt ]))PVt

+  PV t + 1 ((oBt )  (oBt))diag(Pr[ojBt ])PVt
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The first term is bounded by 2
p

2c1, second term by 2
p

2c1, similarly third term by 
p

2c3 and the
last term by 2. Therefore, we get that

Ao;t Ao;t
2 

 4 2c1 + 2c3 +  2 (20)

which implies for any unit vector v

(Ao;t Ao;t)v =  Vt+1e(o; v) +  Vt+ 1
? (o; v) (21)

with ke(o; v)k2; k?(o; v)k2  kAo;t Ao;tk2  4
p

2c1 +  
p

2c3 +  2. To complete our proof, we will
show that

Vt+1 =  (Bt+ 1 )Vt+ 1 (22)

This is enough, as this gives,

(Ao;t Ao;t)v =  (Bt+1 )(o; v ) +  Vt+ 1 ? (o; v)

where (o; v) =  Vt+1e(o; v) as jj(o; v)jj2  jjVt+1e(o; v)jj  jje(o; v)jj as Vt+1 is a unit norm matrix.
We now prove our claim. First note that Pr[F jBt+ 1 ] I  =  Pr[F jBt+1 ] and therefore by unique-

ness of (Bt+ 1 ),

(Bt + 1 )  =  Vt+1 Vt+1 I

= )  (Bt+1 )Vt+1  =  Vt+1 (by right multiplying by Vt+1 and Vt+1Vt+1 =  I )

This whole process requires O(n2jOjT m") many conditional samples with m" defined in Proposi-
tion 32. Substituting in " =  "0=(c rn3=2) gives the result.

E.3. Perturbation analysis: Error in coefficients

Our approach for learning the distribution p is to learn approximations of operators Ao;t and use
them to compute probabilities

Pr[x1:T ] =  A x T  ;T  1 A x T      1 ;T  2 : : : Ax1 ;0

For clarity, let Ax 1 : t  and Ax 1 : t  represent the product of matrices Ax t ;t  1 : : : Ax1 ;0 and Ax t ;t  1 : : : Ax1 ;0

respectively. Similarly, we use x1:t to represent the sequence (x1; : : : ; xt). In this section, we now
present a technical lemma showing that the errors in our estimates of Pr[x1:T ] scales linearly with
errors in our approximate operators Ao;t.

Proposition 29 Assume for every t 2  [T ] and observation o 2  O, we have operator Ao;t which
satisfies for any vector v

(Ao;t Ao;t)v =  (Bt+1 )(o; v ) +  Vt+ 1 ? (o; v) (23)

with k(o; v)k1; k?(o; v)k1  "jjvjj2. Then,

(Ax 1 : t  A x 1 : t ) ( ’ )  =  (Bx 1 : t ) x 1 : t  +  V ? x 1 : t
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where B x 1 : t  is a set of observation sequences of length t + 1 of size exponential in t but the ‘1 norm
of these coefficients grows nicely:

X  
kx1:t k1  jOj" Pr[x1:t 1] +  (1 +  jOj")kx1:t     1 k1 +  jOj"kx1:t     1

k1 (24)
x t 2 O

kx1:t k1  jOj" Pr[x1:t 1] +  jOj"kx1:t     1 k1 +  jOj"kx1:t     1 k1 (25)
x t 2 O

Proof First, by our assumption, for any observation sequence x  =  (x1; : : : ; xt 1)

(Ao;t 1 Ao;t 1 )(x) =  (Bt )(o; x) +  Vt 
? (o; x) (26)

with k(o; x)k1; k?(o; x)k1  " as jj(x)jj2  1. Next, the following recursive relation holds

(Ax 1 : t  A x 1 : t ) ( ’ )

=  (Ax 1 : t  A x t A x 1 : t      1  +  A x t A x 1 : t      1  A x 1 : t ) ( ’ )

=  (A x t  A x t )A x 1 : t      1 ( ’ )  +  A x t (A x 1 : t      1  Ax 1 : t      1 ) ( ’ )

=  (A x t  A x t )A x 1 : t      1 ( ’ )  +  A x t (A x 1 : t      1  Ax 1 : t      1 ) ( ’ )  +  (A x t  Ax t ) (Ax 1 : t      1  Ax 1 : t      1 ) ( ’ )

We will bound the three terms separately for each xt . We start by bounding the first term

(A x t  A x t )A x 1 : t      1 ( ’ )

=  (A x t       Axt ) Pr[x1:t  1](x1:t 1)                                                              (by Proposition 24)

=  Pr[x1:t 1 ](Bt )(xt ; x1:t 1) +  Pr[x1:t 1]V ? ? (xt ; x1: t  1)              (by Equation (26))

=  (Bt ) (Pr[x1:t 1](xt; x1:t 1 )) +  V ?      Pr[x1:t 1 ]? (xt ; x1:t 1)

and here we can see that

k Pr[x1:t 1](xt; x1:t 1)k1  Pr[x1:t 1]k(xt; x1:t 1)k1  " Pr[x1:t 1] k Pr[x1:t

1 ]? (xt ; x1:t 1)k1  Pr[x1:t 1 ]k? (xt ; x1:t 1)k1  " Pr[x1:t 1]

where we used jj? (xt ; x1:t 1)jj1; jj(xt; x1:t 1)jj1  "jj(x1:t 1)jj2  ". This gives the first term in
Equations (24) and (25) (with the jOj factor for sum over xt). We bound the remaining terms by
induction. Assume

(Ax 1 : t      1  Ax 1 : t      1 ) ( ’ )  =  (B x 1 : t      1 )x 1 : t      1  +  Vt 1 x1:t      1 (27)

where B x 1 : t      1  is a set of observation sequences of length t 1. Let’s first bound the second term.

