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Abstract

We consider the problem of decentralized multi-

agent reinforcement learning in Markov games. A

key question is whether there are algorithms that,

when run independently by all agents, lead to no-
regret for each player, analogous to celebrated results

for no-regret learning in normal-form games. While

recent work has shown that such algorithms exist for

restricted settings (e.g., when regret is defined with

respect to deviations to Markov policies), the ques-
tion of whether independent no-regret learning can

be achieved in the standard Markov game framework

was open. We provide a decisive negative resolution
to this problem, both from a computational and

statistical perspective. We show that:

1. Under the assumption that PPAD-hard prob-
lems cannot be solved in polynomial time, there
is no polynomial-time algorithm that attains no-
regret in general-sum Markov games when ex-
ecuted independently by all players, even when
the game is known to the algorithm designer
and the number of players is a small constant.

2. When the game is unknown, no algorithm,
efficient or otherwise, can achieve no-regret
without observing exponentially many
episodes in the number of players.

These results are proven via lower bounds for a sim-
pler problem we refer to as SPARSECCE, in which
the goal is to compute a coarse correlated equilibrium
that is “sparse” in the sense that it can be represented
as a mixture of a small number of product policies.
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1. Introduction

The framework of multi-agent reinforcement learning (MARL),
which describes settings in which multiple agents interact in a
dynamic environment, has played a key role in recent break-
throughs in artificial intelligence, including the development of
agents that approach or surpass human performance in games
such as Go (Silver et al., 2016), Poker (Brown & Sandholm,
2018), Stratego (Perolat et al., 2022), and Diplomacy (Kramar ‘et
al., 2022; Bakhtin et al., 2022). MARL also shows promise for
real-world multi-agent systems, including autonomous
driving (Shalev-Shwartz et al., 2016), and cybersecurity
(Malialis & Kudenko, 2015), and economic policy (Zheng et
al., 2022). These applications, where reliability is critical,
necessitate the development of algorithms that are practical and
efficient, yet provide strong formal guarantees and robustness.

Multi-agent reinforcement learning is typically studied using the
framework of Markov games (also known as stochastic games)
(Shapley, 1953). In a Markov game, agents interact over a finite
number of steps: at each step, each agent observes the state
of the environment, takes an action, and observes a reward
which depends on the current state as well as the other
agents’ actions. Then the environment transitions to a new
state as a function of the current state and the actions taken.
An episode consists of a finite number of such steps, and
agents interact over the course of multiple episodes,
progressively learning new information about their environment.
Markov games generalize the well-known model of Markov
Decision Processes (MDPs) (Puterman, 1994), which
describe the special case in which there is a single agent
acting in a dynamic environment, and we wish to find a policy
that maximizes its reward. By contrast, for Markov games,
we typically aim to find a distribution over agents’ policies
which constitutes some type of equilibrium.

1.1. Decentralized learning

In this paper, we focus on the problem of decentralized (or,
independent) learning in Markov games. In decentralized
MARL, each agent in the Markov game behaves independently,
optimizing their policy myopically while treating the effects of
the other agents as exogenous. Agents observe local informa-
tion (in particular, their own actions and rewards), but do not
observe the actions of the other agents directly. Decentralized
learning enjoys a number of desirable properties, including
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scalability, versatility, and practicality. The central question
we consider is whether there exist decentralized learning
algorithms which, when employed by all agents in a Markov
game, lead them to play near-equilibrium strategies over time.

Decentralized equilibrium computation in MARL is not well
understood theoretically, and algorithms with provable guar-
antees are scarce. To motivate the challenges and most salient
issues, it will be helpful to contrast with the simpler problem
of decentralized learning in normal-form games, which may be
interpreted as Markov games with a single state. Much of the
modern work on decentralized learning in normal-form games
centers on no-regret learning, where agents select actions
independently using online learning algorithms (Cesa-Bianchi
& Lugosi, 2006) designed to minimize their regret (that is, the
gap between realized payoffs and the payoff of the best fixed
action in hindsight). In particular, a foundational result is that
if each agent employs a no-regret learning strategy, then the
average of the agents’ joint action distributions approaches a
coarse correlated equilibrium (CCE) for the normal-form game
(Cesa-Bianchi & Lugosi, 2006; Hannan, 1957; Blackwell,
1956). CCE is a natural relaxation of the foundational concept
of Nash equilibrium, which has the downside of being
intractable to compute. On the other hand, there are many
efficient algorithms that can achieve vanishing regret in a
normal-form game, even when opponents select their actions in
an arbitrary, potentially adaptive fashion, and thus converge to a
CCE (Vovk, 1990; Littlestone & Warmuth, 1994; Cesa-Bianchi
et al., 1997; Hart & Mas-Colell, 2000; Syrgkanis et al., 2015).

This simple connection between no-regret learning and
decentralized convergence to equilibria has been influential in
game theory, leading to numerous lines of research including
fast rates of convergence to equilibria (Syrgkanis et al., 2015;
Chen & Peng, 2020; Daskalakis et al., 2021; Anagnostides
et al., 2022), price of anarchy bounds for smooth games
(Roughgarden, 2015), and lower bounds on query and com-
munication complexity for equilibrium computation (Fearnley
et al., 2013; Rubinstein, 2016; Babichenko & Rubinstein,
2017). Empirically, no-regret algorithms such as regret
matching (Hart & Mas-Colell, 2000) and Hedge (Vovk, 1990;
Littlestone & Warmuth, 1994; Cesa-Bianchi et al., 1997) have
been used to compute equilibria that can achieve state-of-the-art
performance in application domains such as Poker (Brown
& Sandholm, 2018) and Diplomacy (Bakhtin et al., 2022).
Motivated by these successes, we ask whether an analogous
theory can be developed for Markov games. In particular:

Are there efficient algorithms
for no-regret learning in Markov games?

Challenges for no-regret learning. In spite of active research
effort and many promising pieces of progress (Jin et al., 2021;
Song et al., 2022; Mao & Basar, 2021; Daskalakis et al., 2022;
Erez et al., 2022), no-regret learning guarantees for Markov
games have been elusive. A barrier faced by naive algorithms

is that it is intractable to ensure no-regret against an arbitrary
adversary, both computationally (Bai et al., 2020; Abbasi Yad-
kori et al., 2013) and statistically (Liu et al., 2022; Kwon et al.,
2021; Foster et al., 2022). Fortunately, many of the implications
of no-regret learning (in particular, convergence to equilibria)
do not require the algorithm to have sublinear regret against an
arbitrary adversary, but rather only against other agents who are
running the same algorithm independently. This observation
has been influential in normal-form games, where the line of
work on fast rates of convergence to equilibrium (Syrgkanis
et al., 2015; Chen & Peng, 2020; Daskalakis et al., 2021; Anag-
nostides et al., 2022) holds only in this more restrictive setting.
This motivates the following relaxation to our central question.

Problem 1.1. Is there an efficient algorithm that, when
adopted by all agents in a Markov game and run independently,
leads to sublinear regret for each individual agent?

Attempts to address Problem 1.1. Two recent lines of research
have made progress toward addressing Problem 1.1 and related
questions. In one direction, several recent papers have provided
algorithms, including V-learning (Jin et al., 2021; Song et
al., 2022; Mao & Basar, 2021) and SPoCMAR (Daskalakis et
al., 2022), that do not achieve no-regret, but can nevertheless
compute and then sample from a coarse correlated equilibrium
in a Markov game in a (mostly) decentralized fashion, with
the caveat that they require a shared source of random bits as a
mechanism to coordinate. Notably, V-learning depends only
mildly on the shared randomness: agents first play policies in a
fully independent fashion (i.e., without shared randomness)
according to a simple learning algorithm for T episodes, and
use shared random bits only once learning finishes as part of a
post-processing procedure to extract a CCE policy. A question
left open by these works, is whether the sequence of policies
played by the V-learning algorithm in the initial independent
phase can itself guarantee each agent sublinear regret.

Most closely related to our work, Erez et al. (2022) recently
showed that Problem 1.1 can be solved positively for a restricted

setting in which regret for each agent is defined as the maximum

gain in value they can achieve by deviating to a fixed Markov
policy. Markov policies are those whose choice of action de-
pends only on the current state as opposed to the entire history of
interaction. This notion of deviation is restrictive because in
general, even when the opponent plays a sequence of Markov
policies, the best response will be non-Markov. In challeng-
ing settings that abound in practice, it is standard to consider
non-Markov policies (Leibo et al., 2021; Agapiou et al., 2022),
since they often achieve higher value than Markov policies; we
provide a simple example in Proposition B.1. Thus, while a
regret guarantee with respect to the class of Markov policies
(as in (Erez et al., 2022)) is certainly interesting, it may be too
weak in general, and it is of great interest to understand whether
Problem 1.1 can be answered positively in the general setting.!

\We remark that the V-learning and SPoCMAR algorithms
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We refer the reader to Appendix B.2 for further discussion.

1.2. Our contributions

We resolve Problem 1.1 in the negative, from both a
computational and statistical perspective.

Computational hardness. We provide two computational
lower bounds (Theorems 1.2 and 1.3) which show that under
standard complexity-theoretic assumptions, there is no efficient
algorithm that runs for a polynomial number of episodes and
guarantees each agent non-trivial (“sublinear”) regret when
used in tandem by all agents. Both results hold even if the
Markov game is explicitly known to the algorithm designer;
Theorem 1.3 is stronger and more general, but applies only to
3-player games, while Theorem 1.2 applies to 2-player games,
but only for agents restricted to playing Markovian policies.

To state our first result, Theorem 1.2, we define a product
Markov policy to be a joint policy in which players choose
their actions independently according to Markov policies
(see Sections 2 and 3 for formal definitions). Note that if all
players use independent no-regret algorithms to choose Markov
policies at each episode, then their joint play at each round is
described by a product Markov policy, since any randomness in
each player’s policy must be generated independently.

Theorem 1.2 (Informal version of Corollary 3.3). If PPADP,
then there is no polynomial-time algorithm that, given the
description of a 2-player Markov game, outputs a sequence
of joint product Markov policies which guarantees each agent
sublinear regret.

Theorem 1.2 provides a decisive negative resolution to Problem
1.1 under the assumption that PPAD P,? which is standard in
the theory of computational complexity (Papadimitriou, 1994).3
Beyond simply ruling out the existence of fully decentralized
no-regret algorithms, it rules out existence of centralized algo-
rithms that compute a sequence of product policies for which
each agent has sublinear regret, even if such a sequence does not
arise naturally as the result of agents independently following
some learning algorithm. Salient implications include:

e Theorem 1.2 provides a separation between Markov
games and normal-form games, since standard no-regret
algorithms for normal-form games i) run in polynomial

mentioned above do learn equilibria that are robust to deviations to
non-Markov policies, though they do not address Problem 1.1 since
they do not have sublinear regret.

2Technically, the class we are denoting by P, namely of total
search problems that have a deterministic polynomial-time algorithm,
is sometimes denoted by FP, as it is a search problem. We ignore
this distinction.

3PPAD is the most well-studied complexity class in algorithmic
game theory, and is widely believed to not admit polynomial time
algorithms. Notably, the problem of computing a Nash equilibrium
for normal-form games with two or more players is PPAD-complete
(Daskalakis et al., 2009; Chen et al., 2006; Rubinstein, 2018).

time and ii) produce sequences of joint product policies
that guarantee each agent sublinear regret. Notably,
no-regret learning for normal-form games is efficient
whenever the number of agents is polynomial, whereas
Theorem 1.2 rules out polynomial-time algorithms for
as few as two agents.

A question left open by the work of Jin et al. (2021); Song
et al. (2022); Mao & Basar (2021) was whether the se-
quence of policies played by the V-learning algorithm
during its independent learning phase can guarantee each
agent sublinear regret. Since V-learning plays product
Markov policies during the independent phase and is com-
putationally efficient, Theorem 1.2 implies that these poli-
cies do not enjoy sublinear regret (assuming PPAD P).

Our second result, Theorem 1.3, extends the guarantee of
Theorem 1.2 to the more general setting in which agents
can select arbitrary, potentially non-Markovian policies at
each episode. This comes at the cost of only providing
hardness for 3-player games as opposed to 2-player games, as
well as relying on the slightly stronger complexity-theoretic
assumption that PPAD T RP.#

Theorem 1.3 (Informal version of Corollary 4.4). If
PPAD t RP, then there is no polynomial-time algorithm that,
given the description of a 3-player Markov game, outputs a
sequence of joint product general policies (i.e., potentially
non-Markov) which guarantees each agent sublinear regret.

Statistical hardness. Theorems 1.2 and 1.3 rely on the widely-
believed complexity theoretic assumption that PPAD-complete
problems cannot be solved in (randomized) polynomial time.
Such a restriction is inherent if we assume that the game is
known to the algorithm designer. To avoid complexity-theoretic
assumptions, we consider a setting in which the Markov game
is unknown to the algorithm designer, and algorithms must
learn about the game by executing policies (“querying”) and
observing the resulting sequences of states, actions, and rewards.
Our final result, Theorem 1.4, shows unconditionally that, for
m-player Markov games whose parameters are unknown, any
algorithm computing a no-regret sequence as in Theorem 1.3
requires a number of queries that is exponential in m.

Theorem 1.4 (Informal version of Theorem 5.2). Given
query access to a m-player Markov game, no algorithm that
makes fewer than 2
PMA queries can output a sequence of joint product policies
which guarantees each agent sublinear regret.

Similar to our computational lower bounds, Theorem 1.4
goes far beyond decentralized algorithms, and rules out even
centralized algorithms that compute a no-regret sequence by

jointhy—eontreling all players. The result provides another

“We use RP to denote the class of total search problems for which
there exists a polynomial-time randomized algorithm which outputs a
solution with probability at least 2{3, and otherwise outputs “fail”.
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separation between Markov games and normal-form games,
since standard no-regret algorithms for normal-form games
can achieve sublinear regret using polypmg queries for any m.
The 2
PMA scaling in the lower bound, which does not rule out query-
efficient algorithms when m is constant, is to be expected for an
unconditional result: If the game has only polynomially many
parameters (which is the case for constant m), one can
estimate all of the parameters using standard techniques (Jin et
al., 2020), then directly find a no-regret sequence.

