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Abstract

We consider the problem of decentralized multi-
agent reinforcement learning in Markov games. A
key question is whether there are algorithms that,
when run independently by all agents, lead to no-
regret for each player, analogous to celebrated results
for no-regret learning in normal-form games. While
recent work has shown that such algorithms exist for
restricted settings (e.g., when regret is defined with
respect to deviations to Markov policies), the ques-
tion of whether independent no-regret learning can
be achieved in the standard Markov game framework
was open. We provide a decisive negative resolution
to this problem, both from a computational and
statistical perspective. We show that:

1. Under the assumption that PPAD-hard prob-
lems cannot be solved in polynomial time, there
is no polynomial-time algorithm that attains no-
regret in general-sum Markov games when ex-
ecuted independently by all players, even when
the game is known to the algorithm designer
and the number of players is a small constant.

2. When the game is unknown, no algorithm,
efficient or otherwise, can achieve no-regret
without observing exponentially many
episodes in the number of players.

These results are proven via lower bounds for a sim-
pler problem we refer to as S PA R S E C C E, in which
the goal is to compute a coarse correlated equilibrium
that is “sparse” in the sense that it can be represented
as a mixture of a small number of product policies.
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1. Introduction

The framework of multi-agent reinforcement learning (MARL),
which describes settings in which multiple agents interact in a
dynamic environment, has played a key role in recent break-
throughs in artificial intelligence, including the development of
agents that approach or surpass human performance in games
such as Go (Silver et al., 2016), Poker (Brown & Sandholm,
2018), Stratego (Perolat et al., 2022), and Diplomacy (Kramar et
al., 2022; Bakhtin et al., 2022). MARL  also shows promise for
real-world multi-agent systems, including autonomous
driving (Shalev-Shwartz et al., 2016), and cybersecurity
(Malialis & Kudenko, 2015), and economic policy (Zheng et
al., 2022). These applications, where reliability is critical,
necessitate the development of algorithms that are practical and
efficient, yet provide strong formal guarantees and robustness.

Multi-agent reinforcement learning is typically studied using the
framework of Markov games (also known as stochastic games)
(Shapley, 1953). In a Markov game, agents interact over a finite
number of steps: at each step, each agent observes the state
of the environment, takes an action, and observes a reward
which depends on the current state as well as the other
agents’ actions. Then the environment transitions to a new
state as a function of the current state and the actions taken.
An episode consists of a finite number of such steps, and
agents interact over the course of multiple episodes,
progressively learning new information about their environment.
Markov games generalize the well-known model of Markov
Decision Processes (MDPs) (Puterman, 1994), which
describe the special case in which there is a single agent
acting in a dynamic environment, and we wish to find a policy
that maximizes its reward. By contrast, for Markov games,
we typically aim to find a distribution over agents’ policies
which constitutes some type of equilibrium.

1.1. Decentralized learning

In this paper, we focus on the problem of decentralized (or,
independent) learning in Markov games. In decentralized
MARL, each agent in the Markov game behaves independently,
optimizing their policy myopically while treating the effects of
the other agents as exogenous. Agents observe local informa-
tion (in particular, their own actions and rewards), but do not
observe the actions of the other agents directly. Decentralized
learning enjoys a number of desirable properties, including

1



Hardness of Independent Learning in Markov Games

scalability, versatility, and practicality. The central question
we consider is whether there exist decentralized learning
algorithms which, when employed by all agents in a Markov
game, lead them to play near-equilibrium strategies over time.

Decentralized equilibrium computation in MARL  is not well
understood theoretically, and algorithms with provable guar-
antees are scarce. To motivate the challenges and most salient
issues, it will be helpful to contrast with the simpler problem
of decentralized learning in normal-form games, which may be
interpreted as Markov games with a single state. Much of the
modern work on decentralized learning in normal-form games
centers on no-regret learning, where agents select actions
independently using online learning algorithms (Cesa-Bianchi
& Lugosi, 2006) designed to minimize their regret (that is, the
gap between realized payoffs and the payoff of the best fixed
action in hindsight). In particular, a foundational result is that
if each agent employs a no-regret learning strategy, then the
average of the agents’ joint action distributions approaches a
coarse correlated equilibrium (CCE) for the normal-form game
(Cesa-Bianchi & Lugosi, 2006; Hannan, 1957; Blackwell,
1956). CCE  is a natural relaxation of the foundational concept
of Nash equilibrium, which has the downside of being
intractable to compute. On the other hand, there are many
efficient algorithms that can achieve vanishing regret in a
normal-form game, even when opponents select their actions in
an arbitrary, potentially adaptive fashion, and thus converge to a
CCE  (Vovk, 1990; Littlestone & Warmuth, 1994; Cesa-Bianchi
et al., 1997; Hart & Mas-Colell, 2000; Syrgkanis et al., 2015).

This simple connection between no-regret learning and
decentralized convergence to equilibria has been influential in
game theory, leading to numerous lines of research including
fast rates of convergence to equilibria (Syrgkanis et al., 2015;
Chen & Peng, 2020; Daskalakis et al., 2021; Anagnostides
et al., 2022), price of anarchy bounds for smooth games
(Roughgarden, 2015), and lower bounds on query and com-
munication complexity for equilibrium computation (Fearnley
et al., 2013; Rubinstein, 2016; Babichenko & Rubinstein,
2017). Empirically, no-regret algorithms such as regret
matching (Hart & Mas-Colell, 2000) and Hedge (Vovk, 1990;
Littlestone & Warmuth, 1994; Cesa-Bianchi et al., 1997) have
been used to compute equilibria that can achieve state-of-the-art
performance in application domains such as Poker (Brown
& Sandholm, 2018) and Diplomacy (Bakhtin et al., 2022).
Motivated by these successes, we ask whether an analogous
theory can be developed for Markov games. In particular:

Are there efficient algorithms
for no-regret learning in Markov games?

Challenges for no-regret learning. In spite of active research
effort and many promising pieces of progress (Jin et al., 2021;
Song et al., 2022; Mao & Basar, 2021; Daskalakis et al., 2022;
Erez et al., 2022), no-regret learning guarantees for Markov
games have been elusive. A  barrier faced by naive algorithms

is that it is intractable to ensure no-regret against an arbitrary
adversary, both computationally (Bai et al., 2020; Abbasi Yad-
kori et al., 2013) and statistically (Liu et al., 2022; Kwon et al.,
2021; Foster et al., 2022). Fortunately, many of the implications
of no-regret learning (in particular, convergence to equilibria)
do not require the algorithm to have sublinear regret against an
arbitrary adversary, but rather only against other agents who are
running the same algorithm independently. This observation
has been influential in normal-form games, where the line of
work on fast rates of convergence to equilibrium (Syrgkanis
et al., 2015; Chen & Peng, 2020; Daskalakis et al., 2021; Anag-
nostides et al., 2022) holds only in this more restrictive setting.
This motivates the following relaxation to our central question.

Problem 1.1. Is there an efficient algorithm that, when
adopted by all agents in a Markov game and run independently,
leads to sublinear regret for each individual agent?

Attempts to address Problem 1.1. Two recent lines of research
have made progress toward addressing Problem 1.1 and related
questions. In one direction, several recent papers have provided
algorithms, including V-learning (Jin et al., 2021; Song et
al., 2022; Mao & Basar, 2021) and SPoCMAR (Daskalakis et
al., 2022), that do not achieve no-regret, but can nevertheless
compute and then sample from a coarse correlated equilibrium
in a Markov game in a (mostly) decentralized fashion, with
the caveat that they require a shared source of random bits as a
mechanism to coordinate. Notably, V-learning depends only
mildly on the shared randomness: agents first play policies in a
fully independent fashion (i.e., without shared randomness)
according to a simple learning algorithm for T episodes, and
use shared random bits only once learning finishes as part of a
post-processing procedure to extract a CCE  policy. A  question
left open by these works, is whether the sequence of policies
played by the V-learning algorithm in the initial independent
phase can itself guarantee each agent sublinear regret.

Most closely related to our work, Erez et al. (2022) recently
showed that Problem 1.1 can be solved positively for a restricted
setting in which regret for each agent is defined as the maximum
gain in value they can achieve by deviating to a fixed Markov
policy. Markov policies are those whose choice of action de-
pends only on the current state as opposed to the entire history of
interaction. This notion of deviation is restrictive because in
general, even when the opponent plays a sequence of Markov
policies, the best response will be non-Markov. In challeng-
ing settings that abound in practice, it is standard to consider
non-Markov policies (Leibo et al., 2021; Agapiou et al., 2022),
since they often achieve higher value than Markov policies; we
provide a simple example in Proposition B.1. Thus, while a
regret guarantee with respect to the class of Markov policies
(as in (Erez et al., 2022)) is certainly interesting, it may be too
weak in general, and it is of great interest to understand whether
Problem 1.1 can be answered positively in the general setting.1

1We remark that the V-learning and SPoCMAR algorithms
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We refer the reader to Appendix B.2 for further discussion.

1.2. Our contributions

We resolve Problem 1.1 in the negative, from both a
computational and statistical perspective.

Computational hardness. We provide two computational
lower bounds (Theorems 1.2 and 1.3) which show that under
standard complexity-theoretic assumptions, there is no efficient
algorithm that runs for a polynomial number of episodes and
guarantees each agent non-trivial (“sublinear”) regret when
used in tandem by all agents. Both results hold even if the
Markov game is explicitly known to the algorithm designer;
Theorem 1.3 is stronger and more general, but applies only to
3-player games, while Theorem 1.2 applies to 2-player games,
but only for agents restricted to playing Markovian policies.

To state our first result, Theorem 1.2, we define a product
Markov policy to be a joint policy in which players choose
their actions independently according to Markov policies
(see Sections 2 and 3 for formal definitions). Note that if all
players use independent no-regret algorithms to choose Markov
policies at each episode, then their joint play at each round is
described by a product Markov policy, since any randomness in
each player’s policy must be generated independently.
Theorem 1.2 (Informal version of Corollary 3.3). If PPAD P,
then there is no polynomial-time algorithm that, given the
description of a 2-player Markov game, outputs a sequence
of joint product Markov policies which guarantees each agent
sublinear regret.

Theorem 1.2 provides a decisive negative resolution to Problem
1.1 under the assumption that PPAD P,2 which is standard in
the theory of computational complexity (Papadimitriou, 1994).3
Beyond simply ruling out the existence of fully decentralized
no-regret algorithms, it rules out existence of centralized algo-
rithms that compute a sequence of product policies for which
each agent has sublinear regret, even if such a sequence does not
arise naturally as the result of agents independently following
some learning algorithm. Salient implications include:

• Theorem 1.2 provides a separation between Markov
games and normal-form games, since standard no-regret
algorithms for normal-form games i) run in polynomial

mentioned above do learn equilibria that are robust to deviations to
non-Markov policies, though they do not address Problem 1.1 since
they do not have sublinear regret.

2Technically, the class we are denoting by P, namely of total
search problems that have a deterministic polynomial-time algorithm,
is sometimes denoted by FP, as it is a search problem. We ignore
this distinction.

3 PPAD is the most well-studied complexity class in algorithmic
game theory, and is widely believed to not admit polynomial time
algorithms. Notably, the problem of computing a Nash equilibrium
for normal-form games with two or more players is PPAD-complete
(Daskalakis et al., 2009; Chen et al., 2006; Rubinstein, 2018).

time and ii) produce sequences of joint product policies
that guarantee each agent sublinear regret.     Notably,
no-regret learning for normal-form games is efficient
whenever the number of agents is polynomial, whereas
Theorem 1.2 rules out polynomial-time algorithms for
as few as two agents.

• A  question left open by the work of Jin et al. (2021); Song
et al. (2022); Mao & Basar (2021) was whether the se-
quence of policies played by the V-learning algorithm
during its independent learning phase can guarantee each
agent sublinear regret. Since V-learning plays product
Markov policies during the independent phase and is com-
putationally efficient, Theorem 1.2 implies that these poli-
cies do not enjoy sublinear regret (assuming PPAD P).

Our second result, Theorem 1.3, extends the guarantee of
Theorem 1.2 to the more general setting in which agents
can select arbitrary, potentially non-Markovian policies at
each episode.     This comes at the cost of only providing
hardness for 3-player games as opposed to 2-player games, as
well as relying on the slightly stronger complexity-theoretic
assumption that PPAD † RP.4

Theorem 1.3 (Informal version of Corollary 4.4). If
PPAD † RP, then there is no polynomial-time algorithm that,
given the description of a 3-player Markov game, outputs a
sequence of joint product general policies (i.e., potentially
non-Markov) which guarantees each agent sublinear regret.

Statistical hardness. Theorems 1.2 and 1.3 rely on the widely-
believed complexity theoretic assumption that PPAD-complete
problems cannot be solved in (randomized) polynomial time.
Such a restriction is inherent if we assume that the game is
known to the algorithm designer. To avoid complexity-theoretic
assumptions, we consider a setting in which the Markov game
is unknown to the algorithm designer, and algorithms must
learn about the game by executing policies (“querying”) and
observing the resulting sequences of states, actions, and rewards.
Our final result, Theorem 1.4, shows unconditionally that, for
m-player Markov games whose parameters are unknown, any
algorithm computing a no-regret sequence as in Theorem 1.3
requires a number of queries that is exponential in m.

Theorem 1.4 (Informal version of Theorem 5.2). Given
query access to a m-player Markov game, no algorithm that
makes fewer than 2
pmq queries can output a sequence of joint product policies
which guarantees each agent sublinear regret.

Similar to our computational lower bounds, Theorem 1.4
goes far beyond decentralized algorithms, and rules out even
centralized algorithms that compute a no-regret sequence by
jointly controlling all players. The result provides another

4We use R P  to denote the class of total search problems for which
there exists a polynomial-time randomized algorithm which outputs a
solution with probability at least 2{3, and otherwise outputs “fail”.
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separation between Markov games and normal-form games,
since standard no-regret algorithms for normal-form games
can achieve sublinear regret using polypmq queries for any m.
The 2
pmq scaling in the lower bound, which does not rule out query-
efficient algorithms when m is constant, is to be expected for an
unconditional result: If the game has only polynomially many
parameters (which is the case for constant m), one can
estimate all of the parameters using standard techniques (Jin et
al., 2020), then directly find a no-regret sequence.

Proof techniques: the S P A R S E C C E  problem. Our proofs
proceed via establishing lower bounds for a computational
problem we refer to as S PA R S E C C E.  In the S PA R S E C C E
problem, the aim is to compute a CCE  that can be represented
as the mixture of a small number of product policies. See
Sections 3 and 4 for detailed proof overview.

Organization. Section 2 presents preliminaries, Sections 3
and 4 provide our computational lower bounds, and Section 5
presents our unconditional lower bounds for multi-player
games.

Notation. For nPN, we write rns:t1;2;:::;nu. For a finite set T ,
pT q denotes the space of distributions on T . For an ele-ment

tPT , I t  PpT q denotes the delta distribution that places
probability mass 1 on t. We adopt standard big-oh notation, and

write f  Opgq to denote that f  Opgmaxt1;polylogpgquq,
with
pq and
pq defined analogously.

2. Preliminaries

This section contains preliminaries necessary to present our
main results. We first introduce the Markov game framework
(Section 2.1), then provide a brief review of normal-form games
(Section 2.3), and finally introduce the concepts of coarse
correlated equilibria and regret minimization (Section 2.4).

