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The development and use of learning trajectories is a body of research that has made enormous
contributions to the field of mathematics education, offering insight into the teaching and
learning of topics at all levels. Simultaneously, the work of building learning trajectories can
benefit from explicitly adopting an anti-deficit stance, incorporating ways to center student
voices from an asset-based perspective. In this paper I propose two related constructs to support
this work: decentering and second-order models. In decentering, researchers work to set aside
their own knowledge to understand students’ reasoning as viable. This can support models of
student mathematics that position student thinking as rational, powerful, and productive. 1
provide one example of the work of decentering and discuss ways to build learning trajectories
that emphasize students’ strengths and competencies.

Learning trajectories research has played a prominent role in the field of mathematics
education, and it continues to exert influence on the teaching and learning of mathematics. In a
recent plenary address to PME-NA, Steffe (2017) remarked that the construction of learning
trajectories is “one of the most daunting but urgent problems facing mathematics education
today” (p. 39). The influence of this sphere of research is evident in funding priorities at the NSF
and the IES, in special journal issues (Duncan & Hmelo-Silver, 2009), in topics conferences
(e.g., the learning trajectories panel held at the VARGA 100 Conference in 2019), and in special
reports (Daro et al., 2011; Taguma & Barrera, 2019). For instance, the National Research
Committee (NRC) issued a special report in 2009 identifying a set of goals for young children
based on learning trajectories, which ultimately led to the use of learning trajectories as a
foundation for the Common Core standards in mathematics (Clements et al., 2019). We also see
the prominence of learning trajectories research for PME-NA as reflected in plenary paper topics
(e.g., Battista, 2010; Confrey, 2012; Sarama, 2018; Steffe, 2017).

Researchers have defined and theorized learning trajectories in a variety of ways. Simon
(1995) initially coined the term “hypothetical learning trajectory” to describe “the learning goal,
the learning activities, and the thinking and learning in which students might engage” (p. 133).
Clements and Sarama (2012) described a learning trajectory as a depiction of students’ thinking
and learning in a specific mathematics domain and a “related, conjectured route through a set of
instructional tasks designed to engender those mental processes or actions hypothesized to move
children though a developmental progression of levels of thinking” (p. 83), and Confrey and
Maloney (2010) described a learning trajectory as a progression of cognition that represents
ordered, expected tendencies developed through empirical research aimed at identifying the
likely steps students follow. There is variation in the degree to which researchers characterize
learning trajectories as being (a) connected to particular task sequences, (b) influenced by
specific teaching actions or other contextual factors, and (c) depictions of strategies, skills, or
performances versus concepts and operations; for a more expanded discussion of these
differences, see Battista, 2010, or Ellis et al., 2014. For my work, I have found Steffe’s (2012)
characterization to be particularly useful. He described a learning trajectory as a model of
students’ initial concepts and operations, an account of the observable changes in those concepts
and operations as a result of students’ interactive mathematical activity in the situations of
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learning, and an account of the mathematical interactions that were involved in the changes. I
consider task sequences to be a part of mathematical interactions, but the emphasis is on the
interactions themselves, including particular teaching moves, students’ activity and conversation
with one another, and students’ interactions with tools, artifacts, and representations.

As a body of research, learning trajectories have made enormous contributions to the field.
They have offered insight into major milestones of students’ conceptual development for a
variety of topics, including measurement (Battista, 2010; Clements & Sarama, 2009; Sarama et
al. 2011), composition of geometric figures (Clements et al., 2012), fractions (Maloney &
Confrey, 2010; Steffe, 2012b; Steffe & Olive, 2010; Wright, 2014), early algebra (Blanton et al.,
2015; Hackenberg & Lee, 2015), geometry (Fitri & Prahmana, 2020), function (Ellis et al., 2016;
Fonger et al., 2020), and probability (Rahmi et al., 2020; Wijaya & Doorman, 2021), among
others. Learning trajectories research informs not only standards development, but also
curriculum, pedagogical decision making, teacher noticing, and professional development
(Clements, 2007; Confrey et al., 2014; Hackenberg & Sevinc, 2022; Liss, 2019; Meyers et al.,
2015; Suh et al., 2021; Steffe, 2004). However, this body of research has also weathered
critiques. These critiques include concerns about an overfocus on tasks, cautions about the need
to better attend to variation in students’ progression, scrutiny of the basis for the construction of
learning trajectories, and calls to more explicitly address equity and inclusion.