Proof techniques: the SPARSECCE problem. Our proofs
proceed via establishing lower bounds for a computational
problem we refer to as SPARSECCE. In the SPARSECCE
problem, the aim is to compute a CCE that can be represented
as the mixture of a small number of product policies. See
Sections 3 and 4 for detailed proof overview.

Organization. Section 2 presents preliminaries, Sections 3
and 4 provide our computational lower bounds, and Section 5
presents our unconditional lower bounds for multi-player
games.

Notation. For nP N, we write rns:t1;2;:::;;nu. For a finite set T,
pT gdenotes the space of distributions on T . For an ele-ment
tPT, It PpT qdenotes the delta distribution that places
probability mass 1 on t. We adopt standard big-oh notation, and
write f Opgq to denote that f Opg maxtl;polylogpgquq,

with r
pgand
pg defined analogously.

2. Preliminaries

This section contains preliminaries necessary to present our
main results. We first introduce the Markov game framework
(Section 2.1), then provide a brief review of normal-form games
(Section 2.3), and finally introduce the concepts of coarse
correlated equilibria and regret minimization (Section 2.4).

2.1. Markov games

We consider general-sum Markov games in a finite-horizon,
episodic framework. For mP N, an m-player Markov game G
consists of a tuple G pS;H;pAidiprms; P;PRidiprms;d, Where:

¢ S denotes a finite state space and H P N denotes a finite
time horizon. We write S:|S|.

* ForiPrms, A, denotes a finite action space for agent i.

We let A : m Aj denote the joint action space and A; :

o Ai1. We denote joint actions in bold, e.g.,
apa;:iamqPA. We write A :|Ai| and A:|A|.

e P pPy;:::; Puq is the transition kernel, with each Py
:SA N pSq denoting the kernel for step hPrHs. In
particular, Phps!|s;aq is the probability of transitioning to
st from the state s at step h when agents play a.

e ForiPrmsand hPrHs, Ri;h :SA N ri{H;1{Hs

is the reward function for agent i:> the reward agent i
receives in state s at step h if agents play a is Rinps;aq.®

* PpSq denotes the initial state distribution.

An episode in the Markov game proceeds as follows: the
initial state s1 is drawn from the initial state distribution .
Then, for each h / H, given state sp, each agent i
plays action ai;n P Aj, and given the joint action profile
an  payh; i ; ampq, each agent i receives reward of
ri:h Ri;npsh; ang and the state of the system transitions to
Sh 1 Phplsh;ang. We denote the tuple of agents’
rewards at each step h by rn pri;h;:::;rm:nqg, and refer to

agent i P rms, we write Xi pX1;:::;Xi1;Xi 1;:::;Xm( to denote
the tuple consisting of all x;: for iti.

2.2. Policies and value functions

We now introduce the notion of policies and value functions
for Markov games. Policies are mappings from states (or
sequences of states) to actions for the agents. We consider
several different types of policies, which play a crucial role in
distinguishing the types of equilibria that are tractable and
those that are intractable to compute efficiently.

Markov policies. A randomized Markov policy for agent i is
a sequence ; pi:1;::5iH0, Where i.h : S N pAigq. We denote the
space of randomized Markov policies for agent i by ™markov,
We write markev ;markovmarkov 15 denote the space of product
Markov policies, which are joint policies in which each agent
i independently follows a policy in ™2™V |n particular, a
polilcy pmarkov js specified by a collection p1;:::;nq, where
h:S N pAig pAmg. We additionally define markov .
markov and for a policy P ™3™°Y, write ; to denote the
collec-tion of mappings i pi:1;:::;iHq, Where i;n : S N j1;pAnq
denotes the tuple of all but player i’s policies.

When the Markov game G is clear from context, for a policy
p markov e |et Prs denote the law of the trajectory when
players select actions via an psnhg, and let Ers denote the
corresponding expectation.

General (non-Markov) policies. In addition to Markov poli-
cies, we will consider general history-dependent (or, non-

SWe assume that rewards lie in r1{H;1{Hs for notational
convenience, as this ensures that the cumulative reward for each
—episodetiesinTl;1s. This assumption is not important to our results.

\We restrict our attention to Markov games in which the rewards
at each step are a deterministic function of the state and action profile.
Since our goal is to prove lower bounds, this is without loss.
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Markov) policies, which select actions based on the en-
tire sequence of states and actions observed up the cur-
rent step. To streamline notation, for i P rms, let i.h

PS1;ai:1;Mi:1; 5205 Sh; Qish; Mi;hg denote the history of agent i’s

states, actions, and reward up to step h. Let Hi.n pS A r0;1sq"

denote the space of all possible histories of agent i up to step
h. For iPrms, a randomized general (i.e., non-Markov) policy
of agent i is a collection of mappings i pi;1;:::;i:nq Where i.h
:Hi:h1 S N pAiq is a mapping that takes the history observed
by agent i up to step h1 and the current state and outputs a
distribution over actions for agent i.

We denote by & rnd the space of random-

ized general poI|C|es of agent i, and further write
genyind . genirnd genimd to dengte the space of product
general policies; note that Markov geenmd angd markov g gemimd,
In particular, a policy P genmd jg speucﬁed by a
collection  pi;hQiprms;hpris, Where i;h : Hi;n1 S N pAiq.
When agents play according to a general policy Pgenmd  at
each step h, each agent, given the current state sy and their
history i.n1 P Hi;h1, chooses to play an action ai;h i;hPi;h1;Shd,
independently from all other agents. For a policy P &mmd,
we let Prs and Ers denote the law and expectation operator for
the trajectory when players select actions via ah ph1;shg, and
write ; to denote the collection of policies of all agents but i,
ie., i Pi;hdhPrHs;jPrmsztiu-

We will also consider distributions over product randomized
general policies, namely elements of pg™™dq.” We will refer
to elements of p8&™dq as distributional policies. To play a
distributional policy P P pg&™™Mdq, agents draw a randomized
policy P (so that P8™™d) and then play .

Value functions. For a general policy P 8™mmd e

define the value function for agent i P
Vi . E ﬂlRi;hpsh;ahq |s1 ; this represents
the expected reward that agent i receives when each agent
chooses their actions via ai;n  hpi;h1; Sha.For a
distributional policy P Pp8™™dq, we extend this notation by

defining V? :Ep rVs.
1

rms as

2.3. Normal-form games

To motivate the solution concepts we consider for Markov
games, let us first revisit the notion of normal-form games,
which may be interpreted as Markov games with a single

state. For m; n P N, an m-player n-action normal-form
game G is specified by a tuple of m reward tensors
Mai;:::;Mm P r0;1s"", where each tensor is of order m (i.e.,

has n™ entries). We will write GpMpz;::;;Mmg. We as-sume
for simplicity that each player has the same number n of actions,
and identify each player’s action space with rns. Then

"When T is not a finite set, we take pT qto be the set of Radon
probability measures over T equipped with the Borel -algebra.

an an action profile is specified by a P rns™; if each player acts
according to a, then the reward for player i P rms is given by
pMiga Pr0;1s. Our hardness results will use the standard notion
of Nash equilibrium in normal-form games. We define the m-
player pn;g-NASH problem to be the problem of computing an -
approximate Nash equilibrium of a given m-player n-action
normal-form game. (See Definition C.2 for a formal definition
of -Nash equilibrium.) A celebrated result is that Nash
equilibria are PPAD-hard to approximate, i.e., the 2-player
pn;n°g-NAsH problem is PPAD-hard for any constant c j O
(Daskalakis et al., 2009; Chen et al., 2006). We refer the reader
to Section C.2 for further background on these concepts.

2.4. Markov games: Equilibria and no-regret

We now turn our focus back to Markov games, and introduce
the main solution concepts we consider, as well as the notion
of no-regret. Since computing Nash equilibria is intractable
even for normal-form games, much of the work on efficient
equilibrium computation has focused on alternative notions
of equilibrium, notably coarse correlated equilibria.

For a distributional policy P Ppg™™dq and a randomized
policy P& Imd of player i, we let ' P; Ppge" mdg denote the
distrlbutlonal policy which is given by the distri-bution of
pl;iqPe™™d for P (and ; denotes the margmal of onall
players but |) For Pee™™Md \we write 1; to denote the policy
given by p';igP#™, Let us fix a Markov game G, which in
partlcular determines the players’ value functions V .

Definition 2.1 (Coarse cprrelated equilibrium). For | 0, a
distributional policy P P p&™™dq is defined to be an -coarse
correlated equilibrium (CCE) if for each i P rms, it holds that

1p.
maX_Pgen;rndV P]IVP/. i ! i
Coarse correlated equilibria can be computed efficiently
for both normal-form games and Markov games, and are
fundamentally connected to the notion of no-regret and
independent learning, which we now introduce.

Regret. For a policy P89 we denote the distributional
policy which puts all its mass on by | Pp8e™™dq. Thus & T

It P pE™™Mdq denotes the distributional policy which
randomizes uniformly over the *¢. We define regret

as follows.

Definition 2.2 (Regret). Consider a sequence of policies
pia,.:..pTa pgeniind - For jprms, the regret of agent i with
respect to this sequence is defined as:

max V.oV (1)

gen;rnd
PP

Regl T pP1Q-::--PTQq

It is immediate from the above definitions that a sequence of
policies *9;:::;7"2 PEeN™d satisfies Reg;..p®'¥;:::;°79q/
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o

T if and only if the distributional policy : Ipt is an -

CCE (stated formally in Fact C.1 in the appendlx)

No-regret learning. A standard approach to decentralized
equilibrium computation, which exploits Fact C.1, is to
select P9; :::;PT@ P genimd sing independent no-regret

learning algorithms. A no-regret learning algorithm for player
i selects ™ P ge”"md based on the realized trajectories Pia

but with no knowledge of ™, so as to ensure that no-regret is
achieved: Reg T p”“‘;:::'F‘T“q/T If each player i
uses their own, independent no-regret learning algorithm, this
approach yields product policies *™??, and the unnquorm
average of the ** yields a CCE as long as all of the players
can keep their regret small.®

For the special case of normal-form games, there are several
efficient algorithms, which—when run independently—ensure
thabeach player’s regret affer T episodes is bounded above by
Op Tq(thatis Op1{ Tq) even when the other players’
actions are chosen adversarially.

3. Lower bound for Markovian algorithms

In this section we prove Theorem 1.2 (restated formally below
as Theorem 3.2), establishing that in two-player Markov games,
there is no computationally efficient algorithm that computes a
sequence *9;:::;;°"9 of product Markov policies so that each
player has small regret under this sequence. This section serves
as a warm-up for our results in Section 4, which remove the
assumption that *;:::;°"® are Markovian.

3.1. SPARSEMARKOVCCE and computational model

As discussed in the introduction, our lower bounds for no-regret
learning are a consequence of lower bounds for the SPAR-
SECCE problem. In what follows, we formalize this problem
(specifically, the Markovian variant, which we refer to as
SPARSEMARKOVCCE), as well as our computational model.

Description length for Markov games (constant m). Given a
Markov game G, we let pGg denote the maximum number of
bits needed to describe any of the rewards Rinps;aq or
transition probabilities Phpst|s; aq in binary.® We define
|G| : maxtS; maxiprms Ai; H; pGqu. The interpretation of |G|
depends on the number of players m: If m is a constant (as
will be the case in the current section and Section 4), then

—*An afternative model allows for player i to have knowledge of
the previous joint policies P9;:::;°", when selecting ™.

°In Appendix B, we discuss the implications of relaxing the
stipulation that *** be product policies (for example, by allowing the
use of shared randomness, as in V-learning). In short, allowing " to
be non-product essentially trivializes the problem.

\We emphasize that pGq is defined as the maximum number of
bits required by any particular ps;aq pair, not the total number of bits
required for all ps;aq pairs.

|G| should be interpreted as the description length of the game
G, up to polynomial factors. In particular, for constant m, the
game G can be described using |G |%P4 bits. In Section 5, we
discuss the interpretation of |G| when m is large.

The SPARSEMARKOVCCE problem. From Fact C.1, we
know that the problem of computing a sequence *¢;:::;*" of
joint product Markov policies for which each player has at most
T regret is equivalent to computing a sequence *';:::;°™ for
which the uniform mixture forms an -approximate CCE. We
define pT;g-SPARSEMARKOVCCE as the computational
problem of computing such a CCE directly.

Definition 3.1 (SPARSEMARKOVCCE problem). Foran
m-player Markov game G and parameters T P N and j
0 (which may depend on the size of the game G), pT; gq-
SPARSEMARKOVCCE is the problem of finding a

sequence P'9; :::; P9, with each P9 P Markov  gych that

the distributional policy —% lora P pE™Mdq s an -
CCE of G (or equivalently, such that for all i P rms, Reg;.t

pre;:Prq/T).

Decentralized learning algorithms naturally lead to solutions
to the SPARSEMARKOVCCE problem. In particular, consider
any decentralized protocol which runs for T episodes, where
at each timestep tPrTs, each player i Prms chooses a Markov
policy "I P marik"" to play, without knowledge of the other
players’ policies ™7 (but possibly using the history); any
strategy in which players independently run online learning
algorithms falls under this protocol. If each player experiences
overall regret at most T, then the sequence *%;:::;"is a
solution to the pT; g-SPARSEMARKOVCCE problem.
However, one might expect the pT;q-SPARSEMARKOVCCE
problem to be much easier than decentralized learning, since it
allows for algorithms that produce p*¢;:::;""9q satisfying the
constraints of Definition 3.1 in a centralized manner. The main
result of this section, Theorem 3.2, rules out the existence of
any efficient algorithms, including centralized ones, that solve
the SPARSEMARKOVCCE problem.