2.1. Markov games

We consider general-sum Markov games in a finite-horizon,
episodic framework. For mPN, an m-player Markov game G

consists of a tuple G pS;H;pAiqiPrms;P;pRiqiPrms;q, where:

• S  denotes a finite state space and H P N denotes a finite
time horizon. We write S :|S|.

• For i P rms, A  denotes a finite action space for agent i.
We let A : m  A i  denote the joint action space and A i  :

1         Ai1 . We denote joint actions in bold, e.g.,
apa1;:::;amqPA. We write A i  :|Ai| and A:|A|.

• P  pP1; ::: ; PH q is the transition kernel, with each Ph
: S A Ñ pS q denoting the kernel for step h P rHs. In
particular, Phps1|s;aq is the probability of transitioning to
s1 from the state s at step h when agents play a.

• For i  P rms and h P rHs, R i ; h  : S  A  Ñ  r1{H;1{H s

is the reward function for agent i:5 the reward agent i
receives in state s at step h if agents play a is Ri;hps;aq.6

• PpSq denotes the initial state distribution.

An episode in the Markov game proceeds as follows:     the
initial state s1 is drawn from the initial state distribution .
Then, for each h ⁄  H ,  given state sh, each agent i
plays action ai;h P A i ,  and given the joint action profile
ah  pa1;h; ::: ; am;hq, each agent i  receives reward of
ri ;h   Ri;hpsh; ahq and the state of the system transitions to
sh 1  Php|sh;ahq. We denote the tuple of agents’
rewards at each step h by rh   pr1;h;:::;rm;hq, and refer to
the resulting sequence H  :ps1;a1;r1q;:::;psH;aH;rHq as a
trajectory. For h P rHs, we define the prefix of the trajectory
via h  :ps1;a1;r1q;:::;psh;ah;rhq.

We use the following notation: for some quantity x  (e.g., action,
reward, etc.) indexed by agents, i.e., x px1;:::;xmq, and an
agent i  P rms, we write x i   px1; ::: ;xi1;xi 1;:::;xmq to denote
the tuple consisting of all xi1  for i1 i.

2.2. Policies and value functions

We now introduce the notion of policies and value functions
for Markov games. Policies are mappings from states (or
sequences of states) to actions for the agents. We consider
several different types of policies, which play a crucial role in
distinguishing the types of equilibria that are tractable and
those that are intractable to compute efficiently.

Markov policies. A  randomized Markov policy for agent i  is
a sequence i  pi;1;:::;i;H q, where i;h  : S Ñ pAi q. We denote the
space of randomized Markov policies for agent i  by markov.
We write markov :markov markov to denote the space of product
Markov policies, which are joint policies in which each agent

i  independently follows a policy in markov. In particular, a
policy P markov is specified by a collection   p1;:::;Hq, where

h  : S  Ñ  pA1q pAmq. We additionally define markov :       1
markov, and for a policy  P markov, write i  to denote the

collec-tion of mappings i  pi;1;:::;i;H q, where i;h  : S Ñ  i1ipAi1 q
denotes the tuple of all but player i’s policies.

When the Markov game G is clear from context, for a policy
P markov we let Prs denote the law of the trajectory  when
players select actions via ah  pshq, and let Ers denote the
corresponding expectation.

General (non-Markov) policies. In addition to Markov poli-
cies, we will consider general history-dependent (or, non-

5We assume that rewards lie in r1{H;1{H s for notational
convenience, as this ensures that the cumulative reward for each

episode lies in r1;1s. This assumption is not important to our results.
6We restrict our attention to Markov games in which the rewards

at each step are a deterministic function of the state and action profile.
Since our goal is to prove lower bounds, this is without loss.
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Markov) policies, which select actions based on the en-
tire sequence of states and actions observed up the cur-
rent step. To streamline notation, for i  P rms, let i ;h
ps1;ai;1; ri;1; ::: ;sh;ai;h; ri;hq denote the history of agent i’s
states, actions, and reward up to step h. Let H i ; h  pS Ai  r0;1sqh

denote the space of all possible histories of agent i  up to step
h. For iPrms, a randomized general (i.e., non-Markov) policy
of agent i  is a collection of mappings i  pi;1;:::;i;H q where i;h
: Hi ; h 1 S  Ñ pAi q is a mapping that takes the history observed
by agent i  up to step h 1 and the current state and outputs a
distribution over actions for agent i.

We denote by gen;rnd the space of random-
ized general policies of agent i,     and further write
gen;rnd      : gen;rnd        gen;rnd     to denote the space of product
general policies; note that markov €gen;rnd and markov € gen;rnd.
In particular, a policy  P gen;rnd is specicfied by a
collection pi;hqiPrms;hPrHs, where i;h  : Hi ; h 1  S  Ñ pAi q.
When agents play according to a general policy P gen;rnd, at
each step h, each agent, given the current state sh and their
history i;h1 P Hi;h1 ,  chooses to play an action ai;h i;hpi;h1;shq,
independently from all other agents. For a policy  P gen;rnd,
we let Prs and Ers denote the law and expectation operator for
the trajectory  when players select actions via ah ph1;shq, and
write i  to denote the collection of policies of all agents but i,
i.e., i  pj;hqhPrHs;jPrmsztiu.

We will also consider distributions over product randomized
general policies, namely elements of pgen;rndq.7 We will refer
to elements of pgen;rndq as distributional policies. To play a
distributional policy P  P pgen;rndq, agents draw a randomized
policy P  (so that P gen;rnd) and then play .

Value functions. For a general policy  P gen;rnd, we
define the value function for agent i  P rms as

V      : E h1Ri;hpsh;ahq |s1  ; this represents
the expected reward that agent i  receives when each agent
chooses their actions via ai;h      hpi;h1; shq.For a
distributional policy P  Ppgen;rndq, we extend this notation by
defining V P  :EP  rV s.

2.3. Normal-form games

To motivate the solution concepts we consider for Markov
games, let us first revisit the notion of normal-form games,
which may be interpreted as Markov games with a single
state. For m; n P N, an m-player n-action normal-form
game G  is specified by a tuple of m reward tensors
M1;:::;Mm P r0;1snn, where each tensor is of order m (i.e.,
has nm entries). We will write GpM1;:::;Mmq. We as-sume
for simplicity that each player has the same number n of actions,
and identify each player’s action space with rns. Then

7When T is not a finite set, we take pT q to be the set of Radon
probability measures over T equipped with the Borel -algebra.

an an action profile is specified by aPrnsm; if each player acts
according to a, then the reward for player i P rms is given by
pMiqa Pr0;1s. Our hardness results will use the standard notion
of Nash equilibrium in normal-form games. We define the m-
player pn;q-NASH problem to be the problem of computing an -
approximate Nash equilibrium of a given m-player n-action
normal-form game. (See Definition C.2 for a formal definition
of -Nash equilibrium.)     A  celebrated result is that Nash
equilibria are PPAD-hard to approximate, i.e., the 2-player
pn;ncq-NASH problem is PPAD-hard for any constant c ¡ 0
(Daskalakis et al., 2009; Chen et al., 2006). We refer the reader
to Section C.2 for further background on these concepts.

2.4. Markov games: Equilibria and no-regret

We now turn our focus back to Markov games, and introduce
the main solution concepts we consider, as well as the notion
of no-regret. Since computing Nash equilibria is intractable
even for normal-form games, much of the work on efficient
equilibrium computation has focused on alternative notions
of equilibrium, notably coarse correlated equilibria.

For a distributional policy P  Ppgen;rndq and a randomized
policy 1 P gen;rnd of player i, we let 1 Pi Ppgen;rndq denote the
distributional policy which is given by the distri-bution of
p1;iqP gen;rnd for P  (and i  denotes the marginal of  on all
players but i). For P gen;rnd, we write 1 i to denote the policy
given by p1;iqPgen;rnd. Let us fix a Markov game G, which in
particular determines the players’ value functions V .

Definition 2.1 (Coarse correlated equilibrium). For  ¡  0, a
distributional policy P  P pgen;rndq is defined to be an -coarse
correlated equilibrium (CCE) if for each i P rms, it holds that
max

i P
gen;rn d V 

1 Pi  V P  ⁄ .

Coarse correlated equilibria can be computed efficiently
for both normal-form games and Markov games, and are
fundamentally connected to the notion of no-regret and
independent learning, which we now introduce.

Regret. For a policy P gen;rnd, we denote the distributional
policy which puts all its mass on  by I  Ppgen;rndq. Thus 1        T

Iptq  P pgen;rndq denotes the distributional policy which
randomizes uniformly over the ptq. We define regret

as follows.

Definition 2.2 (Regret). Consider a sequence of policies
p1q;:::;pT q P gen;rnd. For i P rms, the regret of agent i  with
respect to this sequence is defined as:

T ptq

Reg pp1q;:::;pT qq max V i  V : (1)
i P

g e n ; r n d
t1

It is immediate from the above definitions that a sequence of
policies p1q;:::;pT q P gen;rnd satisfies Regi;tpp1q;:::;pT qq ⁄

5
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T if and only if the distributional policy  : 1 ° T       Iptq  is an -
CCE (stated formally in Fact C.1 in the appendix).

No-regret learning. A  standard approach to decentralized
equilibrium computation, which exploits Fact C.1, is to
select p1q; ::: ; pT q P gen;rnd using independent no-regret
learning algorithms. A  no-regret learning algorithm for player
i  selects ptq     P gen;rnd based on the realized trajectories p1q

;:::;pt1q P H i ; H  that player i  observes over the course of play,8

but with no knowledge of ptq , so as to ensure that no-regret is
achieved: Reg pp1q;:::;pT qq ⁄T . If each player i
uses their own, independent no-regret learning algorithm, this
approach yields product policies ptq ptq ptq, and the uniform
average of the ptq yields a CC E  as long as all of the players
can keep their regret small.9

For the special case of normal-form games, there are several
efficient algorithms, which—when run independently—ensure
that each player’s regret after T episodes is bounded above by
Op Tq (that is Op1{ Tq), even when the other players’
actions are chosen adversarially.

3. Lower bound for Markovian algorithms

In this section we prove Theorem 1.2 (restated formally below
as Theorem 3.2), establishing that in two-player Markov games,
there is no computationally efficient algorithm that computes a
sequence p1q;:::;pT q of product Markov policies so that each
player has small regret under this sequence. This section serves
as a warm-up for our results in Section 4, which remove the
assumption that p1q;:::;pT q are Markovian.

3.1. S PA R S E M A R K O V C C E  and computational model

As discussed in the introduction, our lower bounds for no-regret
learning are a consequence of lower bounds for the S PA R -
S E C C E problem. In what follows, we formalize this problem
(specifically, the Markovian variant, which we refer to as
SPA R S E M A R KOVCCE), as well as our computational model.

Description length for Markov games (constant m). Given a
Markov game G, we let pGq denote the maximum number of
bits needed to describe any of the rewards Ri;hps; aq or
transition probabilities Phps1|s; aq in binary.10 We define
|G| : maxtS;maxiPrms Ai;H;pGqu. The interpretation of |G|
depends on the number of players m: If m is a constant (as
will be the case in the current section and Section 4), then

8An alternative model allows for player i  to have knowledge of
the previous joint policies p1q;:::;pt1q, when selecting ptq.

9In Appendix B, we discuss the implications of relaxing the
stipulation that ptq be product policies (for example, by allowing the
use of shared randomness, as in V-learning). In short, allowing ptq to
be non-product essentially trivializes the problem.

10We emphasize that pGq is defined as the maximum number of
bits required by any particular ps;aq pair, not the total number of bits
required for all ps;aq pairs.

|G| should be interpreted as the description length of the game
G, up to polynomial factors. In particular, for constant m, the
game G can be described using |G|Op1q bits. In Section 5, we
discuss the interpretation of |G| when m is large.

The S P A R S E M A R K O V C C E  problem. From Fact C.1, we
know that the problem of computing a sequence p1q;:::;pT q of
joint product Markov policies for which each player has at most
T regret is equivalent to computing a sequence p1q;:::;pT q for
which the uniform mixture forms an -approximate CCE.  We
define pT;q-SPARSEMARKOVCCE as the computational
problem of computing such a CCE  directly.
Definition 3.1 (S PA R S E M A R K OV C C E problem).     For an
m-player Markov game G and parameters T P N and  ¡
0 (which may depend on the size of the game G), pT; q-
SPA R S E M A R KOVCCE is the problem of finding a
sequence p1q; ::: ; pT q, with each ptq P markov, such that
the distributional policy   1 T       Iptq  P pgen;rndq is an -
CCE of G (or equivalently, such that for all i  P rms, Regi;T
pp1q;:::;pT qq ⁄T ).

Decentralized learning algorithms naturally lead to solutions
to the S PA R S E M A R KOV C C E problem. In particular, consider
any decentralized protocol which runs for T episodes, where
at each timestep tPrTs, each player iPrms chooses a Markov
policy ptq P markov to play, without knowledge of the other
players’ policies ptq     (but possibly using the history); any
strategy in which players independently run online learning
algorithms falls under this protocol. If each player experiences
overall regret at most   T , then the sequence p1q; ::: ; pT q is a
solution to the pT; q-SPARSEMARKOVCCE problem.
However, one might expect the pT;q-SPARSEMARKOVCCE
problem to be much easier than decentralized learning, since it
allows for algorithms that produce pp1q;:::;pTqq satisfying the
constraints of Definition 3.1 in a centralized manner. The main
result of this section, Theorem 3.2, rules out the existence of
any efficient algorithms, including centralized ones, that solve
the S PA R S E M A R KOV C C E problem.

Before moving on, let us give a sense for what sort of scaling
one should expect for the parameters T and  in the pT; q-
SPARSEMARKOVCCE problem. First, we note that there al-

ways exists a solution to the p1;0q-SPARSEMARKOVCCE prob-
lem in a Markov game, which is given by a (Markov) Nash equi-
librium of the game; of course, Nash equilibria are intractable
to compute in general.11 For the special case of normal-form
games (where there is only a single state, and H 1), no-regret

learning (e.g., Hedge) yields a computationally efficient so-
lution to the pT;Op1{ T qq-SPARSEMARKOVCCE problem,
where the Opq hides a maxi log|Ai| factor. Refined conver-
gence guarantees of Daskalakis et al. (2021); Anagnostides et al.
(2022) improve upon this result, and yield an efficient solution

11Such a Nash equilibrium can be seen to exist by using backwards
induction to specify the player’s joint distribution of play at each state
at steps H;H 1;:::;1.
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Hardness of Independent Learning in Markov Games

to the pT;Op1{T qq-SPARSEMARKOVCCE problem.

3.2. Main result

Theorem 3.2. There is a constant C0  ¡ 1  so that the following
holds. Let nPN be given, and let T PN and ¡ 0  satisfy T
expp2n1{2{25q. Suppose there is an algorithm that, given the
description of any 2-player Markov game G with |G|⁄n, solves
the pT;q-SPARSEMARKOVCCE problem in time U, for some
U PN. Then, for each nPN, the 2-player ptn1{2u;4q-NASH
problem (Definition C.2) can be solved in time pnTUqC0.

