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AbstractÐWith the emergence and fast development of cloud
computing and outsourced services, more and more companies
start to use managed security service providers (MSSP) as their
security service team. This approach can save the budget on
maintaining its own security teams and depend on professional
security persons to protect the company infrastructures and
intellectual property.

However, this approach also gives the MSSP opportunities to
honor only a part of the security service level agreement. To pre-
vent this from happening, researchers propose to use outsourced
network testing to verify the execution of the security policies.
During this procedure, the end customer has to design network
testing traffic and provide it to the testers. Since the testing traffic
is designed based on the security rules and selectors, external
testers could derive the customer network security setup, and
conduct subsequent attacks based on the learned knowledge. To
protect the network security configuration secrecy in outsourced
testing, in this paper we propose different methods to hide the
accurate information. For Regex-based security selectors, we
propose to introduce fake testing traffic to confuse the testers. For
exact match and range based selectors, we propose to use NAT
VM to hide the accurate information. We conduct simulation to
show the protection effectiveness under different scenarios. We
also discuss the advantages of our approaches and the potential
challenges.

Index TermsÐOutsourced network testing, Security selector
secrecy, Prevent information leakage

I. INTRODUCTION

With the fast development and wide deployment of cloud

computing and light-weight container technology, organiza-

tions can focus more on their essential business and outsource

most other operations. Within those outsourced operations,

cyber security enforcement is a special case since it is not

easy to verify whether or not a security service provider

actually conducts the security scans or checks [1]. To verify

the outsourced security operations, researchers have designed

different methods to test their execution [2]±[5]. One of the

proposed approaches involves recruitment of a large number

of third party testers to send out carefully crafted network

packets to verify the security rules enforced by the managed

security service providers (MSSP) [6].

While such testing can effectively verify selected security

rules, a severe concern was the disclosure of the network

security policies and configurations. Specifically, in [6], the

authors proposed to build a third-party platform, which would

then recruit a large number of testers to send out network

testing packets. Since the testing packets are carefully designed

to verify the security rules, the tester can reversely derive the

configuration. Through such reverse derivation (and maybe

data ggregation among multiple testers), the testers may figure

out the network security setup of the target environment, and

design subsequent targeted attacks.

Below we will show an example. Assuming that a malware

for a specific version of Windows has the payload signature

of s1. To test whether or not the outsourced network security

service can detect such malware, the customer can create a

network packet with the payload signature and request a third

party tester to send the packet. Through this operation, the

tester can learn the following facts: (1) the target IP address

of the packet is probably running that specific version of

Windows. (2) The customer is already aware of the malware

and its signature. (3) The port number of the target machine

is open for network traffic. While in real life the customer

may manipulate the network testing traffic to mislead testers

(we will study the impacts later in the paper), the tester can

still learn some information about the network security setup,

especially if multiple testers pull their information together.

This example illustrates the challenges that we face. When

a customer outsources security testing to a large number of

testers, it has to disclose certain amount of information to

external players. This procedure is different from using a

cloud security company or using a penetration testing company

for the organization. For the former case, the cloud security

company works with the customer to design and implement all

network security mechanisms, so it already has full knowledge

about the security setup. In the latter case, the penetration

tester usually needs to sign an NDA (non-disclosure agree-

ment) with the customer so that non of the testing results

or detected vulnerabilities will be disclosed. Neither of the

situations can fit into the approach in [6].

In this paper, we plan to investigate the questions described

above, specifically the secrecy protection to the network secu-

rity rules during the outsourced network testing operations.

To resolve such challenges, we need to: (1) classify the

network security selectors that we need to protect, and identify

methods through which information leakage could happen

during outsourced network testing; (2) based on the selector



classification results, design different methods to protect the

secrecy of network security rules; and (3) through experiments,

evaluate the trade-off between improved secrecy protection,

test coverage, and increases in overhead.

Our research efforts will make the following contributions to

the domain. First, as previous approaches focus on the overall

architecture design and incentivization models of outsourced

network testing, protection to network security configuration

secrecy for customers has not been fully studied. This research

will allow customers to weigh the benefit of outsourced

services against potential threats to its information secrecy.

