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ABSTRACT

Self-supervised skeleton-based action recognition has at-

tracted more attention in recent years. By utilizing the un-

labeled data, more generalizable features can be learned to

alleviate the overfitting problem and reduce the demand for

massive labeled training data. Inspired by the MAE [1],

we propose a spatial-temporal masked autoencoder frame-

work for self-supervised 3D skeleton-based action recog-

nition (SkeletonMAE). Following MAE’s masking and re-

construction pipeline, we utilize a skeleton-based encoder-

decoder transformer architecture to reconstruct the masked

skeleton sequences. A novel masking strategy, named

Spatial-Temporal Masking, is introduced in terms of both

joint-level and frame-level for the skeleton sequence. This

pre-training strategy makes the encoder output generaliz-

able skeleton features with spatial and temporal dependen-

cies. Given the unmasked skeleton sequence, the encoder

is fine-tuned for the action recognition task. Extensive ex-

periments show that our SkeletonMAE achieves remarkable

performance and outperforms the state-of-the-art methods

on both NTU RGB+D 60 and NTU RGB+D 120 datasets.

Index TermsÐ Masked autoencoder, Skeleton action

recognition

1. INTRODUCTION

Human Action Recognition is a fundamental research

topic in computer vision, which aims to understand human

behaviors and distinguish actions. With the booming devel-

opment of deep learning and human pose estimation meth-

ods, human skeleton data can be efficiently extracted as a

high-level but light-weighted representation, which draws

great attention to human behavior and action analysis. Thus,

3D skeleton-based action recognition has become an impor-

tant research field in human action recognition.

Most recent methods focus on full-supervised learning

algorithms to build their frameworks: methods based on

Convolutional Neural Networks (CNN) [2], methods based

on Recurrent Neural Networks (RNN) [3], methods based

on Graph Convolution Networks (GCN) [4] and methods

based on Transformer [5] are widely applied in skeleton ac-

tion recognition and lead to very good results. However,

fully supervised action recognition is liable to overfitting.

Also, it requires massive labeled training data, which is ex-

pensive and time-consuming. To alleviate these issues, self-

supervised learning methods, which utilize unlabeled data

to learn data representations, have been increasingly preva-

lent in skeleton action recognition. Some self-supervised

approaches consider pretext tasks for skeleton representa-

tion learning using unlabeled skeleton data, such as mo-

tion reconstruction [6] and jigsaw puzzle [7]. However,

such pretext-based methods focus on local features such as

joint correlation and skeleton scale in the same frame, and

have not fully explored the temporal information. Recently,

several works [8, 9] train the contrastive-based model by

constructing the skeleton sequences in different views by

data augmentation and positive-negative pairs. Although

these contrastive learning-based methods emphasize high-

level context information, they heavily rely on the num-

ber of contrastive pairs in the joints for extracting skeleton

features and ignore the joint correlation information among

different frames.

Recently, a new self-supervised learning approach

named masked autoencoders (MAE) [1] demonstrates a

strong generalization capability with remarkable perfor-

mance in computer vision tasks. MAE masks a large pro-

portion of the input image and then forces the model to

learn a generalizable representation by using only the un-

masked proportion to reconstruct the original image. How-

ever, MAE can not be directly utilized for self-supervised

skeleton action recognition because the Vision Transformer



(ViT) [10] architecture is used in MAE [1] to process

the image input. Different from the image that does not

contain temporal information, human skeleton sequences

are extracted from videos with high information density,

which contains fruitful semantic information: at the spa-

tial level, joint features contain the relationships among dif-

ferent joints in the same frame; in temporal level, frame

features represent the movements of the same joint from

different frames. Moreover, The masking strategy in MAE

only focuses on the spatial domain. When processing the

human skeleton sequences data, a spatial-temporal masking

strategy is needed. To address these issues, we introduce a

novel skeleton-based masked autoencoder named Skeleton-

MAE for self-supervised skeleton spatial-temporal repre-

sentation learning: 1) the masked input sequences are gen-

erated from the original skeleton sequences, which contain

joints coordinates (spatial) information and frames (tem-

poral) information; 2) with spatial-temporal masking strat-

egy and encoding-decoding rule, SkeletonMAE gains re-

construction sequences from masked sequences, where the

spatial and temporal information is well processed by the

transformer-based encoder and decoder (transformers have

great potential for spatial-temporal representation learning

with long-term sequence data).