Before moving on, let us give a sense for what sort of scaling
one should expect for the parameters T and in the pT;qg-
SPARSEMARKOVCCE problem. First, we note that there al-
ways exists a solution to the p1;0q-SPARSEMARKOVCCE prob-
lem in a Markov game, which is given by a (Markov) Nash equi-
librium of the game; of course, Nash equilibria are intractable
to compute in general.!! For the special case of normal-form
games (where there is only a single state, and H 1), no-regret
learning (e.g., Hedge) yields a computationally efficient so-
lution to the pT;0p1{ T qq-SPARSEMARKOVCCE problem,
where the Opq hides a maxilog|Ai| factor. Refined conver-
gence guarantees of Daskalakis et al. (2021); Anagnostides et al.
(2022) improve upon this result, and yield an efficient solution

*Such a Nash equilibrium can be seen to exist by using backwards
induction to specify the player’s joint distribution of play at each state
at steps H;H 1;:::;1.
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to the pT;Op1{T qg-SPARSEMARKOVCCE problem.

3.2. Main result

Theorem 3.2. There is a constant Co i 1 so that the following
holds. Let nP N be given, and let TPN and j 0 satisfy T
expp?2n™2{25q. Suppose there is an algorithm that, given the
description of any 2-player Markov game G with |G |/n, solves
the pT;q-SPARSEMARKOVCCE problem in time U, for some
U PN. Then, for each nP N, the 2-player ptn*2u;4g-NasH
problem (Definition C.2) can be solved in time pnT U qg%.

We emphasize that the range T exppn®liq ruled out by
Theorem 3.2 is the most natural parameter regime, since the
runtime of any decentralized algorithm which runs for T
episodes and produces a solution to the SPARSEMARKOVCCE
problem is at least linear in T. Using that 2-player pn;g-NASH is
PPAD-complete for n€ (for any cj 0) (Daskalakis et al.,
2009; Chen et al., 2006; Rubinstein, 2018), we obtain the
following corollary.

Corollary 3.3 (SPARSEMARKOVCCE is PPAD-complete).
For any constant C i 4, if there is an algorithm which,
given the description of a 2-player Markov game G, solves
the p|G|S; |G|cd-SPARSEMARKOVCCE problem in time
polyp|G|qg,then PPAD P.

The condition C j 4 iLCoroIIary 3.3 is set to ensure that
|G|¢ expp|G|*C |G |{28q for sufficiently large |G|, so as
to satisfy the condition of Theorem 3.2. Corollary 3.3 rules out
the existence of a polynomial-time algorithm that solves the
SPARSEMARKOVCCE problem with accuracy polynomially
small and T polynomially large in jGj.

Proof overview. The proof of Theorem 3.2 is based on a reduc-
tion, which shows that any algorithm that efficiently solves the
pT;9-SPARSEMARKOVCCE problem, for T not too large, can
be used to efficiently compute an approximate Nash equilib-
rium of any given normal-form game. In particular, fix ngPN,
and let a 2-player normal form game G with ng actions be given.
We construct a Markov game G GpGq with horizon H ng

and action sets identical to those of the game G, i.e., A1 A rnos.

The state space of G consists n? states, which are indexed by
joint action profiles; the transitions are defined so that the
value of the state at step h encodes the action profile taken by the
agents at step h1.22 At each state of G, the reward functions
are given by the payoff matrices of G, scaled down by a factor
of 1{H (which ensures that the rewards received at each step be-
long to r0;1{Hs). In particular, the rewards and transitions out
of a given state do not depend on the identity of the state, and
so G can be thought of as a repeated game where G is played
H times. The formal definition of G is given in Definition D.3.

Fix any algorithm for the SPARSEMARKOVCCE prob-

—12Fgrtechnical reasons, this only is the case for even values of h;
we discuss further details in the full proof in Section D.2.

lem, and recall that for each step h and state s for G,
p‘qpqupAlquzq denotes the joint action distribution taken in

algorithm. The bulk of the proof of Theorem 3.2 consists of
proving a key technical result, Lemma D.4, which states that

there exists some tuple ph;s;tq such that pt“hpsq is an
approximate Nash equilibrium for G. With this established, it
follows that we can find a Nash equilibrium efficiently by
simply trying all HS T choices for ph;s;tq.

To prove Lemma D.4, we reason as follows. Assume that
R Il lota P p8e™™Mdq is an -CCE. |f, by contra-
diction, none of the distributions ™psq ", H s St _ are
approximate Nash equilibria for G, then it must be the case
that for each t, one of the players has a profitable deviation in
G with respect to the product strategy ™psq, at least for a
constant fraction of the tuples ps;hg. We will argue that if
this were to be the case, it would imply that there exists a
non-Markov deviation policy for at least one player i in
Definition 2.1, meaning that s not in fact an -CCE.

To sketch the idea, recall that to draw a trajectory front, we
first draw a random index t rTs uniformly at random, and then
execute * for an episode. We will show (roughly)

that for each player i, it is possible to compute a non-Markov
deviation policy * which, under the draw of a trajectory from
;can “infer” the value of the index t within the first few steps

of the episode. Then policy * then, at each state s and step h
after the first few steps, play a best response to their opponent’s
portion of the strategy "psq. If, for each possible value of t,
none of the distributions ™psq are approximate Nash
equilibria of G, this means that &t least one of the players i can
significantly increase their value in G over that of by playing ;,

which contradicts the assumption that is ar--CCE.

It remains to explain how we can construct a non-Markov pol-
icy ° ; which “infers” the value of t. Unfortunately, exactly
inferring the value of t in the fashion described above is impos-
sible: for instance, if there are t1 t2 so that *1¢ P29, then clearly it
is impossible to distinguish between the cases t t; and t t;.
Nevertheless, by using the fact that each player ob-serves the full
joint action profile played at each step h, we can construct a non-
Markov policy which employs Vovk’s aggregat-ing algorithm for
online density estimation (Vovk, 1990; Cesa-
Bianchi & Lugosi, 2006) in order to compute a distribution
which is close tqf‘”psq for most h PrHs.'3 This guarantee is
stated formally in an abstract setting in Proposition D.2, and is
instantiated in the proof of Theorem 3.2 in ((5)). As we show in
Section D.2, approximating ™ psq as we have described is suf-
ficient to carry out the reasoning from the previous paragraph.

Bvovk’s aggregating algorithm is essentially the exponential
weights algorithm with the logarithmic loss. A detailed background
for the algorithm is provided in Section D.1.
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4. Lower bound for non-Markov algorithms

In this section, we prove Theorem 1.3 (restated formally
below as Theorem 4.3), which strengthens Theorem 3.2 by

Markovian. This additional strength comes at the cost of our
lower bound only applying to 3-player Markov games (as
opposed to Theorem 3.2, which applied to 2-player games).

4.1. SPARSECCE problem and computational model

To formalize the computational model for the SPARSECCE
problem, we must first describe how the non-Markov product
policies P p"‘“;::i;"’“q are represented. Recall that a non-
Markov policy Pg?”;md is, by definition, a mapping from
agent i’s history and current state to a distribution over their
next action. Since there are exponentially many possible
histories, it is information-theoretically impossible to express
an arbitrary policy in gie”;md with polynomially many bits.
As our focus is on computing a sequence of such policies ***in
polynomial time, certainly a prerequisite is that *@ can be

expressed in polynomial space. Thus, we adopt the represen-
tational assumption, stated formally in Definition 4.1, that each
of the policies peenmd ¢ described by a bounded-size
circuit that can compute the conditional distribution of each
next action given the history. This assumption is satisfied
by essentially all empirical and theoretical work concerning
non-Markov policies (e.g., (Leibo et al., 2021; Agapiou et al.,
2022; Jin et al., 2021; Song et al., 2022)).

Definition 4.1 (Computable policy). Given a m-player
Markov game G and N PN, we say that a policy ; Pge”;irnd is
N -computable if for each h PrHs, there is a circuit of size N
that,* on input pi;n1;5q P Hi;n1 S, outputs the distribu-tion

each constituent policy ; is.
Our lower bound applies to algorithms that produce sequences

N is taken to be polynomial in the description length of the
game G. For example, Markov policies whose probabilities can
be expressed with bits are OpHSA;g-computable for each
player i, since one can simply store each of the probabil-ities
i:;hPSh;ai;ng, each of which takes bits to represent.

The SPARSECCE problem. SPARSECCE is the problem
of computing a sequence of non-Markov product poli-
cies P9; :::; P such that the uniform mixture forms an -
approximate CCE. The problem generalizes SPARSE-
MARKOVCCE (Definition 3.1) by relaxing the condition that
the policies *** be Markov.

—4Forconcreteness, we suppose that “circuit” means “boolean cir-
cuit” as in Definition 6.1 of (Arora & Barak, 2006), where probabilities
are represented in binary. The precise model of computation we use
does not matter, though, and we could equally assume that the policies i
may be computed by Turing machines that terminate after N steps.

Definition 4.2 (SPARSECCE Problem). For an m-player
Markov game G and parameters T;N PN and j 0 (which may
depend on the size of the game G), pT;;Ng-SPARSECCE is

each * bejng N-computable, such that the distributional pol-
icy = : lota P& ™dq is an -CCE for G (equiv-
alently, such t]hat for all iPrms, Reg;.1 p*%;::5;°79q/T).

4.2. Main result

Our main theorem for this section, Theorem 4.3, shows
that for appropriate values of T, , and N, solving the
pT;;Ng-SPARSECCE problem is at least as hard as computing
Nash equilibria in normal-form games.

Theorem 4.3. Fix nPN, and let T;N PN, and i O satisfy 1

T exp 1% . Suppose there exists an algorithm
that, given the description of any 3-player Markov game G
with |G| / n, solves the pT;; Nqg-SPARSECCE problem in
time U, for some U P N. Then, for any | 0, the 2-player
ptn{2u; 50g-NASH problem can be solved in randomized
time pnTN U logp1{g{q® with failure probability , where Co
i 0 is an absolute constant.

By analogy to Corollary 3.3, we obtain the following
immediate consequence.

Corollary 4.4 (SPARSECCE is hard under PPAD T RP). For

any C i 4, if there is an algorithm which, given the description
of a 3-player Markov game G, solves the p|G|;|G| 5| G | g-
SPARSECCE problem in time polyp|G|g, then PPAD,, RP.

Proof overview for Theorem 4.3. The proof of Theorem 4.3
has a similar high-level structure to that of Theorem 3.2: given
an m-player normal-form G, we define an pm  1g-player
Markov game G GpGg which has ng :tn{mu actions per

player and horizon H ng. The key difference in the proof of
Theorem 4.3 is the structure of the players’ reward functions.
To motivate this difference and the addition of an pm  1g-
th player, we explain why the proof of Theorem 3.2 fails to

extend: a sequence "%;:::;*" can hypothetically solve the
SPARSECCE problem by attempting to punish any one player’s
deviation policy, and thus avoid having to compute a Nash
equilibrium of G. In particular, if player i plays according to
the policy that we described in Section 3.2, then other players j
i can use the non-Markov property of ™ to adeust their choice
of actions in later rounds to decrease player i’s value.

This behavior is reminiscent of “tit-for-tat” strategies which
are used to establish the folk theorem in the theory of repeated
games (Maskin & Fudenberg, 1986). The folk theorem
describes how Nash equilibria are more numerous in repeated
games than in single-shot normal form games. As it turns
out, the folk theorem does not yield to worst-case speedups in
repeated games, when the number of players is at least 3.
Indeed, Borgs et al. (2008) gave an “anti-folk theorem”,
showing that computing Nash equilibria in pm  1g-player
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repeated games is PPAD-hard for m ¥ 2, via a reduction to
m-player normal-form games. We adapt their reduction to our
setting: roughly speaking, this approach adds an pm 1g-th
player whose actions represent potential deviations for each
of the m_players. The structure of the rewards ensures that
if =2 lota is an -CCE, then for some policy 1
of the pm  1g-th player, the first m players will play an
approximate Nash of G with constant probability, under a
trajectory drawn from the joint policy ;m 14° m 1+ Thus,
in order to efficiently find a Nash (see Algorithm 2), we need to
simulate the policy pm 1q° m 1, Which involves running
Vovk’s algorithm. This approach is in contrast to the proof of
Theorem 3.2, which used Vovk’s algorithm as an ingredient
in the proof but not in the Nash computation algorithm.

Two-player games. One intruiging question we leave open is
whether the SPARSECCE problem remains hard for two-player
Markov games. Interestingly, as shown by Littman & Stone
(2005), there is a polynomial time algorithm to find an exact
Nash equilibrium for the special case of repeated two-player
normal-form games. Though their result only applies in the
infinite-horizon setting, it is possible to extend their results to the
finite-horizon setting, which rules out naive approaches to ex-
tend the proof of Theorem 4.3 and Corollary 4.4 to two players.

5. Multi-player games: lower bounds

In this section we present Theorem 1.4 (restated formally
below as Theorem 5.2), which gives a statistical lower bound
for the SPARSECCE problem. The lower bound applies to any
algorithm, regardless of computational cost, that accesses the
underlying Markov game through a generative model.

Definition 5.1 (Generative model). For an m-player Markov
game G pS;H;pAidiprms;P;PRidiprms;d, @ generative model
oracle is defined as follows: given a query described by a
tuple ph;s;aqPrHsSA, the oracle returns the distribution
Php|s;aqPpSq and the tuple of rewards pRi:nps;adQiprms-

From the perspective of lower bounds, the assumption that
the algorithm has access to a generative model is quite
reasonable, as it encompasses most standard access models in
RL, including the online access model, in which the algorithm
repeatedly queries a policy and observes a trajectory drawn
from it, as well as the local access generative model used in
from (Yin et al., 2022; Weisz et al., 2021). We remark that it is
slightly more standard to assume that queries to the generative
model only return a sample from the distribution Pnp|s;aq as
opposed to the distribution itself (Kakade, 2003; Kearns et al.,
1999), but since our goal is to prove lower bounds, the notion
in Definition 5.1 only makes our results stronger.

To state our main result, we recall the definition
[G] maxtS; maxiprms Ai; H; pGau. In the present
section, we consider the setting where the number of players
m is large. Here, |G| does not necessarily correspond to the

description length for G, and should be interpreted, roughly
speaking, as a measure of the description complexity of G |G|
with respect to decentralized learning algorithms. In particular,
from the perspective of an individual agent implementing a
decentralized learning algorithm, their sample complexity
should depend only on the size of their individual action set
(as well as the global parameters S;H;pGq), as opposed to the
size of the joint action set, which grows exponentially in m; the
former is captured by jGj, while the latter is not. Indeed, a key
advantage shared by much prior work on decentralized RL (Jin
etal., 2021; Song et al., 2022; Mao & Basar, 2021; Daskalakis et
al., 2022) is their avoidance of the curse of multi-agents,
which describes the situation where an algorithm has sample
and computational costs that scale exponentially in m.

