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Over the past few decades, researchers have adopted forms of abstraction introduced by Piaget 
to build explanatory models of student and teacher knowledge. Although Piaget’s forms of 
abstraction have proved productive for developing models of knowledge, their broader 
applicability to mathematics education remains an open question. In this brief report, we extend 
these forms of abstraction in order to analyze hypothetical outcomes of teachers’ enactment of 
instructional materials.   
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Piaget’s (1970, 2001) genetic epistemology has played a critical role in mathematics 

education via researchers adopting his theory to develop models of students’ mathematics, 
models of teachers’ mathematics, and models of student-teacher interactions. Researchers 
carrying out this work have provided important insights into those meanings that prove 
productive for students’ mathematical development, as well as those meanings that constrain 
students’ mathematical development (Steffe & Olive, 2010; Thompson, 2013). Furthermore, 
these researchers have provided useful ways to characterize teaching in terms of teacher 
knowledge necessary to build upon students’ ways of thinking (Liang, 2021; Tallman, 2015). 

An important construct spanning these contributions is that of abstraction. Stated generally, 
abstraction is the process by which an individual develops stable, generalized knowledge 
structures. To Piaget, abstraction provided a vehicle to developing precise accounts of 
knowledge development while also articulating generalized differentiated characteristics of 
knowledge structures. Piaget proposed several forms of abstraction including empirical, pseudo-
empirical, reflecting, and reflected abstraction (Montangero & Maurice-Naville, 1997; Piaget, 
2001). Mathematics educators have adopted these forms to provide differentiated accounts of 
student and teacher knowledge in numerous contexts (Ellis et al., in preparation; Tallman & 
O’Bryan, in preparation; Thompson, 1994). 

Given the usefulness of Piaget’s forms of abstraction for developing accounts of student and 
teacher knowledge, it is plausible that the forms of abstraction are productive for analyzing other 
aspects contributing to the teaching and learning of mathematics. In this brief report, we extend 
Piaget’s forms of abstraction in order to analyze instructional materials. Specifically, we analyze 
two secondary teachers’ instructional materials for teaching quadratic growth in order to develop 
hypotheses of the knowledge students may abstract from engaging in those materials. Because 
this is a brief report, we close with potential implications of this work and future directions 
building on this preliminary analysis.  

Background 
Ellis et al. (in preparation) and Tallman and O’Bryan (in preparation) synthesized Piaget’s 

forms of abstraction and described how mathematics education researchers have adapted these 
forms of abstraction to be viable in their areas of research. Empirical abstractions primarily 



concern observables and foreground sensory-motor experience, and reflected abstractions rest on 
a subject’s consciousness of their ways of operating. These two forms of abstraction are critical 
aspects of knowledge development, but they are less relevant to the analysis of secondary 
mathematics instructional materials when compared to the two forms of reflective abstraction 
that are pseudo-empirical abstraction and reflecting abstraction.  

Speaking on pseudo-empirical abstraction, Piaget (1977) explained, “When the object has 
been modified by the subject’s actions and enriched by the properties drawn from their 
coordinations…the abstraction bearing upon these properties is called ‘pseudo- empirical’ 
because…the facts it reveals concern, in reality, the products of the coordination of the subject’s 
actions…” (p. 303). To Piaget, a critical aspect of pseudo-empirical abstraction is that such an 
abstraction requires the presence of perceptual material or observables and foregrounds actions 
on that available material. Drawing on the work of Moore (2014), Ellis et al. (in preparation) 
argued for extending Piaget’s construct of pseudo-empirical abstraction so that “perceptual 
material” or “observables” includes the products of activity, even if these products of activity are 
purely cognitive. As they illustrated, such an extension of pseudo-empirical abstraction is 
productive for developing viable models of students’ mathematics at numerous levels. 

Piaget’s distinction between pseudo-empirical abstraction and reflecting abstraction rested on 
the extent perceptual material or observables are required. Ellis et al. (in preparation) noted that 
the broader interpretation of pseudo-empirical abstraction provided above requires a more 
restrictive framing of reflecting abstraction. A primary difference between these two forms of 
abstraction is that while the source material for pseudo-empirical abstractions is perceptual 
material or the result of actions, the source material for reflecting abstractions is the coordination 
of a subject’s actions themselves. Reflecting abstractions thus involve differentiating an action 
from the effect of an action so that the actions themselves can be projected to a level of 
representation and taken as objects of thought (Ellis et al., in preparation; Tallman & O’Bryan, in 
preparation; Thompson, 1994). As we illustrate with our task analysis, these differences in the 
source material for a subject’s abstractions have important implications for their learning.  

Project Setting and Methods 
The current work is situated in a multi-year project investigating students’ generalizing 

including the ways in which teachers support generalizing in their teaching (Ellis et al., in press; 
Ellis et al., 2017). Our approach to generalization is cognitive, drawing on an actor-oriented 
perspective as detailed by Ellis et al. (in press). The project’s guiding research questions are: 
What are the opportunities for generalizing in classroom settings? Specifically, what types of 
instructional moves, student engagement, and enacted tasks support classroom generalizing? The 
current paper addresses these questions by investigating the abstractions potentially supported 
during the implementation of instructional materials. 