A x t (A x 1 : t      1  Ax 1 : t      1 ) ( ’ )

=  A x t ( (B x 1 : t      1 )x 1 : t      1  +  Vt 1 x1:t      1 ) =

A x t ( (B x 1 : t      1 )x 1 : t      1 )

=  (xt Bx 1 : t      1 )diag(Pr[xt jBx1:t      1 ])x1 : t      1

(by Equation (27))

(by Proposition 24)

(by Proposition 24)
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We can bound the ‘1 norm of the coefficients as
X X

j Pr[xtjbi ]i j =  
X X

Pr[xtjbi ]ji j =
X

jij =  kx1:t      1 k1
x t 2 O  b i 2 B x 1 : t      1                                                       x t 2 O  b i 2 B x 1 : t      1                                                      b i 2 B x 1 : t      1

where the second last step follows from 
P

x t 2 O  Pr[xt jbi ] =  1. For clarity, let (xt ; Bx 1 : t      1 )  repre-sent
a matrix with its column given by (xt ; b) for b 2  B x 1 : t      1 . Similarly, define  (xt ; Bx 1 : t      1 ), (xt; Vt 1)
and  (xt; Vt 1). We can then similarly bound the remaining term.

(A x t  Ax t ) (Ax 1 : t      1  Ax 1 : t      1 ) ( ’ )

=  (A x t  A x t ) ( (B x 1 : t      1 )x 1 : t      1  +  Vt 1 x1:t      1 )
i

=  (Bt )(xt ; Bx 1 : t      1 )x 1 : t      1  +  Vt  (xt ; Bx 1 : t      1 )x 1 : t      1

+  (Bt )(xt ; V ? ) x 1 : t      1  +  V ? ? (x t ; V  ? )x 1 : t      1

(by Equation (27))

(by Equation (26))

(by Lemma 28)

Each of these terms can be bounded similarly. We show how to bound the first term:

k
X

i(xt ; bi )k1 
X

jij  k(xt; bi )k1  "kt 1k (28)
b i 2 B x 1 : t      1                                                         b i 2 B x 1 : t      1

where we used jj(xt; bi)jj1  "jj(bi)jj2  ". This gives the remaining terms in Equations (24) and
(25) (with the jOj factor for sum over xt).

We next give a solution for the recursion from Proposition 29. This is standard, but we give a
proof for completeness.

Proposition 30 Consider the following recursions:

f (0) =  0; g(0) =  0
f (t)  =  d" +  (1 +  d")f (t 1) +  d"g(t 1)

g(t) =  d" +  d"f (t 1) +  d"g(t 1)

Let T 2  Z + .  Then, the following holds for all t  T and "  1=12dT :

f (t)   3dT "

Proof We first claim: g(t)  6d" for all t  T . We prove this by strong induction. This is true for t =
1. Let’s assume g(i)  6" for all i   t 1. Then, first we unroll the recursion for f (t).

f (t)  =  d" +  (1 +  d")f (t 1) +  d"g(t 1)
=  d" +  (1 +  d") [d" +  (1 +  d")f (t 2) +  d"g(t 2)] +  d"g(t 1)

=  d" +  (1 +  d")d" +  (1 +  d")2f (t 2) +  d"(1 +  d")g(t 2) +  d"g(t 1)
t 1

=  (1 +  d")t 1 +  d" (1 +  d")i 1g(t i )
i = 1
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where the last equation follows from observing the first few terms form a geometric series. Using
our induction hypothesis, we get

t 1
!

f (t  1)  f (t)   (1 +  2dT ") 1 +  (d")(6d")           (1 +  d")i  1

i = 1

2dT " +  6d" (1 +  d")t 1 1
 2dT " +  6d"(2dT ")
3dT "

where we used that (1 + a)t  1 + 2at for a <  1=2t and " <  1=12dT . And therefore, we can bound
g(t) as

g(t) =  d" +  d"f (t 1) +  d"g(t 1)

d" +  3d2T "2 +  6d2"2

 3d"

where we used g(t   1)  6d" and "  1=12dT . This proves that g(t)  6d" for all t <  T .
Moreover, by arguments above, in that case f (t)   3dT " for all t  T .

Lemma 31 (Restatement of Lemma 14) Let Ao;t be the approximation of Ao;t from Lemma 28.
Furthermore, for sequence x1:T of length T , define

Pr[x1:T ] =  A x 1 : T  ( ’ ) :

Then, for the values of " <  (12jOjT ) 1, we get that the distribution p  and p  given by probability
functions Pr and Pr are close in TV distance:

T V (p; p)  2jOjT " :

Proof Recall F  =  f ’g .  Then,

2  T V (p; pb) = Pr[x1:T ]      Pr[x1:T ]
x 1 : T   =

A x 1 : T       A x 1 : T

x 1 : T  

= (B x 1 : T  ) x 1 : T  +  VT  x
1 : T  

(by Proposition 29)
x 1 : T

= j(Bx 1 : T  ) x 1 : T  j (as V ?  =  ker(Pr[FT jB T  ]) =  [0](Proposition 22))
x 1 : T