Our main result for this section, Theorem 5.2, states that for
m-player Markov games, exponentially many generative model
queries (in m) are necessary to produce a solution to the
pT;;Ng-SPARSECCE problem, unless T is exponential in m.

Theorem 5.2. Let m ¥ 2 be given. There are constants
¢; i 0 so that the following holds. Suppose there is an
algorithm B which, given access to a generative model for
a pm 1g-player Markov game G with |G|/ 2mb®, solves
the pT;{p10mq;N g-SPARSECCE problem for G for some T
satisfyingl T  exppcmg, and any N P N. Then B must
make at least 2
PMA queries to the generative model.

Theorem 5.2 establishes that there are m-player Markov games,
where the number of states, actions per player, and horizon are
bounded by polypmg, but any algorithm with regret opT {mq
must make 2

PMA queries (via Fact C.1). In particular, if there are polypmq
queries per episode, as is standard in the online

simulator model where a trajectory is drawn from the policy " at
each episode tPrTs,then T 2

Pma episodes are required to have regret opT{mg. This isin
stark contrast to the setting of normal-form games, where even
for the case of bandjt feedback (which is a special case of the
generative model setting), stan-dard no-regret algorithms have
the property that each player’s regret scalesas Op Tnq (i.e.,
independently of m), where n de-notes the number of actions per
player (Lattimore & Szepesvari, 2020). As with our
computational lower bounds, Theorem 5.2 is not limited to
decentralized algorithms, and also rules out cen-tralized
algorithms which have access to a generative model.
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Additional results and discussion

A.

Tighter computational lower bounds under ETH for PPAD

Recall that Corollary 3.3 states that if PPAD P, then there is no constant C i 4 and polyp|G|g-time algorithm which solves the
p|G|S;|G|HCq-SPARSEMARKOVCCE problem for any 2-player Markov game G. Using a stronger complexity-theoretic
assumption, the Exponential Time Hypothesis for PPAD (Rubinstein, 2016), we can obtain a hardness result which rules out
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efficient algorithms even when 1) the accuracy is constant, as opposed to being |G| ¢, and 2) T is quasipolynomially large, as
opposed to only being of polynomial size, i.e., |G|C.
Corollary A.1 (ETH-hardness of SPARSEMARKOVCCE). There is a constant g j O such that if there exists an algorithm that

solves the p |G |°P'o8lGla:,q-SpARSEMARKOVCCE problem in |G |°"8lGld time, then the Exponential Time Hypothesis for PPAD
fails to hold.

Corollary A.1 is an immediate consequence of Theorem 3.2 and the fact that for some absolute constant o i O, there are no
polynomial-time algorithms for computing o-Nash equilibria in 2-player normal-form games under the Exponential Time
Hypothesis for PPAD (as shown in (Rubinstein, 2016)).

B. Discussion and interpretation

Theorems 3.2, 4.3, and 5.2 present barriers—both computational and statistical—toward developing efficient decentralized no-regret
guarantees for multi-agent reinforcement learning. We emphasize that no-regret algorithms are the only known approach for
obtaining fully decentralized learning algorithms (i.e., those which do not rely even on shared randomness) in normal-form games,
and it seems unlikely that a substantially different approach would work in Markov games. Thus, these lower bounds for finding
subexponential-length sequences of policies with the no-regret property represent a significant obstacle for fully decentralized
multi-agent reinforcement learning. Moreover, these results rule out even the prospect of developing efficient centralized algorithms
that produce no-regret sequences of policies, i.e., those which “resemble” independent learning. In this section, we compare our
lower bounds with recent upper bounds for decentralized learning in Markov games, and explain how to reconcile these results.

B.1. Comparison to V-learning

The V-learning algorithm (Jin et al., 2021; Song et al., 2022; Mao & Basar, 2021) is a polynomial-time decentralized learning
algorithm that proceeds in two phases. In the first phase, the m agents interact over the course of K episodes in a decentralized

phase to produce a distributional policy p P pge"™dq, which we refer to as the output policy of V-learning. As discussed in
Section 1, one implication of Theorem 3.2 is that the first phase of V-learning cannot guarantee each agent sublinear regret.
Indeed if K is of polynomial size (and PPAD P), this follows because a bound of the form Reg ., p"*%;:::;°*9q/K forall i

The output policy ﬁpge”?mdq produced by V-learning is an approximate CCE (per Definition 2.1), and it is natural to ask how
many product policies it takes to represent as a upjform mixture (that is, whether solves thgpT;q-SPARSEMARKOVCCE problem for
a reasonable value of T). First, recall that V-learning requires K polypH;S; maxiAiq{? episodes to ensure that p is an -CCE. It
is straightforward to show that p can be expressed as a non-uniform mixture of at most K ¥ * S  policies in 88" (we prove this fact
in detail below). By discretizing the non-uniform mixture, one can equivalently represent it as uniform mixture of Op1{qKX"s 1
product policies, up to error. Recalling the value of K, we conclude that we can express as p

a uniform mixture of T exppOp1{2qpolypH;S;maxiAiqq product policies in 8™™Md, Note that the lower bound of Theorem 4.3
rules out the efficient computation of an -CCE represented as a uniform mixture of T | expp? maxtH;S; max; Ajuq efficiently
computable policies in 8™™d_ Thus, in the regime where 1{ is polynomial in H;S; max;A;, this upper bound on the sparsity of the
policy p produced V-learning matches that from Theorem 4.3, up to a polynomial in the exponent.

The sparsity of the output policy from V-learning. We now sketch a proof of the fact that the output policy gsoduced by V-
learning can be expressed as a (non-uniform) average of K X H 5 1 policies in 8"™d, where K is the number of episodes in the
algorithm’s initial phase. We adopt the notation and terminology from Jin et al. (2021).

Consider Algorithm 3 of Jin et al. (2021), which describes the second phase of V-learning, which produces the output policy p.
We describe how to write p as a weighted average of a collection of product policies, each of which is indexed by a function

:rHsSrKs N rKs and a parameter ko P rKs: in particular, we will write p k -Wko; ko; P peemmdq, where wy,; Pr0;1s

are mixing weights summing to 1 and ,; P&™™9, The number of tuples pko;qis K* KHS .

We define the mixing weight allocated wy,; to any tuple pko;q to be:

1 ”
- 1tph;s;kqPrN kE)sqsu
h

ph;s;kqPrHsSrKs

ph;s;ka,
N ¥ psq

where N ',(]psq Prksand N pfq Pr0;1s (for iPrN, psqs) are defined as in (Jin et al., 2021).
h
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Next, for each ko;, we define k . Poger"'rncl to be the following policy: it maintains a parameter k P rKs over the first h / H steps
of the episode (as in Algorithm 3 of (Jin et al., 2021)), but upon reaching state s at step h, given the present value of k PrKs, sets
i:ph;s;kq, and updates k — k' psg, and then samples an action akp|sq (wherenki psap|sq are defined in (Jin et al., 2021)). Since
the mixing weights wy ; defined above exactly simulate the random draws of the parameter k in Line 1 and the parameters i in
Algorithm 3, Line 4 of §J|n etal, 2021) it follows that the distributional policy defined by Alggsithm 3 of (Jin etal., 2021) is
equal to ko; Wko;ko; PPEE¥™MAg,

B.2. No-regret learning against Markov deviations

As discussed in Section 1, Erez et al. (2022) showed the existence of a learning algorithm with the property that if each agent
plays it independently for T episodes, then no player can achieve regret more than Oppolypm;H;S;max;Aiq T 3#4q by deviating to
any fixed Markov policy. This notion of regret corresponds to, in the context of Definition 2.2, replacing max pgen;ma With

the smaller quantity max pmarkov. Thus, the result of Erez et al. (2022) applies to a weaker notion of regret than that of the
SPARSECCE problem, and so does not contradict any of our lower bounds. One may wonder which of these two notions of
regret (namely, best possible gain via deviation to a Markov versus non-Markov policy) is the “right” one. We do not believe that
there is a definitive answer to this question, but we remark that in many empirical applications of multi-agent reinforcement
learning it is standard to consider non-Markov policies (Leibo et al., 2021; Agapiou et al., 2022). Furthermore, as shown in the
proposition below, there are extremely simple games, e.g., of constant size, in which Markov deviations lead to “vacuous” behavior: in
particular, all Markov policies have the same (suboptimal) value but the best non-Markov policy has much greater value:

Proposition B.1. There is a 2-player, 2-action, 1-state Markov game with horiz?n 2 and a non-Markov policy %ge”";d for
player 2 so that for all 1 Pmar§°", V2 11{2 yet maxi pgenima V12 3{4.
1

The proof of Proposition B.1 is provided in Section B.5 below.

Other recent work has also proved no-regret guarantees with respect to deviations to restricted policy classes. In particular,

Zhan et al. (2022) studies a setting in which each agent i is allowed to play policies in an arbitrary restricted policy class
1, e ™d in each episode, and regret is measured with respect to deviations to any policy in L. Zhan et al. (2022)
mtroduces an algorithm, DORIS, with the property that when all agents play it independently, each agent i experiences regret

O polypm;A;S;Hq W their respective class 1.2

DORIS is not computationally efficient, since it involves performing exponential weights over the class , which requires space
complexity j1j. Nonetheless, one can compare the statistical guarantees the algorithm provides to our own results. Let ™a"™ev:det
€markov denote the set of deterministic Markov policies of agent i, namely sequences; pi.1;::5i:1q so thati:n : S N A;. Inthe casethat®
markov;det 1 \ye have Iogl1 | OpSHIogAig, which means that DORIS obtalns no-regret agalnst

Markov deV|at|ons when m is constant comparable to Erez et al. (2022).1% However, we are interested in the setting in which each
player’s regret is measured with respect to all deviations in 8™ (equivalently, 8™9%"). Accordingly, if we take 1 82" det g gennd 17
then log [1]i pSAqul,i meaning that DORIS does not imply any sort of sample-efficient guarantee, even for m2.

Finally, we remark that the algorithm DORIS (Zhan et al., 2022), as well as the similar algorithm OPVD from earlier work of Liu
et al. (2022), obtains the same regret bound stated above even when the opponents are controlled by (possibly adaptive)
adversaries. However, this guarantee crucially relies on the fact that any agent implementing DORIS must observe the policies
played by opponents following each episode; this feature is the reason that the regret bound of DORIS does not contradict the
exponential lower bound of Liu et al. (2022) for no-regret learning against an adversarial opponent. As a result of being restricted to
this “revealed-policy” setting, DORIS is not a fully decentralized algorithm in the sense we consider in this paper.

__ Y Nate that in the tabular setting, the sample complexity of DORIS (Corollary 1) scales with the size A of the joint action set, since each player’s
value function class consists of the class of all functions f : SANr0;1s, which has Eluder dimension scaling with S A, i.e., exponential in m.
16Erez et al. (2022) has the added bonus of computational efficiency, even for polynomially large m, though has the significant drawback
of assuming that the Markov game is known.
YDORIS plays distributions over policies in . at each episode, whereas in our lower bounds we consider the setting where a
policy in 8¢9 is played each episode; Facts F.2 and F.3 shows that these two settings are essentially equivalent, in that any policy in

ge;‘”"dge”?'"d can, pe simulated by one in p%"**'q pge""detg, and vise versa.

1 gen det

m
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B.3. On the role of shared randomness

product policy; such an assumption is natural, since it subsumes independent learning protocols in which each agent i selects ™
wiithout knowledge of ™. Ciompared to general (stochastic) joint policies, product policies have the desirable property that, to
sample a trajectory from °t p™; ;v Pge""’: 56”"”;" genitnd the agents do no require access to shared randomness. In particular,
each agent i can independently samp(}e its action from " at each of the h steps of the episode. It is natural to ask how the situation

to be non-product policies. In this case, V-learning yields a positive result via a standard “batch-to-online” conversion: by
applying the first phase of V-learning during the first T2 episodes and playing trajectories sampled i.i.d. from the output
policy produced by V-learning during the remaining T T 23 episodes (which requires shared randomness), it is straightforward
to see that a regret bound of order polypH;S;maxiAiqT 23 can be obtained. Similar remarks apply to SPoCMAR (Daskalakis et al.,
2022), which can obtain a slightly worse regret bound of order polypH;S;max;Aiq T 3 in the same fashion. In fact, the batch-to-
online conversion approach gives a generic solution for the setting in which shared randomness is available. That is, the
assumption of shared randomness eliminates any distinction between no-regret algorithms and (non-sparse) equilibrium computation
algorithms, modulo slight loss in rates. For this reason, the shared randomness assumption is too strong to develop any sort of
distinct theory of no-regret learning.

B.4. Comparison to lower bounds for finding stationary CCE

A separate line of work Daskalakis et al. (2022); Jin et al. (2022) has recently shown PPAD-hardness for the problem of finding
stationary Markov CCE in infinite-horizon discounted stochastic games. These results are incomparable with our own: stationary
Markov CCE are not sparse (in the sense of Definition 3.1), whereas we do not require stationarity of policies (as is standard in
the finite-horizon setting).

B.5. Proof of Proposition B.1

Below we prove Proposition B.1.

Proof of Proposition B.1. We construct the claimed Markov game G as follows. The single state is denoted by s; as there is only a
single state, the transitions are trivial. We denote each player’s action space as A1 A, t1;2u. The rewards to player 1 are given as
follows: for all pai;a2qPA,

1 1
R1;1ps;pai;a2qq 5 k.1, R1;2ps;pai;azqqg ) hia,:

We allow the rewards of player 2 to be arbitrary; they do not affect the proof in any way.

