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ABSTRACT

Skeleton-based motion capture and visualization is an important
computer vision task, especially in the virtual reality (VR) envi-
ronment. It has grown increasingly popular due to the ease of
gathering skeleton data and the high demand of virtual socializa-
tion. The captured skeleton data seems anonymous but can still
be used to extract personal identifiable information (PII). This can
lead to an unintended privacy leakage inside a VR meta-verse. We
propose a novel linkage attack on skeleton-based motion visual-
ization. It detects if a target and a reference skeleton are the same
individual. The proposed model, called Linkage Attack Neural Net-
work (LAN), is based on the principles of a Siamese Network. It
incorporates deep neural networks to embed the relevant PII then
uses a classifier to match the reference and target skeletons. We
also employ classical and deep motion retargeting (MR) to cast
the target skeleton onto a dummy skeleton such that the motion
sequence is anonymized for privacy protection. Our evaluation
shows that the effectiveness of LAN in the linkage attack and the
effectiveness of MR in anonymization. The source code is available
at https://github.com/Thomasc33/Linkage- Attack
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1 INTRODUCTION

Visualizing human motion in virtual reality (VR) combines motion
capture and virtual reality to create a realistic simulation of a per-
son’s movements. This allows for detailed analysis of movements,
identification of areas for improvement, and development of train-
ing programs. It has numerous applications in fields such as sports,
physical therapy, and entertainment [10, 18, 25]. Human motion
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visualization may reveal sensitive data such as body measurements,
movement patterns, and potentially even biometric data [17]. It is
important to protect the personal data and identity of individuals
who are interacting in virtual reality meta-verse.

Motion capture technologies like Kinect and Perception Neuron
output accurate skeleton data for visualization in the VR environ-
ment. Such skeleton-based motion visualization contains limited
personal information and seem “anonymized". However, several
studies prove that personal identification from skeleton data has
good performance because of the recent development in deep neu-
ral networks. [21] combines gait recognition and neural networks
to identify individuals using the skeleton information from Kinect.
[26] uses a multi-task Recurrent Neural Networks (RNN) to si-
multaneously predict person ID and action class. [16] uses Graph
Convolutional Networks (GCN) based models to identify individ-
ual’s gender and identity. The limitations of these identification
is that they use ID for supervised learning, where the attacking
model tries to re-identify individuals by predicting ID number. It
requires the adversarial attacker has access to a large amount of
skeleton data from the same person. It also does not work well for
individuals who are not included in the adversary’s training.

A linkage attack, structured like a Siamese Neural Network [5],
allows adversaries to identify sensitive or private information about
an individual by linking together anonymized information and pub-
licly available information. Siamese Networks has been used for
facial recognition [22, 28], signature verification [4, 7, 29], and ob-
ject tracking [3, 8, 11, 12] among other tasks. In terms of motion
visualization, the target skeleton data is visualized in VR and acces-
sible to the adversary. The adversary can easily extract reference
skeleton data from public videos. Then through linkage attacks, the
adversary can identify the individuals by matching the target skele-
ton and the reference skeleton. Unlike the supervised personal ID
classification, the linkage attack model applies to any individuals,
even the ones it has not seen before.

In this work, we propose a novel framework of Linkage Attack
Neural Networks, called LAN, to attack on skeleton-based motion
visualization. LAN is inspired by recent development of using deep
learning for action recognition on the spatio-temporal skeleton
sequences with various network structures, including Recurrent
Neural Networks (RNN) [9, 19, 20, 23, 31, 34], Convolutional Neural
Networks (CNN) [13, 15, 27, 32], and Graph Convolutional Net-
works (GCN) [20, 24, 30]. Our proposed LAN model includes two
Semantic-Guided Encoders (SGE) and and a matching classifier.
The SGE obtain embeddings from the target and reference skele-
tons separately. SGE consists of a GCN-based joint-level module
and a CNN-based frame-level module. The final embedding from
SGE encodes personal identifiable information (PII) from both the
joint-level and the frame-level. The matching classifier takes the em-
beddings of the target and reference skeleton motions and predicts
whether or not they are from the same individual.
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In addition to the linkage attack model, we propose to use mo-
tion retargeting (MR) for privacy protection. Motion retargeting
methods transfer the motion from one character to another while
maintaining the overall timing and movement patterns. We employ
classical and deep motion retargeting methods to project the private
target skeleton onto a normalized dummy character to mask the
personal identity. Classical motion retargeting, utilizing inverse
and forward kinematics, aligns the joints of the dummy character
with those of the target character and subsequently maps the mo-
tion by casting joint rotations [6]. Deep motion retargeting trains
a deep neural network to decompose temporal motion sequences
into skeleton-agnostic dynamic motion and static skeleton [2].