An overfocus on tasks can occur when learning trajectories offer only task sequences paired
with learning goals, without attending to the teaching actions and other contextual factors that
are important for supporting students’ development. Relatedly, learning trajectories can be
construed as generalizable or transportable from one situation or context to the next, as if
students, teachers, classrooms, and cultures were interchangeable. It is important to recognize
that trajectories developed in one context may not always appropriately depict students’ learning
in a markedly different context. Additionally, not all students will progress in the same way
throughout any given trajectory. Learning is more individualized, context-dependent, and
idiosyncratic than what could ever be depicted in a neat, ladder-like sequence. Certainly, many
researchers who construct learning trajectories are aware of these constraints. For instance,
Clements and Sarama (2012) wisely reminded the reader that their task sequences are not
necessarily the only or even the best path for learning and teaching, but are instead merely
hypothesized to be “one fecund route” (p. 84). Nevertheless, learning trajectories have, at times,
been interpreted in overly broad or simplified ways.

A more central issue that [ would like to tackle in this paper is the models that constitute the
basis of learning trajectories. In particular, it is worth considering the affordances and constraints
of these models for developing and using learning trajectories to highlight students’
competencies. In order to do so, I now turn to a consideration of first-order and second-order
models, advocating for the use of second-order models to advance an asset-based perspective.

The Potential Pitfalls of Building Learning Trajectories from First-Order Models

Learning trajectories that are built on the foundation of the researcher’s understanding of the
discipline are based on what we call first-order models (Steffe & Olive, 2010). First-order
models, or first-order knowledge, are the models that one constructs “to order, comprehend, and
control his or her own experience” (ibid, p. xvi). There is robust evidence of reliance on
researchers’ first-order knowledge of mathematics in learning trajectories research. For instance,
Clements and Sarama (2012) described a hypothetical learning trajectory as one involving
conjectures about a possible learning route that aims at significant mathematical ideas, and a
specific means to support and organize learning along this route. Those mathematical ideas are

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

16



the researcher’s ideas: “The trajectory is conceived of through a thought experiment in which the
historical development of mathematics is used as a heuristic” (p. 82). To offer a few other
examples, Confrey and colleagues (2014) used the term learning trajectory to refer to “clusters
and sequences of standards and their related descriptors” (p. 720), Baroody et al. (2022) depicted
the goals of a learning trajectory to be based on “the structure of mathematics, societal needs,
and research on children’s thinking about and learning of mathematics” (p. 195), and Andrews-
Larson et al. (2017) described their hypothetical learning trajectory as content-specific
documentation of common milestones and learning environments supporting students’
progression across those milestones. Certainly, not all studies reporting on learning trajectory
development conceive of learning trajectories in this manner. For instance, Confrey (2006)
underscored the importance of the learner in guiding this work, emphasizing the centrality of
students’ voices and disciplinary perspectives, and others have published learning trajectories
that reflect this aim (e.g., Fonger et al., 2020; Steffe, 2012; Steffe & Olive, 2010). Nevertheless,
there remains a strong emphasis on learning trajectories that are based on researchers’ own
mathematics as starting points.

Building learning trajectories from first-order knowledge can offer important affordances.
Such trajectories reflect the researcher’s nuanced, in-depth understanding of the relevant content
and key learning goals, as well as research-based knowledge of how to support student learning.
At the same time, trajectories developed from first-order knowledge may also position students
in terms of how they measure up against researchers’ knowledge of the discipline. Moreover, this
framing runs the risk of depicting students in terms of falling short. Adiredja (2019)
characterized this stance as “epistemological violence”, particularly towards minoritized students
and students from marginalized communities, when the research we conduct positions students’
knowledge as inferior or problematic. Furthermore, such a stance centers the perspective of the
expert rather than that of the student. Certainly, many thoughtful scholars are careful to consider
these issues in both their construction and use of learning trajectories, emphasizing the potential
of learning trajectories to be asset-based models (e.g., Clements & Sarama, 2012; Hunt et al.,
2020; Meyers et al., 2015; Suh et al., 2021). There is nothing inherent in a learning trajectory that
requires it to be constructed as a deficit-based tool. Nevertheless, learning trajectories built from
first-order models may fail to identify, sufficiently explore, or acknowledge the competence and
brilliance of student thinking. In fact, as a field we run the risk of learning trajectories being used
to bolster deficit stances towards minoritized and marginalized students, particularly when the
trajectories over-privilege formal language, consistency in understanding, or straightforward and
direct change in understanding (Adiredja, 2019). Adiredja pointed out that it is not that these
mathematical goals are bad, but rather, an inflexible privileging of such goals can interact with
deficit master-narratives to devalue the mathematical sensemaking of students, particularly
students of color.