Second, through classification of the security selectors and

the design of methods for their protection, we investigate the

outsourced network testing problem from a new aspect. Last

but not least, the experiment results provide references for end

users to consider trade-offs between outsourced services and

scerecy concerns.

The remainder of the paper is organized as follows. In

Section II, we will introduce related work, especially on the

outsourced network security testing and privacy protection for

such approaches. In Section III, we will introduce the basics

of outsourced network testing, the application scenarios of our

approaches, and the challenges we face. In Section IV, we

will introduce the classification of the security selectors and

the proposed mechanisms for their protection. We will discuss

the pros and cons of each mechanism. In Section V, we will

present the experiment results and the impacts of the proposed

approaches on the cost and overhead of the network testing

operations. Finally, in Section VI, we conclude the paper and

discuss future extensions.

II. RELATED WORK

With the fast development of entrepreneurship, more and

more small to medium sized companies are created for busi-

ness in niche markets. Such companies usually do not have

a cybersecurity team with needed expertise. Therefore, it is

quite popular for them to outsource the infrastructure and data

security services [7]±[9]. To maintain a balance between the

data and operation confidentiality and cost-effectiveness and

safety of the companies, investigators have designed different

mechanisms to identify the essential functions to outsource,

mechanisms to verify the execution of the security functions,

and protection to data privacy. Below we will discuss the

existing work in these domains.

Outsourcing of Cooperation Security Functions

A modern cooperation needs to handle multiple aspects

of cyber security, such as network security, access control,

data confidentiality, and information privacy. Depending on

the nature of a business, a company often needs to choose

the security functions to outsource. For example, in [5],

the authors study the security functions and show that the

management of security outsourcing depends on the security

efforts of both the managed security service provider (MSSP)

and the customers, and their allocation of efforts can change

dynamically during the contract period. The research also

shows that a third party can serve as the cyberinsurance

company to monitor the outsourced security function when

the cost is low. In [10], the authors propose to outsource

the data decryption function so that attribute based access

control can be achieved more efficiently while keeping the

same level of security in edge network in Internet of Vehicles.

In [3], the managed security services (MSS) are modeled as

bilateral liability-based contracts. The researchers design two

novel contracts: threshold-based liability contract and variable

liability contract, so that better results can be achieved when

we can verify the data breaches.

Monitoring and Verifying Security Functions

The concept of Managed Security Service Providers

(MSSP) is first used to achieve secure data sharing in large

scale corporations [11]. MSSP often offers a platform solution

for cyber threat monitoring and analytics, and conducts the

operations such as firewalls, anti-virus services, and intrusion

detection systems. Examples of such platforms include BT

Cyber Security Platform [12], threat monitoring and detection

software from BT and SAP, and the Enterprise Security

Manager from McAfee. Since different platforms often label

security incidents’ priority differently, researchers have also

studied relationship among cross-vendor incident indicators

[13]. The EU’s PALANTIR framework [14] tries to pull

together the cyber-security intelligence from both large corpo-

rations and small, medium business to enable more efficient

and effective attack detection and mitigation. The platform

supports different ways to host the security capabilities, and

integrates the threat intelligence, capability orchestration, and

attestation and recovery capabilities to enforce security and

resilience.

Another series of research focuses on outsourcing of se-

curity functions and verification of security SLA (service

level agreement). In [2], the researchers propose to verify the

outsourced data encryption operations by third parties. The

authors define the expected properties of such verification

operation, and investigate the relationship between the cus-

tomer, tester, and security service provider. In [6], the authors

push the application domain to the general network security

operations and propose to build a platform to recruit and

monitor the testing operations. In [15], the authors integrate

fully homomorphic encryption with polynomial factorization

algorithm to support public verification on the computation

result while protecting data security.

Privacy Preservation in Security Function Outsourcing

Outsourcing of data or infrastructure security functions usu-

ally needs to disclose sensitive data or company information to

third parties. Therefore, research efforts have been conducted

to assess such disclosure and protect data ownership. In [16],

the authors build a game theory model to compare in-house

security enforcement with outsourced security operations.