We let 2 p2;1;2,20 PEEM™ be the policy which plays a uniformly random action at step 1 and then plays the same action at step 2:
formally, 2;1ps1qUnifpA2q, and 2,2pps1;a2;1;r2;10;520 la,,. Then for any Markov policy 1 pmarkov of player ], we must have
P.,pa1;2 a2;2q1{2, which means that V, * 2 1 glz Mayi1  lagya,51{2p1{2  1{2q1{2.

On the other hand, any general (non-Markov) policy 1 Pge""lnd which satisfies

#

l1: r1;11{2

1;2PPs1;31;1;M;10;529
P ri;10

has O 1{2p1{2 1qg3{4. O
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Part |1

Proofs

C. Additional preliminaries

C.1. Additional preliminaries for Markov games

Deterministic policies. It will be helpful to introduce notation for deterministic general (non-Markov) policies, which correspond to
the special case of randomized policies where each policy i;n exclusively maps to singleton distributions. In particular, a
deterministic general policy of agent i is a collection of mappings i pi.1;:::i+q, Where i.n : Hi;h1 S N A;. We denote by & the
space of deterministic general policies of agent i, and further write gen;det ;genidetgen;det 1 denote;the space of jgint deterministic
policies. We use the convention throughout that deterministic policies are denoted by the letter , whereas randomized policies are
denoted by .

Additional facts on regret and CCE. The following facts regarding deterministic policies and the definition of coarse correlated
equilibria and regret are well-known:

e In the context of Definition 2.1 (defining an -CCE), the maximizing policy * can always be chosen to be determinimistic, so
P PpEe™™Mdq is an -CCE if and only if maxi peenget V' P‘}Vi /. P

e In the context of (1) in the definition of regret, the maximum over ; Pge";rind is always achieved by a deterministic general o
policy, so we have Reg.t maxipseniet 1 Vi 'V e

Next, the following standard result shows that the uniform average of any no-regret sequence forms an approximate coarse
correlated equilibrium.

Fact C.1 (No-regret is equivalent to CCE). Suppose that a sequence of policies ™9; :::; °™¢ P gemmd gatisfies Reg;.t
pPe; i P9q /, T for each i P rms. Then the uniform average of these T policies, namely the distributional policy : ;

— T . .
1 1loa PpEYMdg is an -CCE.
Likewise if a sequence of policies *9; ::; P9 p eenmd has the property that the distributional policy :

B tTlem Ppeem™dq, is an -CCE, then we have Reg;.r p*%;:::;°79q/T for all iPrms.

Fact C.1 is an immediate consequence of Definitions 2.1 and 2.2.

C.2. Nash equilibria and computational hardness.

The most foundational and well known solution concept for normal-form games is the Nash equilibrium (Nash, 1951).

Definition C.2 (pn; g-NAsH problem). For a normal-form game G pMgy;:::;Mma and i 0, a product distribution pP
jiprnsq is said to be an -Nash equilibrium for G if for all iPrns,

maanp rpMiqail;ai sE ap M. q,s/:

alPrns

We define the m-player pn;g-NASH problem to be the problem of computing an -Nash equilibrium of a given m-player n-action
normal-form game. 8

Informally, p is an -Nash equilibrium if no player i can gain more than in reward by deviating to a single fixed action a?, while all
other players randomly choose their actions according to p. Despite the intuitive appeal of Nash equilibria, they are intractable to
compute: for any c i 0, it is PPAD-hard to solve the pn;n°g-NAsH problem, namely, to compute n®-approximate Nash

80ne must also take care to specify the bit complexity of representing a normal-form game. We assume that the payoffs of any normal-form
game given as an instance to the pn;g-NAsH problem can each be expressed with maxtn;mu bits; this assumption is without loss of generality as
long as ¥ 2™2xtnimu (which it will be for us).
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equilibria in 2-player n-action normal-form games (Daskalakis et al., 2009; Chen et al., 2006; Rubinstein, 2018). We recall that the
complexity class PPAD consists of all total search problems which have a polynomial-time reduction to the End-of-The-Line
(EOTL) problem. PPAD is the most well-studied complexity class in algorithmic game theory, and it is widely believed that
PPADP. We refer the reader to (Daskalakis et al., 2009; Chen et al., 2006; Rubinstein, 2018; Papadimitriou, 1994) for further
background on the class PPAD and the EOTL problem.

C.3. Query complexity of Nash equilibria

Our statistical lower bound for the SPARSECCE problem in Theorem 5.2 relies on existing query complexity lower bounds for
computing approximate Nash equilibria in m-player normal-form games. We first review the query complexity model for
normal-form games.

Oracle model for normal-form games. For m;nP N, consider an m-player n-action normal form game G, specified by payoff

unrealistic to assume that an algorithm is given the full payoff tensors as input. Therefore, prior work on computing equilibria in such
games has studied the setting in which the algorithm makes adaptive oracle queries to the payoff tensors.

In particular, the algorithm, which is allowed to be randomized, has access to a payoff oracle O for the game G, which works as
follows. At each time step, the algorithm can choose to specify an action profile a P rns™ and then query Og¢ at the action profile

Query complexity lower bound for approximate Nash equilibrium. The following theorem gives a lower bound on the number
of queries any randomized algorithm needs to make to compute an approximate Nash equilibrium in an m-player game.

Theorem C.3 (Corollary 4.5 of (Rubinstein, 2016)). There is a constant oi 0 so that any randomized algorithm which solves
the p2;09-NASH problem for m-player normal-form games with probability at least 2{3 must use at least 2
PM4 payoff queries.

We remark that (Babichenko, 2016; Chen et al., 2017) provide similar, though quantitatively weaker, lower bounds to that in
Theorem C.3. We also emphasize that the lower bound of Theorem C.3 applies to any algorithm, i.e., including those which
require extremely large computation time.

D. Proofs of lower bounds for SP* RSEMARKOVCCE (Section 3)

D.1. Preliminaries: Online density estimation

Our proof makes use of tools for online learning with the logarithmic loss, also known as conditional density estimation. In
particular, we use a variant of the exponential weights algorithm known as Vovk’s aggregating algorithm in the context of density
estimation (Vovk, 1990; Cesa-Bianchi & Lugosi, 2006). We consider the following setting with two players, a Learner and Nature.
Furthermore, there is a set Y, called the outcome space, and a set X, called the context space; for our applications it suffices
toassumeY and X are finite. For some T PN, there are T time steps t1;2;:::;;T. At each time step tPrTs:

* Nature reveals a context x"*“P X ;
* Having seen the context x**, the learner predicts a distribution p*® PpYq;

¢ Nature chooses an outcome y*@PY, and the learner suffers loss ’lg‘g“pp”“q :log qp(%"-\’#

each context x*'* may be chosen adaptively as a function of H?'*?, Let F *'@ denote the sigma-algebra generated by pH*";x"* *q.
We measure performance in terms of regret against a set | of experts, also known as the expert setting. Each expert i P | consists

T T

Regi ;1 ‘|ogPd™ @min fkbolgppil:?%”‘qqq: t1tl
1

Note that the learner can observe the expert predictions tpipx*@quip; and use them to make its own prediction at each round t.
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Proposition D.1 (Vovk’s aggregating algorithm). Consider Vovk’s aggregating algorithm, which predicts via

exp """ pp pxgq
. S (o]
R™'PYq :Eigpurpipx™qs;  where A piq: — - 2 : (2)
iPI€XP g1 B PREPX*1qq

This algorithm guarantees a regret bound of Reg, .1 /log]1].

Recall that for probability distributions p;q on a finite set B, their total variation distance is defined as
Drvpp;gamax|ppEqapEq|: 3)

As a (standard) consequence of Proposition D.1, in the realizable setting in which the distribution of y**|x* follows pipx*“q for
some fixed (unknown) expert i P |, we can obtain a bound on the total variation distance between the algorithm’s predictions and
those of pipx™g.

Proposition D.2. If the distribution of outcomes is realizable, i.e., there exists an experti P | so that y* pipx™eq | x"**;H*"* for all
tPrTs, then the predictions p * of the aggregation algorithm (2) satisfy

A a
ErDrvp@™;pipx™iqqs/ Tlog[T[:
t1

For completeness, we provide the proof of Proposition D.2 here.

Proof of Proposition D.2. To simplify notation, for an experti P I, a context x P X, and an outcome y PY, we write pipy|xq to
denote pipxgpya.
Proposition D.1 gives that the following inequality holds (almost surely):
T
’ T 1 ’ 1
p

Reg,.t log = ™ log pa Pt Jlog|l]:
ST A%y o ppy Ixeq

For each tPrTs, note that p*@ and x**® are F***-measurable (by definition). Then

T T
DrvpqB;pipx™"aq”/ DkLppipx™'qlq™ i) 11
t1
.
’ ’ : XP
ppylxiqlog PP 9
Y mUpyg
t1yPY
T
: 1 1
E |qg pt t o pt pt |Fpt1q ;

p | g
“ g °py °q pipy “Ix °q

where the first inequality uses Pinsker’s inequality and the final equality uses the fact that y™ pipx®eq | x*9;HP"9, It follows that

E Dfvpa™;pipx"“qq’/ErReg,.rs/logjlj:
t1 p

Jensen’s inequality now gives that

T g T
) 2 £ a

E ° Drpp™ppx“aq / T € E ~ Drvpp™;pipx*qq? / = TIog[Tl:
t1 tl
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D.2. Proof of Theorem 3.2

Proof of Theorem 3.2. Fix n P N, which we recall represents an upper bound on the description length of the Markov game.
Assume that we are given an algorithm B that solves the pT;q-SPARSEMARKOVCCE problem for Markov games G satisfying
|G |/nintime U. We proceed to describe an algorithm which solves the 2-player ptn2{2u;4q-NAsH problem in time pnTUq®, as
longasT expp?nt2{25q. First, define no:tn%2{2u, and consider an arbitrary 2-player no-action normal form G, which is
specified by payoff matrices M1;M3 P r0;1s"°", so that all entries of the game can be written in binary using at most ng bits
(recall, per footnote 18, that we may assume that the entries of an instance of pnp;4q-NAsH can be specified with ng bits). Based
on G, we construct a 2-player Markov game G :GpGq as follows:

Definition D.3. We define the game GpGq to consist of the tuple GpGq pS;H;pAigipras; P;PRidipr2s;q, Where:

® The horizon of G is H 2tno{2u (i.e., the largest even number at most no).
e Let Ano; the action spaces of the 2 agents are given by A1 A5 rAs.

e There are a total of A2 1 states: in particular, there is a state Spa;a for each pa1;a2q PrAs?, as well as a distinguished
state s, so we have:

StsuYtspalaZq : pa;a2qPraAs’u:

e For all odd h P rHs, the reward to agents j P r2s given that the action profile pai;axq is played at step h is given by
Rinps;pa1;a20q: , BM;0a,;a,, for all sPS. All agents receive O reward at even steps hPrHs.

* At odd steps h P rHs, if actions a1;az2 P rAs are taken, the game transitions to the state s, ;a - At even steps hPrHs, the
game always transitions to the state s.

¢ The initial state (i.e., at step h1) is s (i.e., is a singleton distribution supported on s).

It is evident that this construction takes polynomial time, and satisfies |G | /A2 1/n? ol/n. We will now show by applying the
algorithm B to G, we can efficiently compute 4-approximate Nash equilibrium for the original game G. To do so, we appeal to
Algorithm 1.

Algorithm 1 Algorithm to compute Nash equilibrium used in proof of Theorem 3.2.
1: Input: 2-player, np-action normal form game G.

2: Construct the 2-player Markov game G GpGq per Definition D.3, which satisfies |G|/n.

3: Call the algorithm B on the game G, which produces a sequence *%;:::;°™¢, where each P p markov,
4: for tPrTsand odd hPrHs: do

5 if “ipsqPpA1gpA2q is a p4;ng-Nash equilibrium of G: then 6:

return *psq.

7:  endif

8: end for

9: if the for loop terminates without returning: return fail.

Algorithm 1 proceeds as follows. First, it constructs the 2-player Markov game GpGq as defined above, and calls the algorithm B,

which returns a sequence P9;:::;7"@ pMarkov of nroduct Markov policies with the property that the average : I1 lotq iS
an -CCE of G. It then enumerates over the distributions psq ﬁpAlquzq foreachtPrTsand hPrHs odd, and checks whether each
one is a 4-approximate Nash equilibrium of G. If so, the algorithm outputs such a Nash equilibrium, and otherwise, it fails. The
proof of Theorem 3.2 is thus completed by the following lemma, which states that as long as is an -CCE of G, Algorithm 1
never fails.

Lemma D.4 (Correctness of Algorithm 1). Consider the normal form game G and the Markov game G GpGq as constructed
above, which has horizon H. For anyoi 0, TPN,if T  exppH 2{8 g and Po;:::;pTa pmarkov gre product Markov policies so that

1 T T Ibta is an po{4q-CCE of G, then there is some odd h P rHs and tPrTs so that *psq r|]s an g-Nash equilibrium of G.
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The proof of Lemma D.4 is given below. Applying Lemma D.4 with ¢ 4 (which is a valid application since T

exppnop4a?{28q by our assumption on T;), yields that Algorithm 1 always finds a 4-Nash equilibrium of the np-action
normal form game G, thus solving the given instance of the pno;4g-NAsH problem. Furthermore, it is straightforward to see that
Algorithm 1 runsintime U pnTq%/pUnT g%, for some constant Co ¥ 1.

O

Proof gf Lemma D.4. Consider a sequence of product Markov policies ¢; :::; *™® with the property that the average

-1 tTl lorq is an po{4q-CCE of G. For all odd h PrHs and j Pr2s, let pptq ;P psq PP PAjg, which is the distribution played
under @ by player j at step h (at the unique state s with positive probability of bemg reached at step h). For odd h, we have
Ppsq pptq p™, and our oaI is to show that for some odd h PrHs and tPrTs, p™® p™ is an ol_l}\lash g_ﬁulllbrlum of G. To proceed,

suppose for the sake of ¢ontradiction that this is not the case.