Learning trajectories built from first-order knowledge can also run the risk of encouraging
teachers and other stakeholders to use them in a manner that places students on a continuum,
with some positioned as more advanced and others positioned as deficient. Such an emphasis is
reminiscent of the studies focused on achievement gaps, which allow researchers to
“unconsciously normalize, the ‘low achievement’ of Black, Latina/Latino, First Nations, English
language learners, and working-class students without acknowledging racism in society or the
racialization of students in schools” (Gutiérrez, 2008, p. 359). Moreover, this treatment of
learning trajectories may miss important nuances, not only about student thinking and reasoning,
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but also about the ways in which students may shift from one understanding to another based on
complex, interrelated factors.

What, then, is the alternative? Researchers can instead psychologize students’ mathematics
by constructing second-order models, which are the hypothetical models observers construct of
their students’ knowledge in order to explain their observations of students’ states and activities
(Steffe & Olive, 2010). They are referenced to the researcher’s first-order mathematics, as well
as the researcher’s conceptions and interpretations of the language and actions of students. These
second-order models are sometimes referred to as the mathematics of students; students’ first-
order models (their own models of mathematics) are referred to as students’ mathematics (Steffe,
2017).

Building Learning Trajectories from Second-Order Models

In building learning trajectories that are elaborations of second-order knowledge, we concern
ourselves with identifying the mathematics of students and elaborating students’ mathematical
concepts and operations. I consider these learning trajectories to be coproduced by students and
researchers (Steffe, 2012). Although initial hypothetical learning trajectories may be informed by
a researcher’s first-order mathematical knowledge, in combination with their knowledge of
student thinking, these trajectories are nascent, ill-formed, and flexible. The learning trajectories
that are consequently built out of teaching actions with students are accounts of students’ initial
concepts and operations, an account of the observable changes in those concepts and operations
as a result of teaching and learning actions, and an account of the teaching and learning actions
that led to the changes.

Building learning trajectories as second-order models encourages, or perhaps even requires, a
different epistemology of mathematics, one that deviates from Western naive realism traditions.
Drawing on Piaget’s epistemological beliefs, von Glasersfeld (1982) wrote that “The cognitive
organism is first and foremost an organizer who interprets experience and, by interpretation,
shapes it into a structured world” (p. 612). This one sentence conveys a radical departure, as von
Glasersfeld put it, from traditional ideas of not only knowledge, but of reality itself. Knowledge
is not a more or less accurate representation of reality. We construct our conceptions of reality
through perception, not directly, and we cannot maintain a belief about knowledge being a
reflection of reality by simply acknowledging that our reflection may not always be very
accurate. This is not to say that von Glasersfeld denied reality; rather, he considered it to emerge
only through bumping up against constraints. From this perspective, it does not make sense to
judge knowledge based on its accuracy; in fact, this would be impossible, because it would
require comparing one’s knowledge to an independently existing reality and judging the
closeness of the match. How can any human do this without direct access to that reality? Instead,
knowledge is successful if it is viable, i.e., when it is not impeded by constraints.

Within this framing, there is no such thing as a mathematics that resides outside of human
experience. The very concept of the second-order model is based on an epistemology that
considers mathematics to be a product of the functioning of human intelligence. Students’
mathematics is the mathematics. Certainly, we can compare our second-order model of the
mathematics of a student to our first-order model of our own mathematics. In doing so, it is
productive to understand that there are two mathematics, and both are legitimate. This requires a
rejection of the Platonist knowledge traditions that frame mathematics as universal and objective.
It also requires one to position students’ ways of knowing and thinking as rational, rather than
inferior when compared to standard strategies, procedures, and conventions (Louie et al., 2021).
As L. Steffe explained, “students are ‘never wrong’ even though their thinking may not appear as
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viable with respect to certain situations or ways of thinking. Mistakes are always an observer’s
concept” (personal communication, October 5, 2022). Louie and colleagues argued that a failure
to position students’ reasoning as legitimate can discourage teachers from attending closely to
unconventional ways of thinking and seeking to understand them, much less valuing or inviting
them. I argue that this can also be true of researchers’ treatment of students’ ideas. In contrast, if
we understand that students’ mathematics is the mathematics, then we will be compelled to take
students’ reasoning and competencies as the starting point for building any learning trajectory.