To evaluate the effectiveness of our proposed linkage attack
model, we experiment on a large widely-used skeleton dataset
NTU120 [14]. The experiment results show that LAN is effective in
detecting PII leakage in the skeleton data. It generalizes well to un-
seen characters and action classes. Even if the existing anonymiza-
tion methods, including motion retargeting, defends the linkage
attack, they suffer a big loss in utility.

We summarize our contributions as follows: (1) To the best of our
knowledge, this is the first work to perform linkage attacks on the
skeleton data. (2) We developed a deep linkage attack model, LAN,
which uses semantic guided encoders to encode PII from skeleton
sequences and then conducts comparison. (3) We also show that
motion retargeting works as a general privacy protection method.

2 METHODOLOGY

2.1 Problem Statement

A 3D skeleton data s € RVXM*3 captures the human motion with
3D coordinates s = (x7%, 47, z")M*N of M joins over N frames.
The skeleton data is visualized in VR so the motion action informa-
tion can be recognized. The skeleton visualization is anonymous
in VR or at least reveals limited PII. The adversary can use public
skeleton data to train a linkage attack model. The goal of the link-
age attack model is to determine whether two skeleton sequences
represent the same person when it is given an anonymous target
skeleton sT and a reference skeleton sg with known identity.

2.2 Linkage Attack Neural Networks

We propose a Linkage Attack Neural Networks, called LAN, for link-
age attacks on skeleton-based motion visualizations. Figure 1 shows
the overall end-to-end framework. It consists of two Semantic-
Guided Encoders E, Eg and a matching classifier C. Specifically,
SGE Et and ER takes in the target skeleton st and the reference
skeleton sg, respectively, to extract low-dimensional embeddings
er, eg, which encodes personal identifiable information from both
the static skeleton joint structure and the dynamic dependency. The
classifier C takes the embeddings e, eg and makes the prediction
y on whether the target and reference belong to the same person.

Semantic-Guided Encoder (SGE). The Semantic-Guided En-
coder is inspired by a state-of-the-art action recognition model
known as the Semantic Guided Neural Network (SGN) [33]. SGE
explicitly introduce the high level semantics, joint type and frame
index, to improve the representation capability of learned features.
SGE first represents the skeleton sequence s with a dynamics rep-
resentation (DR). Then the joint-level module (JM) exploit PII from
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the correlations of joints in the same frame, while the frame-level
module (FM) exploits PII from the correlations across frames.

Dynamics Representation (DR). For a given joint s})!, we define
its dynamics by the position p* = (x, 47, z/")N € R? in the 3D
coordinate system, and the velocity v}’ = p;;' — p;" ;. Both pp
and v go through two fully connected (FC) layers with ReLU acti-
vation functions and end up as high-dimensional representations
P, vi. The final dynamics representation fuses them together by
summation as r’? = p™ + v/ € R%, where d is the dimension of
the joint representation.

Joint-level Module (JM). The Joint-level Module (JM) adopts
GCNs to explore the correlations for the structural skeleton data.
After DR, we get s = (r™)M*N_ The joint type m is converted to
a representation with a dimension of di, and then concatenated
with r};'. The semantic representations for joint types are shared
for both ET and Eg. Thus, the joint representation of joint type
m at frame n with both the dynamics and semantics of joint type
becomes I} € R241_ All the joints at frame n is represented by
R, € RMx2di The edge weight from the joint i to joint j in the
same frame n is modeled by their affinity in the embedded space
as an(i, j) = G(i'il)Tqﬁ(ffl), where 6 and ¢ denote two transforma-
tion functions, each implemented by an FC layer. The adjacency
matrix Ay, is obtained by computing the affinities of all the joint
pairs at frame n and then normalization with Softmax. After the
residual graph convolution layer, the final output of JM at frame n is
R, = ApnRyW1 + R, W; € R% where Wi and W are transformation
matrices. The weights are shared for different temporal frames.