We emphasize that the range T exppnOp1qq ruled out by
Theorem 3.2 is the most natural parameter regime, since the
runtime of any decentralized algorithm which runs for T
episodes and produces a solution to the SPARSEMA R KOVCCE
problem is at least linear in T . Using that 2-player pn;q-NASH is
PPAD-complete for   nc (for any c ¡  0) (Daskalakis et al.,
2009; Chen et al., 2006; Rubinstein, 2018), we obtain the
following corollary.

Corollary 3.3 (S PA R S E M A R KOV C C E is PPAD-complete).
For any constant C  ¡  4, if there is an algorithm which,
given the description of a 2-player Markov game G, solves
the p|G|C; |G|C q-SPA R S E M A R KOVCCE problem in time
polyp|G|q, then PPAD P.

The condition C  ¡  4 in Corollary 3.3 is set to ensure that
|G|C expp|G|2{C |G|{26q for sufficiently large |G|, so as
to satisfy the condition of Theorem 3.2. Corollary 3.3 rules out
the existence of a polynomial-time algorithm that solves the
SPA R S EMA R KOVCCE problem with accuracy  polynomially
small and T polynomially large in jGj.

Proof overview. The proof of Theorem 3.2 is based on a reduc-
tion, which shows that any algorithm that efficiently solves the
pT;q-SPARSEMARKOVCCE problem, for T not too large, can

be used to efficiently compute an approximate Nash equilib-
rium of any given normal-form game. In particular, fix n0 PN,
and let a 2-player normal form game G with n0 actions be given.

We construct a Markov game G GpGq with horizon H n0

and action sets identical to those of the game G, i.e., A1  A2   rn0s.
The state space of G consists n2 states, which are indexed by
joint action profiles; the transitions are defined so that the

value of the state at step h encodes the action profile taken by the
agents at step h1.12 At each state of G, the reward functions

are given by the payoff matrices of G, scaled down by a factor
of 1{H (which ensures that the rewards received at each step be-
long to r0;1{Hs). In particular, the rewards and transitions out
of a given state do not depend on the identity of the state, and
so G can be thought of as a repeated game where G  is played
H  times. The formal definition of G is given in Definition D.3.

Fix any algorithm for the S PA R S E M A R K OV C C E prob-
12For technical reasons, this only is the case for even values of h;

we discuss further details in the full proof in Section D.2.

lem, and recall that for each step h and state s for G,
ptqpsqPpA1qpA2q denotes the joint action distribution taken in
s at step h for the sequence of p1q;:::;pT q produced by the
algorithm. The bulk of the proof of Theorem 3.2 consists of
proving a key technical result, Lemma D.4, which states that
if p1q;:::;pT q indeed solves pT;q-SPARSEMARKOVCCE, then
there exists some tuple ph;s;tq such that ptqpsq is an
approximate Nash equilibrium for G. With this established, it
follows that we can find a Nash equilibrium efficiently by
simply trying all H S T  choices for ph;s;tq.

To prove Lemma D.4, we reason as follows. Assume that
 : 1 T       Iptq  P pgen;rndq is an -CCE. If, by contra-
diction, none of the distributions ptqpsq h

Pr
H

s
;s

P
S; t

PrT s
 are

approximate Nash equilibria for G, then it must be the case
that for each t, one of the players has a profitable deviation in
G  with respect to the product strategy ptqpsq, at least for a
constant fraction of the tuples ps;hq. We will argue that if
this were to be the case, it would imply that there exists a
non-Markov deviation policy for at least one player i  in
Definition 2.1, meaning that  is not in fact an -CCE.

To sketch the idea, recall that to draw a trajectory from , we
first draw a random index t rTs uniformly at random, and then
execute ptq for an episode. We will show (roughly)
that for each player i, it is possible to compute a non-Markov
deviation policy :  which, under the draw of a trajectory from
, can “infer” the value of the index t within the first few steps
of the episode. Then policy :  then, at each state s and step h
after the first few steps, play a best response to their opponent’s
portion of the strategy ptqpsq. If, for each possible value of t,
none of the distributions ptqpsq are approximate Nash
equilibria of G, this means that at least one of the players i  can
significantly increase their value in G over that of  by playing i  ,
which contradicts the assumption that  is an -CCE.
It remains to explain how we can construct a non-Markov pol-
icy :  which “infers” the value of t. Unfortunately, exactly
inferring the value of t in the fashion described above is impos-
sible: for instance, if there are t1 t2 so that pt1 q pt2 q, then clearly it
is impossible to distinguish between the cases t t1 and t t2.
Nevertheless, by using the fact that each player ob-serves the full
joint action profile played at each step h, we can construct a non-
Markov policy which employs Vovk’s aggregat-ing algorithm for
online density estimation (Vovk, 1990; Cesa-
Bianchi & Lugosi, 2006) in order to compute a distribution

which is close to ptqpsq for most hPrHs.13 This guarantee is
stated formally in an abstract setting in Proposition D.2, and is
instantiated in the proof of Theorem 3.2 in ((5)). As we show in
Section D.2, approximating ptqpsq as we have described is suf-
ficient to carry out the reasoning from the previous paragraph.

13Vovk’s aggregating algorithm is essentially the exponential
weights algorithm with the logarithmic loss. A  detailed background
for the algorithm is provided in Section D.1.
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4. Lower bound for non-Markov algorithms

In this section, we prove Theorem 1.3 (restated formally
below as Theorem 4.3), which strengthens Theorem 3.2 by
allowing the sequence p1q;:::;pT q of product policies to be non-
Markovian. This additional strength comes at the cost of our
lower bound only applying to 3-player Markov games (as
opposed to Theorem 3.2, which applied to 2-player games).

4.1. S PA R S E C C E  problem and computational model

To formalize the computational model for the S PA R S E C C E
problem, we must first describe how the non-Markov product
policies ptq  pptq; :::; ptqq are represented. Recall that a non-
Markov policy ptq P gen;rnd is, by definition, a mapping from
agent i’s history and current state to a distribution over their
next action. Since there are exponentially many possible
histories, it is information-theoretically impossible to express

an arbitrary policy in gen;rnd with polynomially many bits.
As our focus is on computing a sequence of such policies ptq in

polynomial time, certainly a prerequisite is that ptq can be
expressed in polynomial space. Thus, we adopt the represen-
tational assumption, stated formally in Definition 4.1, that each
of the policies ptq P gen;rnd is described by a bounded-size
circuit that can compute the conditional distribution of each
next action given the history. This assumption is satisfied
by essentially all empirical and theoretical work concerning
non-Markov policies (e.g., (Leibo et al., 2021; Agapiou et al.,
2022; Jin et al., 2021; Song et al., 2022)).

Definition 4.1 (Computable policy). Given a m-player
Markov game G and N  PN, we say that a policy i  P gen;rnd is
N-computable if for each hP rHs, there is a circuit of size N
that,14 on input pi;h1;sq P Hi;h1 S , outputs the distribu-tion
ipi;h1;sqPpAiq. A  policy p1;:::;mqPgen;rnd is N-computable if
each constituent policy i  is.

Our lower bound applies to algorithms that produce sequences
p1q;:::;pT q for which each ptq is N-computable, where the value
N  is taken to be polynomial in the description length of the
game G. For example, Markov policies whose probabilities can
be expressed with  bits are OpHSAiq-computable for each
player i, since one can simply store each of the probabil-ities
i;hpsh;ai;hq, each of which takes  bits to represent.

The S P A R S E C C E  problem. S PA R S E C C E is the problem
of computing a sequence of non-Markov product poli-
cies p1q; ::: ; pT q such that the uniform mixture forms an -
approximate CCE.  The problem generalizes S PA R S E -
M A R KOV C C E (Definition 3.1) by relaxing the condition that
the policies ptq be Markov.

14For concreteness, we suppose that “circuit” means “boolean cir-
cuit” as in Definition 6.1 of (Arora & Barak, 2006), where probabilities
are represented in binary. The precise model of computation we use
does not matter, though, and we could equally assume that the policies i
may be computed by Turing machines that terminate after N  steps.

Definition 4.2 (S PA R S E C C E Problem). For an m-player
Markov game G and parameters T;N PN and ¡ 0  (which may
depend on the size of the game G), pT;;N q-SPARSECCE is
the problem of finding a sequence p1q;:::;pT q P gen;rnd, with
each ptq being N-computable, such that the distributional pol-
icy  1 T       Iptq  P pgen;rndq is an -CCE for G (equiv-
alently, such that for all iPrms, Regi;T  pp1q;:::;pT qq ⁄T ).

4.2. Main result

Our main theorem for this section, Theorem 4.3, shows
that for appropriate values of T , , and N , solving the
pT;;Nq-SPARSECCE problem is at least as hard as computing
Nash equilibria in normal-form games.
Theorem 4.3. Fix n P N, and let T ;N P N, and ¡ 0  satisfy 1

T exp 1
n     . Suppose there exists an algorithm

that, given the description of any 3-player Markov game G
with |G| ⁄  n, solves the pT; ; N q-SPARSECCE problem in
time U, for some U P N. Then, for any  ¡  0, the 2-player
ptn{2u; 50q-NASH problem can be solved in randomized
time pnTNU logp1{q{qC0 with failure probability , where C0

¡ 0  is an absolute constant.

By analogy to Corollary 3.3, we obtain the following
immediate consequence.
Corollary 4.4 (SPARSECCE is hard under PPAD † RP). For
any C ¡ 4 ,  if there is an algorithm which, given the description
of a 3-player Markov game G, solves the p|G|C;|G| 1  ;|G|C q-
SPARSECCE problem in time polyp|G|q, then PPAD „ RP .

Proof overview for Theorem 4.3. The proof of Theorem 4.3
has a similar high-level structure to that of Theorem 3.2: given
an m-player normal-form G, we define an pm      1q-player

Markov game G GpGq which has n0 :tn{mu actions per
player and horizon H n0. The key difference in the proof of

Theorem 4.3 is the structure of the players’ reward functions.
To motivate this difference and the addition of an pm      1q-
th player, we explain why the proof of Theorem 3.2 fails to

extend: a sequence p1q;:::;pT q can hypothetically solve the
SPARSECCE problem by attempting to punish any one player’s
deviation policy, and thus avoid having to compute a Nash
equilibrium of G. In particular, if player i  plays according to
the policy : that we described in Section 3.2, then other players j
i  can use the non-Markov property of ptq to adjust their choice
of actions in later rounds to decrease player i’s value.

This behavior is reminiscent of “tit-for-tat” strategies which
are used to establish the folk theorem in the theory of repeated
games (Maskin & Fudenberg, 1986). The folk theorem
describes how Nash equilibria are more numerous in repeated
games than in single-shot normal form games. As it turns
out, the folk theorem does not yield to worst-case speedups in
repeated games, when the number of players is at least 3.
Indeed, Borgs et al. (2008) gave an “anti-folk theorem”,
showing that computing Nash equilibria in pm      1q-player
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repeated games is PPAD-hard for m ¥  2, via a reduction to
m-player normal-form games. We adapt their reduction to our
setting: roughly speaking, this approach adds an pm 1q-th
player whose actions represent potential deviations for each
of the m players. The structure of the rewards ensures that
if   1 T       Iptq  is an -CCE, then for some policy :

of the pm   1q-th player, the first m players will play an
approximate Nash of G  with constant probability, under a
trajectory drawn from the joint policy pm 1q

: . Thus,
in order to efficiently find a Nash (see Algorithm 2), we need to
simulate the policy pm 1q

: , which involves running
Vovk’s algorithm. This approach is in contrast to the proof of
Theorem 3.2, which used Vovk’s algorithm as an ingredient
in the proof but not in the Nash computation algorithm.

Two-player games. One intruiging question we leave open is
whether the SPARSECCE problem remains hard for two-player
Markov games. Interestingly, as shown by Littman & Stone
(2005), there is a polynomial time algorithm to find an exact
Nash equilibrium for the special case of repeated two-player
normal-form games. Though their result only applies in the
infinite-horizon setting, it is possible to extend their results to the
finite-horizon setting, which rules out naive approaches to ex-
tend the proof of Theorem 4.3 and Corollary 4.4 to two players.

5. Multi-player games: lower bounds

In this section we present Theorem 1.4 (restated formally
below as Theorem 5.2), which gives a statistical lower bound
for the SPARS ECCE problem. The lower bound applies to any
algorithm, regardless of computational cost, that accesses the
underlying Markov game through a generative model.

Definition 5.1 (Generative model). For an m-player Markov
game G pS;H;pAiqiPrms;P;pRiqiPrms;q, a generative model
oracle is defined as follows: given a query described by a
tuple ph;s;aqPrHsS A, the oracle returns the distribution
Php|s;aqPpSq and the tuple of rewards pRi;hps;aqqiPrms.

From the perspective of lower bounds, the assumption that
the algorithm has access to a generative model is quite
reasonable, as it encompasses most standard access models in
RL,  including the online access model, in which the algorithm
repeatedly queries a policy and observes a trajectory drawn
from it, as well as the local access generative model used in
from (Yin et al., 2022; Weisz et al., 2021). We remark that it is
slightly more standard to assume that queries to the generative
model only return a sample from the distribution Php|s;aq as
opposed to the distribution itself (Kakade, 2003; Kearns et al.,
1999), but since our goal is to prove lower bounds, the notion
in Definition 5.1 only makes our results stronger.

To state our main result,     we recall the definition
|G|  maxtS; maxiPrms Ai ;  H;  pGqu. In the present
section, we consider the setting where the number of players
m is large. Here, |G| does not necessarily correspond to the

description length for G, and should be interpreted, roughly
speaking, as a measure of the description complexity of G |G|
with respect to decentralized learning algorithms. In particular,
from the perspective of an individual agent implementing a
decentralized learning algorithm, their sample complexity
should depend only on the size of their individual action set
(as well as the global parameters S;H;pGq), as opposed to the
size of the joint action set, which grows exponentially in m; the
former is captured by jGj, while the latter is not. Indeed, a key
advantage shared by much prior work on decentralized R L  (Jin
et al., 2021; Song et al., 2022; Mao & Basar, 2021; Daskalakis et
al., 2022) is their avoidance of the curse of multi-agents,
which describes the situation where an algorithm has sample
and computational costs that scale exponentially in m.

Our main result for this section, Theorem 5.2, states that for
m-player Markov games, exponentially many generative model
queries (in m) are necessary to produce a solution to the
pT;;N q-SPARSECCE problem, unless T is exponential in m.
Theorem 5.2. Let m ¥  2 be given. There are constants
c;  ¡  0 so that the following holds. Suppose there is an
algorithm B  which, given access to a generative model for
a pm      1q-player Markov game G with |G| ⁄  2m6, solves
the pT;{p10mq;Nq-SPARSECCE problem for G for some T
satisfying 1 T exppcmq, and any N  P N. Then B  must
make at least 2
pmq queries to the generative model.