One way to build second-order models is through the process of conceptual analysis, which
is a process guided by the question, “What mental operations must be carried out to see the
presented situation in the particular way one is seeing it?” (Steffe, 2017, p. 78). Thompson and
Saldanha (2000) described conceptual analysis as articulating the conceptual operations that,
“were people to have them, might result in them thinking the way they evidently do” (p. 315).
Engaging in conceptual analysis draws on a researcher’s ability to decenter, and can support the
development of the epistemic student. Below I discuss each of these constructs in turn.
Decentering

Piaget (1955) introduced the idea of decentering to characterize the actions of an observer
attempting to understand how an individual’s perspective differs from their own (Teuscher et al.,
2016). Piaget developed this idea to describe an aspect of a child’s development: when a child
learns to decenter, they begin to abandon egocentrism and develop the capacity to consider
another’s perspectives, thoughts, and feelings (Piaget & Inhelder, 1967). Steffe and Thompson
(2000) then extended Piaget’s construct to characterize a teacher’s stance towards a student,
particularly in terms of a teacher’s ability to adjust their actions in order to understand a student’s
thinking.

Arcavi and Isoda (2007) described decentering as:

the capacity to adopt the other’s perspective, to ‘wear her conceptual spectacles’ (by keeping
away as much as possible our own perspectives), to test in iterative cycles our understanding
of what we hear, and possibly to pursue it and apply it for a while. Such a decentering
involves a deep intellectual effort to be learned and exercised (p. 114).

Decentering is a stance that attends to both mathematical thinking and social interactions. It
entails interacting with students reflectively, in a conscious attempt to set aside one’s own
knowledge to understand a student’s reasoning as viable (Thompson, 2000). This reflective
stance towards interactions with students is crucial for creating viable second-order models, and
such efforts are hampered if a teacher — or a researcher — does not make concerted efforts to
differentiate the mathematics of students from one’s own mathematics. Steffe and Ulrich (2020),
in distinguishing between responsive / intuitive interaction and analytic interaction, described the
latter as a process of stepping out of analyzing students’ thinking in ongoing interaction. All of
the researcher’s attention is absorbed in trying to think like the students, and produce and
experience mathematical realities that are intersubjective with their own first-order models.

If researchers do not decenter, students’ thinking and reasoning may not be considered
worthwhile models of the environment in their own right, and instead may be positioned only in
relation to standard models (i.e., the researcher’s models) of mathematical knowledge. The
construction of learning trajectories that are not a consequence of decentering may then position
students as falling short, with insufficient attempt to understand or model students’ thinking as
viable, powerful, and potentially productive, even in times when it deviates from canonical
mathematics. In contrast, a decentering researcher “always assumes that a student has some
viable system of meanings that contribute to her or his actions” (Teuscher et al., 2016, p. 439).
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Teuscher and colleagues went on to point out that the ideas of correct versus incorrect become
largely irrelevant beyond informing one’s future actions. This is not to suggest that correctness is
unimportant. Rather, when engaged in the hard work of decentering, correctness is not a notion
that contributes utility to building second-order models. A student does not position their own
knowledge as incorrect, and decentering means seeing the world with the student’s mathematical
eyes.

The Epistemic Student

Hackenberg (2014) defined an epistemic student as an organization of schemes of action and
operation that undergo change over time. The epistemic student is a model, one that is composed
of the ways of operating common to all students at the same level of development “whose
cognitive structures derive from the most general mechanisms of co-ordination of actions” (Beth
& Piaget, 1966, p. 308). I see the epistemic student as a useful model of characteristic
mathematical activity that is developmental, generalized, and dynamic (Ellis, 2014). It is an
abstraction (Piaget, 1970), meant to explain some ways of operating that we suspect may be
common across students.

The epistemic student is a helpful construct because students who share initial concepts and
operations often respond in somewhat common ways to thoughtful instructional interactions.
This does not mean that every student will respond identically, but typically there are a
manageable number of ways of reasoning that bubble up repeatedly across participants and
contexts. The epistemic student can be a useful model for trying to walk the tightrope between
overgeneralization and over specificity. I acknowledge that it is not appropriate or even accurate
to claim that my second-order models and resulting learning trajectories, which are developed
from small numbers of students in specific contexts, would extend to all students in all contexts.
To do so would ignore the variation in students’ experiences, backgrounds, and positionalities, as
well as the variation in classrooms, schools, and cultures. Simultaneously, the work of building
learning trajectories necessarily entails a belief in the value of creating scientific (rather than
experiential) models with the potential of being useful across different students and contexts.
Learning Trajectories Built from Second-Order Models Emphasize Anti-Deficit Stances

