ECHOVIT: VISION TRANSFORMERS USING FAST-AND-SLOW TIME EMBEDDINGS
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ABSTRACT

This paper details the preliminary efforts of applying the
deep learning transformer architecture to automatically track
annual layer stratigraphy in echogram images obtained from
mapping near-surface ice layers using airborne radars. Fol-
lowing the success of the transformer architecture in the nat-
ural language processing and computer vision communities,
we explore a variant termed Echogram Vision Transformer
(EchoViT) on the radar echogram layer tracking (RELT)
problem. The proposed approach divides the echogram im-
ages into patches using different schemes inspired by tok-
enization methods in natural language processing. We then
apply a soft-attention mechanism to model interdependen-
cies between the patches, capturing spatiotemporal strati-
graphic information. Experiments conducted on the CREED
dataset demonstrate the superiority of transformer-based ar-
chitectures over existing convolutional-based architectures.
Furthermore, the EchoViT fast-time and EchoViT slow-time
patchifying schemes achieved precise tracking of the layers
with MAE of 3.39 and 3.55, respectively, while the use of
cropped patches led to suboptimal results.

Index Terms— deep learning, transformer, soft-attention,
ViT, EchoViT

1. INTRODUCTION

Climate change is a critical global issue that has far-reaching
implications for the Earth’s environment and ecosystems. In-
creased mass loss from polar ice sheets in recent years due
to global warming has led to the quest for methods that can
accurately measure the annual accumulation rate to better pre-
dict future sea-level rise [1, 2]. The Snow Radar [3], an air-
borne radar developed at the Center of Remote Sensing and
Integrated Systems (CReSIS), has been flown on several mis-
sions over the Greenland Ice Sheet (GrIS) to map shallow
and near-surface snow. Echogram images[3, 4] created from
the data collected reveal the spatiotemporal accumulation pat-
terns that can be tracked to estimate annual snow accumu-
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lation [4]. However, manually tracking these layers in the
echogram images is both laborious and ineffective consider-
ing the volume of data that has been created. As such, there
is an urgent need to develop robust, scalable, automatic, and
accurate layer tracking algorithms.
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Fig. 1. Snow Radar echogram

Figure 1 is an echogram image created from Snow Radar
data collected around the summit of Greenland in 2012. The
echogram image represents the data matrix obtained by tak-
ing the logarithm of the power-detected, coherently and inco-
herently averaged received backscatter from the nadir eleva-
tion angle. The horizontal axis corresponds to the direction of
flight, referred to as the “slow-time” axis, capturing the spatial
variation of accumulation patterns in the columns. The verti-
cal axis represents the fast-time axis, which indicates the radar
propagation time to each detected snow layer. It is called
“fast” relative to the slower aircraft speed in the flight direc-
tion because the transmitted signal travels at a speed compa-
rable to the speed of light. This axis can be utilized to infer
the depth of each layer and the interannual accumulation rate.

To track these layers, numerous deep learning algorithms
[5, 6, 7, 8] have been developed because of their ability to
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Fig. 2. (a) Surface-flattened echogram (b.) Slow-time patch (c.) Fast-time patch (d.) Cropped patch (e.) Pixel-wise EchoViT

architecture

learn from data and create generalizable models. The remark-
able performance of transformer-based models in challenging
language understanding [9] and computer vision tasks [10]
has sparked interest in exploring this architecture for the radar
echogram layer tracking (RELT) problem. In this work, we
investigate a variant called the Echogram Vision Transformer
(EchoViT).

The outstanding performance of Vision Transformers
can be attributed to their soft-attention mechanism, which
captures intricate relationships between input sequential
data. Unlike conventional convolutional neural networks,
transformers can model global dependencies in input tokens
right from the initial network layer. However, the inherent
quadratic complexity with respect to the length of the input
sequence poses a challenge for images and is particularly
worse for high-resolution geospatial echogram images. To
overcome this challenge for optical images, various intelli-
gent “patchifying” schemes have been proposed, including
cropped patches, hierarchical pyramidal schemes, and local
windows.

However, unlike electro-optical images, echograms natu-
rally exhibit patchification of temporal accumulation patterns
along the fast-time axis and spatial patterns across the slow-
time axis. In this study, we explore the application of the
transformer’s soft-attention mechanism in combination with
different patchifying schemes to create a variant of the vision
transformer called Echogram Vision Transformer (EchoViT)
specifically for the radar echogram layer tracking problem.
Our hypothesis is that leveraging the effectiveness of trans-
formers and employing the appropriate patchifying scheme
will enhance global feature extraction from echogram images
and improve the accuracy of EchoViT in tracking accumula-

tion layers.

We conducted experiments on the test set of the CREED
dataset (details in Section 3) to evaluate our approach. These
experiments indicate that two of the patchifying schemes,
EchoViT fast-time (FT) and EchoViT slow-time (ST) patches,
outperform existing deep learning architectures such as
DeepLabv3, UNet, and FCN on the RELT problem.

2. METHODOLOGY

Given an enhanced echogram image, the goal of the deep
learning network is to identify and track snow layer pix-
els in the along-track axis. We approach this problem as a
binary segmentation task and propose the EchoViT architec-
ture, which incorporates a pairwise self-attention mechanism
to capture spatial correlations between echogram patches.
EchoViT is an encoder-only transformer architecture that fea-
tures a specifically designed binary segmentation output layer
tailored to the input’s patchifying scheme.