Theorem 5.2 establishes that there are m-player Markov games,
where the number of states, actions per player, and horizon are
bounded by polypmq, but any algorithm with regret opT{mq
must make 2
pmq queries (via Fact C.1). In particular, if there are polypmq
queries per episode, as is standard in the online
simulator model where a trajectory is drawn from the policy ptq at
each episode tPrTs, then T ¡ 2
pmq episodes are required to have regret opT{mq. This is in
stark contrast to the setting of normal-form games, where even
for the case of bandit feedback (which is a special case of the
generative model setting), stan-dard no-regret algorithms have
the property that each player’s regret scales as Op Tnq (i.e.,
independently of m), where n de-notes the number of actions per
player (Lattimore & Szepesvari, 2020). As with our
computational lower bounds, Theorem 5.2 is not limited to
decentralized algorithms, and also rules out cen-tralized
algorithms which have access to a generative model.
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Additional results and discussion

A. Tighter computational lower bounds under E T H  for PPAD

Recall that Corollary 3.3 states that if PPAD P, then there is no constant C  ¡ 4  and polyp|G|q-time algorithm which solves the
p|G|C ;|G|1{C q-SPARSEMARKOVCCE problem for any 2-player Markov game G. Using a stronger complexity-theoretic
assumption, the Exponential Time Hypothesis for PPAD (Rubinstein, 2016), we can obtain a hardness result which rules out
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efficient algorithms even when 1) the accuracy  is constant, as opposed to being |G|1{C, and 2) T is quasipolynomially large, as
opposed to only being of polynomial size, i.e., |G|C.
Corollary A.1 (ETH-hardness of S PA R S E M A R KOV CCE). There is a constant 0 ¡ 0  such that if there exists an algorithm that
solves the p|G|oplog|G|q;0q-SPARSEMARKOVCCE problem in |G|oplog|G|q time, then the Exponential Time Hypothesis for PPAD
fails to hold.

Corollary A.1 is an immediate consequence of Theorem 3.2 and the fact that for some absolute constant 0 ¡  0, there are no
polynomial-time algorithms for computing 0-Nash equilibria in 2-player normal-form games under the Exponential Time
Hypothesis for PPAD (as shown in (Rubinstein, 2016)).

B. Discussion and interpretation

Theorems 3.2, 4.3, and 5.2 present barriers—both computational and statistical—toward developing efficient decentralized no-regret
guarantees for multi-agent reinforcement learning. We emphasize that no-regret algorithms are the only known approach for
obtaining fully decentralized learning algorithms (i.e., those which do not rely even on shared randomness) in normal-form games,
and it seems unlikely that a substantially different approach would work in Markov games. Thus, these lower bounds for finding
subexponential-length sequences of policies with the no-regret property represent a significant obstacle for fully decentralized
multi-agent reinforcement learning. Moreover, these results rule out even the prospect of developing efficient centralized algorithms
that produce no-regret sequences of policies, i.e., those which “resemble” independent learning. In this section, we compare our
lower bounds with recent upper bounds for decentralized learning in Markov games, and explain how to reconcile these results.

B.1. Comparison to V-learning

The V-learning algorithm (Jin et al., 2021; Song et al., 2022; Mao & Basar, 2021) is a polynomial-time decentralized learning
algorithm that proceeds in two phases. In the first phase, the m agents interact over the course of K  episodes in a decentralized
fashion, playing product Markov policies p1q;:::;pKq P markov. In the second phase, the agents use data gathered during the first
phase to produce a distributional policy pPpgen;rndq, which we refer to as the output policy of V-learning. As discussed in
Section 1, one implication of Theorem 3.2 is that the first phase of V-learning cannot guarantee each agent sublinear regret.
Indeed if K  is of polynomial size (and PPAD P), this follows because a bound of the form Reg pp1q; :::; pK q q ⁄ K for all i
implies that pp1q;:::;pKqq solves the pK;q-SPAR S EMAR KOVCCE problem.

The output policy Ppgen;rndq produced by V-learning is an approximate CCE  (per Definition 2.1), and it is natural to ask how
many product policies it takes to represent  as a uniform mixture (that is, whether  solves the pT;q-SPARSEMARKOVCCE problem for
a reasonable value of T). First, recall that V-learning requires K  polypH;S;maxi Aiq{2 episodes to ensure that p is an -CCE. It
is straightforward to show that p can be expressed as a non-uniform mixture of at most K K H S  1 policies in gen;rnd (we prove this fact
in detail below). By discretizing the non-uniform mixture, one can equivalently represent it as uniform mixture of Op1{q K K H S  1

product policies, up to  error. Recalling the value of K ,  we conclude that we can express  as
a uniform mixture of T exppOp1{2qpolypH;S;maxiAiqq product policies in gen;rnd. Note that the lower bound of Theorem 4.3
rules out the efficient computation of an -CCE represented as a uniform mixture of T !  expp2 maxtH; S; maxi Aiuq efficiently
computable policies in gen;rnd. Thus, in the regime where 1{ is polynomial in H;S;maxi Ai , this upper bound on the sparsity of the
policy p produced V-learning matches that from Theorem 4.3, up to a polynomial in the exponent.

The sparsity of the output policy from V-learning. We now sketch a proof of the fact that the output policy  produced by V-
learning can be expressed as a (non-uniform) average of K K H S  1 policies in gen;rnd, where K  is the number of episodes in the
algorithm’s initial phase. We adopt the notation and terminology from Jin et al. (2021).

Consider Algorithm 3 of Jin et al. (2021), which describes the second phase of V-learning, which produces the output policy p.
We describe how to write p as a weighted average of a collection of product policies, each of which is indexed by a function
: rH s S rK s Ñ rK s  and a parameter k0 P rKs: in particular, we will write p k  ;wk0 ; k0 ;  P pgen;rndq, where wk0 ; Pr0;1s
are mixing weights summing to 1 and k0 ;  P gen;rnd. The number of tuples pk0;q is K 1  K H S .

We define the mixing weight allocated wk0 ; to any tuple pk0;q to be:
1 „

1tph;s;kqPrNkpsqsuph;s;kq;
ph;s;k qPrH sS rK s

h

where N kpsq P rKs and N
h

p s
q

 Pr0;1s (for iPrNh psqs) are defined as in (Jin et al., 2021).

14



0

h h h h

0

p°

i i

i i

2 2

1 1 1 1

(

ii i

a ° m
i i

i

I

i i

ii i i

ii i i

i i

i i

i

1 1m m

Hardness of Independent Learning in Markov Games

Next, for each k0;, we define k  ; P gen;rnd to be the following policy: it maintains a parameter k P rKs over the first h ⁄ H  steps
of the episode (as in Algorithm 3 of (Jin et al., 2021)), but upon reaching state s at step h, given the present value of k P rKs, sets
i:ph;s;kq, and updates k—ki psq, and then samples an action akp|sq (where ki psq;kp|sq are defined in (Jin et al., 2021)). Since
the mixing weights wk ; defined above exactly simulate the random draws of the parameter k in Line 1 and the parameters i  in
Algorithm 3, Line 4 of (Jin et al., 2021), it follows that the distributional policy  defined by Algorithm 3 of (Jin et al., 2021) is
equal to k0 ;wk0 ;k0 ; Ppgen;rndq.

B.2. No-regret learning against Markov deviations

As discussed in Section 1, Erez et al. (2022) showed the existence of a learning algorithm with the property that if each agent
plays it independently for T episodes, then no player can achieve regret more than Oppolypm;H;S;maxiAiqT 3{4q by deviating to
any fixed Markov policy. This notion of regret corresponds to, in the context of Definition 2.2, replacing max Pg e n ; r n d  with
the smaller quantity max Pm a r kov .  Thus, the result of Erez et al. (2022) applies to a weaker notion of regret than that of the
S PA R S E C C E problem, and so does not contradict any of our lower bounds. One may wonder which of these two notions of
regret (namely, best possible gain via deviation to a Markov versus non-Markov policy) is the “right” one. We do not believe that
there is a definitive answer to this question, but we remark that in many empirical applications of multi-agent reinforcement
learning it is standard to consider non-Markov policies (Leibo et al., 2021; Agapiou et al., 2022). Furthermore, as shown in the
proposition below, there are extremely simple games, e.g., of constant size, in which Markov deviations lead to “vacuous” behavior: in
particular, all Markov policies have the same (suboptimal) value but the best non-Markov policy has much greater value:

Proposition B.1. There is a 2-player, 2-action, 1-state Markov game with horizon 2 and a non-Markov policy  P gen;rnd for
player 2 so that for all 1 P markov, V 1 2  1{2 yet max1 Pgen; rn d       V 1 2        3{4.

The proof of Proposition B.1 is provided in Section B.5 below.

Other recent work has also proved no-regret guarantees with respect to deviations to restricted policy classes. In particular,
Zhan et al. (2022) studies a setting in which each agent i  is allowed to play policies in an arbitrary restricted policy class

1 „ gen;rnd in each episode, and regret is measured with respect to deviations to any policy in 1. Zhan et al. (2022)
introduces an algorithm, DORIS, with the property that when all agents play it independently, each agent i  experiences regret

O polypm;A;S;Hq T     i1log|1| to their respective class 1.15

DORIS is not computationally efficient, since it involves performing exponential weights over the class 1, which requires space
complexity j1 j. Nonetheless, one can compare the statistical guarantees the algorithm provides to our own results. Let markov;det

€ markov denote the set of deterministic Markov policies of agent i, namely sequences i  pi;1;:::;i;Hq so that i ;h  : S Ñ A i .  In the case that 1

markov;det, 1, we have log|1|OpSHlogAiq, which means that DORIS obtains no-regret against
Markov deviations when m is constant, comparable to Erez et al. (2022).16 However, we are interested in the setting in which each
player’s regret is measured with respect to all deviations in gen;rnd (equivalently, gen;det). Accordingly, if we take 1 gen;det € gen;rnd,17

then log|1 |¡pSAiqH1, meaning that DORIS does not imply any sort of sample-efficient guarantee, even for m2.

Finally, we remark that the algorithm DORIS (Zhan et al., 2022), as well as the similar algorithm OPMD from earlier work of Liu
et al. (2022), obtains the same regret bound stated above even when the opponents are controlled by (possibly adaptive)
adversaries. However, this guarantee crucially relies on the fact that any agent implementing DORIS must observe the policies
played by opponents following each episode; this feature is the reason that the regret bound of DORIS does not contradict the
exponential lower bound of Liu et al. (2022) for no-regret learning against an adversarial opponent. As a result of being restricted to
this “revealed-policy” setting, DORIS is not a fully decentralized algorithm in the sense we consider in this paper.

15Note that in the tabular setting, the sample complexity of DORIS (Corollary 1) scales with the size A  of the joint action set, since each player’s
value function class consists of the class of all functions f  : S A Ñ r0;1s, which has Eluder dimension scaling with S A,  i.e., exponential in m.

16Erez et al. (2022) has the added bonus of computational efficiency, even for polynomially large m, though has the significant drawback
of assuming that the Markov game is known.

17DORIS plays distributions over policies in 1  gen;det at each episode, whereas in our lower bounds we consider the setting where a
policy in gen;rnd  is played each episode; Facts F.2 and F.3 shows that these two settings are essentially equivalent, in that any policy in
gen;rnd gen;rnd  can be simulated by one in pgen;detqpgen;detq, and vise versa.

15
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B.3. On the role of shared randomness

A  key assumption in our lower bounds for no-regret learning is that each of the joint policies p1q;:::;pT q produced by the algorithm is a
product policy; such an assumption is natural, since it subsumes independent learning protocols in which each agent i  selects ptq

without knowledge of ptq . Compared to general (stochastic) joint policies, product policies have the desirable property that, to
sample a trajectory from ptq pptq;:::;ptqq P gen;rnd gen;rnd gen;rnd, the agents do no require access to shared randomness. In particular,
each agent i  can independently sample its action from ptq at each of the h steps of the episode. It is natural to ask how the situation
changes if we allow the agents to use shared random bits when sampling from their policies, which corresponds to allowing p1q;:::;pT q

to be non-product policies. In this case, V-learning yields a positive result via a standard “batch-to-online” conversion: by
applying the first phase of V-learning during the first T 2{3 episodes and playing trajectories sampled i.i.d. from the output
policy produced by V-learning during the remaining T T 2{3 episodes (which requires shared randomness), it is straightforward
to see that a regret bound of order polypH;S;maxiAiqT 2{3 can be obtained. Similar remarks apply to SPoCMAR (Daskalakis et al.,
2022), which can obtain a slightly worse regret bound of order polypH;S;maxiAiqT 3{4 in the same fashion. In fact, the batch-to-
online conversion approach gives a generic solution for the setting in which shared randomness is available. That is, the
assumption of shared randomness eliminates any distinction between no-regret algorithms and (non-sparse) equilibrium computation
algorithms, modulo slight loss in rates. For this reason, the shared randomness assumption is too strong to develop any sort of
distinct theory of no-regret learning.

B.4. Comparison to lower bounds for finding stationary C C E

A  separate line of work Daskalakis et al. (2022); Jin et al. (2022) has recently shown PPAD-hardness for the problem of finding
stationary Markov CCE  in infinite-horizon discounted stochastic games. These results are incomparable with our own: stationary
Markov C C E  are not sparse (in the sense of Definition 3.1), whereas we do not require stationarity of policies (as is standard in
the finite-horizon setting).

B.5. Proof of Proposition B.1

Below we prove Proposition B.1.

Proof of Proposition B.1. We construct the claimed Markov game G as follows. The single state is denoted by s; as there is only a
single state, the transitions are trivial. We denote each player’s action space as A1  A2  t1;2u. The rewards to player 1 are given as
follows: for all pa1;a2qPA,

R1;1ps;pa1;a2qq 
2

Ia2 1; R1;2ps;pa1;a2qq 
2

Ia1 a2 :

We allow the rewards of player 2 to be arbitrary; they do not affect the proof in any way.

We let 2 p2;1;2;2qPgen;rnd be the policy which plays a uniformly random action at step 1 and then plays the same action at step 2:
formally, 2;1ps1qUnifpA2q, and 2;2pps1;a2;1;r2;1q;s2qIa2;1 . Then for any Markov policy 1 P markov of player 1, we must have
P12 pa1;2 a2;2q1{2, which means that V1 

1 2   1 E1 2 rIa 2 ; 1 1  Ia1;2 a2;2 s 1{2p1{2 1{2q1{2.

On the other hand, any general (non-Markov) policy 1 P gen;rnd which satisfies

#

1;2pps1;a1;1;r1;1q;s2q 
I2 :

r1;1 1{2
r1;1 0

has V 1 2  1{2p1{2 1q3{4.
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Part I I

Proofs

C. Additional preliminaries

C.1. Additional preliminaries for Markov games

Deterministic policies. It will be helpful to introduce notation for deterministic general (non-Markov) policies, which correspond to
the special case of randomized policies where each policy i;h  exclusively maps to singleton distributions. In particular, a
deterministic general policy of agent i  is a collection of mappings i  pi;1;:::;i;Hq, where i;h  : H i ; h 1 S Ñ A i .  We denote by gen;det the
space of deterministic general policies of agent i, and further write gen;det :gen;det gen;det to denote the space of joint deterministic
policies. We use the convention throughout that deterministic policies are denoted by the letter , whereas randomized policies are
denoted by .

Additional facts on regret and CC E .  The following facts regarding deterministic policies and the definition of coarse correlated
equilibria and regret are well-known:

• In the context of Definition 2.1 (defining an -CCE), the maximizing policy 1 can always be chosen to be determinimistic, so
P  Ppgen;rndq is an -CCE if and only if maxi Pgen;det V i P i  Vi     ⁄ .

• In the context of (1) in the definition of regret, the maximum over i  P gen;rnd is always achieved by a deterministic general ptq

policy, so we have Regi;T  maxi Pge n ;d e t          t1 Vi
i  Vi .