They suggested that partial outsourcing can help corporations

achieve a balance between cost efficiency and data security.

Their efforts also pave the way of integrating the information

leakage assessment into the game theory model.



In [17], the author shows that when event logs with per-

sonally identifiable information (PII) are released to external

security operation center (SOC), user privacy will be violated.

The paper extended beyond previous efforts that focused

only on IP address and investigated different methods of

pseudonymization to hide the sensitive information. While

the non-deterministic methods provide higher level of privacy

protection to end users, the utility of the data is also affected

since the association among log records is weakened.

In [18], the author used differential privacy guarantees as

guard for user data, and designed secure data outsourcing,

integration, and query mechanisms. The methods allow pub-

licly verifiable results while preserving the data privacy. The

author used Bitcoin transactions as the application scenario.

And the end users can verify the digital currency transactions

while keeping the transaction holding and total holding of the

participating parties.

In [19], the authors proposed to use homomorphic encryp-

tion to support the outsourced data so that query and process-

ing can be conducted while the plain text of data is kept from

the managed security services (MSS). The challenges include

the computation overhead, especially when the mechanism

is deployed in a large scale environment, and the types of

supported operations using homomorphic algorithms.

Based on the discussion, we can see that some of the

methods, especially the assessment of information leakage,

can benefit our research on the protection to the security

configurations secrecy at the end customers. Below we will

describe our application scenarios and the design of several

methods for the research goals.

III. APPLICATION SCENARIOS AND CHALLENGES TO

INFORMATION SECRECY

A. Application Scenario

Figure 1 shows the basic working scenario of the outsourced

network testing. To verify that the MSSP actually enforces the

negotiated security services, the end customer U allows the

external third parties to send network testing traffic to assess

the network security policies. To accurately assess the policies,

the customer U needs to design the testing packets diligently.

For example, assuming that MSSP is supposed to check the

signature s1 of a known malware in the packet payload. The

customer needs to embed s1 into the testing packet and based

on whether or not it can receive the packet from the tester, it

can determine whether or not the content based security rule

is enforced.

While such operations allow the verification of security

enforcement by MSSP, they also disclose sensitive information

about U . For example, the case above tells the tester that

ªU is aware of the attack and avoid using it for compromise

attemptº. To generalize the scenario, if the packets are used to

test the open ports on existing IP addresses on the customer

network, it actually becomes a weaker version of netscan for

the testers.

This analysis shows that certain methods must be designed

and adopted to help U maintain a balance between the

effectiveness of outsourced network testing and the secrecy

of its network security configurations. While there have been

different ways to classify the network security policies, in this

paper we use the classification described in [20]. Specifically,

we consider two types of security policies and their leakage

prevention. Although these two types do not cover all possible

classification methods, we choose them since they demand

different ways of protection.

Fig. 1. Application scenarios of the proposed approach. Courtesy of
authors of [6].

The first type of security selectors covers the ‘exact match

selector’ and ‘range-based selector’ described in [20]. These

are the frequently seen security policies that use IP addresses

or port numbers as filters for equality check or range check.

The IP address prefix also falls into this type.

The second type covers the ‘regex-based selector’ and

‘customer check selector’ in [20]. An example of the former

selector is string match such as URL links. An example of the

latter selector includes the specific patterns used by malware

analysis and intrusion detection systems (IDS) tools, as the

case described at the beginning of this section.

B. Threat Model and Leakage Prevention Challenges

We assume that the outsourced network testers are recruited

by the testing platform P . The primary criteria for tester

recruitment is the trustworthiness on their faithful execution

of the testing tasks. Specifically, the testers will send out the

testing traffic as the customer requests. Their other usage

of the testing traffic is a less concern. Therefore, in this

paper we adopt the curious but not malicious model for the

testers. Specifically, we assume that the testers will not actively

generate network probing packets to the customer to explore

its network configuration and potential vulnerabilities. On the

contrary, the testers will collect useful information from the

testing traffic and try to derive network security configurations.