Let us write Oy :th P rHs : h oddu to denote the set of odd-numbered steps, and Ey rHszOpy to denote the set of even-
numbered steps. Let Ho |On| |En| H{2. We first note that for j Pr2s, agent j’s value under the mixture policy is given as
follows:

Vj T—hotkE ol PM fla, ;a, 5"

1|’JL :a 2Py

For each j P r2s, we will derive a contradiction by constructing a (non-Markov) deviation policy for player j in G, denoted; P
gen;det, ;which will give player j a significant gain in value against the policy . To do so, we need to specify
P;;h1;ShaPA;j, forall ;h1 P Hj;n1 and sh PS; note that we may restrict our attention only to histories j;1 1 that oceur with positive

pfdbablllty under the transitions of G.

Fix any hoPrHs, j;n 1PHj;n 1,and sh PS. If j;n 1 occurs with positive probablllty under the transitions of G, then for each h P
Ou, h ho 1and bothj Pr2s, the action played by agent j! at step h is determined by j;n. Namely, if the state at
steph 1ofjh 1is Spatialas then player j! played action a* at step h. JSo for each h P Oy with h hol, we may
define pa1n;a2:nq as the action profile played at step h, which is a measurable function of j;h,1. With this in mind, we define
:tio Pisho1;Sho by applying Vovk’s aggregating algorithm (Proposition D.2) as follows.

1. If ho is even, play an arbitrary action (note that the actions at even-numbered steps have no influence on the transitions or
rewards).

2. If ho is odd, define p;;n, PpAjq, by p ;hp :Etajn, 'PjhS) whkreq ;n, Ppr]sqis defined as follows: for tPrTs,

°

o o
T
h —
2 L
f;ho Pt

118XP 1% hpo, 108 —u 2
Note that gj;h, is a function of j;n 3 via the action profiles tpai;n;az;nqu b he:hpow o 1O simplify notation, we suppress
. 0- H
this dependence.

3. Then for any state sp, PS, define j;h:[) Pi;ho1;Shed to be a best response to gj;n,p Namely

;;hPih 135h G :argmaxk, g o rRj;hPsh, ;pai;azqgsargmaxk, R roMiga ;a, s: (4)

b
aiPA;j aiPA;j Iiho

Note that, for odd ho, the distributionggj;; P pA;q defined above can be viewed as an application of Vovk’s online aggregation
algorithm at step pho 1g{2 in the following setting: the number of steps (T, in the notation of Proposition D.2; note that T plays a
different role in the present proof) is Ho H{2, the context space is On, and the outcome space is A;.1° There are T experts
prie; et (i.e., we have | **"u,p,7,), Whose predictions on a context h P Oy are defined as follows: the expert p°y predicts

¥Here j denotes the index of the player who is not j.
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p™phqg pptq . Then, the distribution qj;p is obtained by updating the aggregation algorithm with the context-observation pairs
ph;ajhg, for odd values of h  ho.

We next analyze the value of Y i for j Pr2s to show that the deviation strategy we have defined indeed obtains significant gain. To
do so, recall that this value represents the payoff for player j under the process in which we draw an index t PrTs uniformly

at random, then for each step h P rHs, player j plays according to ; and player j plays according to "‘j“. (In particular, at odd-

numbered steps, player j plays according to pj;h.) We recall that E T denotes the expectation under this process. We let j;h1

P Hj.n1 denote the random variable which is the history observed by playejrj in this setup, i.e., when the policy played is ‘;,
and let tpa;n;a2;nqu denote the action profiles for odd rounds, which are a measurable function of each
player’s trajectory. hPOx

We apply Proposition D.2 with the time horizon as Ho, and with the set of experts set to | :fp°*?;:::;p°"u as defined above. The
context sequence the sequence of increasing values of h P Oy, and for each h P Oy, the outcome at step ph  1g{2 (for which the
context is h) is distributed as aj;np*™phgp™ * conditioned on t, which in particular satisfies the realizability assumption stated in
Proposition D.2. Then, since (as remarked above)/'the distributions g;;n, for h P Ou, are exactly the predictions made by Vovk’s
aggregating algorithm, Proposition D.2 gives that?°

E;J DtvpR ;h; thqE Iq DrvpQ hlpptqphqq/ HologT: - (5)

P hPOy P hPOy j

Recall that we have assumed for the sake of contradiction that p™* p®* ?‘b not an o-Nash equilibrium of G for each hPrHs and
tPrTs. Consider a fixed draw of the random variable tPrTs éle#med2 ove. Then it holds that for jPr2s and hPrHs, defining

ish:max E* . rpMyga,;a,sEY 4 7°

O .ot §: 6
3, RrA il ot op,, PMidaes; (6)

we have g;1;h  0;2;h ¥o. Consider any jPr2s, hP Oy, and a history j;n1 P Hj;n1 of agentj up to step h1 (conditioned on t). Let
us write ;. :DTvpp;.,di;hd; note tHbl“j;p is a function of h1, through its dependence on gj;n. We have, by the definition of
;:hPih1;Shq in (4) and the definition ij;h, Pt a

a . ish .. . j;h1 .. . Pty g,
E hi PlpMth;Jp :1;5q;aj ItlJ;hl ¥Ea,-qp,-;h pMth;jp ;50;a; |tlJ7h1 i;h maXSEajqu;h pManj;aj I%r

JpJ;h
jsh1 h;j pt q
¥ ax E . PMg 2 (7)
ajPrAs ai P h;j i aa Iih
Combining (6) and (7), we get that for any fixed hP Oy, jPr2s, and j;n1 P Hj;h1,
j;h ;a . . . t
Eaipj;hp(pJVIqu;th " isg;a; |t’J h1 E® 1Py 2Py rPMi@asa; ST @i ZJ;h' a (8)

20| fact, Proposition D.2 implies that a similar bound holds uniformly for each possible realization of t, but (5) suffices for our purposes.
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Averaging over the draw of tPrTs, which we recall is chosen uniformly, we see that

ijj. V;jPI’ZS
T .
11 ’ v J jpt:/. ptq (9)
TtlerZs : J
1/ TI ’ .
— E . pta E_ »a TR;nPS;P’. Pin1;59;3j90 |t; j;nasE ma e FRjhPS;pa1;a2qqs
T... i j aj P j;h N a1P 1;h;32P 2;h
t1jPr2s hPOH
1 ’ Tl ’ ih1
E.ot E® o rpMig. " e t, sE tq ta FPM; a2, S jPr2
THtl hPo:,qu i i pqu;h P Bin 508 It 3n1 a Pt a p™ lp 1;tha§'a2 z;JhPr ’
1 IT ’ 7
e Einta 0ijih 2jn P (10)
T H t1jpras i i hPOu
o 2.8 =
¥ 5T H—Z HologT ¥ 5 4-ogpT q{H; (12)
t1
where (9) follows from the definition 2 TT Igiq, (10) follows from (8), and (11) uses (5). As longas T exppH po{1602q,
the this expression is bounded below by o{4, meaning that isnot an o{4-approximate CCE. This completes the contradiction. ]

E. Proofs of lower bounds for SP* RsECCE (Sections 4 and 5)

In this section we prove our computational lower bounds for solving the SPARSECCE problem with m 3 players (Theorem 4.3
and Corollary 4.4), as well as our statistical lower bound for solving the SPARSECCE problem with a general number m of
players (Theorem 5.2).

Both theorems are proven as consequences of a more general result given in Theorem E.1 below, which reduces the NASH problem in
m-player normal-form games to the SPARSECCE problem in pm 1g-player Markov games. In more detail, the theorem shows that
(a) if an algorithm for SPARSECCE makes few calls to a generative model oracle, then we get an algorithm for the NAsSH
problem with few calls to a payoff oracle (see Section C.3 for background on the payoff oracle for the NAsH problem), and (b) if
the algorithm for SPARSECCE is computationally efficient, then so is the algorithm for the NASH problem.

Theorem E.1. There is a constant Co i O so that the following holds. Consider n;m P N, and suppose T;N;QPN and j 0
satisfyl T exp 2:]”2{”‘” . Suppose there is an algorithm B which, given a generative model oracle for a pm 1g-player

Markov game G with |G| /n, solves the pT;;N g-SPARSECCE problem for G using Q generative model oracle queries. Then
the following conclusions hold:

e For any j 0, the m-player ptn{mu;16pm 1qqg-NASH problem for any normal-form game G can be solved, with failure
probability , using at most CopQlogpl{aq plogpl{gnm{g® queries to a payoff oracle Og for G.

e If the algorithm B additionally runs in time U for some U PN, then the algorithm solving NAsH from the previous bullet
point runs in time pnmT N U logp1{g{q®.

Theorem 4.3 follows directly from Theorem E.1 by taking m 2.

Proof of Theorem 4.3. Suppose there is an algorithm which, given the description of any 3-player Markov game G with |G|/n,
solves the pT;;Nq-SPARSECCE problem in time U. Such an algorithm immediately yields an algorithm which can solve the
pT;;Nqg-SPARSECCE problem in time U |G|°" using only a generative model oracle, since the exact description of the
Markov game can be obtained with HS |A| /HSpmaxiAiq3 /|G |> queries to the generative model (across all ph;s;aq tuples).
We can now solve the problem of computing a 50-Nash equilibrium of a given 2-player tn{2u-action normal form game G as
follows. We simply apply the algorithm of Theorem E.1 with m2, noting that the oracle Og in the theorem statement can be
implemented by reading the corresponding bits of input of the input game G. The second bullet point yields that this algorithm
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takes time pnT N U logp1{g{q®, for some constant Co. Furthermore, the assumption T expp?tn{mu{m?q of Theorem E.1 is
implied by the assumption that T expp2n{16q of Theorem 4.3. O

In a similar manner, Theorem 5.2 follows from Theorem E.1 by applying Theorem C.3, which states that there is no randomized
algorithm that finds approximate Nash equilibria of m-player, 2-action normal form games in time 2°P™9,

Proof of Theorem 5.2. Let o be the constant from Theorem C.3, and consider any m ¥ 3. Suppose there is an algorithm which, for
any m-player Markov game G with |G|/2m®, makes Q oracle queries to a generative model oracle for G, and solves the
pT;0{p10maq;Ng-SPARSECCE problem for G for some T;N PN sothat T  exppcmag, for a sufficiently small absolute constant
c. Then, by Theorem E.1 with o{p10mg and n m® (which ensures that T expppo{p10mag? tn{mu{m?q as long as c is
sufficiently small), there is an algorithm which solves the pm®;0q-NAsH problem—and thus the p2;09-NAsH problem—for pm1g-
player games with failure probability 1{3, using OpQq m©°19 queries to a payoff oracle. But by Theorem C.3, any such

algorithm requires q
pma queries to a payoff oracle. It follows that Q¥

PMa  as desired.

E.1. Proof of Theorem E.1

Proof of Theorem E.1. Fix any m ¥ 2, n P N. Suppose we are given an algorithm B that solves the pm  1g-player
pT;;Ng-SPARSECCE problem for Markov games G satisfying |G|/ n, running in time U and using at most Q generative
model queries. We proceed to describe an algorithm which solves the m-player ptn{mu;16pm 1qqg-NAsH problem using Co
pQlogpl{qq plogpl{q nm{g® queries to a payoff oracle, and running in time pnmTNU logp1{q{q®, where represents the
failure probability. Define no :tn{mu, and assume we are given an arbitrary m-player ng-action normal form G, which is

significant maxtno;rlog1{su bits nonzero; this assumption is without loss of generality, since by truncating the utilities to satisfy
this assumption, we change all payoffs by at most , which degrades the quality of any approximate equilibrium by at most 2 (in
addition, we have rlog1{s/ng since we have assumed 1 T exppZno{m?q). We assume /1{2 without
loss of generality. Based on G, we construct an pm 1qg-player Markov game G :GpGq as follows.

Definition E.2. We define the Markov game GpGq as the tuple GpGq pS;H;pAidipras; P;pRiipr2s;d, Where:

¢ The horizon of G is chosen to be the power of 2 satisfying no/ H  2no.

e Let A:ng. The action spaces of agents 1;2;:::;;m are given by A1 A rAs. The action space of agent m 1is
Am 1tpj;ajq : jPrms;a; PAju;

sothat |Am 1| Am/n.

We write A ]ml
space of all agents.

- m 1

A; to denote the joint action space of the first m agents, and A i A; to denote the joint action

* There is a single state, denoted by s, i.e., S tsu (in particular, is a singleton distribution supported on s).

writing am 1 pjl;allq, we have

_ Rinps;aqRinps;aq Frestiencpag; (12)
where Rj;nps;aq is defined per the kibitzer construction of (Borgs et al., 2008):

5 .
&0 (jRtiLm  1u

. 1 il

Rinps;aq: , H PMjQa;;::am pqual;:::;all;:::'jam ) (13)
0, .
A)Hl pMJQal;:::;aljl;:::;ampqua1;I!2,’am jmo L

specify.
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Algorithm 2 Algorithm to compute Nash equilibrium used in proof of Theorem E.1.
1: Input:

2:  Parameters n;no;m;T PN, {p6Hq, K r4logpmno{g{>s.

3 An m-player, ng-action normal form game G, with utilies accessible by oracle Og.

4:  An algorithm B for computing approximate CCE of Markov games.

5: Call the algorithm B on the pm  1g-player Markov game G GpGq constructed as in Definition E.2, which produces a

sequence *%;:::;°™%, where each ™@ p™;:::;" g with 7 P gen;rd

. I-]ere, we use the oracle O¢ to simulate generative model
oracle queries made by B .

6: Draw tPrTs uniformly at random.

7: For each j Prmis, initialize j;0 to be an empty trajectory.

8: for hPrHs: do

9

Set sh s (per the transitions of G).
10:  For each jPrms, define @j;h :Evqy,, ;hPiniisha PpAjq, where qj;n PprTsq is defined as follows: for tPrTs,

1

exp log
g h j;gpgjt;qgh;glisgq

Aihpta: S o
T 1

. ptlq
TaBXp hIog e s
i;g PAiseli;g1:5¢4d

‘

11:  DrawK i.id.samples af;::;3 o s0ih.p

o

12:  For each a'P A, 1, define Pm 1npa‘q: L ,'fl Rm 1,-hpsh;pak;ﬁ1qq. Here, we use the oracle Og to compute
Rm 1npsn;pa’;a’aq for each tuple paf;alq.

13:  For each jPrms, draw aj;n ish Blih1;5h0.

