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Abstract—In this paper, we propose a novel method of error
correction code that increases the reliability of testing for
chemical or biological agents, as well as general substances,
through pooled testing. When gross errors, or outliers, occur
in testing results, instead of conducting multiple tests on each
individual sample, our method performs testing on well-designed
mixtures of samples from multiple subjects. Unlike group testing,
which aims to reduce the number of tests, our method aims
to increase the reliability and accuracy of testing, even in the
presence of gross test errors. Through our theoretical results
and extensive simulations, we demonstrate that our method can
significantly improve testing accuracy, even under gross testing
errors. Furthermore, our method is proven to be more effective
than repeated testing of individual samples.

Index Terms—error correction code, non-negative signal, ro-
bust testing, pooled testing, test reliability

I. INTRODUCTION

Testing for the presence of chemical or biological agents
is crucial in a variety of fields such as science, engineering,
and medicine. One common example is the use of Reverse
Transcription Polymerase Chain Reaction (RT-PCR) tests to
determine whether patient specimens are infected with viruses
in the fight against pandemics like COVID-19 [1-4]. However,
two major challenges arise when performing such tests: 1)
how to test a large number of specimens efficiently and
economically, and 2) how to ensure reliable and accurate
testing.

This paper focuses on the challenge of performing reliable
tests for specimens, even when gross errors occur in some
testing results. Gross errors or outliers can occur due to
deficiencies in testing technology, sample contamination, or
sample dilution. For instance, if a sample is contaminated,
the testing result for that sample may change from negative
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to positive, falsely indicating the presence of non-existent
chemical or biological agents.

One common method for dealing with gross errors in
testing is to repeat the testing on a single sample several
times in the hopes of obtaining accurate results. However,
this approach is highly inefficient and expensive, particularly
when testing a large number of specimens. In this paper, we
propose a novel method of error correction code to increase
the reliability of testing for chemical or biological agents, as
well as general substances, via pooled testing. Our approach
involves pooling specimens into well-designed groups and
testing for the targeted chemical or biological agents in these
pooled samples. While outliers or gross errors can still occur
in individual pools, the pooling strategy serves as an error
correction code that can automatically correct for such errors.
Moreover, our proposed method is more powerful and efficient
than repeated testing of individual specimens, allowing for
accurate testing results with fewer tests.

Traditional group testing is a well-known technique that
uses pooled testing to reduce the number of tests required.
Group testing has received a lot of attention during the
COVID-19 pandemic due to its high throughput, with pooled
samples from multiple test subjects tested collectively rather
than individually [5-11]. The principle behind group testing is
that a single negative test result on a pooled sample indicates
that all subjects in that pool are infection-free. This allows
for a reduction in the total number of tests required per
subject, thereby increasing testing throughput, particularly in
populations where the infection rate (prevalence) is low [12].
However, highly accurate tests are required for group testing to
be effective, as a single false negative result could potentially
result in incorrect diagnosis. While improved test accuracy
can be achieved by testing each sample multiple times, this



weakens the primary purpose of using group testing, which is
to reduce the number of tests required.

In contrast to traditional group testing, the pooled sample
testing method proposed in this paper serves a different
purpose. Rather than reducing the number of tests, it aims
to increase the reliability and accuracy of testing, even in the
presence of gross errors in the testing results. The proposed
method uses ideas from compressed sensing and error correc-
tion coding to correct errors in test results. By pooling samples
in a well-designed manner, the redundancy of information
among pooled sample mixtures can be exploited to correct
wrong test results, similar to how error correction codes
correct errors in communication channels [13]. This approach
is more efficient than simply testing each individual sample
multiple times, as demonstrated by simulations and theoretical
arguments showing its effectiveness in reducing false positives
and false negatives, even with highly error-prone tests.

Our work is related to one of the seminal papers in
compressed sensing [14], which uses linear programming
to perform decoding under channel errors. However, our
approach differs in that we purposefully design binary
matrices for pooled testing, which is related to building
codebooks in error correction codes, instead of being given
a particular channel as in [14]. In addition, we deal with
non-negative signal models, which brings additional structure
for sensing and inference [15, 16]. Compared to recent
works [17-25] that aim to boost test robustness against noisy
measurements in group testing and compressed sensing,
our work has the following distinguishable contributions in
testing chemical or biological agents:

o The main purpose of our proposed pooled testing is to
increase test reliability, rather than reducing the required
number of tests as in group testing/compressed sensing,
although our approach can provide error correction
capability even with a reduced number of tests.

o Our pooled testing using error-correcting codes can be
conducted not only in the “undersampling” regime but
also in the “oversampling” regime, where the number
of performed tests is larger than the number of subjects
unlike compressed sensing in the “undersampling”
regime.