As described in [2], the network testing traffic must be sent

by different testers to prevent the MSSP from identifying the

packets and treating them differently. Some researchers may

consider this as a natural protection to the network security

configuration since each tester can get only a small share of

the information. However, since the testers could collaborate

offline to put their information together, the testing platform

cannot tell which nodes are actually sharing information

among them, and how much information a group of testers can



actually learn. Therefore, some mechanisms must be designed

to protect the information secrecy.

IV. PREVENTING INFORMATION LEAKAGE DURING

OUTSOURCED NETWORK TESTING

Through previous analysis, we can see that special mech-

anisms must be designed to prevent information leakage

through the outsourced network testing. Our initial study

shows that different types of security policies need different

schemes for protection. Below we will describe the mecha-

nisms and analyze the protection effectiveness.

Since we focus on the security selectors discussed in [20], in

Figure 2 we show some examples in each type. The operations

that the MSSP adopts will be determined by the rule set. Here

the customer could directly provide the selector rules to MSSP,

or it can provide only the functional and security requirements

from the high level, and the MSSP can then use the policy

language [21], [22] to accomplish policy construction and

orchestration. To verify whether or not the security policies are

accurately executed, the customer can work with the testers to

design and deliver the testing traffic.

Fig. 2. Example rule table at the MSSP.

A. Protecting the Regex-based Selectors

In this subsection, we will focus on the protection of regex-

based selectors. Here the security rules are usually string based

or binary value based. The MSSP will examine the contents

of the packets and make corresponding operations based on

the rules.

Since the security rules are dynamic, the customer U can

continuously add new rules to the database. Therefore, it is

essential to keep the secrecy of the database contents from

external parties so that we can deter or reduce the impacts of

the attacks. However, to verify whether or not the MSSP is

actually enforcing the security rules, the testing traffic needs

to be designed based on the active rules.

To solve this dilemma, we propose to introduce fake se-

curity selectors into the database and construct the testing

traffic based on these selectors as well. Specifically, through

introducing the fake links of malicious webpages or binary

content signatures, we can test the enforcement of security

rules by MSSP while preventing the testers from learning our

real security policies.

As a specific example, assuming that the customer U
constructs a fake signature sigm of a non-existent malware and

introduces it into the selector database. It will then construct

a testing packet based on the selector and provide it to the

tester. From the tester’s point of view, since it does not

recognize the signature, it will treat it as some new knowledge

that it learns about the customer U . It will not impact the

execution of the testing activity since it just needs to send the

packet and conduct subsequent interactions if needed. From

the MSSP’s point of view, dynamic updates to the security

selector database is also a very normal operation. If it is honest

and faithfully executing the operations, it just needs to take

suggested actions based on the rules.

A.1 Challenges and Methods

While it seems to be straightforward to add or remove

fake security selectors to protect the secrecy of security rules,

we still face some challenges. First, what is the impact of

fake selectors on the effectiveness, efficiency, and cost of

outsourced network testing? Second, how will the fake selector

impact the flow of normal traffic? Specifically, will the fake

signatures lead to silent discard of benign data? Last but not

least, can the MSSP or the tester distinguish a real selector

from a fake selector? If so, how will they handle the packet

differently? Below we will discuss these questions.

First, let us investigate how the size of the fake selectors

impacts the efficiency and cost of the outsourced network

security services. Based on a report released by RSI Security

[23], MSSP usually charges the price of $75 to $250 per

user per month based on the size of the company and the

complexity of the business functions. Some popular third party

security services, such as AWS Network Pricing, charge the

customers based on the number of firewall endpoints and the

amount of traffic [24]. As each Azure Network Security Group

(NSG) can have a maximum of 1000 rules, introducing a

certain number of fake selectors will not impact the price to

a large extent.

Research in [25] shows that as the number of rules in

a firewall increases, the overall performance will decrease.

With the adoption of certain methods such as segmentation

and rule indexing, we can make the impact acceptable. For

example, when the number of rules increases from 1 to 1000,

the throughput will decrease by about 6% [25]. However, when

the number of rules increases to 10000, the throughput will

decrease by about 75%. From this data, we can see that when

we do not add too many fake selectors, the performance impact

is acceptable.