Frame-level Module (FM). The Frame-level Module (FM) adopts
CNN s to explore the correlations across frames. After JM, we get
s = (r"™MXN The frame index n is converted to a representation
with a dimension of dp, and then fused by summation with r};’. The
semantic representations for frame indices are shared for both Et
and ER. Thus, the joint representation of joint type m at frame n
with both the learned feature and semantics of frame index become
/" € R%. A Spatial MaxPooling (SMP) layer is applied to aggregate
the information across the joints to a dimension of N X 1 X dy. A
temporal CNN layer is applied to model the dependencies of frames.
Then another CNN layer maps it to a high dimensional space of d3
with a kernel size of 1. In the end, a Temporal MaxPooling (TMP)
layer is applied to aggregate the information of all frames. The final
output of FM at sequence level is e € R% It encodes PII from the
correlations of joints and the dependencies of frames.

Matching Classification. The matching classifier is a neural
network to compare the extracted PII in the embeddings et and eg.
If the PII belongs to the same person, it predicts matching y = 0;
otherwise, y = 1. The classifier C consists of a 1D convolution layer,
two batch normalization layers, and three fully connected layers.
The last FC layer uses Sigmoid activation function for classification.

Model Training. To train the LAN model, we construct paired
training data (sT, sg, y) IS| through positive and negative sampling.
Positive sampling selects a target skeleton sequence st of an indi-
vidual, then randomly selects another skeleton sequence from the
same person as the reference skeleton sg. The pair is assigned a
matching label y = 1. Negative sampling selects a target skeleton
sequence st of an individual, then randomly selects a skeleton se-
quence from any other person as the reference skeleton sg. The pair
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Figure 1: The framework of LAN. It consists of two Semantic-Guided Encoders and a Matching Classifier.

is assigned a matching label y = 0. We maintain balanced sampling
rates to maximize the classifier performance of the classifier.

The Semantic Guided Encoders (SGEs) are pre-trained for iden-
tity classification. The SGE alone is followed by a fully connected
layer with Softmax to predict the personal ID. The learned em-
beddings from the pre-trained SGEs can already capture the PII
correlations of joints within and across frames. During the LAN
training, the two SGEs ET, ER are guided to extract PII related cor-
relations for the purpose of linkage attack. The output embeddings
er and eg are then concatenated and passed to the classifier. The
loss function of LAN is a binary cross entropy loss CE (y, f(sT, SR)),

where f(st,sr) = C(E7(sT), ER(SR))-

2.3 Anonymization through Motion Retargeting

To defend against a linkage attack, visualizing the raw skeleton
data without personal ID is not enough. To truly anonymize the
skeleton, the indirect information in the skeleton motion sequence
related to PII should be removed. Previous study [16] creates an
adversarial training-based anonymization framework for skeleton
action recognition. It modifies the skeleton data to confuse a per-
sonal ID classifier and a gender classifier while maintaining the
performance of an action recognition model. The limitation of such
adversarial training-based defense includes: (1) personal ID classifi-
cation only works on identities seen by the model, but linkage attack
works on skeletons of unseen identities and unseen action class.
(2) Adversarial training is confined to the seen actions, individuals,
and attackers. (3) The anonymizer only preserves the performance
of the included action recognition model. Instead of adversarial
training, we propose to use motion retargeting for anonymization.
Motion retargeting is not restricted to specific characters, actions,
or models that have been previously encountered. It can be easily
generalized to any skeleton data, making it a versatile and comple-
mentary defense against linkage attacks.