= 1> x 1 : T  (as (x)  =  1 for all x  2  H T  )
x 1 : T

kx1 : T  k1 (29)
x 1 : T

The claim follows from Proposition 29 and Proposition 30.
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E.4. Finding robust basis

We now show how to find a robust basis. We first recall some definitions: the covariance matrix for
a basis is defined as

B t  =  Pr[Ft jBt ]> Dt  
1 Pr[Ft jBt ]

where D  is a diagonal matrix of size jFt j jFt j with entries dt (f ) : =  E b 2 B t  Pr[f jb] on the diagonal.
We further define the inner covariance as

B t  =  D  1=2 Pr[Ft jBt ] Pr[Ft jBt ]> D  1=2

Note that the matrices B  and B  share their non-zero eigenvalues (with extra eigenvalues all 0). As we
will see, random sampling from a high fidelity distribution gives a robust basis. We show in
Appendix F more efficient ways of building a basis.

Lemma 15 (Finding robust basis) Fix a distribution p  over observation sequences of length T .
Assume distribution p  has rank r  and fidelity . Pick 0 <   <  1. Let n =  O(log r  8) and  =
(log r ()  11=2). Then, we can find sets fStgt2[T ] , each of size n, using n log(T =) conditional
samples such that with probability 1   , fSt gt2[T ] is a -robust basis for distribution p.

Proof Let St be a random sample of size n of observation sequences of length t from distribution
p. We ignore the t dependence in notation in this proof for clarity.

Let B  be the unknown basis of length t sequences under which distribution p  has high fidelity and
jB j =  n  1=. Define a distribution d over futures given by d(f )  =  Eb2B [Pr[f jb]]. Define diag(d) to
be a diagonal matrix with diagonal entries given by d(f ).

Before, we prove that S  is a robust basis at length t, we first show some properties of d that
will come in handy. First, the norm of Pr[F jx] under d is upper bounded:

jjdiag(d) 1=2 Pr[F jx]jj2 =  E
 

d
 [

(f )
] 2 

=  E
P

i  i (x) Pr[f jb] 2 

 E [jj(x)jj1n]2  n3

(30)
since Pr[f jb]=d(f )  n by definition and jj(x)jj1 njj(x)jj2 n as B  is an basis.

Our next step is to show that the eigenvalues under S  and B  are not so different. For clarity, let

H  =  diag(d) 1=2 E
h

Pr[F jx] Pr[F jx]>
i  

E s 2 S  

h
Pr[F js] Pr[F js]>

i
diag(d) 1=2

Then, by matrix Bernstein inequality and Equation (30), for jS j =  n =  O(n6 log 2r() 2) and  <
1, we get the following bound on H :

EjjH jj2  

r
2 n 6

 
log r  

+  
2n3 log 2r

which by Markov’s inequality shows jjH jj2  =2 with probability 1=2. And by Weyl’s inequal-ity,
shows that

n rt diag(d) 1=2 E s 2 S  

h
Pr[F js] Pr[F js]>

i
diag(d) 1=2

 
>  

2
(31)
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and all other eigenvalues are 0. We can repeat this sampling log(T =) times to find the random set
with these properties with probability 1  for all t 2  [T ].

We now show that S  forms an basis. For clarity, let Pr[F jS ] be a matrix with Pr[F jsi ] as
columns. Then, Pr[F jS ]> diag(d) 1 Pr[F jS ] has rt eigenvalues >  n=2. Let Vt be the eigenvec-tors
corresponding to non-zero eigenvalues of the latter matrix. Next we note that span(fPr[F js1],
: : : ; Pr[F jsn]g) has dimension r  and therefore there exists coefficients (x)  2  span(Vt) such that

Pr[F jx] =  
X

i ( x ) P r [ F j s i ]  =  Pr[F jS ](x) i

Multiplying both sides by diag(d) 1=2, we get

n3=2  jjdiag(d) 1=2 Pr[F jx]jj2 =  jjdiag(d) 1=2 Pr[F jS ](x)jj2  

r
n  

jj(x)jj2

where the first inequality follows from Equation (30) and the last inequality follows from Equa-
tion (31). Simplifying this shows S  forms an basis with the following upper bound on the coeffi-
cients

3
jj(x)jj2 n <  1 (32)

The only remaining part is to show that the two distributions d and d are only a small factor apart.
For this, we first note from Equation (30)

d(f ) Pr[F jsi ] 3=2
d(f )                       d(f )

Since,
diag(d=d)1=2 diag(d) 1=2 Pr[F jS ] Pr[F jS ]> diag(d) 1=2diag(d=d)1=2

=  diag(d) 1=2 Pr[F jS ] Pr[F jS ]> diag(d) 1=2 =  S  ;

it follows from discussion above and Equation (31) that S  has rt eigenvalues greater than

n
2n3=2

Substituting n  1= proves the claim.

E.5. Main result

Theorem 2 (Learning with conditional samples) Let Pr[] be any rank r  distribution over obser-
vation sequences of length T . Assume distribution Pr[] has fidelity . Pick any 0 <  ";  <  1. Then
Algorithm 2 with access to a conditional sampling oracle runs in poly(r; T; O; 1=; 1="; log(1=))
time and returns an efficiently represented approximation Pr[] satisfying TV(Pr; Pr)   " with
probability at least 1 .
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Proof From Lemma 15, wp 1=2, we built a -robust basis of size n where
log r

11=2 
n

=  O
log r

s !
4

c =  O
log r

using n samples from p. From Lemma 31, to get T V  error " w.p. 1=2, when given access to a
-robust basis of size n, we need to learn the estimate operators Ao;t using Lemma 28 to accuracy

"0 =  
2jOjT

Substituting this in Lemma 28 gives the required sample complexity as

O
 
c8r3n21jOj3T 5 

log2 
 
=  O

 
c8r3n21jOj9T 11 

log2

Substituting the values of ; n and c above, we need

m =  O 
r3jOj9T

9

1 
log2 

1

many queries to conditional sampling oracle.