The second challenge we face is the impact of the fake

selectors on benign traffic. For example, if the customer

introduces a fake binary signature sigm into the selector

database, there is a chance that some benign data will match

to the signature and get dropped. As the number of fake

selectors increases, the probability that a benign data has

signature collision also increases. To reduce the probability

of signature collision with benign traffic, we propose the

following approaches. (a) use long hash results to label binary

signatures of the selectors. Using a long hash results (e.g. 128

bits instead of 64 bits) will drastically reduce the probability of

random collision. (b) Since addition and removal of selectors

can be dynamically conducted, the customer can choose to add



the fake signatures into the database and provide the testing

packets to t. After the testing operations, it can then remove

the fake signatures. Since this procedure is transparent to the

testers, they cannot learn about the changes of the database.

The third challenge we face is the fake URL links since they

are different from the fake binary signatures. When a curious

tester receives a binary signature that it does not recognize,

it will assume that this is a new malware. However, this

cannot be applied to fake URL for selectors. If the customer

chooses to use a real URL as a selector, any traffic targeting at

that website will be filtered out. This will impact the normal

network operations. If the customer uses a fake URL, the tester

can easily identify it by surfing the Internet.

To address this challenge, we propose to use the policy-

level capability proposed in [20]. Specifically, we propose to

design an abstract decision criteria for the action to apply

only when the testing packet satisfies two or more conditions

simultaneously. For example, while we can add a real URL as

the selector, a quadruple consisting of (the source IP and port,

and the destination IP and port) can be used as the second

criteria to avoid packet discard by accident. In this way, the

tester could not link the two conditions together to identify

the fake selector.

A.2 Quantitative Results

As the discussion above shows, we can add a group of fake

selectors into the security database and use them as the test

cases to preserve the secrecy of the network configurations. In

this part, we will conduct some analysis to show that under

different cases, what a tester can learn from the test traffic

generated by the customer.

We assume that customer U has r real security selectors.

To protect the secrecy of network security configuration, U
also introduces f fake selectors. To verify the execution of

the security rules by MSSP, U will choose t1 rules from r
and t2 rules from f to construct the testing traffic. When the

tester receives the constructed packets from U , it will try to

figure out which rules are real and which rules are fake. To

present the analysis results in a more conservative way, we

assume that the tester knows the ratio between t1 and t2. In

real life, of course, the customer U will not share the ratio

with any third party.

Here we will present two scenarios. In the first scenario, the

tester will select up to t1 packets provided by U and hope that

all of them are from r. In the second scenario, the tester will

also choose multiple packets from U and hope that a portion

of them are drawn from r. Note that the two cases represent

the optimal result and a more practical result for the tester,

respectively.

Case 1: In this case, the tester will choose p (p = 1 to t1)
packets from the (t1 + t2) packets provided by U and hope

that all of them are real. The probability is C
(

p

t1

)

/C
(

p

t1+t2

)

.

Case 2: In this case, the tester will choose p (p = 1 to t1+
t2) packets from the (t1 + t2) packets provided by U and

hope that x1 selectors are real while x2 selectors are fake.

Here (x1 + x2) = p. At this time, the tester will not know

which ones it selects are real. Therefore, the probability is

C
(

x1

t1

)

* C
(

x2

t2

)

/ C
(

x1+x2

t1+t2

)

.

Figure 3 shows the simulation results. As a special case, we

choose t1 + t2 = 30 (thus the tester will receive 30 testing

packets from U and it tries to identify which are real). Here

the number of packets constructed based on real selectors t1
ranges from 10 to 20, and the fake selectors are (30 - t1). We

assume that the tester chooses p’s value between 4 and 10.

The following two figures show the results.

In Figure 3.(a), on the X-axis, we show the number of real

selectors that the customer sends out. Therefore, the number of

fake selectors is (30 - X-axis). The four lines in the figure show

the number of selectors that the tester picks from the packets

that the customer provides. For example, the blue line shows

the situation in which the tester selects 4 packets provided by

the customer. On the Y-axis, we show the probability that the

packets selected by the tester are all real selectors.