The body of learning trajectories research has been critiqued for not adequately considering
equity or addressing student diversity (e.g., Zahner & Wynn, 2021). Some may even be used in
ways that can reinforce deficit perspectives. A deficit perspective is “a propensity to locate the
source of academic problems in deficiencies within students, their families, their communities, or
their membership in social categories (such as race and gender)” (Peck, 2021, p. 941). In
contrast, an anti-deficit perspective begins with the assumption that students are capable of
reasoning mathematically and that they bring productive resources for learning mathematics. It
acknowledges that learning is time-consuming, and that “imperfect articulations of mathematical
ideas and some inconsistencies in the student’s current conception are a natural part of the
process” (Adiredja, 2019, pp. 416-417). Furthermore, adopting an anti-deficit perspective means
locating the source of students’ academic challenges within the racist, sexist, and ableist
institutional structures that restrict, or even actively oppose, access to high-quality educational
opportunities. When considering student thinking, a researcher considers and identifies the assets
and competencies that students possess, rather than what students lack.

A goal of learning trajectory construction must be to position student thinking as rational,
powerful, and viable, and from that position, seek to understand why students reason the way
they do. It is our job, as researchers, to construct second-order models that reflect a value that
student thinking is sensible and intelligent. In constructing learning trajectories, we must begin
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with that stance, identify student concepts and operations so that we can meet students where
they are, and then consider productive teaching interactions that can support students’ shifts from
one way of thinking to the next. In doing so, we must also understand and acknowledge that
these shifts may be idiosyncratic, time-consuming, and messy, as is learning itself. By starting
from a model of the mathematics of students, we can then construct models for how teachers
might interact with students to bring forth productive changes in their concepts and operations.
The learning trajectories that my colleagues and I produce (e.g., Ellis et al., 2016; Fonger et
al., 2020) emphasize students’ strengths and competencies, even when student thinking differs
from canonical mathematics. We see an important outcome of our learning trajectory work to be
that of highlighting those strengths and competencies with stakeholders. The goal of our work is
to understand why students reason the way they do, and to show how students can and do think
in ways that are thoughtful, reasonable, and nuanced, even if, at first glance, one might only see
an incorrect answer or a puzzling strategy. Like many others (e.g., Clements & Sarama, 2012),
our learning trajectories provide multiple viable paths and do not claim to represent the only (or
even the best) route to learning. Centering the mathematics of students is explicit in our
theoretical framing and constitutes the starting point for creating and refining trajectories.

An Example of Building a Learning Trajectory from Second-Order Models

Our learning trajectories are depictions of concepts and mental operations, in concert with
teaching interactions and in relation to task sequences, set in specific teaching and learning
concepts. The concepts and mental operations are the mathematics in our trajectories. As an
example, my colleagues and I constructed a learning trajectory of students’ understanding of
exponential growth from a covariation perspective (Ellis et al., 2016). That trajectory in its
entirety is beyond the scope of this paper, but I will highlight here four of the operations we
identified: (1) Explicit coordination of change in y-values for 1-unit change in x-values, (2)
Coordination of change in y-values for multiple-unit changes in x-values: repeated multiplication
imagery, (3) Coordination of change in y-values for multiple-unit changes in x-values:
exponentiation imagery, and (4) Coordination of change in y-values for any unit change in x-
values, for any Ax. Mathematically, from our perspective, these are all the same operation. For an
exponential function y = ab”, it is possible to coordinate the change of any two y-values with any

two corresponding x-values according to the relation % = b*27*1 and the value of Ax is
1

immaterial. Conceptually, however, these are not the same operation. In our work with students,
my colleagues and I found that coordinating changes in x-values and corresponding y-values for
unit changes in x is different from coordinating for large changes in x. Additionally, one can
engage in coordination for large changes in x either by appealing to repeated multiplication
imagery, or by appealing to a different set of stretching or scaling images. Furthermore,
managing this type of coordination for cases when the change in x is less than 1 draws on a
different set of concepts, and students can engage in operations (1) — (3) long before they can do
operation (4).