E.6. Estimating covariance matrix in Frobenius norm

In this section, we would show how to estimate the following objects:

q (x) =  Pr[Ft jBt ]> Dt  
1 Pr[F jx] and B t  =  Pr[Ft jBt ]> Dt  

1 Pr[Ft jBt ] ;

which we need for estimating the operator Ao;t. We ignore t subscript when clear from context.

Proposition 32 Let B t  =  fb1; : : : ; bng be a basis of size n and c be some upper bound on the
coefficients under basis Bt . Define s(b; x) as the following sum where b 2  B t  and x  is a history of
length t:

s(b; x) =
Pr[f jb ] Pr[f jx] 

:
f 2 F t

Then we can learn estimate sb(b; x) such that with probability 1 ,

using at most

conditional samples.

js(b; x) sb(b; x)j  "

m" =  O
 
c2n10jOj2T 4 

log2
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Proof We start by writing s(b; x) in terms of expectation under Pr[jx]:
X  Pr[f jb] Pr[f jx] Pr[f jb]

f 2 F t
d(f )                     f Pr[ jx]           d(f )

With this, we define (un-normalized) probability functions Pr[jb] for b 2  B t  which set proba-
bility to 0 if f  is part of a set F  (to be defined) which will depend only on history b i.e.

(

Pr[f jb] =
Pr[f jb] otherwise

We define d as mixture distribution of Pr[jb] for b 2  B t  i.e. d(f )  =  Eb2Bt [Pr[f jb]]. An important
aspect of our definitions is that for any future f ,

Pr[f jb]

d(f )
and

Pr[f jx] 3=2
d(f ) (33)

are upper bounded. Now, suppose maxb Pr[Fbjb]  p. Then,

Pr[f jb] Pr[f jb]

 f Pr[ jx] d(f ) f Pr[ jx]
d( f )

Pr[f jb] Pr[f jx] Pr[f jb] Pr[f jx]

f      
d(f ) d( f )

Pr[f jb] Pr[f jx] Pr[f jb] Pr[f jx] Pr[f jb] Pr[f jx]

f      
d(f ) d(f ) d( f )

 Pr[f jb] Pr[f jb] 
Pr[f jx]  +

Pr[f jb] Pr[f jx] 
d(f )  d(f )

f                                                                                                f

 cn3=2 Pr[Fbjb] +  cn5=2 k = 1  Pr[Fb k  jb
k

]

O(cn5=2p)

where the last step follows from maxb Pr[Fbjb]  p. Now, we can sample m =  (1=2c2n3p2) log(2=)
random futures from Pr[jx] and call this set S . Then, again by Equation (33) and Hoeffding’s in-
equality (Proposition 45), we get that

" " # " # #
Pr[f jb ] Pr[f jb ]

 f Pr[ jx]
d(f )

f S
d(f )

Together, with (1=2c2n3p2) log(2=) conditional samples, we get the following guarantee with
probability 1 ,

" #
Pr[f jb ] Pr[f jb ]

 f Pr[ jx] d(f )
f S

d(f )

To estimate Pr[f jb] and d(f ), we need to identify the case when f  is “irregular”.
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Definition 33 (-regular future) We define a future f  to be -regular for history b if for all  2  [t]

Pr[f  jbf1: 1] >  :

Otherwise, f  is -irregular for history b.

To do this, define empirical estimates Pr[f  jbf1: 1] for every future f  and basis b 2  B t  using
O(njSjT =2 log(1=)) many samples. Then, we perform the following test A(f ; b) for each future f
and basis history b using these estimates:

Definition 34 (Test A(f ; b)) Test A(f ; b)  passes if the empirical estimate Pr[f  jbf1: 1] >  2 for all
2  [t] and fails otherwise.

Note that with probability 1   , (i) if test A(f ; b)  passes for future f  and history b, then f  is -
regular for b, and (ii) if test A(f ; b) fails for future f  and history b, then f  is 3-irregular for b. In
the rest of the proof, we condition on the event that this relationship between test A(f ; b) and
irregular futures holds for all futures f  2  S  and b 2  Bt . We set Fb  to be the set of futures f  which
are 3-regular for basis b and removing the ones where test A(f ; b) passes. By Proposition 37,

p =  Pr[Fbjb]  O(jOjT ) (34)

Now, we define estimates Pr[f jb] for each future f  2  S  and basis history b 2  B t  by first running
test A(f ; b)  on future f  and history b. If test A(f ; b)  fails we set Pr[f jb] =  0. Note that otherwise
Pr[f jb] to be the estimate from Proposition 36 i.e. with probability 1 ,

Pr[f jb] Pr[f jb]   Pr[f jb]

This requires O(njSjT 2=()2 log(1=)) many samples. Moreover, because Pr[f jb] =  Pr[f jb] for
futures where tests passes, we can estimate the probability ratios with additive error:

Pr[f jb] (1 +  )Pr[f jb] (1 +  4)Pr[f jb] Pr[f jb]

d(f )               (1 )d(f )                       d(f )                       d(f )

where the second inequality holds for  <  1=2 and

Pr[f jb] (1 ) Pr[f jb] (1 2) Pr[f jb] Pr[f jb]

d( f )               (1 +  )d(f )                       d(f )

d(f )

where the second inequality holds for  <  1=2. This means
"

Pr[f jb]
# "

Pr[f jb]
#

 f S
d(f )

f S
d(f )

(35)

Combining Equations (33) to (35), we can build estimate [qb(x)]i for [q(x)]i such that with probabil-
ity 1 O()

j[qb(x)]i [q(x)]i j  "
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using

O(c2n10jOj2T 4 
"6 log2( ))

many conditional samples.