Fully Connected Layer

Class label

(a) SkeletonMAE self-supervised learning pipeline
Feature embedding Masked token

SkeletonMAE Decoder

SkeletonMAE Encoder

Frame masking Joint masking 

SkeletonMAE Encoder

Masked joint

Input sequence

Reconstructed sequence

Input sequence

(b) Fine-tuning for action recognition

Figure 1: (a) The overall pipeline of the SkeletonMAE. During pre-

training. The transformer-based encoder only deals with visible skeleton

tokens, and the transformer-based decoder is utilized for skeleton recon-

struction, then we only use the SkeletonMAE encoder during the fine-

tuning. (b) The end-to-end fine-tuning procedure for skeleton action recog-

nition.

The framework of SkeletonMAE is presented in Fig. 1.

Specifically, the whole SkeletonMAE pipeline is designed

with the following principles. During pre-training, a spatial-

temporal masking strategy (with pre-set frame-masking and

joint masking ratios) is employed to mask out part of the

input skeleton sequence in both frame-level and the joint-

level (Sec. 3.1). In order to find the best trade-off point

for spatial-temporal representation learning, we discuss the

roles of joint-masking and frame-masking ratios and find

the best ratio combination. The encoder is applied to learn

the generalizable feature representation while the decoder

is designed to reconstruct the missing skeletons. Since we

are dealing with the skeleton sequences, we utilize skeleton-

based spatial-temporal transformer [5] as our network back-

bone. During the fine-tuning stage, we only use the encoder

with a simple output layer to predict the actions. The ac-

tion recognition results show that our approach outperforms

the state-of-the-art self-supervised learning methods with-

out extra data. To summarize, we make the following con-

tributions: (1) We propose a simple and efficient skeleton-

based masked autoencoder architecture, which aims to learn

comprehensive and generalizable skeleton feature represen-

tations. (2) To have a better understanding of the skeleton

masking methods, we explore different masking methods

and develop a novel spatial-temporal masking for skele-

ton data at both joint-level and frame-level. At the same

time, we validate the proper combination of the joint-

masking ratio and frame-masking ratio. (3) We evaluate our

model on NTU-RGB+D 60 and NTU-RGB+D 120 datasets,

and extensive experimental results show that SkeletonMAE

achieves state-of-the-art performance under self-supervised

settings.

2. RELATED WORK

2.1. Self-supervised skeleton-based action recognition

Self-supervised learning aims to extract feature repre-

sentations without using labeled data and achieves promis-

ing performance in image-based and video-based represen-

tation learning [11, 12]. More self-supervised represen-

tation learning approaches adopt the so-called contrastive

learning manner [13, 14] to boost their performance. In-

spired by contrastive learning architectures, recent skeleton

representation learning works have achieved some inspir-

ing progress in self-supervised skeleton action recognition.

MS2L [7] introduced a multi-task self-supervised learn-

ing framework for extracting joint representations by using

motion prediction and jigsaw puzzle recognition. CrosS-

CLR [8] developed a contrastive learning-based framework

to learn both single-view and across-view representations

from skeleton data. Following CrosSCLR, AimCLR [9] ex-

ploited an extreme data augmentation strategy to add ex-

tra hard contrastive pairs, which aims to learn more general

representations from skeleton data.