What students can do and how they can reason is always rational from their perspective. Not
yet being able to engage in operation (4) is something that a researcher would describe as a
constraint for the student. But, from the student’s perspective, there does not exist a more
“advanced” way to coordinate exponential growth. Students are always reasoning with their
available conceptual operations. For teachers, then, it is advantageous to understand how
students may be operating, so that they do not impose ways of thinking on the students that run
counter to the students’ reasoning. Curricular treatments of exponential growth, however, to the
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extent that they might address a coordination approach at all, do not distinguish these forms of
reasoning, because they can all be handled with the same formula. In contrast, my teaching
interactions with students revealed that it is sensible for students to draw on different imagery
when constructing these operations, and that transitioning from one form of reasoning to another
can be effortful and may require specific instructional support. In short, such a transition is a
significant intellectual achievement. Without this knowledge, teachers and textbooks will not
distinguish them, and students may consequently experience challenges in making sense of
expressions such as 2(/'7; after all, when the meaning of exponents presented to students in
school is only that of repeated multiplication what does it mean to engage in such multiplication
1/7 times? Now that we are aware that these operations are mathematically different for students,
we can help improve the teaching and learning of exponential growth ideas.

As an example of the decentering work that supported our understanding of the mathematics
of students, consider a task in which students are provided with a table of height values at certain
times for a special plant called a Jactus, which grows exponentially (Figure 1).

This is a table for a Jactus that doubles every week. The entries are
approximate. How much taller will the plant grow in a quarter of a week?

Week Height

0 1h

0.25 ?2??

05 1.414214"
0.75 1.681793"
1 27

125 2.378414"
15 2.828427"

Figure 1: Table of Week and Height Values for a Doubling Jactus

If I were to solve this problem, I would take the ratio of any two consecutive height values in the
table that were a quarter of a week apart. That ratio is approximately 1.189, and so I can divide
the height at week 0.5 by 1.189 to find the missing height value. The question is written in an
unusual way, because it asks students about how the plant grows in a quarter of a week, but the
table has an empty spot for the height value at a specific time, 0.25 weeks, which is actually a
slightly different question. This was a “serendipitous mistake” (Tasova et al., 2021), because it
enabled us to identify a form of reasoning about which we had been unaware prior to students
encountering the task. Our initial intention was to support the idea that the ratio of height values
for any quarter-week gap will always be the same.

When working with 8"-grade participants who had never before had school instruction on
exponential growth, we initially expected that they would use a strategy like the one I described,
because they had already used that strategy with prior tables. For instance, when encountering
tables with uniform gaps of 1 week, 2 weeks, or 5 weeks, our students had divided height values
to determine the plant’s growth for the corresponding amount of time. But in this case, they did
not leverage this strategy. For instance, consider the work of one of our participants, Uditi (a
self-chosen pseudonym). In describing herself, Uditi discussed her experiences as an immigrant
to the midwestern United States from India. She shared that she enjoyed mathematics and
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science, which was why she had volunteered for our research study, and she preferred expressing
her ideas in small groups rather than with the whole class. When encountering the task in Figure
1, Uditi wrote the expression “1 x %37 She then proceeded to use a cumbersome guess and
check strategy to determine the missing value that would go in the blank to yield the plant’s
height at 0.5 weeks, which she knew had to be approximately 1.414. By doing this, Uditi
determined that the growth factor was 2, and then laughed ruefully as she saw that the task
description had already told her that the Jactus doubled each week. She then wrote the equation,
“Height = 1 « 2¥**”_and then substituted 0.25 for the exponent to determine the height at 0.25
weeks.

Uditi’s strategy was correct, and it was also creative. It revealed an understanding of many
important ideas, including the idea that she could write a correspondence relation of the form y =
1b* because the initial height at Week 0 was 1 inch. Her strategy, however, also surprised me and
my colleagues, because it was different from what she had done before, and it was also more
cumbersome and difficult than just dividing. Moreover, Uditi was not the only student who
approached the problem in this surprising way. Other students across two different teaching
experiments did as well, which suggested to us that there was an important conceptual issue with
that task that we had not anticipated. In combination with other students’ responses to similar
tasks, we began to realize that the value of Ax was critical. If one week is the period of time for
the plant to double its growth, then it became clear that asking students to determine what
happened within a week was a conceptually different task than asking students what happened
across a span of multiple weeks — even though, from our perspective as researchers, the two tasks
were mathematically identical.