The input to the Encoder layer E is the patched echogram
pixels mixed with corresponding learnable positional embed-
ding Z,,s as shown in Figure 2(b)-2(d). Concretely, given
a grayscale input echogram G € RY+*Ne with G(m,n) =
{geR|0<g<1 m=][1.,NJ, n=1[1,....,N;|}
where V; is the number of fast-time bins and /N, is the num-
ber of slow-time bins. We explore three patching schemes:

1. Fast time patch Py, € RN:x1 to give a patch sequence
th = ﬁ{[Pftqutz’ "'7Pfth]} + ZpOSft

2. Slow time patch P,; € R = to give a patch sequence
Zst = ﬁ{[Pst15Pst2§ eed Pftm]} + Zposst



3. Cropped patch P., € R"*? to give a patch sequence
Zcr = ‘C{[PCT;[?PCT‘Q? ceey PCTN]} + Zposc,,v

where b is the cropped patch size, N = % L{.}
is the linear embedding operation and Z,, is the cor-
responding positional embedding.

The EchoViT’s encoder is similar to the classic ViT [10].
The input tokens are layer-normalized, then passed to the
multihead self-attention layer whose intermediate output is
added to a residual copy of the input before being passed
to another layer-normalizing module. A position-wise feed-
forward network is subsequently used to further enhance the
representation of each position in the sequence, to output
a comprehensive and contextualized encoding of the input
sequence.

The encoder’s output maintains the same dimension
as the input tokens, except for the cropped patch scheme.
The cropped patch output is reshaped to match the desired
RYt*Nz dimension for pixel-wise prediction. For simplicity,
all three schemes use a 1 x 1 filter convolutional layer with
sigmoid activation function as the output module.

3. DATASET AND EXPERIMENTAL SETUP

3.1. Dataset

The EchoViT models were trained on the Climate-change
Radar Enhanced Echogram Dataset (CREED) which consists
of 11307 enhanced echogram images for training and 1302
images for validation. The test set is divided into L1, L2, and
L3 regions based on echogram image quality degradation,
with L1 having the highest quality. For the final evaluation,
we tested the models on 128 echogram images in the L1
segment.

3.2. Experimental setup

Each echogram image has a fixed dimension /Ny = 1664 and
N, = 256. We avoided reshaping the echograms as this could
potentially distort the depth information in the vertical axis.
The training hyperparameters used include 7" = 10 atten-
tion heads and attention layers. We trained each model for
200 epochs using a batch size of 8. The training was per-
formed on a Core i9 machine with an RTX A5000 GPU

4. RESULT AND DISCUSSION

In this study, we investigated the performance of the trans-
former architecture to radar echogram images using different
patching schemes. To evaluate the model’s performance, the
sigmoid outputs were first thresholded to generate a binary
(layer or no-layer pixel) output. These binary outputs are sub-
sequently post-processed to uniquely identify and track each
accumulation layer.

(a) Echogram (b) Fast-Time activation

(c) Slow-Time activation (d) Cropped activation

Fig. 3. Visualization of the EchoViT final activation maps for
the three patching schemes



Models MAE
UNet 8.43
FCN 6.23
DeepLabv3 5.98
AttentionUNet 4.03
ResNet50 3.84
EchoViT ST Embed (ours) 3.55
EchoViT FT Embed (ours) | 3.39

Table 1. Mean Absolute Error (MAE) in terms of number of
pixels for each model on the L1 test set.

The mean absolute error of each layer in the 128 echograms
in the L1 test set was calculated by comparing each layer to
the corresponding manually annotated ground truth. No-
tably, when using the cropped patch, as depicted in Figure
3, the model exhibited poor performance and failed to ac-
curately identify the snow layers in a distinctive manner.
The cropped patching scheme, although trained with similar
hyper-parameters and model architecture, falls short when
compared to the other schemes. This is likely because the
rectangular cropping of the echograms distorts the natu-
rally occurring spatial and temporal patterns captured by the
echogram images.

5. CONCLUSION

The EchoViT (Echogram Vision Transformer) model takes its
inspiration from the classic ViT designed to investigate dif-
ferent “patchifying” schemes for remotely-sensed echogram
images. To generate the desired dense pixel-wise classi-
fication output, we designed a simple fully convolutional
prediction module to process the output of the encoder. Our
experiments reveal that fast-time and slow-time patching
schemes correctly model the input-output relationship of the
echograms and the internal layers by correctly tracking the
snow accumulation layers in the echograms.

More so, the EchoViT establishes a new state-of-the-art
performance of 3.3 overall mean absolute error (MAE) on the
L1 test segment of the CREED dataset which is equivalent
to a sterling submeter (~ 14cm) tracking error. This sur-
passes the previous benchmarks by top convolutional-based
models such as UNet and FCN. This demonstrates the viabil-
ity of Transformer architectures to solve the radar echogram
layer tracking (RELT) problem prompting the need to explore
transformer-based semi-supervised and unsupervised models
to take advantage of the ever-growing large repertoire of un-
labelled remotely-sensed data.
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