2.2. Masked autoencoding

Masked autoencoding [15] is a well-structured self-

supervised learning model for general representation learn-

ing, and successfully applied in BERT [16], one of the

most famous self-supervised frameworks in natural lan-

guage processing (NLP). The BERT model is simple and

straightforward ± remove part of the sequence data with

the masked tokens, predict the removed parts and calcu-

late the loss between prediction and ground-truth data. As



a result, the reconstruction sequence works well for the

training of the generalizable models. Inspired by masked

autoencoders and BERT, He et al. [1]. design a scal-

able self-supervised masked autoencoder (MAE) for com-

puter vision tasks. With the same core concept as BERT,

MAE masks parts of the image patches and rebuilds them

for pre-training. Compared with the original MAE, there

are two main spotlights in our proposed SkeletonMAE: 1)

a skeleton-based transformer encoder-decoder framework,

the encoder processes the unmasked tokens and the decoder

reconstructs the original skeleton sequence; 2) a spatial-

temporal masking strategy for both joint and frame-level

features. Following the main idea of MAE, we propose

SkeletonMAE for self-supervised skeleton action recogni-

tion.
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Figure 2: Illustration of the spatial-temporal masking pipeline. Based on

the pre-set frame-masking ratio (α) and joint-masking ratio (β), we first

adopt frame masking (i.e. removing an entire skeleton frame) in skeleton

sequence (e.g., α = 0.5), and randomly mask the joints in joint-level (e.g.,

β = 0.4).

3. METHODOLOGY

In this section, we first design a spatial-temporal mask-

ing strategy for skeleton data in Sec. 3.1. Next, we analyze

our SkeletonMAE for action recognition in Sec. 3.2. Fi-

nally, we present our fine-tuning procedure in Sec. 3.3.

3.1. Spatial-temporal masking strategy

We propose a spatial-temporal masking method for a

portion of the skeleton sequence input, the pipeline of our

masking strategy is illustrated in Fig. 2.

Temporal-masking method. Fig. 2 shows our mask-

ing method at the frame level. Based on the pre-set frame-

masking ratio, a portion of the frames are randomly re-

moved and their indices are stored, the remaining frames are

then processed by the spatial-masking method at the joint

level.

Spatial-masking method. As shown in Fig. 2, af-

ter implementing the temporal masking method in all the

input frames, the rest frames are then processed via spa-

tial masking strategy. And based on the pre-set joint-

masking ratio, we randomly mask part of the joints in ev-

ery unmasked frame. It is worth noting that the indices

of the masked joints are not fixed in this randomly spatial-

masking method, which means that the same joints in dif-

ferent frames may be masked or not. This simple approach

is illustrated in Fig. 3(b). Besides this masking method, we

also introduce a joint masking strategy with fixed indices,

which is shown in Fig. 3(c). The joints with the same in-

dices in different frames are all masked or not based on the

joint-masking ratio. We conduct experiments to compare

these two masking strategies in Sec. 4.3.
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Figure 3: Illustration of two masking strategies. (a) The frame-masking

is first implemented and then: (b) randomly mask the joints in the spatial

level; (b) mask the joint with the fixed index.

3.2. SkeletonMAE architecture

We describe the main components in SkeletonMAE, e.g.,

encoder, decoder, reconstruction sequence, loss function,

and fine-tuning pipeline for skeleton action recognition.

The pipeline and SkeletonMAE structure are illustrated in

Fig. 1. And more details are provided in Supplementary A.

SkeletonMAE encoder. Our encoder is based on

STTFormer[5] and only processes the visible skeleton to-

kens. Given a skeleton sequence as input, we apply

the frame-masking and joint-masking methods respectively.

This spatially and temporally unmasked token is fed to the

SkeletonMAE encoder, which maps the input to the spatial-

temporal embedding features.

SkeletonMAE decoder. Our decoder also adopts the

STTFormer structure. Same to the decoder in MAE, the

spatial-temporal embedding features are processed in the

SkeletonMAE decoder to reconstruct the original sequence.

At the same time, in order to reserve the position informa-

tion for reconstruction, positional embeddings are also in-

troduced. The output of the decoder is the reconstructed se-

quence, which should be the same as the original sequence

without masking.