Corollary 35 We can learn approximations qb(bo) and B t  for all b 2  Bt , observations o and time t
2  [T ] such that with probability 1 ,

jjqb(bo) q(bo)jjF  "
p

n ; jjBt  B t j jF   "n

using at most O(n2jOjT m") conditional samples.

Proof Each entry of B t  and q(bo) is given by sums of the form s(b; x) where b is a basis history and
x  is arbitrary history of length t. Therefore, we can estimate each of them using estimates given by
Proposition 32:

jjBt  Bt jj
2  

X  
js(bi ; bj ) sb(bi; bj )j2  n2"2

i; j 2[n]

The result similarly holds for q(bo). There are O(n2) entries in each matrix with T many B t

matrices and O(n) entries in each vector with njOjT many q(bo) vectors.

Proposition 36 Consider a future f1:t of length t and history x. Fix  >  0. Suppose Pr[f  jxf1: 1] >   for
each  2  [t]. Then, we can build estimate Pr[f1:t jx] such that with probability 1 

Pr[f1:t jx] Pr[f1:t jx]   Pr[f1:t jx]

using at most O(t2=()2 log(t=)) conditional samples.

Proof By Hoeffding’s inequality, using m =  16t2 log(t=)=()2 samples, we have, with proba-bility
greater than 1 , that for all  2  [t],

Pr[f  jxf1: 1] Pr[f  jxf1: 1)  2t 
 
2t 

Pr[f  jxf1: 1);

where the last step uses our assumption above. For an upper bound, we have,

Pr[f1:t jx] =  = 1 Pr[f  jxf1: 1]  (1 +  
2t

)t
=1 Pr[f  jxf1: 1]

=  (
2t

)t Pr[f1:t jx]  Pr[f1:t jx) +   Pr[f1:t jx]

where the last step follows with (1 +  a)t  1 +  2at for a <  1=2t. Similarly, for a lower bound we
have:

Pr[f1:t jx]  (1   
2t

)t Pr[f1:t jx)  Pr[f1:t jx]  Pr[f1:t jx];

where the last step follows with (1 +  a)t  1 +  at for a   1.
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Proposition 37 Define a future f  to be -irregular for history b 2  B t  if there exists some  2  [t] (
can depend on b) such that

Pr[f  jbf1: 1] <  :

Let Fb  be the set of futures f  where f  is -irregular for history b. Then,

Pr[Fbjb]  jOjT

Proof Let future f  be of length T . We first partition the set Fb  into T sets: Fb;1; : : : ; Fb;T based on
the first time irregular is observed i.e. f  2  Fb;t ( )  t =  min Pr[f  jbf1: 1] <  . Now,

Pr[f jb]
f 1 : T  2 F b ; t

= Pr[ft+1:T  jbf1:t 1ft ] Pr[ft jbf1:t 1] Pr[f1:t 1jb]
f 1 : t      1 f t f t + 1 : T  2 F b ; t

Pr[ft jbf1:t 1] Pr[f1:t 1jb]
X

Pr[gjbf1:t 1ft ]
f 1 : t      1 f t 2 F b ; t

 jOj Pr[f1:t 1jb]

futures g of length T    t   1

(as Pr[ft jbf1:t 1]  )
f 1 : t      1 2F b ; t

jOj

Summing over all T of these sets gives the claim.

Appendix F. General algorithm for finding approximate basis

In this section, we learn an approximate version of basis for probability vectors. Throughout this
section, we ignore t subscript in Ft  and B t  when clear from context. We define an approximate
basis, which allows us to ignore histories which have very low probability under the distribution p:

Definition 38 (Approximate Basis) Fix 0 <  " <  1. For a distribution p  over observation se-
quences of length T , we say a subset of observations sequences B  forms an "-basis for p  at length t 2
[T ], if for every observation sequence x  =  (x1; : : : ; xt), there exists coefficients (x)  with ‘2 norm
jj(x)jj2  1 such that:

E x p  [jj Pr[F jx] Pr[F jB ](x)jj1 ]  " : We

first define regular distributions.

Definition 39 (Regular distribution) We say a distribution p  is -regular if min Prp[ojx]
where the minimum is over all histories x  and observations o where Pr[ojx] =  0.

We now present the main result in this section: how to build an approximate basis for a regular low
rank distribution.

Theorem 3 Let p  be an -regular distribution over observation sequences of length T with rank r.
Fix 0 <  " <  =T r and 0 <   <  1. Then, in poly(r; T; 1="; 1=; log(1=)) time, with probability 1 ,
we can find an "-basis of size at most O(r2T 3 log(1=")) using conditional sampling oracle.