The project involves two high school teachers and two middle school teachers. We 
concentrate this paper on the two high school teachers’ instructional materials in order to restrict 
our focus to one content area. We analyzed the instructional materials using conceptual analysis 
(Thompson, 2008) with a guiding framework of the forms of abstraction identified above. At its 
most general level, conceptual analysis involves answering the question, “What mental 
operations must be carried out to see the presented situation in the particular way one is seeing 
it?” (von Glasersfeld, 1995, p. 78). With respect to analyzing curricular materials, conceptual 
analysis involves developing hypothetical accounts of realized curriculum (Kilpatrick, 2011) or 
conveyed meanings (Tallman & Frank, 2020). This is accomplished via generating and 
interpreting “typical” solutions to the instructional materials using the lens of abstraction in 



combination with ways of reasoning held by secondary mathematics students as suggested by 
research (Ellis, 2011; Ellis & Grinstead, 2008; Fonger et al., 2020; Moore et al., 2019).  

Tasks and Task Analysis 
The two secondary teachers’ instructional activity focused on quadratic growth. The 

instructional activity explored a sequence of discretely growing shapes (see one example in 
Figure 1) with the intention that students identify patterns in quantities’ values including their 
first- and second-differences. The primary goal and generalization of the activity was to identify 
that for successive equal increases in Q_A of a situation (e.g., sail size), Q_B (e.g., sail area) 
increases by constantly increasing amounts, and that such a covariational relationship is modeled 
by a quadratic relationship. We discuss hypothetical pseudo-empirical and reflecting abstractions 
against the backdrop of the aforementioned goal. Underscoring that the forms of abstraction are 
cognitive constructs, we discuss each form of abstraction using a typical solution that involves a 
student generating a table of values, first-differences, second-differences, and a formula.   

 
Figure 1: Example Activity (left) and a “Typical” Student Solution (right) 

 
Pseudo-Empirical Abstraction 

After working a series of activities like that presented in Figure 1, a student might observe 
that each time they obtain constant second-differences in a quantity, a quadratic formula models 
the situation. Recall that pseudo-empirical abstractions are those abstractions that foreground 
“perceptual material” or “observables” including the products of activity. In the case of the 
example activity (Figure 1), the products of activity include a table of values and a quadratic 
formula. Thus, the observation of the student would be a pseudo-empirical abstraction if their 
association is strictly based on noticing that constant second-differences were accompanied by a 
quadratic formula. The abstraction consists of an indexical association between constant-second 
differences and a quadratic formula with no logico-mathematical operations forming the basis for 
that association. The actions that produced the table of values and formula are inconsequential to 
the abstraction except in that they yielded an outcome or product to act as source material for the 
student’s abstraction. We contrast this with a reflecting abstraction in the next section.  
Reflecting Abstraction  

A limitation of pseudo-empirical abstractions stems from the abstraction foregrounding the 
products of actions rather than the actions themselves. For instance, and based on our 
experiences with students, the abstraction described in the previous section often results in the 
student associating a quadratic formula with constant second-differences regardless of how the 
other quantity’s values are ordered in a table (e.g., non-constant first-differences in Q_A that 
produce constant second-differences in Q_B). In the case of the example activity and solution in 
Figure 1, a reflecting abstraction that foregrounds the coordination of actions and their results 
would involve a student reflecting upon both the quantitative referents of their tabular activity, as 
well as how their relationship necessitates a quadratic formula. 



With respect to the tabular activity, this would involve the student conceiving first-
differences as the amount by which a quantity increases (or decreases) and second-differences as 
the amount by which a quantity’s increase increases (or decreases) as shown in Figure 2. 
Furthermore, because a reflecting abstraction foregrounds the coordination of actions as opposed 
to the products of actions, the student’s abstraction would include awareness that the constant 
“+1” increases in size are intrinsic to the constantly increasing increase in area. With respect to a 
quadratic formula model, a reflecting abstraction involves understanding how the 
aforementioned quantitative relationship necessitates a second-degree polynomial. Although the 
connection between the two is not trivial, researchers (Ellis, 2011; Ellis & Grinstead, 2008; 
Fonger et al., 2020) have illustrated its feasibility for students including those in middle grades. 

 
Figure 2: Conceiving first- and second-differences quantitatively 

Discussion and Future Work 
Although we are not aware of studies that have used the aforementioned forms of abstraction 

to develop hypothetical accounts of student activity in the context of teachers’ instructional 
materials, mathematics education researchers and teachers have been sensitive to the role of 
abstraction in instructional design. For example, it is impossible to read the collective works of 
Steffe or Thompson and not sense the forms of abstraction directly informing their work even 
when not explicitly mentioned. As another example, Oehrtman (2008) provided a more general 
description of how Piaget’s notion of abstraction can inform a layered sequence of activities so 
that students have the opportunity to reflect upon and identify common structures in their actions 
across a variety of contexts. In each of these cases, researchers leveraged abstraction in the 
context of their own research-based work and design. We find it important to include a 
complementary focus on teachers’ extant instructional materials, as those materials play a 
significant role in students’ educational experiences. 

We illustrated that an abstraction framing provides a way to analyze instructional materials 
and produce differentiated accounts of knowledge development. Moving forward, we envision 
several productive avenues to continue investigating the viability of this framing. First, the 
current report is limited to one content area. Future work should look to extend the framing to 
other content areas including those not within secondary mathematics. Second, our analysis of 
the instructional materials consists of hypotheses. A more holistic account should include a focus 
on students’ realized abstractions, as well as the role of teacher knowledge and instructional 
moves in students’ construction of those abstractions. Third, we envision that an abstraction 
framing can provide a cognitive-focused approach to modifying instructional materials and their 
implementation. For instance, based on analysis like that provided here and then investigations 
into students’ realized abstractions and aspects of instruction contributing to the construction of 
those abstraction, researchers and teachers can look to modify instructional materials to better 
support students’ reflecting (and reflective) abstraction of productive meanings.   
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