Reconstruction. We use the mean squared error (MSE)



loss to measure the consequence of reconstruction. In this

case, we compute the MSE loss between the original skele-

ton sequences and the reconstructed sequences as follows:

MSE =
1

N

N∑

i=1

|Si − S∗

i
|2, (1)

where i is the index of frame, N is the number of samples, S

is the input sequence, and S∗ is the reconstructed sequence.

3.3. Fine-tuning for skeleton action recognition

In order to evaluate SkeletonMAE’s ability to learn

skeleton representations, we load the learned parameter

weights obtained from pre-training to fine-tune the model

with all the training data, then the label for each action is

predicted with the recognition accuracy. The procedure of

fine-tuning is shown in Fig. 1 (b). Different from the lat-

est contrastive-based self-supervised skeleton action recog-

nition methods [8, 9], which verify the model via linear

evaluation protocol, we focus more on the skeletal gener-

alization learning capabilities in the end-to-end fine-tuning

scenarios.

4. EXPERIMENTS

4.1. Datasets

We evaluate our experiments on the following two most-

used datasets: NTU-RGB+D 60 (NTU-60) dataset [17] and

NTU-RGB+D 120 (NTU-120) dataset [18], and follow the

evaluation protocols for the experimental evaluation: Cross-

Subject (X-Sub) and Cross-View (X-View) protocols for

NTU-60 dataset, Cross-Subject (X-Sub) and Corss-Set (X-

Set) for NTU-120 dataset.

4.2. Experimental settings

Our experiments are performed on 8× A6000 GPUs

with Pytorch framework implementation. Both our pre-

training and fine-tuning models are trained by Adam op-

timizer [19] with a base learning rate of 0.005 and weight

decay of 0.0001. The batch size is 64. The pre-training

and fine-tuning epoch numbers are all set to 200. We also

use a multi-step learning rate schedule for learning rate ad-

justment with gamma 0.1 and milestones are 60 epoch, 90

epoch, and 110 epoch. For fair comparisons among differ-

ent methods, we limit the length of the skeleton sequence to

20 frames for all experiments.

Sequence division and patch embedding. In our re-

search, we follow the patch embedding method in [5]. We

first divide the original skeleton sequence into tuples. Then,

since the skeleton data does not contain a large number of

pixels and various noises like image data, we directly use a

1x1 Conv for patch embedding processing.

Masking settings. We implement our masking strate-

gies before sequence division. As we discussed in Sec. 3.1,

we first mask out a random subset of frames by the pre-

set frame masking ratio and then mask out a random index

of joints by the pre-set joint masking ratio. During experi-

ments, we test several trials of the frame-masking ratio and

joint-masking ratio, finding the best trade-off combination.

Pre-training. We choose MSE loss as pre-training loss

and save the best model by the minimized validation loss.

Fine-tuning. As we discussed in Sec. 3.3, we use end-

to-end fine-tuning for the end task. Moreover, we choose

cross-entropy loss with label smoothing [20] as the fine-

tuning loss with a smoothing rate of 0.1 and save the best

model by the maximized validation accuracy.

4.3. Ablation study

Different masking strategies. After performing the

same degree of random frame masking, we compare the

masking strategies of masking the joints randomly with the

method of keeping the same masked joint index over the en-

tire sequence. The experimental results show that the pure

random joint masking for visible frames is more helpful for

the final fine-tuning result (in Table 1, we get our best fine-

tuned recognition accuracy of 86.6% on X-sub using ran-

dom masking strategy, which is 1.2% better than the best

result of the masking method by fixing the joints indices).

Moreover, we also conduct experiments that mask the in-

puts only in the frame level and only in the joint level. The

overall results indicate that the random masking method

outperforms the masking method with fixed joint indices,

which means the model learns better features with a ran-

domly generated input than the pre-defied input. Notably,

the MAE experiment also shows that using a more random

masking strategy is more beneficial to the final fine-tuning

result.