Next, the following standard result shows that the uniform average of any no-regret sequence forms an approximate coarse
correlated equilibrium.

Fact C.1 (No-regret is equivalent to CCE). Suppose that a sequence of policies p1q; ::: ; pT q        P gen;rnd satisfies Regi;T

pp1q; ::: ; pT qq ⁄    T for each i  P rms. Then the uniform average of these T policies, namely the distributional policy : T

t1Iptq  Ppgen;rndq, is an -CCE.

Likewise if a sequence of policies p1q; ::: ; pT q P     gen;rnd     has the property that the distributional policy :
T t1Iptq  Ppgen;rndq, is an -CCE, then we have Regi;T  pp1q;:::;pT qq ⁄T for all iPrms.

Fact C.1 is an immediate consequence of Definitions 2.1 and 2.2.

C.2. Nash equilibria and computational hardness.

The most foundational and well known solution concept for normal-form games is the Nash equilibrium (Nash, 1951).

Definition C.2 (pn; q-NASH problem). For a normal-form game G   pM1; ::: ; Mmq and  ¡  0, a product distribution pP
j1prnsq is said to be an -Nash equilibrium for G  if for all iPrns,

max E rpM q 1 s E rpM q s ⁄ :
ai Prns

We define the m-player pn;q-NASH problem to be the problem of computing an -Nash equilibrium of a given m-player n-action
normal-form game.18

Informally, p is an -Nash equilibrium if no player i  can gain more than  in reward by deviating to a single fixed action a1, while all
other players randomly choose their actions according to p. Despite the intuitive appeal of Nash equilibria, they are intractable to
compute: for any c ¡ 0,  it is PPAD-hard to solve the pn;ncq-NASH problem, namely, to compute nc-approximate Nash

18One must also take care to specify the bit complexity of representing a normal-form game. We assume that the payoffs of any normal-form
game given as an instance to the pn;q-NASH problem can each be expressed with maxtn;mu bits; this assumption is without loss of generality as
long as ¥ 2 m a x t n ; m u  (which it will be for us).
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equilibria in 2-player n-action normal-form games (Daskalakis et al., 2009; Chen et al., 2006; Rubinstein, 2018). We recall that the
complexity class PPAD consists of all total search problems which have a polynomial-time reduction to the End-of-The-Line
(EOTL) problem. PPAD is the most well-studied complexity class in algorithmic game theory, and it is widely believed that
PPAD P. We refer the reader to (Daskalakis et al., 2009; Chen et al., 2006; Rubinstein, 2018; Papadimitriou, 1994) for further
background on the class PPAD and the EOTL problem.

C.3. Query complexity of Nash equilibria

Our statistical lower bound for the S PA R S E C C E problem in Theorem 5.2 relies on existing query complexity lower bounds for
computing approximate Nash equilibria in m-player normal-form games. We first review the query complexity model for
normal-form games.

Oracle model for normal-form games. For m;nPN, consider an m-player n-action normal form game G, specified by payoff
tensors M1;:::;Mm. Since the tensors M1;:::;Mm contain a total of mnm real-valued payoffs, in the setting when m is large, it is
unrealistic to assume that an algorithm is given the full payoff tensors as input. Therefore, prior work on computing equilibria in such
games has studied the setting in which the algorithm makes adaptive oracle queries to the payoff tensors.

In particular, the algorithm, which is allowed to be randomized, has access to a payoff oracle OG  for the game G, which works as
follows. At each time step, the algorithm can choose to specify an action profile a P rnsm and then query OG  at the action profile
a. The oracle OG  then returns the payoffs pM1qa;:::;pMmqa for each player if the action profile a is played.

Query complexity lower bound for approximate Nash equilibrium. The following theorem gives a lower bound on the number
of queries any randomized algorithm needs to make to compute an approximate Nash equilibrium in an m-player game.
Theorem C.3 (Corollary 4.5 of (Rubinstein, 2016)). There is a constant 0 ¡ 0  so that any randomized algorithm which solves
the p2;0q-NASH problem for m-player normal-form games with probability at least 2{3 must use at least 2
pmq payoff queries.

We remark that (Babichenko, 2016; Chen et al., 2017) provide similar, though quantitatively weaker, lower bounds to that in
Theorem C.3. We also emphasize that the lower bound of Theorem C.3 applies to any algorithm, i.e., including those which
require extremely large computation time.

D. Proofs of lower bounds for S P A R S E M A R K O V C C E  (Section 3)

D.1. Preliminaries: Online density estimation

Our proof makes use of tools for online learning with the logarithmic loss, also known as conditional density estimation. In
particular, we use a variant of the exponential weights algorithm known as Vovk’s aggregating algorithm in the context of density
estimation (Vovk, 1990; Cesa-Bianchi & Lugosi, 2006). We consider the following setting with two players, a Learner and Nature.
Furthermore, there is a set Y ,  called the outcome space, and a set X ,  called the context space; for our applications it suffices
to assume Y  and X  are finite. For some T PN, there are T time steps t1;2;:::;T . At each time step tPrTs:

• Nature reveals a context xptq  P X ;

• Having seen the context xptq , the learner predicts a distribution pq tq PpYq;

• Nature chooses an outcome yptq P Y , and the learner suffers loss ‘logppq tqq:log qptq
py

ptqq    
 :

For each tPrTs, we let Hp t q  tpxp1q;yp1q;qp1qq;:::;pxptq;yptq;qptqqu denote the history of interaction up to step t; we emphasize that
each context xptq  may be chosen adaptively as a function of Hpt1q . Let F p t q  denote the sigma-algebra generated by pHptq;xpt     1qq.
We measure performance in terms of regret against a set I  of experts, also known as the expert setting. Each expert i P I  consists
of a function pi : X  Ñ pYq. The regret of an algorithm against the expert class I  when it receives contexts xp1q;:::;xpT q and observes
outcomes yp1q;:::;ypT q is defined as

RegI ; T  

‚
‘log pqptq qmin

‚
‘log ppipxptq qq: t1 t1

Note that the learner can observe the expert predictions tpipxptqquiPI and use them to make its own prediction at each round t.
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Proposition D.1 (Vovk’s aggregating algorithm). Consider Vovk’s aggregating algorithm, which predicts via

qptqpyq:Eiqrptq rpipxptqqs;     where
exp

°t 1 ‘p s q  pp pxpsqqq
qp

t
qpiq: : (2)

j PI exp  s1 ‘
psq  ppjpxpsqqq

This algorithm guarantees a regret bound of Reg I ; T  ⁄ log|I|.

Recall that for probability distributions p;q on a finite set B, their total variation distance is defined as

DTVpp;qqmax|ppEqqpEq|: (3)

As a (standard) consequence of Proposition D.1, in the realizable setting in which the distribution of yptq|xptq follows pipxptqq for
some fixed (unknown) expert i  P I ,  we can obtain a bound on the total variation distance between the algorithm’s predictions and
those of pipxptqq.
Proposition D.2. If the distribution of outcomes is realizable, i.e., there exists an expert i  P I  so that yptq pipxptqq | xptq ;Hpt1q  for all
tPrTs, then the predictions pq tq of the aggregation algorithm (2) satisfy

‚
E r D T V ppq  tq;pipxptqqqs ⁄

a
T log|I|:

t1

For completeness, we provide the proof of Proposition D.2 here.

Proof of Proposition D.2. To simplify notation, for an expert i P I ,  a context x P X , and an outcome y P Y, we write pipy|xq to
denote pipxqpyq.

Proposition D.1 gives that the following inequality holds (almost surely):
T

T

RegI ; T  
t1

log 
q

pt
qpy

pt
qq 

t1

log 
pipy

ptq

|x
pt

qq     
⁄ log|I|:

For each tPrTs, note that pq tq and xptq  are F pt1q-measurable (by definition). Then

‚
DTVpqptq ;pipxptq qq2 ⁄

‚
DKL ppipxp t q q}q p t q q t1
t1

‚  ‚
pipy|xptq qlog 

pip
y

|xptqq

t1yPY
T

 
t1

E log 
q

pt
qpy

pt
qq 

log 
pipy

pt
q|x

pt
qq     

| F p t 1 q      ;

where the first inequality uses Pinsker’s inequality and the final equality uses the fact that yptq pipxptqq|xptq;Hpt1q. It follows that

E
‚
DT V pq p t q ;pipxp t q qq2 ⁄ ErRegI ;T  s ⁄ logjI j:
t1

Jensen’s inequality now gives that

 
T f   

T

E DTVppq tq;pipxptqqq ⁄  T E DTVppq tq;pipxptqqq2     ⁄ Tlog|I|:
t1                                                                                  t1
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D.2. Proof of Theorem 3.2

Proof of Theorem 3.2. Fix n P N, which we recall represents an upper bound on the description length of the Markov game.
Assume that we are given an algorithm B  that solves the pT;q-SPARSEMARKOVCCE problem for Markov games G satisfying
|G|⁄n in time U. We proceed to describe an algorithm which solves the 2-player ptn1{2{2u;4q-NASH problem in time pnTUqC0, as
long as T expp2n1{2{25q. First, define n0 :tn1{2{2u, and consider an arbitrary 2-player n0-action normal form G, which is
specified by payoff matrices M1;M2 P r0;1sn0 n0 , so that all entries of the game can be written in binary using at most n0 bits
(recall, per footnote 18, that we may assume that the entries of an instance of pn0;4q-NASH can be specified with n0 bits). Based
on G, we construct a 2-player Markov game G :GpGq as follows:

Definition D.3. We define the game GpGq to consist of the tuple GpGqpS;H;pAiqiPr2s;P;pRiqiPr2s;q, where:

• The horizon of G is H 2tn0{2u (i.e., the largest even number at most n0).

• Let An0; the action spaces of the 2 agents are given by A1  A2  rAs.

• There are a total of A2  1 states: in particular, there is a state spa ;a  q for each pa1;a2q P rAs2, as well as a distinguished
state s, so we have:

S tsuYtspa1;a2q  : pa1;a2qPrAs2u:

• For all odd h P rHs, the reward to agents j  P r2s given that the action profile pa1;a2q is played at step h is given by
Rj;hps;pa1;a2qq: H  pMjqa1;a2 , for all sP S. All agents receive 0 reward at even steps hP rHs.

• At odd steps h P rHs, if actions a1;a2 P rAs are taken, the game transitions to the state spa ;a  q. At even steps h P rHs, the
game always transitions to the state s.

• The initial state (i.e., at step h1) is s (i.e.,  is a singleton distribution supported on s).

It is evident that this construction takes polynomial time, and satisfies |G| ⁄A2  1 ⁄ n2  1 ⁄ n.  We will now show by applying the
algorithm B  to G, we can efficiently compute 4-approximate Nash equilibrium for the original game G. To do so, we appeal to
Algorithm 1.

Algorithm 1 Algorithm to compute Nash equilibrium used in proof of Theorem 3.2.
1: Input: 2-player, n0-action normal form game G.

2: Construct the 2-player Markov game G GpGq per Definition D.3, which satisfies |G|⁄n.

3: Call the algorithm B  on the game G, which produces a sequence p1q;:::;pT q, where each ptq P markov.

4: for tPrTs and odd hP rHs: do

5: if ptqpsqPpA1qpA2q is a p4;nq-Nash equilibrium of G: then 6:

return ptqpsq.

7: end if

8: end for

9: if the for loop terminates without returning: return fail.

Algorithm 1 proceeds as follows. First, it constructs the 2-player Markov game GpGq as defined above, and calls the algorithm B ,
which returns a sequence p1q;:::;pT q P markov of product Markov policies with the property that the average : 1 T       Iptq  is
an -CCE of G. It then enumerates over the distributions ptqpsqPpA1qpA2q for each tPrTs and h P rHs odd, and checks whether each
one is a 4-approximate Nash equilibrium of G. If so, the algorithm outputs such a Nash equilibrium, and otherwise, it fails. The
proof of Theorem 3.2 is thus completed by the following lemma, which states that as long as  is an -CCE of G, Algorithm 1
never fails.

Lemma D.4 (Correctness of Algorithm 1). Consider the normal form game G  and the Markov game G GpGq as constructed
above, which has horizon H .  For any 0 ¡ 0 ,  T PN, if T exppH 2{28q and p1q;:::;pT q P markov are product Markov policies so that
1

t1Iptq  is an p0{4q-CCE of G, then there is some odd h P rHs and tPrTs so that ptqpsq is an 0-Nash equilibrium of G.
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The proof of Lemma D.4 is given below. Applying Lemma D.4 with 0  4 (which is a valid application since T
exppn0p4q2{28q by our assumption on T;), yields that Algorithm 1 always finds a 4-Nash equilibrium of the n0-action

normal form game G, thus solving the given instance of the pn0;4q-NASH problem. Furthermore, it is straightforward to see that
Algorithm 1 runs in time U  pnTqC0 ⁄pU nT qC0 , for some constant C0  ¥ 1.

Proof of Lemma D.4. Consider a sequence of product Markov policies p1q; ::: ; pT q      with the property that the average
  1 T       Ip T q  is an p0{4q-CCE of G. For all odd h P rHs and j  P r2s, let pptq :ptq psq P pAjq, which is the distribution played
under ptq by player j  at step h (at the unique state s with positive probability of being reached at step h). For odd h, we have
ptqpsq pptq pptq , and our goal is to show that for some odd h P rHs and t P rTs, pptq pptq      is an 0-Nash equilibrium of G. To proceed,
suppose for the sake of contradiction that this is not the case.

Let us write OH  : th P rH s : h oddu to denote the set of odd-numbered steps, and EH   rH szOH to denote the set of even-
numbered steps. Let H0  |OH| |EH| H{2. We first note that for j  P r2s, agent j ’s value under the mixture policy  is given as
follows:

T

Vj   
T H t1

h
P

O
H

E
a 1 p1;h ;a 2 p2;h

rpMj qa1 ;a2 s:

For each j  P r2s, we will derive a contradiction by constructing a (non-Markov) deviation policy for player j  in G, denoted j  P
gen;det, which will give player j  a significant gain in value against the policy . To do so, we need to specify :

pj;h1;shq P Aj , for all j;h1  P Hj ; h 1  and sh P S; note that we may restrict our attention only to histories j ; h  1 that occur with positive
probability under the transitions of G.

Fix any h0 P rHs, j ; h  1 P H j ; h  1, and sh P S . If j ; h  1 occurs with positive probability under the transitions of G, then for each h P
OH , h h0 1 and both j1 P r2s, the action played by agent j1 at step h is determined by j;h .  Namely, if the state at
step h 1 of j ; h  1 is spa1 ;a1 q, then player j1 played action a1 at step h. So, for each h P OH with h h0 1, we may
define pa1;h;a2;hq as the action profile played at step h, which is a measurable function of j;h0 1. With this in mind, we define
j;h0

pj;h0 1;sh0 q by applying Vovk’s aggregating algorithm (Proposition D.2) as follows.

1. If h0 is even, play an arbitrary action (note that the actions at even-numbered steps have no influence on the transitions or
rewards).