14:  Choose the action am 1;n of player m 1 as follows: (Action am 1;h is corresponds to the action selected by the policy
m 1 Of player m 1 defined within the proof of Lemma E.3; this policy is well-defined because the action profiles of
all players iPrms can be extracted from the lower-order bits of player m 1’s reward)

! )

am 1h:argmax R 1hpalq : (14)
alPAm 1

15:  ForeachjPrm 1s,letrj;n R;hpSh;pat;h;iis;am 1,000
16:  Each playerj constructs j;n by updating j;n1 with psh;aj;n;ring. 17:

if Rm 1,hPam 1;00/14pm  1qg{H then

18: return pp, : jPrmsRi;h 3 a candidate approximate Nash equilibrium for G.
19:  endif
20:_end for

21: if the for loop terminates without returning: return fail.

It is evident that this construction takes polynomial time and satisfies |G |/mng/ n. Furthermore, it is clear that a single generative
model oracle call for the Markov game G (per Definition 5.1) can be implemented using at most 2 calls to the oracle O¢ for the
normal-form game G. We will now show by applying the algorithm B to G, we can efficiently (in terms of runtime and oracle calls)
compute a 16pm  1g-approximate Nash equilibrium for the original game G. To do so, we appeal to Algorithm 2.

Algorithm 2 proceeds as follows. First, it calls the algorithm B on the pmm  1g-player Markov game GpGg, using the oracle O to

policies of the form e p™;:::;" | q, s that each ™ Pge”‘r?d is N-computable, and so that the average : 1 T 11 1ot
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is an -CCE of G. Next, Algorithm 2 samples a trajectory from G in which:

e Player m 1 plays according to a strategy that, at each step h P rHs, computes distributions g;n representing its “belief”
of what action each player j Prms will play at step h (Line 10), and plays an approximate best response to the product of
the strategies Rh, JPrms (Line 14).

‘

In order avoid exponential dependence on the number of players m’when computing an approximate best response to Jprmsqj;hpwe
draw K :rdlogpmno{q{?s (for {p6Hq) samples from jprms@i;h and use these samples to compute the best response.

In particular, letting ar'f P A denote the kth sampled action profile, we construct a function R 1.n:Am 1N R inLines 11 and 14
which, for each a*P Ay, 1, is defined as the average over samples takukwks of the realized payoffs R, 1;hp5h;pak;alqrg; note
that to compute the payoffs for each sample, Algorithm 2 needs only two oracle calls to Og.

The following lemma, proven in the sequel, gives a correctness guarantee for Algorithm 2.

Lemma E.3 (Correctness of Algorithm 2). Given any m-player np-action normal form game G, if the algorithm B solves the
pT;;Ng-SPARSECCE problem for the game GpGq with T;;N satisfying T /exppno?{m?2q, then Algorithm 2 outputs a 16pm
1g-approximate Nash equilibrium of G with probability at least 1{3, and otherwise fails.

The assumption that T expzt"{mu from the statement of Theorem E.1 yields that T /exppno2{m?2q, so Lemma E.3 yields

that Algorithm 2 outputs a 16pmm*1g-Nash equilibrium of G with probability at least 1{3 (and otherwise fails). By iterating
Algorithm 2 for logp1{g times, we may thus compute a 16pm 1qg-Nash equilibrium of G with failure probability 1.

We now analyze the oracle cost and computational cost of Algorithm 2. It takes 2Q oracle calls to O to simulate the Q generative
model oracle calls of B, and therefore, if B runs in time U, then the call to B on Line 5, using oracle calls to Og to simulate
simulate the generative model oracle calls, runs in time OpUq. Next, the computations of qjzn (and thus gj,5) in Line 10 can be
performed in pnmTNg®19 time, the computation of Rp 1hiAm 1 N R in Line 14 requires time (and oracle calls to Og)
bounded above by Op|Am 1|Kg/pnmlogp1{q{q®P'9, constructing the actions aj;n (forjPrm 1s)in Lines 13 and 14 takes time
pNmng® (using the fact that the policies i areN scomputable), and constructing the rewards rj;n on Line 15 requires another

2pm 1qoracle calls to Og. Altogether, Algorithm 2 requires 2Q.  pnmlogp1{g{g® oracle calls to Og and, if B runs in time U,
then Algorithm 2 takes time pnmT N U logp1{a{q®, for some absolute constant Co.

Remark E.4 (Bit complexity of exponential weights updates). In the above proof we have noted that g;;n (as defined in Line 10 gf)
Algorithm 2) can be computed in time pnmTNq®%9, A detail we do not handle formally is that, since the values of g;nptq are in
general irrational, only the pnmT N q°P19 most significant bits of each real number gjnptq can be computed in time pnmT N g®°2q,
To give a truly polynomial-time implementation of Algorithm 2, one can compute only the pnmT N q°"19 most significant bits
of each distribution g;;n, which is sufficient to approximate the true value of Qjpn 10 within expppanNqopqu in total variation
distance. Since @;n only influences the subsequent execution of Algorithm 2 via the samples a?;;::;a%, iPrms Rizh drawn
in Line 11, by a union bound, the approximation of qph we have described perturbs the execution of the algorithm by at most
OpKHqgexpppnmT N q®1q in total variation distance. In particular, the correctness guarantee of Lemma E.3 still holds, with
sucess probability at least 1{3expppnmTNq°?19qi 1{4.

It remains to prove Lemma E.3, which is the bulk of the proof of Theorem E.1.
Proof of Lemma E.3. We will establish the following two facts:

1. First, the choices of am 1;h in Line 14 (i.e., Eq. 14) of Algorithm 2 correspond to a valid policy m nge”?md for player
m 1 (representing a strategy for deviating from the equilibrium ), that they can be expressed as a function of player pm
1q’s history, pm 1;h1;Shq at each step h.

2. Second, we will show that, since s an -CCE of G, the strategy ° m 1 €annot not lead to a large increase of value for player
m 1, which will imply that Algorithm 2 must return a Nash equilibrium with high enough probability.
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Defining | for iPrm 1s. We begin by constructing the policy , ‘; described; for later use in the proof, it will be convenient to
construct a collection of closely related policies P genind for i Prms, also representing strategies for deviating from the
equilibrium —

Let i P rm 1s be fixed. For h P rHs, the mapping ° on s Hizpa S N A; is defined as follows. Given a history i.n1
sequence of general policies) and a current state sn, we define ., pi;n1;Snq P A; through the following process.

1. First, we claim that for all players j Prm 1sztiu, it is possible to extract the trajectory j;n1 from the trajectory i;n1 of
player i.

(a) Recall that for each g h, from the definition in (12) and the function encpag, the bits following position 3rlog1{s of the
reward ri.g given to player i at step g of the trajectory i.g1 encode an action profile ag P A. Since i;h1 occurs with positive
probability, this is precisely the action profile which was played by agents at step g. Note we also use here that by definition
of the rewards Rj;nps;aq in (12), the component R;;nps;aq of the reward only affects the first 2rlog1{s bits.

(b) Forg handjPrm 1sztiu, define rj;g :Rj;gpSg;agaq-

(Note that, since i;n1 occurs with positive probability, the history j;n1 observed by player j up to step h1 can be
computed from it via Steps (a) and (b)). Going forward, forg h1, we let j;g denote the prefix of j;n1 up to step g.

2. Now, using that player i can compute all players’ trajectories, for each jPrm 1s we define
@ish :Etqy, nPiNIISKA PpPAjQ; (15)

where gj;» PprTsq is defined as follows: for tPrTs,

1

exp log
g h pmpﬁgglj;glisgq

AEhpta: S B
T o
ptlg

(16) yiexp o log

h
Paje |j;g155¢0
Note that gj;n is a random variable which depends on the trajectory pj;n1;sha (which can be computed from pin1;sha). In
addition, the definition of p ;n j(for each j Prms) is exactly as is defined in Line 10 of Algorithm 2.

3. For iPrms, define i;h:pi,-hl;shq as follows:

Pi;h1;Shq :argmaxE ‘ Rm 1npsh;palaiqa: (17)
i;h alPAi  a; i Pish

For the caseim 1, define | i;hpm 1,h1;5hq PPAm 1q (implicitly) to be the following distribution over a | 1.n P Am 1:
draw a*;::5;a%, N iprmsfi;h, define Ry 1ppa'q:, 2 K1Rm 1npsn;pa’;ataq for alP Am 1, and finally set
! )

a, ,,:argmax RP 1ppa'q : (18)
mou alPAm 1

Note that, for each choice of pm 1;h1;5hq, the distribution |

1.hPm 1,h1;5hq as defined above coincides with the
distribution of the action a;n . defined in Eq. 14 in Algorithm 2, when player m  1’s history is m 1;n1 and the state
at step h is,sh. The following lemma, for use later in the proof, bounds the approximation error incurred in sampling
ap;:ak jprmsfish-

Lemma E.5. Fix any pm 1;n1;Shq P Hj;n1. With probability at least 1 over the draw of al;:::;aKh JprmShqj;h, p
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which implies in particular that with probability at least 1 over the draw of @, ;. 1+ 1.,Pm 1,n1;5h0,

2
Mmax  Ea g, @iprmsfRm 1nPSh;pay;iiam;a Lqas( /ET»r ®;,n @PrmsFRm 1;0PSh;pax;iiam;a, o/,dos: (19)
PA, 1

It is immediate from our construction above that the following fact holds.

Lemma E.6. The joint distribution of j;, forjPrm 1sand hPrHs, as computed by Algorithm 2, coincides with the distribution
of j;n in an episode of G when players follow the policy ., ;pm 1g-

Analyzing the distributions g;;n. Fix any iPrm 1s. We next prove some facts about the distributions @ defined above (as
a function of pi;n1;shq) in the process of computing i;hpi;iu;shq.

For each hPrHs, consider any choice of pi;n1;5hq P Hi;n1S; note that for each jPrm  1s, the distributions qj;n PpA;jq for hPrHs
may be viewed as an application Vovk’s aggregating algorithm (Proposition D.2) in the following setting: the number of steps (T,

” in the context of Proposition D.2; note that T has a different meaning in the present proof) horizon is H, the context space is
f1Hj;h1S, and the output space is Aj. The expert set is | t"l“':::"”“u](whlchJ has jlIj T), and the experts’ predictions on a context

Pj;h1;Sq PHjh1 S are defined via *p|;; h1Sa: 9 p|;h1;59 PPAg. Then for each h PrHs, the distri-
bution @j;n is obtained by updating the aggregating algorlthm with the context-observatlon pairs pjhi1;ajn:q for h'1;2;:::h 1.

In more detail, fix any tPrTsand jPrm 1s with ij. We may apply Proposition D.2 with the number of steps set to H, the set
of experts as | . t”“‘""f“‘u and contexts and outcomes generated according to the distribution induced by running the

policy ; ;* in the Markov game G as follows:

e For each hPrHs, we are given, at steps h*  h, the actions ai;h: rewards ri:h: for all agents kPrm  1s, as well as the states

— Foreach kPrm 1s, set k;h1 PS1;ak;1;Mk;1;::5;Sh1;ak:h1; ;h10 to be agent k’s history. — The
context fed to the aggregation algorithm at step h is pj;n1;ShQ.

— The outcome at step h is given by aj;» ™p |J,h1,5hq, note that this choice satisfies the realizability assumption in
Proposition D.2.

— To aid in generating the next context at step h 1, choose ak<h pk-thl;shq forall kPrm 1szti;ju and ai.n

i hpI h1;Shg. Then set s, 1 to be the next state given the transmons of G and the action profile an pa;h;:i;am 1,00.

By Proposition D.2, it follows that for any fixed tPrTsand jPrm 1s with j i, under the process described above we have
H

Eipeq , pr““jpﬁhl;sm;n na a HlogT: (20)
h1 ’

Analyzing the value of | ;. Next, using the development above, we show that if Algorithm 2 successfully computes a Nash
equilibrium with constant probability (via ,, ‘1) whenever s is an -CCE. We first state the following claim, which is proven in the
sequel by analyzing the values V; '' for iPrms.

Lemma E.7. If 75 an -CCE of G, then it holds that for all iPrms,

- a
V; ¥m logpTq{H:

Note that in the game G, since for all h P rHs, sP S and a P A, it holds thatmjl1 Rj;nps;aq/ %mz (which holds
since in (12), encpaq is multiplied by |, 2311°816), it follows that jIEV/ pm 1g%. Thus, by Lemma E.7, we have
_ j
Vi, i/pm 1¢> mp m [BgpTaftg,and since is an -CCE of G it follows that

_ a
V", " f/2pm  1g m? logpT q{H: (21)
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To simplify notation, we will write gn :p ;hidm;h in the below calculations, where we recall that each gj;n is defermined given the
history up to step h, pj;n1;shq, as defined in (15) and (16). An action profile drawn from qgn is denotedoas a gn, with aP A. Ve

may now write V., **" e as follgws: —
m
Vm: 1pm 1gm 1
7 H .
a ;S m .
EtrTs E pta: E ~ pta, @Jp rRm L,hPSh;@08am 1;hm 1;nPm
o 1 1q okt Pt onG o RTOS
1;h1;Shq
aipag;h;iih@m 1;mq
H
¥YEir7s E. ptq E aj;hqu;h @jPrms rRm 1,nPSh;ags
hl m 1 pm 1q am 1;hm 1;hPm 1;h15SHA
aipai;h;iih;@m 1;h(q
1 ! ptq .
o DrvPPihgishaiding jppns
’ H 2 hi pm
¥Ei7s E ota max  Eag Rm 1nPSh;pajam 11,409 — —
9 pmie 0m 1 al PA H H
1 ’ Ptpg. , .« ‘0
— DTij;h Pj;h1;5h0; 050G
jPrms
H
a
y1le " E max E MMz pMgs m 2,
H t rTs h : pt q 1 ag [ a H
1 m 1 pm 1q jPrms;aj;hPAj

where:

¢ The first inequality follows from the fact that R 1,npq takes values in r1{H;1{Hs and the fact that the total variation
between product distributions is bounded above by the sum of total variation distances between each of the pairs of component
distributions.