« We do not necessarily require low prevalence or a sparse
signal. The signal considered can be fully dense.

o The proposed error correction pooled testing technique
is not restricted to virus testing, but it is also applicable
to many other areas of measurements for the detection
of chemical or biological agents, where there may be
outlier errors in measurements.

Our findings challenge the conventional wisdom that pool-
ing samples together would lead to lower test accuracy or
reliability compared to individual separate testing, due to
factors such as sample dilutions and signal mixing. Instead,
our results demonstrate that, in some cases, purposeful pooled
testing can significantly increase, rather than decrease, test
accuracy or reliability.

Notations: We reserve capital letters, e.g., X, small bold
letters, e.g., @, and non-bold letters, e.g., x or X;;, for
matrices, vectors, and scalars respectively. To represent an
element in a vector or a matrix, we use a sub-script, e.g.,
x; for the i-th element of x, and X;; for an element in the
i-th row and the j-th column element of X. We denote a set
of m x n binary matrices, and a set of m x n matrices whose
elements are between a and b as {0,1}"™" and [a,b]™ "
respectively. A set of real numbers is denoted by R. |x|o,
|1, and |z |- represent £y norm of @, i.e., the number of
non-zero elements of @, £; norm of x, ie., |x[1 = ¥, |7}
for x € R", and {5 norm of x respectively. > 0 represents
element-wise non-negativeness.

II. PROBLEM FORMULATION

Let us assume that we have n subjects (sources of spec-
imens), and we have a budget of performing m tests to
determine the quantities of the target chemical/biological agent
in the specimens taken from these subjects. We denote the
quantity (density) of the target chemical/biological agent from
the n subjects by x € [0,00)". For each of the m tests,
we create a pooled sample by mixing the specimens from
multiple subjects. We use a matrix P € {0,1}"*" to denote
the participation of n subjects in m tests, i.e. the sample of the
j-th (1 < 7 < n) subject is involved in the ¢-th (1 <7 < m) test if
P;; = 1; and the sample of the j-th subject will not be involved
in the ¢-th test if P;; = 0. This means that the number of 1’s in
the j-th column of P is the number of tests that the specimens
of j-th subject is involved in. We model the amount of the
subjects’ specimens by a matrix W € R™*", and each Wj;
represents how much of the j-th subject’s specimen is used in
the i-th test. With those setups, we have a measurement matrix
A := PoW, where © represents the Hadamard multiplication.
For simplicity of presentation, we assume that W is an all-1
matrix.

The corresponding m mixed samples will go through m
quantitative (or sometimes qualitative) tests to test for the
target agent. Due to potential background noises and gross
errors caused by factors such as dilutions, sample and reagent
contamination, and operational mistakes, the final quantitative
measurements y € R from the m tests can be modeled as

y=Azx" +v+e, (1)

where * € [0,00)", v € R™, and e € R™ are the ground-truth
signal, noises in observation, and possible gross (outlier) errors
respectively. Since the elements of the vector x* represent
the quantities of target agents, the elements of x* are non-
negative. Then, our goal here is to recover the ground truth
signal &* € [0, 00)" for n subjects from m test measurements
y € R™ with possible outliers and noises.

III. MATRIX DESIGN AND POOLED TESTING AS ERROR
CORRECTION CODES

In our design for measurement matrix, we pick A as
matrix with O or 1 as its elements. The matrix A should be
designed such that it can correct gross errors in testing results.



Intuitively, we can think of matrix A as corresponding to the
generator matrix of an error correction code. The matrix A
should be such that there are enough separations in the m
testing results for different input vector x, leading to detection
of gross errors in testing results. With the designed measure-
ment matrix A, we can check the recovery performance of the
measurement matrix through the methods proposed in [26].