Frame-masking ratio and joint-masking ratio. In spa-

tial and temporal domains, we test several combinations of

different frame-masking ratios and joint-masking ratios on

SkeletonMAE. Following both joint index fixed and random

masking strategies, we set the frame masking ratio 0.4, 0.5,

and 0.6 respectively, for every decided frame masking ratio,

we test different joint masking ratios (0.4, 0.5, and 0.6 re-

spectively). As shown in Table 1, the final results on NTU-

60 with X-Sub show that a frame-masking ratio of 0.4 and a

joint-masking ratio of 0.5 work best in the masking method

with fixed joints indices (85.4% accuracy). Using the ran-

dom masking method, we achieve the best result (86.6%

accuracy) in two combinations (0.5 joint-masking ratio with

0.5 or 0.4 frame-masking ratios). The qualitative analysis of

these masking strategies is shown in Supplementary B.

Embedding dimension. Table 2 shows the ablation

study on the embedding dimension of the decoder. We

change the different embedding dimensions in the Skele-



method frame-masking ratio joint-masking ratio NTU-60 X-Sub

0.6 0.4 85.2

0.6 0.5 84.9

0.6 0.6 85.3

0.5 0.4 85.3

0.5 0.5 85.0

0.5 0.6 84.8

0.4 0.4 84.8

0.4 0.5 85.4

fixed index

0.4 0.6 85.2

0.6 0.4 86.5

0.6 0.5 86.0

0.6 0.6 86.3

0.5 0.4 86.3

0.5 0.5 86.6

0.5 0.6 85.7

0.4 0.4 85.6

0.4 0.5 86.6

random

0.4 0.6 85.4

0 0.4 85.3

0 0.5 85.2only joint

0 0.6 85.3

0.4 0 84.9

0.5 0 82.1only frame

0.6 0 85.2

Table 1: Masking strategies with joint-masking ratio and

frame-masking ratio. Specifically, there are two joint mask-

ing methods tested: fixed indices masking and randomly

masking. Besides, masking only in joint level and masking

only in frame level are also tested.

tonMAE decoder and find that the default setting with 256

dimension works better (86.6% accuracy) than the larger

size (86.0% accuracy) and the small size (85.2% accuracy).

We also observe that with the increasing size of the embed-

ding dimension, the number of model parameters increases

as well, when we set the dimension as 512, the parameters

are 11 times larger than the parameters with dimension 128,

which costs more time for training. So we choose 256 as

the default embedding dimension for the following ablation

studies.

embedding dimension NTU-60 X-Sub parameters(M)

128 85.2 3

256 86.6 11

512 86.0 33

Table 2: Ablation study on

embedding dimension.

decoder depth NTU 60 X-Sub

11 86.5

9 86.6

7 86.2

5 85.7

Table 3: Ablation study on

decoder depth.

Decoder depth. Decoder depth represents the number

of the STTFormer blocks. According to the last ablation

experiment, we set the embedding dimension (the width of

the decoder) as the default size of 256, and vary the de-

coder depth (11, 9, 7, and 5 blocks). As the results shown

in Table 3, SkeletonMAE achieves the best result (86.6%

accuracy) when the decoder depth is 9. The deep depth (11

blocks with 86.5% accuracy) and shallow depth (7 blocks

with 86.2% accuracy and 5 blocks with 85.7% accuracy)

perform worse. According to the results from the embed-

ding dimension and decoder depth experiments, we finalize

our default decoder configurations for the following exper-

iments (256 embedding dimension and 9 blocks). The en-

coder and decoder settings are shown in Supplementary A.

Pre-training schedule. Normally, a longer pre-training

schedule will give an improvement, thus in this ablation

study, we increase the pre-training epoch from 50 epoch to

200 epoch, and test the best fine-tuned results at every 50

epoch. As it shown in Fig. 4, the best accuracy is 86.6%,

so we select 200 epoch as the default pre-training epoch

for the following experiments. It is worth noting that there

is an impressive improvement (5.0%) between 50 epoch to

100 epoch, but a slight improvement (0.2%) between 150

epoch to 200 epoch, which means it is not cost-effective to

keep increasing the pre-training epoch.