To use motion retargeting for skeleton anonymization, we cast
all the raw skeleton data to a “dummy" character. Then we only use
the transformed new skeleton for motion visualization in VR. The
spatial structure of the skeleton is transformed, which effectively
mitigates the indirect PII related to unique spatial attributes. At the
same time, the essence of the motion pattern remains largely intact,
ensuring that the anonymized data is still valuable for downstream
applications. We employ both classical and deep motion retargeting
in this work. Classical MR approach is grounded in the principle

of Inverse and Forward Kinematics [6, Chapter 4-5], which allows
for the calculation of each joint’s XYZ position, given a new joint
length and XYZ orientation. By preserving the joint rotations it
retains a majority of the temporal data in the skeleton’s movement
while casting the motion sequence from one character to a new
character. The benefits of classic approach includes the lack of
formal training required and a relatively lower computational cost
during evaluation. Recently, deep learning based motion retargeting
is developed [1, 2]. It trains a deep neural network to extract a high-
level latent motion representation, which is invariant to the skeleton
geometry. It decompose temporal motion sequences into explicit
latent representations of dynamic motion and static skeleton. Then
it re-combines the motion with novel skeletons, and decodes a
retargeted temporal sequence. Due to limited space, please check
the references for implementation details of the MR approaches.

3 EXPERIMENTS

3.1 Experiment Setup

Dataset We use the NTU RGB+D 60+120 dataset [14], which is a
large-scale dataset of human motions captured with the Microsoft
Kinect v2 sensor. The dataset was created in two parts, NTU60 (40
actors and 60 actions) and NTU120 (66 new actors and 60 new ac-
tions). The skeleton contains position and rotation information for
25 joints. Only the position information is used for our experiments.

Linkage Attack. Implementation details. To train the Linkage
Attack Neural Networks (LAN), we utilize the entire NTU60 dataset,
which has 40 actors. For testing, we employ the 66 unseen actors
from the NTU120 dataset. We use a default sampling size of 400
per target actor for both the positive sampling (featuring the same
actor) and negative sampling (featuring different actors), yielding
32,000 training samples and 52,800 testing samples.

Baselines. In Table 1, we compare the performance of the pro-
posed LAN model to two baselines. (1) A frame-wise random forest
(RF) is trained on 1.2 million samples and tested on 2.07 million sam-
ples. Through hyperparameter tuning, we select n_estimator = 100
and max_depth = 10. (2) A multi-layer perceptron model (MLP) is
trained on 400,000 samples and tested it on 690,000 samples. The
MLP model had 4 layers with sizes of [1000, 100, 100, 1]. The input
is a flattened sequence of 50 frames.

Anonymization. Implementation details. Classical motion retar-
geting (CMR) does not require training. For the dummy skeleton,
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Table 1: Linkage attack performance comparison

Attack Model | Precision | Recall | F-1 score
LAN 0.6830 0.8138 0.7427
MLP 0.7059 0.6852 0.6954

RF 0.7346 0.7708 0.6576

we use an average skeleton based on all the actors in the NTU60+120
dataset, which averages on the Euclidean distances along the joint
paths. The motion from the original skeleton identity is retargeted
to the average dummy skeleton while preserving the overall timing
and movement. Deep motion retargeting (DMR) is based on [2]. By
encoding static and dynamic data, swapping the static data, then
decoding we achieve a retargeted skeleton. We use a random actor
as the dummy skeleton to cast all of our sequence data to.

Baselines. We compare the MR anonymizer with the UNet and
ResNet anonymizers from [16]. Both are trained on the NTU60
dataset. Consequently, the additional NTU120 data remains unseen
to the anonymizer. This allows us to evaluate the performance of
the anonymizer on unseen data in terms of actors and actions. This
evaluation also aligns with the split of the linkage attack models.

Utility evaluation. Additionally, we compare the proposed MR
algorithm to the UNet and ResNet models by evaluating its utility
with action recognition. We use the SGN model [33] for action
recognition due to its state-of-the-art performance. An effective
anonymization method should strike a balance between privacy
protection and maintaining the utility of the data. This balance is
crucial for real-world applications, as overly aggressive anonymiza-
tion may render the data unusable for its intended purpose.