2. If h0 is odd, define pq ;h0  PpAjq, by pq ;h0  :Et qrj ; h 0

 rpj;hs, where rq  ;h0  PprTsq is defined as follows: for tPrTs, 

exp  h  h  : 
h
PO      log  

ptq
     1

qj;h0 ptq: j ; h

:
t11exp  h  h

0
:  h P O H

 log  
pt1

q
 
 1

j ; h

Note that qj;h      is a function of j ; h  1 via the action profiles tpa1;h;a2;hqu ; to simplify notation, we suppress
this dependence.

3. Then for any state sh0  P S , define j;h0
pj;h0 1;sh0 q to be a best response to qj;h0 , namely

:        pj;h 1;sh q :argmaxEa      qp rRj;hpsh ;pa1;a2qqsargmaxEa      qp rpMjqa ;a  s: (4)
a j P A j                                                                                                                          a j P A j

Note that, for odd h0, the distribution qj;h  PpAjq defined above can be viewed as an application of Vovk’s online aggregation
algorithm at step ph0 1q{2 in the following setting: the number of steps (T , in the notation of Proposition D.2; note that T plays a
different role in the present proof) is H0  H {2, the context space is OH , and the outcome space is Aj .19  There are T experts
pp1q;:::;rppT q (i.e., we have I trpptq utPrT s), whose predictions on a context h P OH are defined as follows: the expert pptq predicts

19Here j  denotes the index of the player who is not j .
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pptqphq:pptq        . Then, the distribution qj;h      is obtained by updating the aggregation algorithm with the context-observation pairs
ph;aj;hq, for odd values of h     h0.

We next analyze the value of V j ; j  for j P r2s to show that the deviation strategy we have defined indeed obtains significant gain. To
do so, recall that this value represents the payoff for player j  under the process in which we draw an index t PrTs uniformly

at random, then for each step h P rHs, player j  plays according to j  and player j  plays according to pt
j
q . (In particular, at odd-

numbered steps, player j  plays according to pj;h.) We recall that E :
j  
rs denotes the expectation under this process. We let j;h1

P Hj ; h 1  denote the random variable which is the history observed by player j  in this setup, i.e., when the policy played is : j ,
and let tpa1;h;a2;hqu denote the action profiles for odd rounds, which are a measurable function of each
player’s trajectory.

We apply Proposition D.2 with the time horizon as H0, and with the set of experts set to I :trpp1q;:::;rppT q u as defined above. The
context sequence the sequence of increasing values of h P OH , and for each h P OH , the outcome at step ph 1q{2 (for which the
context is h) is distributed as aj;h  rpptqphqppt q       conditioned on t, which in particular satisfies the realizability assumption stated in
Proposition D.2. Then, since (as remarked above), the distributions qj;h , for h P OH , are exactly the predictions made by Vovk’s
aggregating algorithm, Proposition D.2 gives that20

E :
j  

 
‚  

DTVppq ;h ;pj;h qE:
j  

 
‚  

DTVppq ;h ;rpptq phqq⁄
a

H0logT : (5)
h P O H h P O H

Recall that we have assumed for the sake of contradiction that pptq pptq      is not an 0-Nash equilibrium of G  for each h P rHs and
tPrTs. Consider a fixed draw of the random variable t PrTs defined above. Then it holds that for j P r2s and hP rHs, defining

0;j;h  : max
s
Ea

j pj ;
h
rpMj qa1 ;a2 sEa

1 p1;
h  

; a
2 p2 ; h  

rpMjqa1;a2 s; (6)

we have 0;1;h  0;2;h ¥ 0 .  Consider any j P r2s, h P OH , and a history j;h1 P Hj ; h 1  of agent j  up to step h1 (conditioned on t). Let
us write j ; h  :DTVppj;h;qj;hq; note that j ; h  is a function of j;h1, through its dependence on qj;h . We have, by the definition of

j;hpj;h1;shq in (4) and the definition of j;h ,

E a
j p j

; h      
pMj q

h;j p
j ; h

1 ;sq;aj  
| t; j;h1  ¥E a j qp j ; h      pMj q

h;j p
j ; h 1

;sq;aj  
| t; j;h1  j ; h   max

s
Eaj qpj ; h      pMj qaj ;aj  | t;

j;h1 h ; j

¥  max E pM q 2ptq : (7)
ajPrAs j h ; j

Combining (6) and (7), we get that for any fixed h P OH , j P r2s, and j;h1 P Hj;h1 ,

E a
j p j

; h      
pMj q

j;h p
j ; h 1

;sq;aj  
| t; j;h1  Ea

1 p 1 ; h  

; a
2 p2 ; h  

rpMj qa1 ;a2 s ¡ 0;j;h 2j;h : (8)

20In fact, Proposition D.2 implies that a similar bound holds uniformly for each possible realization of t, but (5) suffices for our purposes.
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Averaging over the draw of t PrTs, which we recall is chosen uniformly, we see that

‚  
V j j  Vj  jPr2s

T : ptq

Vj  
j j  Vj (9)

t1jPr2s

 
1 ‚  ‚  

E  : ptq

‚  
E ptq       rRj;hps;p: pj;h1;sq;ajqq | t; j;h1 s E ptq ptq rRj;hps;pa1;a2qqs

t1jPr2s                         h P O H
j ; h 1 ; h 2 ; h

 
1 ‚  ‚  

E: p t q

‚  
E a

     
 
pptq       rpMjq:      p

j ; h 1
; s q ;a j  

| t; j;h1 s Ea  pptq 
;
a  pptq rpMjqa1;a2 s jPr2s

h P O H

¥  
1 ‚  ‚  

E : p t q

‚  
0;j;h 2j;h (10)

t1jPr2s                         h P O H

¥  
2 T H

 

t1

2
a

H0 logT ¥  
2 

4
a

logpT q{H; (11)

where (9) follows from the definition  1 ° T       Iptq , (10) follows from (8), and (11) uses (5). As long as T exppHp0{16q2q,
the this expression is bounded below by 0{4, meaning that  is not an 0{4-approximate CCE. This completes the contradiction.

E.  Proofs of lower bounds for S P A R S E C C E  (Sections 4 and 5)

In this section we prove our computational lower bounds for solving the S PA R S E C C E problem with m 3 players (Theorem 4.3
and Corollary 4.4), as well as our statistical lower bound for solving the S PA R S E C C E problem with a general number m of
players (Theorem 5.2).

Both theorems are proven as consequences of a more general result given in Theorem E.1 below, which reduces the NASH problem in
m-player normal-form games to the SPARSECCE problem in pm 1q-player Markov games. In more detail, the theorem shows that
(a) if an algorithm for S PA R S E C C E makes few calls to a generative model oracle, then we get an algorithm for the NASH
problem with few calls to a payoff oracle (see Section C.3 for background on the payoff oracle for the NASH problem), and (b) if
the algorithm for S PA R S E C C E is computationally efficient, then so is the algorithm for the NASH problem.

Theorem E.1. There is a constant C0  ¡ 0  so that the following holds. Consider n;m P N, and suppose T;N;Q P N and ¡ 0
satisfy 1     T      exp 

2 tn{mu     . Suppose there is an algorithm B  which, given a generative model oracle for a pm 1q-player

Markov game G with |G| ⁄n, solves the pT;;N q-SPARSECCE problem for G using Q generative model oracle queries. Then
the following conclusions hold:

• For any ¡ 0 ,  the m-player ptn{mu;16pm 1qq-NASH problem for any normal-form game G  can be solved, with failure
probability , using at most C0pQlogp1{qq plogp1{qnm{qC0 queries to a payoff oracle OG  for G.

• If the algorithm B  additionally runs in time U for some U PN, then the algorithm solving NASH from the previous bullet
point runs in time pnmTNUlogp1{q{qC0 .

Theorem 4.3 follows directly from Theorem E.1 by taking m2.

Proof of Theorem 4.3. Suppose there is an algorithm which, given the description of any 3-player Markov game G with |G|⁄n,
solves the pT;;N q-SPARSECCE problem in time U. Such an algorithm immediately yields an algorithm which can solve the
pT;;N q-SPARSECCE problem in time U      |G|Op1q using only a generative model oracle, since the exact description of the
Markov game can be obtained with H S|A| ⁄ H Spmaxi Ai q3 ⁄|G|5 queries to the generative model (across all ph;s;aq tuples).
We can now solve the problem of computing a 50-Nash equilibrium of a given 2-player tn{2u-action normal form game G  as
follows. We simply apply the algorithm of Theorem E.1 with m2, noting that the oracle OG  in the theorem statement can be
implemented by reading the corresponding bits of input of the input game G. The second bullet point yields that this algorithm
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takes time pnTNUlogp1{q{qC0, for some constant C0. Furthermore, the assumption T expp2tn{mu{m2q of Theorem E.1 is
implied by the assumption that T expp2n{16q of Theorem 4.3.

In a similar manner, Theorem 5.2 follows from Theorem E.1 by applying Theorem C.3, which states that there is no randomized
algorithm that finds approximate Nash equilibria of m-player, 2-action normal form games in time 2opmq.

Proof of Theorem 5.2. Let 0 be the constant from Theorem C.3, and consider any m ¥ 3. Suppose there is an algorithm which, for
any m-player Markov game G with |G| ⁄ 2m6, makes Q oracle queries to a generative model oracle for G, and solves the
pT;0{p10mq;Nq-SPARSECCE problem for G for some T;N PN so that T exppcmq, for a sufficiently small absolute constant
c. Then, by Theorem E.1 with 0{p10mq and n m6 (which ensures that T exppp0{p10mqq2 tn{mu{m2q as long as c is
sufficiently small), there is an algorithm which solves the pm5;0q-NASH problem—and thus the p2;0q-NASH problem—for pm1q-
player games with failure probability 1{3, using OpQq mOp1q queries to a payoff oracle. But by Theorem C.3, any such
algorithm requires 2
pmq queries to a payoff oracle. It follows that Q ¥ 2
pmq, as desired.

E.1. Proof of Theorem E.1

Proof of Theorem E.1. Fix any m ¥  2, n P N. Suppose we are given an algorithm B  that solves the pm   1q-player
pT; ;N q-SPARSECCE problem for Markov games G satisfying |G| ⁄  n, running in time U and using at most Q generative
model queries. We proceed to describe an algorithm which solves the m-player ptn{mu;16pm 1qq-NASH problem using C0

pQlogp1{qq      plogp1{q nm{qC0 queries to a payoff oracle, and running in time pnmTNU logp1{q{qC0, where  represents the
failure probability. Define n0 :tn{mu, and assume we are given an arbitrary m-player n0-action normal form G, which is
specified by payoff matrices M1;:::;Mm P r0;1sn0 n0 . We assume that all entries of each of the matrices Mj  have only the most
significant maxtn0;rlog1{su bits nonzero; this assumption is without loss of generality, since by truncating the utilities to satisfy
this assumption, we change all payoffs by at most , which degrades the quality of any approximate equilibrium by at most 2 (in
addition, we have rlog1{s ⁄n0 since we have assumed 1     T expp2n0{m2q). We assume ⁄ 1 {2  without
loss of generality. Based on G, we construct an pm 1q-player Markov game G :GpGq as follows.

Definition E.2. We define the Markov game GpGq as the tuple GpGqpS;H;pAiqiPr2s;P;pRiqiPr2s;q, where:

• The horizon of G is chosen to be the power of 2 satisfying n0 ⁄ H 2n0.

• Let A :n0. The action spaces of agents 1;2;:::;m are given by A1  A m  rAs. The action space of agent m 1 is

A m  1 tpj;ajq : j P rms;aj P Aj u;

so that |Am 1| Am ⁄n.

We write A m      A j  to denote the joint action space of the first m agents, and A : m  1 A j  to denote the joint action
space of all agents.

• There is a single state, denoted by s, i.e., S tsu (in particular,  is a singleton distribution supported on s).

• For all hP rHs, the reward for agent j P rm 1s, given an action profile apa1;:::;am 1q at the unique state s, is as follows:
writing am 1 pj1;a1 

1q, we have

Rj;hps;aqRj;hps;aq     
H

 
23rlog1{sencpaq; (12)

where Rj;hps;aq is defined per the kibitzer construction of (Borgs et al., 2008):

&0

Rj;hps;aq: H  pMj qa1 ;:::;am pMjqa1;:::;a1 
1 ;:::;am

 1   pMjqa1;:::;a1 1 ;:::;am  pMj qa1 ;:::;am

: j R tj1;m 1u

: j j1 (13)

: j m 1:

In (12) above, encpaqPr0;1s is the binary representation of a binary encoding of the action profile a. In particular, if the binary
encoding of a is pb1;:::;bNq, with bi Pt0;1u, then encpaq     N      2i bi . Note that encpaq takes N  Opmlogn0q⁄Opmlognq bits to
specify.
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Algorithm 2 Algorithm to compute Nash equilibrium used in proof of Theorem E.1.
1: Input:

2: Parameters n;n0;m;T PN, {p6Hq, K r4logpmn0{q{2s.
3: An m-player, n0-action normal form game G, with utilies accessible by oracle OG.
4: An algorithm B  for computing approximate CCE  of Markov games.

5: Call the algorithm B  on the pm     1q-player Markov game G  GpGq constructed as in Definition E.2, which produces a

sequence p1q;:::;pT q, where each ptq  pptq;:::;ptq     
1q with ptq P gen;rnd. Here, we use the oracle OG  to simulate generative model

oracle queries made by B .
6: Draw t PrTs uniformly at random.

7: For each j P rms, initialize j;0 to be an empty trajectory.

8: for hP rHs: do
9: Set sh s (per the transitions of G).

10: For each j P rms, define qj;h  :Et qrj ; h      j;hpj;h1;shq PpAjq, where qj;h  PprTsq is defined as follows: for tPrTs,

qj;hptq:  
exp  g hlog 

j ; g pa j ; g | j ; g 1 ;s g q

: t11exp  g 
h
log 

j ; g

 
paj ; g | j ; g 1 ;sg q

11: Draw K  i.i.d. samples a1 ;:::;aK ‘ j
Prmsqj;h.

12: For each a1 P A m  1, define R m  1;hpa1q : K k 1 Rm  1;hpsh;pak;a1qq. Here, we use the oracle OG  to compute
R m  1;hpsh;pak;a1qq for each tuple pak;a1q.

13: For each j P rms, draw aj;h  j ; h  p|j;h1;shq.

14: Choose the action am 1;h of player m 1 as follows: (Action am 1;h is corresponds to the action selected by the policy

m  1 of player m 1 defined within the proof of Lemma E.3; this policy is well-defined because the action profiles of

all players iPrms can be extracted from the lower-order bits of player m 1’s reward)
! )

am 1;h :argmax R m  1;hpa1q : (14)
a 1 PA m      1

15: For each j P rm 1s, let rj ; h  Rj;hpsh;pa1;h;:::;am 1;hqq.
16: Each player j  constructs j ; h  by updating j;h1 with psh;aj;h;rj;hq. 17:

if R m  1;hpam 1;hq ⁄14pm 1q{H then

18: return pq : jPrms qj;h as a candidate approximate Nash equilibrium for G.

19:        end if

20: end for

21: if the for loop terminates without returning: return fail.

It is evident that this construction takes polynomial time and satisfies |G|⁄mn0 ⁄ n .  Furthermore, it is clear that a single generative
model oracle call for the Markov game G (per Definition 5.1) can be implemented using at most 2 calls to the oracle OG  for the
normal-form game G. We will now show by applying the algorithm B  to G, we can efficiently (in terms of runtime and oracle calls)
compute a 16pm 1q-approximate Nash equilibrium for the original game G. To do so, we appeal to Algorithm 2.