We believe the regularity assumption on the distribution can be removed using the ideas from Ap-
pendix E.6 but leave it as future work.
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F.1. Learning coefficients

Towards this goal, we first show how to check given an observation sequence x  and set of observa-
tion sequences B  if there exists (x)  such that

jj Pr[F jx] Pr[F jB ](x)jj1  "

Instead of directly working with the ‘1 loss, we first define an ‘2 loss which we can use as its
proxy.

Definition 40 For set of observation sequences B  =  fb1; : : : ; bhg, observation sequence x, column
vector  2  Rj B j ,  we define the ‘2 approximation error as:

L B ; x ( )  : =  E
f
d

P
d(f )  

] 
  

j = 1  
j  

P
d(f )

j ] 2

; ;

where d is the mixture distribution for B :

d(f )  =  
1 

Pr[f jx] +  
1 X

P r [ f j b i ] ;
i = 1

When clear from context, we drop the B ; x  superscript.

We will use our ability to simulate relative probabilities for regular distributions (Proposition 36) to
build our guess for approximate basis.

Proposition 41 Let p  be an -regular distribution, x  be an observation sequence of length t 2  [T ] and
B  be any set of observation sequences of length t. Suppose f1; : : : fm are i.i.d. samples from d. Then,
using poly(T; 1="; 1=; log(1=)) many conditional samples, we can have estimates Pr[fi jb] for all i  2
[m] and b 2  B  [  fxg  such that with probability 1 ,

sup L B ; x ( )  L B ; x ( )   "
kk 2 C ; L B ; x ( ) L B ; x ( 0 )

where the estimated ‘2 error function L B ; x  is defined as

1 X  Pr[f  jx] X Pr[f  jb ] 2

B ; x m 
i2[m] d(f i ) j = 1     

 j       
d(f i )

and d(f i )  is the mixture distribution defined with the estimated probabilities.

Proof For notational convenience, we will drop the B ; x  superscript and simply write L ( )  in the
proof. Using poly(1=; 1=; T; log(1=)) conditional samples (Proposition 36), with probability 1 ,
we can have estimates Pr[fi jb] such that, for all i  2  [m] and b 2  B  [  fxg,

j Pr[fi jb] Pr[fi jb]j   Pr[fi jb]:
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Define:

We have that:

L ( )  : =  
m 

i2[m] 

P
d(f i )  

] 
  

j = 1  
j  

P
d(f

j
)

j ] 2

:

L ( )  L ( )   L ( )  L ( )  +  L ( )  L ( ) :

We will handle the two terms above separately.
To bound jL ( )  L()j ,  let us first show that for any observation sequence f :

To see this, observe that:

which implies:

X P r [ f j b j ] 2
2

j = 1
d(f )

max
Pr[fi jbj ]   2h;

i2[m];j 2[h] i

j = 1  

P
d(f )

j ] 2  

 2h
 j = 1  

P
d(f )

j ]  
=  4h2:

Now using that the square loss is a 2-smooth function and a standard uniform convergence argument,
we have that

sup L ( )  L ( )   16(C h +  1)
log(1=)

;
kk2 C

holds with probability greater than 1 .
For the second term, define

Pr[fi jx] X Pr[fi jbj ] Pr[fi jx] X Pr[fi jbj ]
d(fi ) j = 1             

 d(fi )                d(f i ) j = 1             
 d(f i )

Let us first show that, for all i  2  [m],

j(f i )j  4h(1 +  C
p

h) :

We have that:

Pr[fi jx]       Pr[f i jx] Pr[fi jbj ]       Pr[fi jbj ]   d(f i )
d( f i )        

j 2[h]
 d(f i )              d( f i )

 (1 +  kk ) max 
Pr[fi jb] 

  
Pr[fi jb]

b 2 B [ f x g  i i

 (1 +  C  h) max 
Pr[fi jb] 

  
Pr[fi jb]

:
b 2 B [ f x g i i

47



 

id(f  )

c

b id(f  )

c

b +  4h

c

b      2h:

b b b

b
c h c

b bd(f ) d(f  )m m
vu
t b m m
v   uu

m m

p

p

B  ;bh      h + 1

K A K A D E  K R I S H NA M U RT H Y M A H A JA N ZH A NG

The claim would follow provided we have that, for all i  2  [m] and all b 2  B  [  fxg,

Pr[fi jb] 
  

Pr[fi jb]
 
 4h; (36)

To see this, using that   1=2, we have the following upper bound that:

Pr[fi jb] (1 +  ) Pr[fi jb] (1 +  4) Pr[fi jb] Pr[fi jb]
d(f i )             (1 )d(fi )                    d(fi )                    d(fi )

and the lower bound:

Pr[fi jb] (1 ) Pr[fi jb] (1 2) Pr[fi jb] Pr[fi jb]
d(f i )             (1 + )d(fi )                    d(fi )                    d(fi )

This completes the proof of Equation (36).
Now consider any  such that L ( )   L(0).  Also, it is straightforward that L (0)   4. This

implies that:

L ( )  L ( )  =  
2 X  Pr[fi jx] X

j  
Pr[f i jb j ]

(f i )  +  
1 X  

(f i )2  i2[m]

i j = 1 i i2[m]

 2 u L ( )   
1 X  

(f i )2  +  
1 X  

(f i )2

i2[m] i2[m]

 4 t

 
1

 
X

 

(f i )2  +  
1 X  

(f i )2

i2[m] i2[m]

 4  4h(1 +  C
p

h )  +  162h2(1 +  C
p

h) 2

16h(1 +  h)(1 +  C  h)2:

where the first step follows from a2   b2 =  2b(a   b) +  (a   b)2 and the second step from
Cauchy–Schwarz inequality. Combining the bounds for the first and second terms completes the
proof.