Figure 4: Ablation study on pre-training schedule.

4.4. Comparison with state-of-the-art

Self-supervised training. Notably, as we can see from

Table 4, our SkeletonMAE outperforms the two latest self-

supervised skeleton action recognition methods: CrosSCLR

[8] and AimClR [9]. For a fair comparison, we replace their

backbone networks (both of them use ST-GCN as the back-

bone) with STTFormer under the same settings. The re-

sults show that on NTU-60 dataset, our SkeletonMAE leads

CrosSCLR 2.0% and AimCLR 2.7% on X-Sub, and also

leads CrosSCLR 2.4% and AimCLR 2.5% under X-View

protocol. As for the results on NTU-120 dataset, Skele-

tonMAE outperforms CrosSCLR by 1.8% and 1.2% on X-

Sub and X-Set and also outperforms AimCLR by 2.2% and

1.9% on X-Sub and X-Set respectively. The results indi-

cate that our SkeletonMAE not only achieves outperform-

ing results on the small-size dataset but also on the large-

size dataset.

NTU-60 NTU-120

method backbone X-Sub X-View X-Sub X-Set

CrosSCLR[8] ST-GCN 82.2 88.9 73.6 75.3

AimCLR[9] ST-GCN 83.0 89.2 76.4 76.7

CrosSCLR[8] STTFormer 84.6 90.5 75.0 77.9

AimCLR[9] STTFormer 83.9 90.4 74.6 77.2

SkeletonMAE STTFormer 86.6 92.9 76.8 79.1

Table 4: Fine-tuned results on NTU-60 and NTU-120

datasets.

Fewer labeled data training. In order to evaluate the

ability of spatial-temporal feature learning in the fewer-

data situation, we fine-tune our pre-trained SkeletonMAE

model with only 5% and 10% labeled data on both NTU-60

and NTU-120 datasets. According to Table 5, our Skele-

tonMAE achieves 64.4% and 68.8% on NTU-60 X-Sub

and X-View with only 5% fine-tuning data and surpasses

CrossSCLR and AimCLR. Moreover, our SkeletonMAE



also performs better than CrossSCLR and AimCLR with

10% labeled data (73.0% and 76.9% on NTU-60 X-Sub

and X-View respectively). Meanwhile, our SkeletonMAE

achieves outperformed results on NTU-120 data with 5%

(50.4% on X-Sub and 52.0% on X-Set) and 10% (61.8%

on X-Sub and 62.5% on X-Set) labeled data, which demon-

strates a better capability of generalizability learning of our

approach under the extreme fine-tuning situation.

method backbone label fraction
NTU-60 NTU-120

X-Sub X-View X-Sub X-Set

CrosSCLR[8] STTFormer 5% 63.5 66.9 50.2 50.4

AimCLR[9] STTFormer 5% 63.9 67.5 49.0 51.8

SkeletonMAE STTFormer 5% 64.4 68.8 50.4 52.0

CrosSCLR[8] STTFormer 10% 71.0 75.1 58.5 60.6

AimCLR[9] STTFormer 10% 70.2 76.2 58.6 60.5

SkeletonMAE STTFormer 10% 73.0 76.9 61.8 62.5

Table 5: Fine-tuned results with fewer labeled data on NTU-

60 and NTU-120 datasets.

4.5. Visualization

We provide several visualization results of the recon-

structed action sequences, due to the page limitation, the

analysis and visualization are shown in Supplementary C.

5. CONCLUSION

We conduct a novel skeleton-based masked autoencoder

named SkeletonMAE for self-supervised skeleton action

recognition. In order to get a better skeleton representation

learning, we apply a novel spatial-temporal masking strat-

egy in pre-training for skeleton reconstruction. The roles of

different frame-ratio and joint-ratio are also discussed and

implemented. With comprehensive experiments on NTU-

60 and NTU-120 datasets, we show outperformed results of

SkeletonMAE for skeleton action recognition.
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