Algorithm 2 proceeds as follows. First, it calls the algorithm B  on the pm 1q-player Markov game GpGq, using the oracle OG  to
simulate B ’s  calls to the generative model oracle for G. By assumption, the algorithm B  returns a sequence p1q;:::;pT q of product
policies of the form ptq pptq;:::;ptq     

1q, so that each ptq P gen;rnd is N-computable, and so that the average : 1
t1Iptq
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is an -CCE of G. Next, Algorithm 2 samples a trajectory from G in which:

• Players 1;:::;m each play according to a policy ptq for an index t PrTs chosen uniformly at the start of the episode.

• Player m 1 plays according to a strategy that, at each step h P rHs, computes distributions qj;h  representing its “belief”
of what action each player j P rms will play at step h (Line 10), and plays an approximate best response to the product of
the strategies pq ;h, j P rms (Line 14).

In order avoid exponential dependence on the number of players m when computing an approximate best response to 
‘

j
Prmsqj;h, we

draw K :r4logpmn0{q{2s (for {p6Hq) samples from      jPrms qj;h and use these samples to compute the best response.
In particular, letting a K  P A  denote the kth sampled action profile, we construct a function R m  1;h : A m  1 Ñ R  in Lines 11 and 14
which, for each a1 P A m  1, is defined as the average over samples tak ukPrK s of the realized payoffs R m  1;hpsh;pak;a1qq; note
that to compute the payoffs for each sample, Algorithm 2 needs only two oracle calls to OG.

The following lemma, proven in the sequel, gives a correctness guarantee for Algorithm 2.

Lemma E.3 (Correctness of Algorithm 2). Given any m-player n0-action normal form game G, if the algorithm B  solves the
pT;;N q-SPARSECCE problem for the game GpGq with T;;N satisfying T ⁄ exppn0

2{m2q, then Algorithm 2 outputs a 16pm
1q-approximate Nash equilibrium of G  with probability at least 1{3, and otherwise fails.

The assumption that T exp
2 tn{mu      from the statement of Theorem E.1 yields that T ⁄exppn0

2{m2q, so Lemma E.3 yields
that Algorithm 2 outputs a 16pm 1q-Nash equilibrium of G  with probability at least 1{3 (and otherwise fails). By iterating
Algorithm 2 for logp1{q times, we may thus compute a 16pm 1q-Nash equilibrium of G  with failure probability 1.

We now analyze the oracle cost and computational cost of Algorithm 2. It takes 2Q oracle calls to OG  to simulate the Q generative
model oracle calls of B ,  and therefore, if B  runs in time U, then the call to B  on Line 5, using oracle calls to OG  to simulate
simulate the generative model oracle calls, runs in time OpUq. Next, the computations of qj;h  (and thus qj;h) in Line 10 can be
performed in pnmTNqOp1q time, the computation of R m  1;h : A m  1 Ñ R  in Line 14 requires time (and oracle calls to OG)
bounded above by Op|Am 1|Kq ⁄pnmlogp1{q{qOp1q, constructing the actions aj;h  (for j P rm 1s) in Lines 13 and 14 takes time
pNmnqOp1q (using the fact that the policies j ; h  are N-computable), and constructing the rewards rj ; h  on Line 15 requires another
2pm 1q oracle calls to OG. Altogether, Algorithm 2 requires 2Q pnmlogp1{q{qC0 oracle calls to OG  and, if B  runs in time U,
then Algorithm 2 takes time pnmTNUlogp1{q{qC0, for some absolute constant C0.

Remark E.4 (Bit complexity of exponential weights updates). In the above proof we have noted that qj;h  (as defined in Line 10 of
Algorithm 2) can be computed in time pnmTNqOp1q. A  detail we do not handle formally is that, since the values of qj;hptq are in
general irrational, only the pnmTNqOp1q most significant bits of each real number qj;hptq can be computed in time pnmTNqOp1q.
To give a truly polynomial-time implementation of Algorithm 2, one can compute only the pnmTNqOp1q most significant bits
of each distribution qj;h , which is sufficient to approximate the true value of qj;h  to within expppnmTNqO

p
1qq in total variation

distance. Since qj;h  only influences the subsequent execution of Algorithm 2 via the samples a1 ;:::;aK qj;h  drawn
in Line 11, by a union bound, the approximation of qj;h  we have described perturbs the execution of the algorithm by at most
OpKHqexpppnmTNqOp1qq in total variation distance. In particular, the correctness guarantee of Lemma E.3 still holds, with
sucess probability at least 1{3expppnmTNqOp1qq¡1{4.

It remains to prove Lemma E.3, which is the bulk of the proof of Theorem E.1.

Proof of Lemma E.3. We will establish the following two facts:

1. First, the choices of am 1;h in Line 14 (i.e., Eq. 14) of Algorithm 2 correspond to a valid policy : P gen;rnd for player
m 1 (representing a strategy for deviating from the equilibrium ), in that they can be expressed as a function of player pm
1q’s history, pm 1;h1;shq at each step h.

2. Second, we will show that, since  is an -CCE of G, the strategy : cannot not lead to a large increase of value for player
m 1, which will imply that Algorithm 2 must return a Nash equilibrium with high enough probability.
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Defining :  for iP rm 1s. We begin by constructing the policy m  1 described; for later use in the proof, it will be convenient to
construct a collection of closely related policies  P gen;rnd for i P rms, also representing strategies for deviating from the
equilibrium .

Let i  P rm   1s be fixed. For h P rH s, the mapping :        : H i ; h 1   S  Ñ  A i  is defined as follows. Given a history i;h1

ps1;ai;1;ri;1;:::;sh1;ai;h1;ri;h1q P Hi;h1 (we assume without loss of generality that i;h1 occurs with positive proba-bility under some
sequence of general policies) and a current state sh, we define i;hpi;h1;shq P Ai through the following process.

1. First, we claim that for all players j  P rm 1sztiu, it is possible to extract the trajectory j;h1 from the trajectory i;h1 of
player i.

(a) Recall that for each g     h, from the definition in (12) and the function encpaq, the bits following position 3rlog1{s of the
reward ri;g given to player i  at step g of the trajectory i;g1 encode an action profile ag P A. Since i;h1 occurs with positive
probability, this is precisely the action profile which was played by agents at step g. Note we also use here that by definition
of the rewards Rj;hps;aq in (12), the component Rj;hps;aq of the reward only affects the first 2rlog1{s bits.

(b) For g     h and j P rm 1sztiu, define rj;g  :Rj;gpsg;agq.
(c) For j P rm 1sztiu, write j;h1 :ps1;aj;1;rj;1;:::;sh1;aj;h1;rj;h1q; in particular, j;h1  is a deterministic function of pi;h1;shq.

(Note that, since i;h1 occurs with positive probability, the history j;h1 observed by player j  up to step h1 can be
computed from it via Steps (a) and (b)). Going forward, for g     h1, we let j;g denote the prefix of j;h1 up to step g.

2. Now, using that player i  can compute all players’ trajectories, for each j P rm 1s we define

qj;h  :Et qrj ; h      j;hpj;h1;shq PpAjq; (15)

where qj;h  PprTsq is defined as follows: for tPrTs,

qj;hptq:  
exp  g hlog ptq paj;g |j;g 1 ;sg q

: (16) t11exp  g 
h
log 

j ; g

paj ; g | j ; g 1 ;sg q

Note that qj;h  is a random variable which depends on the trajectory pj;h1;shq (which can be computed from pi;h1;shq). In
addition, the definition of pq ;h (for each j P rms) is exactly as is defined in Line 10 of Algorithm 2.

3. For iPrms, define i;hpi;h1;shq as follows:
:  pi;h1;shq :argmaxE ‘ R m  1;hpsh;pa1;aiqq: (17)

a1 PAi

For the case i m 1, define m  1;hpm 1;h1;shq PpAm 1q (implicitly) to be the following distribution over am 1;h P A m  1:
draw a1 ;:::;aK 

jPrms qj;h , define R m  1;hpa1q: K k 1 Rm  1;hpsh;pak;a1qq for a1 P A m  1, and finally set
! )

am 1;h :argmax R m  1;hpa1q : (18)
m      1

Note that, for each choice of pm 1;h1;shq, the distribution m  1;hpm 1;h1;shq as defined above coincides with the
distribution of the action a: defined in Eq. 14 in Algorithm 2, when player m      1’s history is m  1;h1 and the state
at step h is sh. The following lemma, for use later in the proof, bounds the approximation error incurred in sampling
ah;:::;ah jPrms qj;h .

Lemma E.5. Fix any pm 1;h1;shq P Hj;h1. With probability at least 1 over the draw of a1 ;:::;aK ‘ j
Prms qj;h ,

it holds that for all a1 P A m  1,

R m  1;hpa1qEaj qp
j
;h @jPrmsrRm 1;hpsh;pa1;:::;am;a1qqs⁄ 

H
;
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which implies in particular that with probability at least 1 over the draw of am 1;h m  1;hpm 1;h1;shq,

a1
max 

1      
Ea j qpj ; h  @jPrmsrRm 1;hpsh;pa1;:::;am;a1qqs(

2 
⁄E a j qp j ; h  @jPrmsrRm 1;hpsh;pa1;:::;am;am 1

;
hqqs: (19)

It is immediate from our construction above that the following fact holds.

Lemma E.6. The joint distribution of j;h ,  for j P rm 1s and hP rHs, as computed by Algorithm 2, coincides with the distribution
of j ; h  in an episode of G when players follow the policy m  1 pm 1q.

Analyzing the distributions qj;h . Fix any i P rm 1s. We next prove some facts about the distributions qj;h  defined above (as
a function of pi;h1;shq) in the process of computing i;hpi;h1;shq.

For each hP rHs, consider any choice of pi;h1;shq P Hi;h1 S; note that for each j P rm 1s, the distributions qj;h  PpAjq for h P rHs
may be viewed as an application Vovk’s aggregating algorithm (Proposition D.2) in the following setting: the number of steps (T ,

in the context of Proposition D.2; note that T has a different meaning in the present proof) horizon is H, the context space is
h1 Hj; h 1 S ,  and the output space is A j .  The expert set is I tp1q;:::;pT qu (which has jI j T ), and the experts’ predictions on a context

pj;h1;sq P Hj;h1 S are defined via ptqp|j;h1;sq:ptq p|j;h1;sqPpAjq. Then for each hP rHs, the distri-
bution qj;h  is obtained by updating the aggregating algorithm with the context-observation pairs pj;h11;aj;h1 q for h1 1;2;:::;h1.

In more detail, fix any t PrTs and j P rm 1s with i j .  We may apply Proposition D.2 with the number of steps set to H ,  the set
of experts as I  tp1q;:::;pT qu, and contexts and outcomes generated according to the distribution induced by running the

policy i  i
q  in the Markov game G as follows:

• For each hP rHs, we are given, at steps h1       h, the actions ak;h1 rewards rk;h1 for all agents kPrm 1s, as well as the states
s1;:::;sh.

– For each kPrm 1s, set k;h1 ps1;ak;1;rk;1;:::;sh1;ak;h1;rk;h1q to be agent k’s history. – The
context fed to the aggregation algorithm at step h is pj;h1;shq.
– The outcome at step h is given by aj;h  

ptqp|j;h1;shq; note that this choice satisfies the realizability assumption in
Proposition D.2.

– To aid in generating the next context at step h 1, choose ak;h 
k
;
h
pk;h1;shq for all k Prm 1szti;ju and ai;h

i;hpi;h1;shq. Then set sh 1 to be the next state given the transitions of G and the action profile ah pa1;h;:::;am 1;hq.

By Proposition D.2, it follows that for any fixed t PrTs and j P rm 1s with j i,  under the process described above we have 
H

E:p t q DTVpptqpj;h1;shq;pq ;hq ⁄ H logT : (20)
h1

Analyzing the value of m  1. Next, using the development above, we show that if Algorithm 2 successfully computes a Nash
equilibrium with constant probability (via m  1) whenever s  is an -CCE. We first state the following claim, which is proven in the
sequel by analyzing the values Vi 

i  i  for iPrms.

Lemma E.7. If  is an -CCE of G, then it holds that for all iPrms,

Vi ¥ m
a

logpT q{H :

Note that in the game G, since for all h P rHs, s P S  and a P A,  it holds that 
°

j 1
1Rj;h ps;aq ⁄  pm 1q2    

 
(which holds

since in (12), encpaq is multiplied by H  2
3rlog1{s), it follows that  j1

1V ⁄ pm  1q2. Thus, by Lemma E.7, we have

Vm 1 ⁄ pm  1q2 mp m     logpTq{Hq, and since  is an -CCE of G it follows that

Vm 1
1 pm     1q ⁄ 2pm 1q m2

a
logpT q{H: (21)
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To simplify notation, we will write qh :pq ;h pqm;h in the below calculations, where we recall that each qj;h  is determined given the
history up to step h, pj;h1;shq, as defined in (15) and (16). An action profile drawn from qh is denoted as a qh, with a P A. We
may now write V      1

1 pm     1q as follows:

m      1 p m      1q m  1

EtrT s  
‚

E
m      1

ptq 
    

 
1 q

E a
j ; h

p t q p j ; h 1

; s
h q  

@j
Pr

m
s 

rRm  1;hpsh;aqs a m      1 ; h m      1 ; h p m

1 ; h 1 ;s h q

H

a:pa1 ; h ; : : : ;a m     

 

1 ; h q

¥Et r T s E : ptq E a j ;
h qpj ; h  @jPrms rRm  1;hpsh;aqs

h1                                                a m      1 ; h m      1 ; h p m      1 ; h 1 ;s hq
a:pa1 ; h ; : : : ;a m      1 ; h q

 
1 ‚  

DTVpptqpj;h1;shq;qj;hq jPrms

¥Et r T s  
‚

E  : ptq max Eaqp R m  1;hpsh;pa;am 1;hqq
2
 
 h1 p m

1q            m     

 
1 ; h          

 

m      1

 
1

DTV pj;h  pj;h1;shq;qj;hq

H  

jPrms

¥ E  E max E rpM q 1 pM q s HlogT 22;
h

1
m      1 p m      1q        j Prm s ;a j ; h PA j

where:

• The first inequality follows from the fact that R m  1;hpq takes values in r1{H;1{H s and the fact that the total variation
between product distributions is bounded above by the sum of total variation distances between each of the pairs of component
distributions.

• The second inequality follows from the inequality (19) of Lemma E.5.

• The final equality follows from the definition of the rewards in (12) and (13), and by summing (20) over j P rms. We remark
that the 2 term in the final line comes from the term H  2

3rlog1{sencpaq in (12).