F.2. Algorithm

We now ready to present our algorithm. The user furnishes ", the accuracy with which approximate
basis is to be learned; and , a confidence parameter. The parameter n and H  depend on the input.

By Hoeffding’s inequality, it is clear that if this algorithm ends then we have found an approx-
imate basis. We know show that with high probability, this algorithm ends in small number of
rounds.

Proposition 42 Let p  be an -regular distribution over observation sequences of length T with rank
r. Fix 0  "  2=T 2r2. Let C  = 2T r log(1=") and let H  be any natural number
provided H   8rT 2 log(1="). Consider any sequence of observation sequences b1; b2; : : : ; bH . Let
B h  =  fb1; : : : ; bhg. Then, there exists h  H  such that:

min L ()  "
2R h ; j j j j 2 C
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Algorithm 3: Learning approximate basis using conditional samples.
1 for round i  =  1; 2; : : : ; H do
2 Sample n samples x  =  (x1; : : : ; xt) of length t from distribution p.
3 Check using Proposition 41 if any of the samples x  above is a “counterexample” i.e.

satisfies
2

min L () >
2R h ; j j j j 2 C

4 if we find such a counterexample x  =  (x1; : : : ; xt) then
5                      Add x  to B
6 else
7 return B

Proof For  2  Rh , define:

L ( h ) ( )  : =  L B h ; b h + 1 ( )  +  
X

j  j = 1

and d(h) to be the mixture distribution corresponding to Bh . Define:

Pr[f jbj ] : =  
Pr[f jbj ] 

:

It will be helpful to overload notation and view P j  =  Pr[F jbj ] as a vector of length jF j and P1:h
=  Pr[F jBh ] as a matrix of size jF j  h, whose columns are P1; : : : Ph. We overload no-tation
analogously for the vector P j  and the matrix P 1:h. Also, let D ( h )  be a diagonal matrix of size jF j
jF j, whose diagonal entries are d(h), where we drop the h superscript when clear from context. With
our notation, we have that P h + 1  =  D  1=2Ph+1 and P 1:h =  D  1=2P1:h. We will write P  and P
in lieu of P1:h and P 1:h, when clear from context.

We have:

(h) Pr[f jbh+1 ] X Pr[f jbj ] 2

d(h) (f )
j = 1          

d(h) (f )

=  ( D  1 Ph+1 D  1 P1 :h )> D (D  1 Ph+1 D  1P1:h)

=  kP h+1 P k2;

where we have used our matrix notation. Let us consider the following ridge regression estimator:

(h) =  argmin L ( h ) ( )  +  kk2

2 R d        

=  argmin kP h+1      P k2 +  kk2

2 R d

=  ( P > P  +  I )  1 P > P h+ 1 :
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For pmin =  T  , define h to be the jF j  jF j sized matrix, as follows

h : =  pmin I +  P1:hP1:h
 =  pmin I +  

X
P j P > :  j = 1

We will now show that:

Define:

One can verify that:

min L ( h ) ( )   P >       1 P : (37)
2 R h

h : =  I  +  P 1:hP 1:h:

P (h)  =  P ( P > P  +  I )  1 P > P h + 1  =  P P > ( P P >  +  I )  1 P h+1 =  P P >
 1 P h+1 ;

and that:

k(h)k2 =  P h+1 h 
1 P P > h  

1 P h+1 =  P h+1 h 
1(h I )h  

1 P h+1

=  P h+1 h 
1 P h+1 P h+1 h 

2 P h+1 :

Using this, we have:

min L ( h ) ( )  =  kP h+1 P (h)k2 +  k(h)k2

=   I  P P >
 1    

 
P h + 1  +  k(h)k2

=  P P >  +  I  P P >
 1 P h+1

2 

+  k(h)k2

=  2 P h+1 h 
2 P h+1 +  k(h)k2 =

P h+1 h 
1 P h+1 :

By our assumption on pmin, we have that d(h) (f )  pmin, which implies D    1 I .  Using this, we
have

P h+1 h 
1 P h+1 =  ( D  1= 2 Ph+1 )> (I  +  D  1 = 2 P P > D  1=2) 1 D  1=2Ph+1 =

P h + 1 (D +  P P > )  1 Ph+1

 Ph+1 (pmin I +  P P > )  1 Ph+1 =

Ph+ 1 h 
1 Ph+1 ;

where we have used the definition of h in the last step. This proves the claim in Equation (37).
This implies:

min min L ( h ) ( )   
1 X  

min L ( h ) ( )   
 X

P h + 1 h
 1 Ph+1 : h=1

h=1
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Using that kPh+1k2  1 (since Ph + 1  is a probability distribution), Lemma 43 implies:

1 X
l o g ( 1  +  Ph+ 1 h 

1 Ph+1 )  
r  

log 
 

1 +  H=(pmin); h=1

which implies there exists an h  H  such that:

log(1 +  Ph+ 1 h 
1 Ph+1 )  

H  
log 

 
1 +  H=(pmin):

For H   4r log(1 +  H=(pmin )), exponentiating leads to:
Ph+ 1 h 

1 Ph+1  exp
H

 log 
 

1 +  H=(pmin )
 

1  2
H

 log 
 

1 +  H=(pmin )

where the last step follows due to our choice of H .  This shows that there exists an h  H  such that:

min L ( h ) ( )   
r  

log 
 

1 +  H=(p ):
2 R h

Choosing  =  "2, setting H  =  8rT 2 log(1=") suffices to satisfy our assumptions. This implies we
get the minimum loss is achieved at  whose norm is bounded by

s
jjjj2  C  : = 2T r log

"

and therefore for " <  2=T 2r2, we get

min L( h ) ( )   "
2R h ; j j j jC

The following is a variant of the Elliptical Potential Lemma, from the analysis of linear ban-
dits (Dani et al., 2008).