Part of the job of creating second-order models is to engage with students reflectively,
attempting to decenter in order to understand why their behavior and reasoning is sensible. Uditi
and other students could already write expressions such as y = x%2°, therefore presumably using
decimal and fractional exponents to determine a fixed height value. What puzzled us was that
they could also divide two height values to determine an amount of growth for a given time span.
Why, then, did Uditi not do so with this task? Our goal was to now try to understand Uditi’s
reasoning that drove the unanticipated strategy. In doing so, we hypothesized that it was because
Uditi could attribute two meanings to an equation such as height = 23, but only one meaning to
an equation such as height = 2%, The expression 2* in the first equation meant two things to
Uditi: It could be a static height value, such as the plant’s height at 3 weeks, or it could be a
measure of growth, i.e., how many times larger the plant grows in height for a time span of 3
weeks. But the expression 2%, we hypothesized, could be the plant’s static height value at 0.25
weeks, but not how many times larger the plant would grow in a time span of 0.25 weeks. We
suspected two reasons for this, both related to students’ meanings for multiplication. The first is
that determining growth across multiple weeks entails generalizing the operation of
multiplication to an exponential context. This is fairly easy to do, as many students hold an
expectation that multiplication makes bigger (Greer, 1987). They can extend their meaning of
doubling by mentally repeating the operation multiple times across multiple weeks. In contrast,
0.25 weeks is less than a week, and there is no easy way to extend the operation of doubling to a
fraction of a week. Furthermore, Uditi and the other students we worked with had all received
school instruction that described exponential growth as repeated multiplication. The image of
repeated multiplication does not easily lend itself to decimal exponents, as it is difficult to
imagine such an operation.

Our efforts to construct a second-order model of Uditi’s mathematics via her activity with
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this and related tasks led us to realize that constructing exponents less than 1 as a representation
of growth is its own separate mathematical concept. This is not something I understood prior to
working with Uditi and other students. We learned that in order to make sense of non-natural
exponents as representations of growth, it is useful to invite students to shift to images that do
not entail repeated multiplication. For our participants, this meant creating an image of change in
the plant’s height between weeks that represented an action of stretching, or scaling. For
instance, Pei’s drawing (Figure 2) shows a Jactus stretching as it doubled from Week 1 to Week
2 to Week 3, on the right, and then he was able to reverse his doubling operation to imagine
halving the Jactus’s height to see how tall it would be at Week 2 on the left. Once Uditi
developed a similar scaling image, she was then able to answer the following question: “Say a
plant grows 3 times as tall every week. How many times taller will it grow in 1 day?”. Uditi
wrote “3'%” and explained, “There are seven day(s) in a week. So, I divided one week into seven
parts, which represent one day.” She could now conceive of an expression such as 34 to
represent a measure of growth, not just a static height value.
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Figure 2: Pei’s Drawing of a Doubling Jactus
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Before my teaching interactions with Uditi, I was unaware that an expression such as y = ab”
could represent two different ideas, a static value or an expression of growth. Certainly, this is
not a big idea, and its truth is obvious to me now. Nevertheless, the concept was not originally
part of my own first-order knowledge, nor was I aware that the mental imagery needed to
undergird the second idea would need to be different from the first in order to accommodate non-
natural exponents. Thus, my participants’ mathematics served as a source of novel mathematics
for me as a researcher, as it could also do for teachers who make use of the learning trajectory.

This approach toward the creation of learning trajectories shifts mathematical authority to the
students. Uditi’s mathematics served as a source of new mathematics for me. As a researcher, it
was my job to understand her mathematics, why it made sense conceptually, and then determine
ways to support her to create the meanings and images that would be productive for fostering an
understanding of nonnatural exponents. This work centers student thinking as the core of our
activity. Moreover, a productive stance to aid in my own decentering is to ask the question why.
Why did Uditi’s activity make sense? Why did she use the strategy that she did? Researchers
must ask these questions with the assumption that there is always a sensible reason driving the
student’s activity. We simply need to be careful enough in our own research to find it. Moreover,
in doing that work, we as researchers can grow in our own first-order knowledge: knowledge of
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the mathematics itself, of student thinking about mathematics, of the concepts and operations
needed to make sense of particular ideas, and of the kinds of tasks and teaching moves that can
support the development of those ideas.

I would like to close this extended example by pointing out that this model of a learning
trajectory, with the four operations I shared, differs from learning trajectories that are (a) a
proposal of the kinds of reasoning we should expect from students based on content analysis, (b)
a specification of target performances, (¢) a set of strategies, (d) a network of constructs that one
might encounter through curriculum and/or instruction, or (e) a set of tasks that could be
provided as stand-alone problems. An elaboration of a learning trajectory built from second-
order models will identify student concepts and operations in relation to both tasks and teaching
actions. I do not mean to denigrate or minimize the incredibly valuable contributions that prior
learning trajectories have made, but rather, to articulate and clarify my vision of what a learning
trajectory could be when it is built from second-order models.