(a) Probability that all identified selectors are real.

(b) Probability that half of identified selectors are real. But do not know
which half.

Fig. 3. Simulation results of the selector identification accuracy at the tester
node.

From the figure, we can see that as the number of real

selectors increases in the provided packets, the tester has

higher probability to select them. However, even when the

customer puts 20 real selectors into the 30 packets, the

probability that all four of the selected packets are real is still

smaller than 20%. As the number of selected packets increases,

the probability decreases fast. For example, when t1 = 20 and

p = 10, the probability is smaller than 1%.

In Figure 3.(b), the X-axis has the same set of values.

However, when the tester selects packets from the set, it

expects half of the selectors are real while the other half are



fake. For example, the blue line shows ‘select 2’ which means

2 of the selected packets are real and 2 are fake (in total

the tester still selects 4 packets). On the Y-axis, we have the

probability.

From the figure, we can first see that the lines are symmetry.

This is caused by our experiment setup in which the selected

packets will contain half real and half fake. The second

observation we have is that the probability is much higher in

Figure 3.(b) than that in Figure 3.(a). This is also reasonable

since now the tester will choose from two pools (one fake and

one real) and there are more combinations of the selectors.

However, we have to emphasize that even though the tester

has a much better chance to have half of the selectors to be

real, it cannot differentiate real selectors from the fake ones.

Therefore, it still faces difficulties in deriving knowledge about

the customer network and conducting attacks.

B. Protecting the Exact Match and Range Selectors

Protection of the exact match and range based selectors

are more challenging. First, while we can still introduce fake

selectors into the database, it will be much easier for the

MSSP to figure out that this selector is fake. For example, the

customer may configure a fake rule stating that ªAll incoming

traffic to IP address a.b.c.d will be silently dropedº. However,

it will not be hard for the MSSP to figure out that there is

no machine in the customer’s network that owns the specific

IP address. Therefore, the sender of a packet satisfying the

rule can be labeled as a ‘tester’. As a counter example, in

the Regex based selectors, it is much more difficult for the

MSSP to figure out whether or not a binary signature of a

virus actually exists. For the similar reason, we cannot just

use the abstract decision criteria that we discussed in above

sections since the combination of multiple criteria can prevent

a rule from being triggered by external traffic, but it cannot

prevent the MSSP from figuring out the fake address.

The second challenge we face is on the information leakage

through specific port numbers. We know that certain network

services are associated with well accepted port numbers.

Therefore, when testing traffic is provided to a tester for a

specific (IP address, port) combination, the tester can easily

figure out that this is a server for the application.

The third challenge we face is the information leakage

through the test of range based selectors. To verify that the

MSSP actually implements the range based rules instead of

examining individual values, we need to construct multiple

testing packets for a rule. This scheme, however, could leak

information on the value range.

To respond to these challenges, we propose to dynamically

deploy a NAT (Network Address Translation) VM in front of

the MSSP gateway to accomplish address hiding and replace-

ment. While the NAT technology was originally designed for

home networks and small scale enterprise networks since they

often do not have an enough number of globally recognized

IP addresses, it is still widely adopted in the modern cloud

environment. For example, in the EdgeVPN.io environment

[26], the authors proposed a deployment of virtual networks

spanning across distributed edge and cloud resources. Since

the edge nodes could be deployed in a large distributed area,

they will often be assigned private addresses. Therefore, the

NAT middle-boxes are used to connect them through a virtual

network. A similar technique was also presented in [27].

As shown in Figure 4, the NAT VM is deployed in front

of the MSSP server. The customer will configure the rules of

the NAT based on the generated packets. Specifically, since

the customer will know the IP address of the tester, it can

set up the triggering condition of a certain rule by identifying

the (src IP, src port, dest IP, dest port) tuple. In this way,

only the specific testing packets will trigger the rules. Note

that the rules need to be configured in dual directions for

multi-round testing. When such a rule is triggered, the NAT

box will replace corresponding fields in the packets so that

selectors in MSSP can be activated. This procedure, however,

is transparent to the tester.