* The second inequality follows from the inequality (19) of Lemma E.5.

¢ The final equality follows from the definition of the rewards in (12) and (13), and by summing (20) over j Prms. We remark
that the 2 term in the final line comes from the term |, 23°6%encpagq in (12).

Rearranging and using (21) as well as the factthat 2{p6Hq 2/ (as/1{2), we get that
H

E E , ma}x Eap , rpMj qajl;aj pM gs,

t rTs : pt q

m 1 pm 1q

1 jaPrms;aj;hPAj

/2Hpm 1g pm 1lgm HlogT 3H:
Since py, is a product distribution a.s., we have that

max E mM.q:.. pM g s¥0:
jPrms;d,  PA; 0" i %5 e

Therefore, by Markov’s inequality, with probability at least 1{2 over the choice of t rTs and the trajectories
Pj;h1;Shd m 1pn; 1q for {'Prms (which collectively determine qn), there isgome h PrHs so that

a
max E M q: pM q s/10pm 1q 2pm 1gm logpFafHA2pm 1q; (22)
. ag n IR IR a
JPrms;alj;hPA;
where the final inequality follows as long as H 2¥ m?logT, i.e, T/exp " m—zz , Which holds since H ¥ ng and we have

assumed that T /expp? no{m?q.
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Note that (22) implies that with probability at least 1{2 under an episode drawn from ° m 1em 1g there is some hPrHs so
that g js a 12pm 1g-Nash equilibrium of the stage game G. Thus, by Lemma E.6, with probability at least 1{2 under an episode
drawn from the distribution of Algorithm 2, there is some hPrHs so thatp is a 12pm  1q-Nash equilibrium of G.

Finally, the following two observations conclude the proof of Lemma E.3.

¢ If pn is a 12pm  1g-Nash equilibrium of G, then by definition of the reward function Rm  1;0pq in (12), upper bounding
Frioelisencpaq by 2{H,

.na-al . 2
almaxlanthm 1,hPS;pa;a qq/H 12£m 1q b

PAm

which implies, by Lemma E.5, that with probability at least 1 over the draw ofa slay, €

! ) 5

1
1 .
alpmA:ix ) Rm 1npaq / v 12pm 1q HH # H i4pm 1q;

i.e., the check in Line 17 of Algorithm 2 will pass and the algorithm will return py, (if step h is reached).

! )
e Conversely, if maxaipa, , ®m 1npalq / 14pm 1q, i.e., the check in Line 17 passes, then by Lemma E.5, with

probability at least 1 over a,;::1a, , ¢

shaeal .
almaxlanthm 1,hPS;pa;a qq/H 14pm 1q H / FP15pr1 1g;
PAn

which implies, by the definition of R 1,npqg in (12) and (13), that p nis a 16pm  1g-Nash equilibrium of G.

Taking a union bound over all H of the probability- failure events from Lemma E.5 for the sampling a® ""ﬁa p (for hPrHs), as well
as over the probability-1{2 event that there is no gn whichgs a 12pm 1g-Nash equilibrium of G, we obtain that with probability at
least 11{2H {p6H q ¥ 1{3, Algorithm 2 outputs a 16pm 1g-Nash equilibrium of G. O

Finally, we prove the remaining claims stated without proof above.

Proof of Lemma E.5. Since R 1;nps;aqPr1{H;1{Hs for each a PA,T)y Hoeffding’s inequality, for any fixed alP Ay, 1, with

probability at least 1{| Am 1] 1{pmnoq over the draw of a """ 1 K jprmsfi;h, it holds that
I mn
R 1,nPa'qEa g, @prmsIRm 1,0PSh;pal;ii;am;a qqs/ = % Iy

where the final inequality follows from the choice of K rdlogpmno{q{%s. The statement of the lemma follows by a union
bound over all |Am 1| actions a'PAm 1. O

Proof of Lemma E.7. F|x any agent iPrms. We will argue that the policy Pge” d t deflned within the proof of Lemma E.3

satisfies V;'’ '¥m Iongq{H Since is an -CCE of G, it follows that

P ~ p af -
a
¥V'V, ¥mlog T HV, ;

from which the result of Lemma E.7 follows after rearranging terms. To simplify notation, let us write gi:h : % hpwhere we
recall that eagh gj;n is determined given the history up to step h, pjh1;shq, as defined in (15) and (16). An action profile
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drawn from pi.h is denoted by a; gi:n, with a; P Aj. We compute

Vit
: H
Eer's EpaE® " s °°  RihPSh;PyyPih1;Sh0;ai09
hi i P“hl hd ];h'
H
¥Etrrs 7 B Eajgin RihPShiP;,Pin1;Sha;aiqq 1, Drvpj,peRjn1;5ha;05n %
h1 H
H Hji
’ 1 m 2
¥Eir7s Eiwe MaxE, g Rinpsn;pa;aiqq H  HlogT
h1 i i alPA;
¥m ?ogplq{l:i;

where:

¢ The first inequality follows from the fact that the rewards Ri;npq take values in r1{H;1{Hs and that the total variation
between product distributions is bounded above by the sum of total variation distances between each of the pairs of component
distributions.

* The second inequality follows from the definition of * [Rin1;shq in terms of gi;n i9 (17) as well as (20) applied to each j i
and each tPrTs. ’

¢ The final inequality follows by Lemma E.8 below, applied to agent i and to the distribution pi;n, which we recall is a product
distribution almost surely.

Lemma E.8. For anyiPrms, sPS;hPrHs, and any product distribution q P pAig, it holds that
maanqRi;hps;pai;a9q¥O: i
alPA‘

Proof. Choose a; :argmax,ippEagPMidat;a. Now we compute

Han‘rRi;hps;pai;aq't|s¥Ha min  EaqRihps;pa;;am 1:3pm 109 ¥
pJ;a

m 1

2. .
min 1% UEaq PMiQa';aPMida;a
m 1 1
1qPA
¥0;

where the first inequality follows since q is a product distribution, the second inequality uses that encpq is non-negative, and the
final inequality follows since by choice of a; we have Eag pMida';a ¥ Eaq PMid, ;s forall a; PA;. O

E.2. Remarks on bit complexity of the rewards

The Markov game GpGq constructed to prove Theorem E.1 uses lower-order bits of the rewards to record the action profile taken
each step. These lower order bits may be used by each agent to infer what actions were taken by other agents at the previous step,
and we use this idea to construct the best-response policies :i defined in the proof. As a result of this aspect of the construction, the
rewards of the game GpGq each take Opmlogpng logp1{qq bits to specify. As discussed in the proof of Theorem E.1, it is without loss
of generality to assume that the payoffs of the given normal-form game G take Oplog1{q bits each to specify, so when eitherm " 1 or
n " 1{, the construction of GpGq uses more bits to express its rewards than what is used for the normal-form game G.

It is possible to avoid this phenomenon by instead using the state transitions of the Markov game to encode the action profile
taken at each step, as was done in the proof of Theorem 3.2. The idea, which we sketch here, is to replace the game GpGq of
Definition E.2 with the following game G'pGa:
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Definition E.9 (Alternative construction to Definition E.2). Given an m-player, ng-action normal-form game G, we define the
game G'pGa pS;H;pAidipras; P;PRidipr2s;q as follows.
® The horizon of G is H ng.
e Let Ang. The action spaces of agents 1;2;:::;;m are given by A1 A, rAs. The action space of agentm 1isAn 1
tpj;a;q 1 jPrms;a; PAju;
sothat |Am 1| Am/n.

We write A jml A; to denote the joint action space of the first m agents, and A~ - jmllAj to denote the joint action
space of all agents. Then [A| A"pmAgmA™ 1/n.

e The state space S is defined as follows. There are |A| states, one for each action tuple a P A. For each a P A, we denote
the corresponding state by s,.

am 1 pjl;allg,

$ 1
, 0 :jRtj ;m  1u
Rihps;aq: it (23)
jm 1:

]

e At each step h PrHs, if action profile a P A is taken, the game transitions to the state s.

Note that the number of states of G'pGq is equal to |A] mn™ 10and so |GlpGg| mn™ 1, Ag a result, if we were to use the game
G'pGqin place of GpGq in the proof of Theorem E.1, we would need to define ng : tnP™ 19{my to ensure that |G'pGq|/n, and
so the condition T expp? tn{mu{m?q would be replaced by T expp?tnP™  19mu{m?2q. This would
only lead to a small quantitative degradement in the statement of Theorem 4.3, with the condition in the statement replaced by T

exppc2nBq for some constant ¢ j 0. However, it would render the statement of Theorem 5.2 essentially vacuous. For this
reason, we opt to go with the approach of Definition E.2 as opposed to Definition E.9.

We expect that the construction of Definition E.2 can nevertheless still be modified to use Oplogl{q bits to express each reward in
the Markov game G. In particular, one could introduce stochastic transitions to encode in the state of the Markov game a small
number of random bits of the full action profile played at each step. We leave such an approach for future work.

gen;rnd
i

gen;det

F. Equivalence between and p

9

In this section we consider an alternate definition of the spac
is equivalent to the one we gave in Section 2.

e ge?;md of randomized general policies of player i, and show that it

In particular, suppose we were to define a randomized general policy of agent i as a distribution over deterministic gen-
eral policies of agent i: we write Qe?;md ; psendety o denote the space of such distributions. Moreover, write &4
gen;rnd geni”f'dl pge”"detq pg‘?”"getq to denote the space of product distributions over agents’ deterministic policies. Our goal in
this section is to show that policies in 8™™d are equivalent to those in 88™™9 in the following sense: there is an embedding map
Emb :8emrnd §eenirnd ot depending on the Markov game, so that the distribution of a trajectory drawn from any P &™™d for any
Markov game, is the same as the distribution of a trajectory drawn from Embpq (Fact F.2). Furthermore, Emb is surjective in the
following sense: any policy P&8"™d produces trajectories that are distributed identically to those of Embpq (and thus of ), for some
peenimnd (Fact F.3). In Definition F.1 below, we define Emb.

Definition F.1. For jPrms and Pge";j"‘d, define Emb;p;q P&"M# Pge";d“q to puf the following amount of mass on each j
Pgen;d t,
e’ j

”

pPEmb;p;qqp;q: iPi:hP;ha;Sha |j;h1;Sh0 (24)
h1pj;h1;shqPHj;n1S
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Note that, in the special case that | Pge”;;jet, Embjp;jq is the point mass on j.

Fact F.2 (Embedding equivalence). Fix a m-player Markov game G and, arbitrary policies ; Pge”;m"}.

from the product policy pi;:::;mq P &M Mdeenimd jg distributed identically to a trajectory drawn from Embpg peenirnd,

r
The proof of Fact F.2 is provided in Section F.1. Next, we show that the mapping Emb is surjective in the following sense:

Then a trajectory drawn

Fact F.3 (Right inverse of Emb;). There is a mapping Fac : &@™™Md { genind gq that for any Markov game G and any
rPeemrnd the distribution of a trajectory drawn from r is identical to the distribution of a trajectory drawn from EmbFacprq.

genind \which is equivalent to r (in the sense that their trajectories are identically distributed for any Markov game).

An important consequence of Fact F.2 is that the expected reward (i.e., value) under any P8end js the same as that of Embpg. Thus
given a Markov game, the induced normal-form game in which the players’ pure action sets are ge”"rlnd; iy 8emind i

equivalent to the normal-form game in which the players’ pure action sets are 89 ;:::-genidet i the following sense: for
1le m

any mixed strategy in the former, namely a product distributional policy P P p&" g pgenmdy, the policy Ep
rEmbpas P pge”’detq pegnidetq eenimd js 3 mixed strate';gy in the latter which gives each player the same value as under P.. (Note
that Ep rEmbpgs is indeed a product distribution since P is a product distribution and Emb factors
into individual coordiantes.) Furthermore, by Fact F.3, any distributional policy in 8"™d arises in this manner, for some
P Ppge”;qu peenmdg; in fagt, P may be chosen to place all its mass on a single p genirnd genimd_ Since Emp factors into
individual coordinates, it follows that Emb yields a one-to-one mapping between the coarse correlated equilibria (or any other notion
of equilibria, e.g., Nash equilibria or correlated equilibria) of these two normal-form games.

F.1. Proofs of the equivalence

Proof of Fact F.2. Consider any trajectory psi;ai;ri;:::;sSu;an;rug consisting of a sequence of H states and actions and
rewards for each of the m agents. Assume that ri;h Ri;nps;ang for all i;h (as otherwise has probability 0 under any policy). Write:

H1
p:  Phpsh 1|shang:h1

Then the probability of observing under is

H1l m
”n n

P ;hPajn|jh1;Sha (25)
hij1

” ’

p ipid (26)

J-PrmSJ'P‘gen;deri @h; pj;h1;Shdaj;n
It is now straightforward to see from the definition of jp;q in (24) that the quantities in (25) and (26) are equal. O

gen;det Pgen;rnd

Proof of Fact F.3. Fix a policy rj P p q.J.We define Facjprjq to be the policy j

gen;rnd
i
for j;h1 PSj;1;3j;1505;1;::55Sj;h1;@;h1;1;h19 P Hj;ha, Sh PS, we have, for aj;n P Aj,

, whigh is defined as follows:

rE Pgejmdet‘: P (J;Ia iig 8 ig @g/hu
j ; H
P ojh1 #9904 )
ri tjP; geNidet : iPjg;Sgdaje @g/hlu
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If the denominator of the above expression is O, then jpjn1; shq is defined to be an arbitrary distribution on pAjq. (For
concreteness, let us say that it puts all its mass on a fixed action in Aj.) Furthermore, for r P gen;mndy define

the m agents. Assume that ri; Ri;nps;anq for all i;h (as otherwise has probability O under any policy). Write:
l-llll
p:  Phpsh 1]sh;anq: h1
Then the probability of observing under is

m
”on

P j;hPajhlj;h1;Sha hijt

” ”

.t opgend t o, .
mo A G PE L ipig;sgqaje @g/hu

! ot "
i1y tPEYC T jpgisgqage @g/hlup it

peendt t iPi:g;Sed Ej’j;g @g/Hu ;

e
i1

which is equal to the probability of observing underr. O
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