3.2 Experimental Results

Linkage Attack. Comparison against baselines. As shown in Table
1, the proposed LAN detects a significant leakage of private infor-
mation, with an F-1 score of 0.7427. The proposed LAN produce
an F-1 score that is 4.73% higher than MLP and 8.51% higher than
RF. This comparison demonstrates that the semantic guided em-
beddings by SGE effectively capture the PII encoded in the joints
correlations within and across frames. We also evaluated how the
end-to-end training of LAN improved the attack performance over
one with the SGE layers frozen after pre-training. The end-to-end
training yields an average of 2% higher F-1 score on testing.
Scalability analysis. We conduct the scalability analysis of LAN
on the availability of the training sample to the adversary. We vary
the sampling size per actor when constructing the training dataset
via positive and negative sampling. As seen in Figure 2, having more
training data available to the adversary yields a higher attacking
F-1 score. When the training data are limited, the LAN model still
has a relatively high F-1 score. For example, when the sampling
size reduce to 100 (25% of the default setting), LAN still achieves
0.7136 F-1 score. But it only takes 20% run time than the default.
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Figure 2: Scalability analysis on sampling size per actor
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Table 2: Linkage attack on the anonymized data

Data for Visualization | Precision | Recall | F-1 score
Raw data 0.6830 0.8138 0.7427
UNet 0.5 1.0 0.6667
ResNet 0.5 1.0 0.6667
CMR 0.5004 0.9963 0.6662
DMR 0.5057 0.8977 0.6469

Anonymization. Defense against linkage attacks. We use anony-
mization on skeleton data to defend against the linkage attacks.
We compare the performance of four different anonymizer models:
UNet and ResNet from [16], CMR and DMR. To defend a linkage
attack, a perfect anonymizer should trick the attack model into
predicting all skeletons are the same, i.e., a Recall score of 1.0.

Table 2 shows the results of the linkage attack as well as the
performance of the anonymizer models. The base linkage attack
achieves an impressively high F-1 score at 74.27%. All anonymizer
models tested fool the LAN model into believing most actors were
the same, i.e., the anonymizers are great at hiding PII. This means
that the LAN model focuses more heavily on spatial rather than
temporal information. This aligns with human perception, as people
tend to recognize others based on appearance rather than move-
ment.

Action recognition utility. Upon testing the utility, we find the
raw data preserves all the action class information well. The SGN
action recognition model on the raw data achieves an accuracy of
94.25% on the NTU60+120 dataset. However, the anonymized data
preserves little utility about action recognition. The highest utility
for the anonymizer is DMR with an action recognition accuracy
of 4.55%, followed by CMR with an action recognition accuracy of
3.2%. The UNet and ResNet anonymizers both achieve an accuracy
of only 0.84%, which is about the same as random choices (1/120).
The high action recognition utility presented in [16] is only because
the anonymizer’s utility is only preserved when evaluated with
the pre-trained utility adversary. The DMR had the highest utility
but the lowest privacy performance indicating the necessity of
a privacy/utility trade off. It suggests that further research and
development are necessary to improve the utility performance of
anonymizers without compromising privacy protection.

4 CONCLUSION

In this work we presented a novel linkage attack method, called
Linkage Attack Neural Network (LAN), that detects if a target and
a reference skeleton are the same individual. We base the model on
the structure of Siamese Networks and utilize the semantic guided
encoders to create a low dimensional PII encoding. Our experiment
reveals that there is a privacy leakage that the LAN can detect.
We also present two MR based defense models and compare their
results to established anonymizer frameworks. In future works, we
will develop a deep motion retargeting framework purpose built to
mitigate PII leakage and anonymize the skeleton while preserving
its action recognition utility.

ACKNOWLEDGEMENTS

This work was supported in part by UNC Charlotte startup fund
and NSF grant 1840080.



Linkage Attack on Skeleton-based Motion Visualization

REFERENCES

(1]

(2]

[3

(4]

[10

[11]

[12]

=
&

[14]

[15

[16]

[17

(18]

[19

Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-
Or, and Baoquan Chen. 2020. Skeleton-aware networks for deep motion retarget-
ing. ACM Trans. Graph. 39, 4 (2020), 62.