We formulate the problem of recovering x € [0, o)™ from
y € R™, where m can be bigger than n, as

minimize |x|o + Ay - Az - v]o,
xeR" veR™

subject to |v|2 <€, = >0. (2)

Here X\ >0 is a tuning parameter for controlling the trade-off
between |z|o and |y — Ax - v|o, and € > 0 is a parameter
controlling the tolerance for the noise. When the signal x is
not sparse, one can drop |z in the objective function.

Due to the combinatorial complexity of (2), by relaxing ||-|o
to || - |1, we reformulate (2) as

minimize ||, + Ay - Az - v,
xeR" veR™

subject to |v|2 <€, = >0. 3)

We refer to (3) as /1 —¢; minimization for the error-correction-
code-based pooled testing. If z; > 7, where 7 is the threshold
value, then we claim the j-th subject is infected and tests
“positive”’; otherwise, we declare “negative” for the subject.
The threshold is introduced to reduce the impact of noise
may exists after recovery. More specifically, If 7 is too high,
all results from both individual and pooled testing will be
negative. Conversely, if 7 is too low, there will be an increase
in testing error in both individual and pooled testing. However,
the error-correction capability of pooled testing allows it
to suppress testing errors as the number of measurements
increases, while individual testing is significantly affected by
testing errors.

For theoretical analysis, we consider the simplified but
essential case of only having gross errors e but not observation
noise v, namely € = 0. We also consider the case of dense =
(namely A is large, equivalently dropping |x|1).

Theorem IIL.1. The optimization program (3) uniquely recov-
ers the ground-truth signal x* under every e with no more
than 1 gross errors, if for every subset K ¢ {1,2,...m}
with cardinality no more than | and every u + 0, we have
2|(Auw) k|1 < |(Aw)|s. For a given 0-1 matrix A, the
number of gross errors, 1, that can always be corrected via
solving (3) is lower bounded by the floor of

(min, [ Aul 1)/ (2v/m) -1 @

When the elements of A are chosen iid. following 0-
1 Bernoulli distribution with parameter 0.5, and m =
O(nlog(n)), then with high probability, the correctable num-
ber | of gross errors scales at least in the order of \/n.

We give an outline of the proof of Theorem III.1 due to
space limitations. The condition 2||(Au) k|1 < |(Aw)|; in

Theorem 1 can be proved in the same way as proving the null
space condition for compressed sensing, for example, in [27].
Then the lower-bound on the number of correctable errors (1)
as shown in (4) is obtained by noticing that each element
of Au is no more than |ul2\/n in magnitude according
to the Cauchy-Schwarz inequality. Under such a number [,
2|(Au)k |1 < [[(Aw)|1 holds. When A has i.i.d. Bernoulli
elements, we can prove \/n errors are correctable through an
e-net argument. The idea is to bound (‘| rrﬁin1 [Aw],) by first
ullo=

considering a finite number of points w on the unit sphere,
called the e-net, and developing concentration of measure
inequalities for the e-net before extending the bounding for
every w on the unit sphere. This approach was also used in
our earlier results for Gaussian matrices A [27].

Our analysis shows the pooled method can correct more
errors than repeated testings of individual subjects. Consider
log(n) tests are allocated for repeatedly testing each individual
subject. Then in individual testing /n testing errors may
not be correctable. However, pooled error correction code
approach can correct \/n (in order) errors.

IV. NUMERICAL EXPERIMENTS

We conduct numerical experiments to evaluate the perfor-
mance of the proposed pooled testing in Section III. Our
method can be applied to general chemical/biological agent
testing. We consider that k£ out of n subjects are “infected”
with the target chemical/biological agent. We randomly chose
k elements in x to be positive and other n — k elements to
zero, where n = 40. For the values of non-zero elements in
x, we choose real numbers between 5 and 10 uniformly at
random. The sparsity level k is varied from 3 to 6.