Lemma 43 (Elliptical potential) Consider a sequence of vectors fx1 ; : : : ; xT g where, for all i  2
[T ], each x i  2  V, where V is a d-dimensional subspace of a Hilbert space, and kxik  B .  Let  2
R + .  Denote t =  0 + i = 1  x i x > .  We have that:

T 2  min ln 1
+  x i  i      x i        T 

i = 1  

ln 1 +  x i  i      x i       =  
T 

ln 
det(I )  

T 
log     1 +  

d

We now finish the proof of Theorem 3 by adding the missing details. We first show that ‘1 loss is
upper bounded by our ‘2 proxy loss.

Proposition 44 Let x  be an observation sequence of length t 2  [T ] and B  =  fb1; : : : ; bhg be any
set of observation sequences of length t. We have that:

jj Pr[F jx] 
X

j  Pr[F jbj ]jj1  
q

L B ; x ( ) :  j = 1
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Proof We have that:
2   3

jj Pr[F jx]   
j = 1  

j  Pr[F jbj ]jj1 =  E f d  4 
P d(f )  

] 
  

j = 1  
j  Pd(f

)j ]  
5

u Pr[f jx] X Pr[f jb ] 2 f d

d(f )
j = 1     

 j       d(f )

where the last step uses Jensen’s inequality.

Proof [Proof of Theorem 3] We choose C  =  
p

2 T r  log(16="2), H  =  8rT 2 log(16="2) and n
=  O(1="2 log(H=)). Let h (x) be the coefficients such that

h (x) = argmin L B  ;x ()
2R h ; j j j j 2 C

From P roposition 41, using poly(r; T; 1="; 1=; log(1=)) many conditionally samples, we can get
with probability 1 =2, for all h 2  [H ] and observation sequence x  in our random sample

L B h ; x ( (x ) )  L B h ; x ( (x ) )   
32

(38)

In our algorithm, when we find a counterexample, it means for some observation sequence x  in the
random sample:

2
L B h ; x ( (x ) )  >  

8
This means, by Equation (38), for that observation sequence x,

2
L B h ; x ( (x ) )  >  

16
:

However, by our choice of C  and H ,  by Proposition 42 this can not happen H  times and therefore,
our algorithm should end in at most H  rounds.

We will now show that the overall error of our basis is small. When our algorithm ends, then we
should have for all observation sequence x  in our random sample:

min L ()  
"2

2R h ; j j j j 2 C

This means by Equation (38), we should have for all observation sequence x  in our random sample:

min L ()  
"2 

:
2R h ; j j j j 2 C

By Proposition 44, this implies for all observation sequence x  in our random sample:

min jj Pr[F jx] Pr[F jB ]jj  
"

:
2R h ; j j j j 2 C
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Therefore, for our choice of n, by Hoeffding inequality, we get with probability 1 =2,

xp
min jj Pr[F jx] Pr[F jB ]jj >  "=2  "=2

2R h ; j j j j 2 C

Since, for all histories x

we get that

min jj Pr[F jx] Pr[F jB ]jj  1;
2R h ; j j j j 2 C

Ex p min jj Pr[F jx] Pr[F jB ](x)jj  (1 "=2)"=2 +  "=2  "
2R h ; j j j j 2 C

Let B0 be the set where we repeat C  times every b 2  B ,  then we get that

Ex p min jj Pr[F jx] Pr[F jB ](x)jj  (1 "=2)"=2 +  "=2  "
2Rh ;jj j j2 1

This completes the proof.

Appendix G. Helper propositions

Proposition 45 (Hoeffding’s inequality) Let X1 ; X2 ; : : : ; Xn be independent random variables
such that a  X i   b almost surely. Consider the sum of these random variables,

S n  =  X 1  +   +  X n :

Then for all t >  0,
2

Pr [jSn      E [Sn ]j  nt]  2 exp  
(b     

 
a)2

Here E [Sn ]  is the expected value of Sn .

In our work, we care about how far are the projection operators onto top eigenspace for two
symmetric matrices which are close to each other. This follows as a corollary of Davis-Kahan
theorem.

Proposition 46 (Davis-Kahan theorem) Let  and  be real symmetric matrices with the eigen-value
decomposition: V 0V >  +  V ? 1 V ? >  and V 0V >  +  V ? 1 V ? > .  If the eigenvalues of 0 are contained
in an interval [a; b], and the eigenvalues of 1 are excluded from the interval [a ; b +  ] for
some  >  0, then

Corollary 47 ((Peng, 2020))
Then,

jjV ?
>

V  jjF  
jjV ? > (  )V jjF

Let , , V , V and  be as defined above. Assume V; V 2  Rn r .

jjV V >
 

V V 
>

j jF   
p

2r jj  jj2
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