Kfir Aberman, Rundi Wu, Dani Lischinski, Baoquan Chen, and Daniel Cohen-Or.
2019. Learning character-agnostic motion for motion retargeting in 2D. ACM
Trans. Graph. 38, 4 (2019), 75:1-75:14.

Luca Bertinetto, Jack Valmadre, Jodo F. Henriques, Andrea Vedaldi, and Philip
H. S. Torr. 2016. Fully-Convolutional Siamese Networks for Object Tracking. In
Computer Vision - ECCV 2016 Workshops - Amsterdam, The Netherlands, October
8-10 and 15-16, 2016, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 9914), Gang Hua and Hervé Jégou (Eds.). 850-865.

Jane Bromley, James W. Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff
Moore, Eduard Sackinger, and Roopak Shah. 1993. Signature Verification Using
A "Siamese" Time Delay Neural Network. Int. J. Pattern Recognit. Artif. Intell. 7, 4
(1993), 669-688.

Davide Chicco. 2021. Siamese Neural Networks: An Overview. In Artificial
Neural Networks - Third Edition, Hugh M. Cartwright (Ed.). Methods in Molecular
Biology, Vol. 2190. Springer, 73-94.

Carl D. Crane, III and Joseph Duffy. 1998. Kinematic Analysis of Robot Manipula-
tors. Cambridge University Press. https://doi.org/10.1017/CB09780511530159
Sounak Dey, Anjan Dutta, Juan Ignacio Toledo, Suman K. Ghosh, Josep Llados,
and Umapada Pal. 2017. SigNet: Convolutional Siamese Network for Writer
Independent Offline Signature Verification. CoRR abs/1707.02131 (2017).
Xingping Dong and Jianbing Shen. 2018. Triplet Loss in Siamese Network for
Object Tracking. In Proceedings of the European Conference on Computer Vision
(ECCV).

Yong Du, Wei Wang, and Liang Wang. 2015. Hierarchical recurrent neural
network for skeleton based action recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE
Computer Society, 1110-1118.

Sean Ryan Fanello, Ilaria Gori, Giorgio Metta, and Francesca Odone. 2013. Keep
it simple and sparse: real-time action recognition. J. Mach. Learn. Res. 14, 1 (2013),
2617-2640.

Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and Song Wang. 2017.
Learning Dynamic Siamese Network for Visual Object Tracking. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV).

Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. 2018. A Twofold Siamese
Network for Real-Time Object Tracking. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018. Computer Vision Foundation / IEEE Computer Society, 4834-4843.
Qiuhong Ke, Mohammed Bennamoun, Senjian An, Ferdous Ahmed Sohel, and
Farid Boussaid. 2017. A New Representation of Skeleton Sequences for 3D Action
Recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society, 4570~
4579.

Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu Duan, and Alex C.
Kot. 2020. NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity
Understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42, 10 (2020), 2684-2701.
Mengyuan Liu, Hong Liu, and Chen Chen. 2017. Enhanced skeleton visualization
for view invariant human action recognition. Pattern Recognit. 68 (2017), 346-362.
Saemi Moon, Myeonghyeon Kim, Zhenyue Qin, Yang Liu, and Dongwoo Kim.
2023. Anonymization for Skeleton Action Recognition. AAAI Press. https:
//doi.org/10.1609/aaai.v37i12.26754

Ilesanmi Olade, Charles Fleming, and Hai-Ning Liang. 2020. BioMove: Biometric
User Identification from Human Kinesiological Movements for Virtual Reality
Systems. Sensors 20, 10 (2020), 2944.

Alessia Saggese, Nicola Strisciuglio, Mario Vento, and Nicolai Petkov. 2019. Learn-
ing skeleton representations for human action recognition. Pattern Recognit. Lett.
118 (2019), 23-31.

Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. 2016. NTU RGB+D:
A Large Scale Dataset for 3D Human Activity Analysis. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 1010-1019.

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Chenyang Si, Ya Jing, Wei Wang, Liang Wang, and Tieniu Tan. 2018. Skeleton-
Based Action Recognition with Spatial Reasoning and Temporal Stack Learning.
In Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, Sep-
tember 8-14, 2018, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11205),
Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.).
Springer, 106-121.