Rearranging and using (21) as well as the fact that  2 {p6Hq 2 ⁄  (as ⁄ 1{2),  we get that
H  

E  E max E rpM q 1 pM q s
m      1 p m      1q

h
1    

 
j Prms ;a j ; h PA j

⁄2H pm  1q pm 1qm HlogT  3H :

Since pq is a product distribution a.s., we have that

max E rpM q 1 pM q s ¥ 0:
j Prm s ;a j ; h PA j

Therefore, by Markov’s inequality, with probability at least 1{2 over the choice of t      rTs and the trajectories
pj;h1;shq m 1 pm 1q for j P rms (which collectively determine qh), there is some h P rHs so that

max E rpM q 1 pM q s ⁄10pm 1q 2pm 1qm
a

logpT q{H ⁄12pm 1q; (22)
j Prm s ;a j ; h PA j

where the final inequality follows as long as H  2 ¥ m2 logT , i.e., T ⁄ e xp  H , which holds since H  ¥ n0  and we have
assumed that T ⁄expp2 n0{m2q.
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Note that (22) implies that with probability at least 1{2 under an episode drawn from : pm 1q, there is some h P rHs so
that qh is a 12pm 1q-Nash equilibrium of the stage game G. Thus, by Lemma E.6, with probability at least 1{2 under an episode
drawn from the distribution of Algorithm 2, there is some h P rHs so that pq is a 12pm 1q-Nash equilibrium of G.

Finally, the following two observations conclude the proof of Lemma E.3.

• If qh is a 12pm 1q-Nash equilibrium of G, then by definition of the reward function R m  1;hpq in (12), upper bounding H
23rlog1{sencpaq by 2{H ,

a1
max 

1
Ea qph Rm  1;hps;pa;a1qq⁄ 

H
 
12pm 1q     

H
;

which implies, by Lemma E.5, that with probability at least 1 over the draw of a
h
;:::;ah ,

! )

a1
max 

1      
 R m  1;hpa1q ⁄  

H
 
12pm 1q     

H
 
     

H  
⁄  

H
 
14pm 1q;

i.e., the check in Line 17 of Algorithm 2 will pass and the algorithm will return pq (if step h is reached).

! )
• Conversely, if maxa1 PAm     1        R m  1;hpa1q ⁄  14pm     1q, i.e., the check in Line 17 passes, then by Lemma E.5, with

probability at least 1 over ah;:::;ah ,

a1
max 

1
Ea qph Rm  1;hps;pa;a1qq⁄ 

H
 
14pm 1q     

H  
⁄  

H
 
15pm 1q;

which implies, by the definition of R m  1;hpq in (12) and (13), that pq is a 16pm 1q-Nash equilibrium of G.

Taking a union bound over all H  of the probability- failure events from Lemma E.5 for the sampling a1 ;:::;aK pq (for hP rHs), as well
as over the probability-1{2 event that there is no qh which is a 12pm 1q-Nash equilibrium of G, we obtain that with probability at
least 11{2H {p6Hq ¥ 1{3, Algorithm 2 outputs a 16pm 1q-Nash equilibrium of G.

Finally, we prove the remaining claims stated without proof above.

Proof of Lemma E.5. Since R m  1;hps;aqPr1{H;1{Hs for each a P A, by Hoeffding’s inequality, for any fixed a1 P A m  1, with
probability at least 1{|Am 1|1{pmn0q over the draw of a

h
;:::;ah jPrms qj;h , it holds that

R m  1;hpa1qEaj qp
j
;h @jPrmsrRm 1;hpsh;pa1;:::;am;a1qqs⁄ 

H
 
c

logmn0 {
 
⁄  

 
;

where the final inequality follows from the choice of K  r4logpmn0{q{2s. The statement of the lemma follows by a union
bound over all |Am 1| actions a1 P A m  1.

Proof of Lemma E.7. Fix any agent iP rms. We will argue that the policy i  P
gen;d

e
t defined within the proof of Lemma E.3

satisfies V i  ; i  ¥ m      logpTq{H. Since  is an -CCE of G, it follows that

¥ V  i  ; i

 

Vi ¥ m
a

log

p

T

q{

H Vi ;

from which the result of Lemma E.7 follows after rearranging terms. To simplify notation, let us write pqi;h :
‘      

qj;h , where we
recall that each qj;h  is determined given the history up to step h, pj;h1;shq, as defined in (15) and (16). An action profile
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drawn from pqi;h is denoted by ai pqi;h, with ai P Ai .  We compute

V i  i

H

Etr
T
s

h1

E: p t q Ea
i
‘

j i
p t q p j ; h 1

; s
h q  

Ri;hpsh;pi;hpi;h1;shq;aiqq

H
¥Et r T s E:p t q         Ea i qpi ; h      Ri;hpsh;pi;hpi;h1;shq;aiqq DTV pj;h  pj;h1;shq;qj;hq

h1
H

¥Et r T s E:p t q          max Eai qpi ; h      Ri;hpsh;pai;aiqq HlogT
h1

¥ m      logpTq{H;

where:

• The first inequality follows from the fact that the rewards Ri;hpq take values in r1{H;1{H s and that the total variation
between product distributions is bounded above by the sum of total variation distances between each of the pairs of component
distributions.

• The second inequality follows from the definition of :  pi;h1;shq in terms of qi;h in (17) as well as (20) applied to each j i
and each t PrTs.

• The final inequality follows by Lemma E.8 below, applied to agent i  and to the distribution pqi;h, which we recall is a product
distribution almost surely.

Lemma E.8. For any iPrms, sP S;h P rHs, and any product distribution q PpAiq, it holds that
max EaqRi;hps;pai;aqq¥ 0: i

i

Proof. Choose ai :argmaxa1 PAEaqpMiqa1 ;a . Now we compute

H Eaq rRi;hps;pai ;aqqs ¥H
am 

min
m     1

EaqRi;hps;pai ;am 1;apm 1qqq
 
¥

p j ; a

min
m     1

1tj iu Eaq  pMiqa
i 
;a pMiqai ;a

¥0;

where the first inequality follows since q is a product distribution, the second inequality uses that encpq is non-negative, and the
final inequality follows since by choice of ai we have Eaq  pMiqa

i 
;a  ¥ E a q  pMiqai;a     for all ai P Ai .

E.2. Remarks on bit complexity of the rewards

The Markov game GpGq constructed to prove Theorem E.1 uses lower-order bits of the rewards to record the action profile taken
each step. These lower order bits may be used by each agent to infer what actions were taken by other agents at the previous step,
and we use this idea to construct the best-response policies :  defined in the proof. As a result of this aspect of the construction, the
rewards of the game GpGq each take Opmlogpnq logp1{qq bits to specify. As discussed in the proof of Theorem E.1, it is without loss
of generality to assume that the payoffs of the given normal-form game G  take Oplog1{q bits each to specify, so when either m " 1  or
n " 1{,  the construction of GpGq uses more bits to express its rewards than what is used for the normal-form game G.

It is possible to avoid this phenomenon by instead using the state transitions of the Markov game to encode the action profile
taken at each step, as was done in the proof of Theorem 3.2. The idea, which we sketch here, is to replace the game GpGq of
Definition E.2 with the following game G1pGq:
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Definition E.9 (Alternative construction to Definition E.2). Given an m-player, n0-action normal-form game G, we define the
game G1pGqpS;H;pAiqiPr2s;P;pRiqiPr2s;q as follows.

• The horizon of G is H n0.

• Let An0. The action spaces of agents 1;2;:::;m are given by A1  A m  rAs. The action space of agent m 1 is A m  1

tpj;ajq : j P rms;aj P Aj u;

so that |Am 1| Am ⁄n.

We write A j 1 A j  to denote the joint action space of the first m agents, and A : j 1
1 Aj  to denote the joint action

space of all agents. Then |A| Am pmAq mAm 1 ⁄ n .

• The state space S  is defined as follows. There are |A| states, one for each action tuple a P A. For each a P A, we denote
the corresponding state by sa.

• For all hP rHs, the reward to agent j P rm 1s given action profile apa1;:::;am 1q at any state s P S is as follows: writing
am 1 pj1;a1 

1q,
$

0  : j R tj
1

;m 1u
Rj;hps;aq: H  pMj qa1 ;:::;am pMjqa1;:::;a1 

1 ;:::;am : j j1 (23)
H   pMjqa1;:::;a1 

1 ;:::;am  pMj qa1 ;:::;am : j m 1:

• At each step hP rHs, if action profile a P A is taken, the game transitions to the state sa.

Note that the number of states of G1pGq is equal to |A|  mnm 1, and so |G1pGq|  mnm 1. As a result, if we were to use the game
G1pGq in place of GpGq in the proof of Theorem E.1, we would need to define n0 : tn1{pm 1q{mu to ensure that |G1pGq| ⁄n, and
so the condition T expp2tn{mu{m2q would be replaced by T expp2 tn1{pm 1q{mu{m2q. This would
only lead to a small quantitative degradement in the statement of Theorem 4.3, with the condition in the statement replaced by T

exppc2n1{3q for some constant c ¡ 0.  However, it would render the statement of Theorem 5.2 essentially vacuous. For this
reason, we opt to go with the approach of Definition E.2 as opposed to Definition E.9.

We expect that the construction of Definition E.2 can nevertheless still be modified to use Oplog1{q bits to express each reward in
the Markov game G. In particular, one could introduce stochastic transitions to encode in the state of the Markov game a small
number of random bits of the full action profile played at each step. We leave such an approach for future work.

F. Equivalence between gen;rnd and pgen;detq

In this section we consider an alternate definition of the space gen;rnd of randomized general policies of player i, and show that it
is equivalent to the one we gave in Section 2.

In particular, suppose we were to define a randomized general policy of agent i  as a distribution over deterministic gen-
eral policies of agent i: we write gen;rnd : pgen;detq to denote the space of such distributions. Moreover, write gen;rnd :
gen;rnd    gen;rnd  pgen;detq    pgen;detq to denote the space of product distributions over agents’ deterministic policies. Our goal in
this section is to show that policies in gen;rnd are equivalent to those in gen;rnd in the following sense: there is an embedding map
Emb: gen;rnd Ñ gen;rnd, not depending on the Markov game, so that the distribution of a trajectory drawn from any  P gen;rnd, for any
Markov game, is the same as the distribution of a trajectory drawn from Embpq (Fact F.2). Furthermore, Emb is surjective in the
following sense: any policy P gen;rnd produces trajectories that are distributed identically to those of Embpq (and thus of ), for some
P gen;rnd (Fact F.3). In Definition F.1 below, we define Emb.

Definition F.1. For j P rms and j  P gen;rnd, define Embjpjq P gen;rnd pgen;detq to put the following amount of mass on each j
P gen;d

e
t:

pEmbj pj qqpj q :
„ „

jpj;hpj;h1;shq | j;h1;shq (24)
h1 p j ; h 1 ; s h q PH j ; h 1 S
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Furthermore, for p1;:::;mqPgen;rnd, define EmbpqpEmbp1q;:::;Embpmqq.

Note that, in the special case that j  P gen;d
e

t, Embjpjq is the point mass on j .

Fact F.2 (Embedding equivalence). Fix a m-player Markov game G and, arbitrary policies j  P gen;rnd. Then a trajectory drawn
from the product policy  p1;:::;mq P gen;rnd gen;rnd is distributed identically to a trajectory drawn from EmbpqPgen;rnd.

The proof of Fact F.2 is provided in Section F.1. Next, we show that the mapping Emb is surjective in the following sense:

Fact F.3 (Right inverse of Embj ). There is a mapping Fac : gen;rnd Ñ  gen;rnd so that for any Markov game G and any
r P gen;rnd, the distribution of a trajectory drawn from r  is identical to the distribution of a trajectory drawn from EmbFacprq.

We will write Facppr1;:::;rmqq:pFac1pr1q;:::;Facmprmqq. Fact F.3 states that the policy Facprq maps, under Emb, to a policy in
gen;rnd which is equivalent to r  (in the sense that their trajectories are identically distributed for any Markov game).

An important consequence of Fact F.2 is that the expected reward (i.e., value) under any P gen;rnd is the same as that of Embpq. Thus
given a Markov game, the induced normal-form game in which the players’ pure action sets are gen;rnd;:::;gen;rnd is

equivalent to the normal-form game in which the players’ pure action sets are gen;d
e

t;:::;gen;det, in the following sense: for

any mixed strategy in the former, namely a product distributional policy P  P pgen;rndq pgen;rndq, the policy E P

rEmbpqs P pg
e
n;detqpgen;detq gen;rnd is a mixed strategy in the latter which gives each player the same value as under P . (Note
that E P  rEmbpqs is indeed a product distribution since P  is a product distribution and Emb factors

into individual coordiantes.) Furthermore, by Fact F.3, any distributional policy in gen;rnd arises in this manner, for some
P  P pgen;rndqpgen;rndq; in fact, P  may be chosen to place all its mass on a single  P gen;rnd gen;rnd. Since Emb factors into
individual coordinates, it follows that Emb yields a one-to-one mapping between the coarse correlated equilibria (or any other notion
of equilibria, e.g., Nash equilibria or correlated equilibria) of these two normal-form games.

F.1. Proofs of the equivalence

Proof of Fact F.2. Consider any trajectory  ps1;a1;r1;:::;sH ;aH ;rH q consisting of a sequence of H  states and actions and
rewards for each of the m agents. Assume that ri;h Ri;hps;ahq for all i;h (as otherwise  has probability 0 under any policy). Write:

H 1

p : Phpsh 1|sh;ahq: h1

Then the probability of observing  under  is

H 1  m

p j;hpaj;h|j;h1;shq (25)
h1 j 1

where, per usual, j;h1  ps1;aj;1;rj;1;:::;sh1;aj;h1;rj;h1q. Write p1;:::;mqEmbpq. The probability of observing  under  is

p  
„ ‚

jpjq (26)
j Pr m sjPge n ; d e t :  @h; p j ; h 1 ; s h q a j ; h

It is now straightforward to see from the definition of jpjq in (24) that the quantities in (25) and (26) are equal.

Proof of Fact F.3. Fix a policy r j  P gen;rnd pgen;detq. We define Facj prj q to be the policy j  P gen;rnd, which is defined as follows:
for j;h1 psj;1;aj;1;rj;1;:::;sj;h1;aj;h1;rj;h1q P Hj;h1, sh P S, we have, for aj;h  P Aj ,

 t  P gen;det :  p     ;s qa @g ⁄hu
 p ;s qpa     q      :

r j      t j  P j : jpj;g;sgqaj;g @g ⁄h1u
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If the denominator of the above expression is 0, then jpj;h1; shq is defined to be an arbitrary distribution on pAjq. (For
concreteness, let us say that it puts all its mass on a fixed action in Aj .)  Furthermore, for r  P gen;rnd, define
Facpq:pFac1p1q;:::;FacmpmqqPgen;rnd.

Next, fix any r  pr1;:::;rmq P gen;rnd gen;rnd. Let  Facprq. By Fact F.2, it suffices to show that the distribution of trajectories
under  is the same as the distribution of trajectories drawn from .

So consider any trajectory  ps1;a1;r1;:::;sH ;aH ;rH q consisting of a sequence of H  states and actions and rewards for each of
the m agents. Assume that ri ;h  Ri;hps;ahq for all i;h (as otherwise  has probability 0 under any policy). Write:

H 1

p : Phpsh 1|sh;ahq: h1

Then the probability of observing  under  is

p 
„ „

j ; h pa j ; h | j ; h 1 ;sh q  h1j1

„ „  r j      t j  P gen;d
e

t : jpj;g;sgqaj;g @g ⁄hu

 
j 1h1 j      t j  P gen;d

e
t : jpj;g;sgqaj;g @g ⁄h1u p 

„
j t j

P gen;d
e

t : jpj;g;sgqaj;g @g ⁄H u ;

j 1

which is equal to the probability of observing  under r .
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