In the pooled testing, the Gaussian noise vector v in (1) is
generated i.i.d. following the Gaussian distribution A/(0,0?),
where the noise level o2 is varied from 5e -1 to 2¢0. In order
to reflect false positive or false negative error scenarios, we
generate our signals as follows. We firstly choose the locations
of non-zero elements of the sparse outlier vector e with
probability P,,,;. If we have an outlier in the ¢-th measurement,
i.e., y;, we consider whether (Ax); is positive (infected case)
or zero (non-infected case). If (Ax); is positive, with 95%
probability, we set the outlier e; to —(Ax); and reset v; = 0
such that y; = 0, i.e., false negative measurement. With the
other 5% probability, we set the outlier e; to 5 x g+ 2, where ¢
follows the standard Gaussian distribution N'(0,1), and keep
the originally generated v;, which is a noise measurement
case. If (Ax); is zero, then, we set e; to 5 x |g| + 2, where ¢
follows distribution A'(0, 1), and keep the originally generated
v;, which leads to non-zero measurement y;, i.e., possibly
infected measurement result. Since the measurement y must
be a non-negative vector, we have y; = max{(Ax);+e;+v;,0},
1=1,...,m, to prevent y; being negative. The probability of the
outlier error, Py, is varied from 1% to 15%. For the pooled
testing, we use (3) to recover x, and use threshold 7 =1 to
decide whether a subject tests positive or negative.

We compare the pooled testing against the individual testing,
where the individual samples of subjects are tested separately
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Fig. 1. Simulations for different probabilities of outlier errors. False
Negative Rate (FNR) and the corresponding False Positive Rate
(FPR) with n =40, k = 6, and Gaussian noise level 1e0.

(possibly multiple times). In the individual testing, the ¢-th
test is modeled as y; = T mod (i-1,n)+1 t €tV 1=1,2,...,m.
We generate the Gaussian noises and outliers in the same way
as described for the pooled testing, based on & 104 (i-1,n)+1
instead of (Ax);. For example, for n = 40, the 42-th mea-
surement 45 is the result for the 2nd subject (this subject has
been tested once already in the 2nd test), and the outlier and
the Gaussian noise simulated for the 42-th test is randomly
generated based on zs. In the individual testing, if m < n,
there must be some subjects not getting tested at all; we
consider the untested subjects as negative in our simulations.
Additionally, in the individual testing, if a subject is tested
multiple times, and as long as one of the results is identified as
being positive, we consider the subject as positive. This comes
from the motivation of not missing any positive case (e.g., in
COVID-19 virus testing). The number of measurements, m, is
varied from 10 to 80. Thus, for n = 40 and individual testing
scenario, the maximum number of tests for a subject is two.

For both the pooled testing and the individual testing, we
run 100 random trials for each parameter setup, and record the
False Negative Rate (FNR) and the False Positive Rate (FPR),
which are computed on average out of 100 trials as follows:

# of decoded-to-be negative cases in infected subjects

FNR =

)

# of subjects truly infected
# of decoded-to-be positive cases in subjects not infected
# of people not infected '

FPR =

Hence, the FNR represents the percentage of subjects de-
coded as negative among subjects infected with target chemi-
cal/biological agent, which can be a critical error in the testing.
The FPR is interpreted as the percentage of subjects who
are diagnosed as infected among subjects who are in fact
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n =40, k =3, Py = 0.15.
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not infected. The lower FNR and FPR are, the better testing
performance we have.

Figs.]1 and 2 show the comparison results between the
proposed pooled testing and the individual testing, where the
blue solid line and the red dotted line represent the pooled
testing and the individual testing respectively. As shown in
Figs.1 and 2, the pooled testing lowers both the FNR and
the FPR as the number of measurements increases. This is
because as the number of measurements increases, we can
recover more accurate result & via ¢ —¢; minimization in (3).
Unlike the pooled testing, the individual testing can reduce
the FNR as the number of measurements increases at the
cost of increasing the FPR. This is because the individual
testing diagnoses the subject “positive” once we have one
positive test result among multiple tests. Additionally, even
without this conservative strategy in the individual testing,
when the number of measurements is 40, as in the individual
testing method, where each subject is tested once, our pooled
testing method has a smaller FNR and FPR as shown in the
figures. This suggests that our method has improved reliability
compared to the individual testing method. These various
simulation results clearly demonstrate that the pooled testing
can provide lower FNR and FPR than those of the individual
testing. In a limited number of cases, the individual testing
provides lower (although not significantly lower) FPR than
that of the pooled testing, because only a few subjects are
tested under individual testing, which leads to fewer false
positive errors. Recall that the untested subjects are assumed
to be diagnosed as “negative”. Additionally, for m < n, since
there are simply untested subjects in the individual testing, the
individual testing has relatively higher FNR.
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