Aniruddha Sinha, Kingshuk Chakravarty, and Brojeshwar Bhowmick. 2013. Per-
son identification using skeleton information from kinect.

Cunli Song and Shouyong Ji. 2022. Face Recognition Method Based on Siamese
Networks Under Non-Restricted Conditions. IEEE Access 10 (2022), 40432-40444.
https://doi.org/10.1109/ACCESS.2022.3167143

Sijie Song, Cuiling Lan, Junliang Xing, Wenjun Zeng, and Jiaying Liu. 2017. An
End-to-End Spatio-Temporal Attention Model for Human Action Recognition
from Skeleton Data. In Proceedings of the Thirty-First AAAI Conference on Artificial

Intelligence, February 4-9, 2017, San Francisco, California, USA, Satinder Singh and
Shaul Markovitch (Eds.). AAAI Press, 4263-4270.

Yansong Tang, Yi Tian, Jiwen Lu, Peiyang Li, and Jie Zhou. 2018. Deep Progressive
Reinforcement Learning for Skeleton-Based Action Recognition. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE Computer Society,
5323-5332.

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar
Paluri. 2018. A Closer Look at Spatiotemporal Convolutions for Action Recogni-
tion. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation /
IEEE Computer Society, 6450—-6459.

Hongsong Wang and Liang Wang. 2018. Learning content and style: Joint action
recognition and person identification from human skeletons. Pattern Recognit.
81 (2018), 23-35.

Junwu Weng, Mengyuan Liu, Xudong Jiang, and Junsong Yuan. 2018. Deformable
Pose Traversal Convolution for 3D Action and Gesture Recognition. In Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part VII (Lecture Notes in Computer Science, Vol. 11211), Vittorio
Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer,
142-157.

Haoran Wu, Zhiyong Xu, Jianlin Zhang, Wei Yan, and Xiao Ma. 2017. Face
recognition based on convolution siamese networks. In 2017 10th International
Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI). 1-5. https://doi.org/10.1109/CISP-BMEL2017.8302003

Wanghui Xiao and Yuting Ding. 2022. A Two-Stage Siamese Network Model for
Offline Handwritten Signature Verification. Symmetry 14, 6 (2022), 1216.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial Temporal Graph Convo-
lutional Networks for Skeleton-Based Action Recognition. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, Sheila A. Mcllraith and Kilian Q. Weinberger
(Eds.). AAAI Press, 7444-7452.

Pengfei Zhang, Cuiling Lan, Junliang Xing, Wenjun Zeng, Jianru Xue, and Nan-
ning Zheng. 2017. View Adaptive Recurrent Neural Networks for High Perfor-
mance Human Action Recognition from Skeleton Data. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE
Computer Society, 2136-2145.

Pengfei Zhang, Cuiling Lan, Junliang Xing, Wenjun Zeng, Jianru Xue, and Nan-
ning Zheng. 2019. View Adaptive Neural Networks for High Performance
Skeleton-Based Human Action Recognition. [EEE Trans. Pattern Anal. Mach.
Intell. 41, 8 (2019), 1963-1978.

Pengfei Zhang, Cuiling Lan, Wenjun Zeng, Junliang Xing, Jianru Xue, and Nan-
ning Zheng. 2021. Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition. CoRR abs/2111.03993 (2021).
Wentao Zhu, Cuiling Lan, Junliang Xing, Wenjun Zeng, Yanghao Li, Li Shen,
and Xiaohui Xie. 2016. Co-Occurrence Feature Learning for Skeleton Based
Action Recognition Using Regularized Deep LSTM Networks. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA, Dale Schuurmans and Michael P. Wellman (Eds.). AAAI
Press, 3697-3704.



	Abstract
	1 Introduction
	2 Methodology
	2.1 Problem Statement
	2.2 Linkage Attack Neural Networks
	2.3 Anonymization through Motion Retargeting

	3 Experiments
	3.1 Experiment Setup
	3.2 Experimental Results

	4 Conclusion
	References