Learning Cannot be Separated from Activity and Context

Helping our students develop stretching and scaling images for exponential growth turned
out to be a productive route for their learning. Furthermore, because we saw the type of
reasoning Uditi demonstrated in other students, our construction of the epistemic student from
Uditi and her peers supported a model in which one may need explicit support to shift from a
repeated multiplication image to an alternate image. Sharing second-order models in this manner
can also help mathematically experienced adults, such as curriculum authors and teachers,
understand and appreciate a different mathematics from the one they already know. In this
manner, learning trajectories research can play a role not only in helping the field better
understand how to support student learning of particular mathematics topics in the curriculum, it
can — and should — determine what mathematics should be in the curriculum to begin with.

Nevertheless, emphasizing stretching and scaling images may not necessarily be a
universally productive route. The degree to which it proves to be fruitful for other students in
other contexts is an open question. As I alluded to above, researchers have raised concerns about
the need to attend more explicitly, and more theoretically, to the role that teaching interactions
play in influencing student learning (Empson, 2011; Simon et al., 2010). This body of work
challenges the assumption that features of learning are transportable, or that it is possible to study
effective teaching and learning in a particular context and tease out some key aspects that can
then be generalizable to other contexts. Mathematics learning occurs in interaction, not only via
teaching actions, but also via tasks, tool use, student discourse, classroom norms, school and
community settings, and in relation to students’ identities, histories, and positionalities (Nasir et
al., 2008). Because mathematics learning does not occur in isolation from these sociocultural
contexts, it is wise to avoid overly strong claims about the transportability of any particular
finding. Learning trajectories research is a worthwhile endeavor not just for its potential to
broadly improve the teaching and learning of particular topics (Baroody et al., 2022), but also to
develop a set of contextualized, specific case studies of the types of reasoning that can exist and
can be supported in particular ways.

Build Learning Trajectories that are Engines of Equity
I have advocated for the usefulness of the epistemic student as a construct that can help
researchers navigate a balance between over generalizability and over specificity. In what might
seem like an odd turn, I am now going to argue against my own argument, or, at least, consider
an alternate stance. That stance is this: If the epistemic student is an idealized abstraction, a
model composed of common ways of operating, this leads me to question what type of student

Lischka, A. E., Dyer, E. B., Jones, R. S., Lovett, J. N., Strayer, J., & Drown, S. (2022). Proceedings of the forty-fourth annual meeting
of the North American Chapter of the International Group for the Psychology of Mathematics Education. Middle Tennessee
State University.

25



we imagine when evoking the epistemic student. Analyzing student reasoning without attending

to sociocultural diversity runs the risk of reinforcing deficit narratives about minoritized students
and students from marginalized communities (Zahner & Wynn, 2021). And yet, the construct of

the epistemic student may encourage this form of analysis.

Studies of cognition and equity are frequently positioned as separate areas of research in
mathematics education (Adiredja, 2019). For instance, Adiredja has pointed out that racial and
gender inequities are seldom considered in cognition studies, and, furthermore, engaging in
analysis that does not include these positionalities of the students we study does not make our
research apolitical: “Rather, it has the impact of maintaining the status quo that is the dominant
master-narrative about White male exclusive membership in mathematics and centering
education around their needs and concerns” (ibid, p. 426). One way to begin to address this
limitation can be to extend the notion of the epistemic student to understand the identities and
positionalities of our research participants who contribute to the epistemic student model. We
can invite studies highlighting the powerful reasoning of marginalized and minoritized students,
including being deliberate about who we include as participants in research opportunities, being
thoughtful about the ways in which we engage our participants in research, and being explicit
about our participants’ positionalities.

We must build learning trajectories that are explicitly and theoretically organized from an
asset-based perspective. Such trajectories can begin with efforts to understand our students’
cultural competencies, and by drawing on our students’ backgrounds and out-of-school
knowledge and practices, rather than ignoring or even excluding them. Deliberately creating
learning environments that leverage students’ cultural and linguistic strengths supports their
mathematical reasoning (Abdulrahim & Orosco, 2020). This means, then, broadening our
starting point for the construction of hypothetical learning trajectories. Rather than beginning
only with our first-order knowledge of mathematics, combined with research and pilot studies
about student learning, we can also incorporate (a) hypothesized second-order models, (b)
research on students’ funds of knowledge relative to the topic at hand, and (c) information about
our participants’ values, interests, and knowledge. In this manner, learning trajectories research
can meaningfully center student voices, and can serve as a bridge connecting research on
cognition and equity.
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