Fig. 4. Protecting the exact match and range based selectors through
NAT VM.

Such configuration will not impact the normal operations of

the customer network. We will provide an example. Assume

that the customer provides a service at the IP address a.b.c.d

to a certain group. The tester, however, does not belong to the

group. Therefore, during the network testing procedure, the

customer does not want to disclose the real IP to the tester.

To achieve the goal, it will configure the NAT for the traffic

between the tester and the customer. From the tester’s view,

it is really communicating with the fake IP address. From the

MSSP’s point of view, it only sees a packet for the normal

service address.

B.1 Robustness against Traffic Analysis by Testers

In this part, we are going to discuss the robustness and

hiding capability of the NAT VM to protect the network

security configuration of the customer network. In past years,

machine learning algorithms have been adopted to analyze the

traffic patterns and other properties to identify the IP address

clusters. For example, in [28], the authors proposed to use

machine learning algorithms to identify and count total number

of hosts behind NAT. Their primary goal is to figure out the

number of nodes behind one or a small group of IP addresses

that are conducting the DoS attacks. The basic idea is to

analyze patterns in network traffic through flow level statistics.



As another example, in IPvest [29], the authors also tried

to identify the number of nodes behind a NAT and cluster

their traffic based on the patterns. The system will first use

the features such as time and duration, traffic direction and

amount, and http-cookies to label the flows. They then build

a DGA (dynamic grid algorithm) to discover the number of

nodes. Specifically, the time and OS related features are used

jointly to figure out the number of devices. They then use the

Gaussian mixture modeling (GMM) and Ward’s agglomerative

algorithm (Ward) to accomplish the traffic flow clustering.

From the discussion, we can see that the ML algorithms

need to have access to a large volume of data from the node

groups for classification and clustering. In our application

scenarios, through controlling the number of testing traffic to

individual testers, we can reduce the machine learning output

accuracy on the node identification and traffic clustering. At

the same time, since all the testing traffic is carefully crafted

by the customer, it can use a different pattern from that of its

normal traffic to better hide the connections.

V. EVALUATION OF THE PROPOSED APPROACHES

In the previous sections, we have introduced the mecha-

nisms to protect the secrecy of the network security config-

uration at the customer from the testers. Since the MSSP is

helping the customer to secure the network, we do not need

to protect the information from it. However, we still do not

want the MSSP to differentiate testing packets for real security

selectors from those for the fake ones since the MSSP can treat

the packets differently to pass the verification.

In this part we will evaluate the proposed approaches.

There are multiple aspects from which we can investigate the

impacts of the approaches on the network performance, cost

of testing, information collection and derivation at testers, and

the effectiveness of the approaches. Below we will first present

the evaluation setups, and then the details of the results.

A. Experiment Settings

During the generation of the network testing traffic, a part

of the packets will be generated based on the real selectors,

while the remaining parts of the testing packets are built upon

fake selectors. Here we assume that when we construct the

packets for real selectors, the selectors are picked based on a

uniform distribution. In this way, we can prevent the MSSP

from predicting which selectors have higher probability to be

verified.

For the test of fake selectors, we will consider two scenarios.

In the first scenario, the customer will dynamically generate

the group of fake selectors and insert them into the database

of the MSSP. It will then construct testing traffic based on

these dynamically generated rules. Since these selectors are

generated to mislead the testers, they will be removed from

the database after usage. At the same time, since the fake

selectors are dynamically generated when they are needed,

the network security configuration represented by the rules

demonstrate an ad hoc format. In other words, the fake

selectors and their testing packets may contain conflicting

information. For example, when a tester cross compares two

sets of testing packets, it may find that the customer is adopting

two conflicting decisions on the same URL, which could lead

to the identification of fake selectors.

For the second scenario, the customer will adopt the deep

fake policies. Specifically, the customer will construct a group

of selectors based on a pre-generated fake network topology

and its security configuration. From an external party’s point of

view, it seems that this component of network actually exists

and the security rules are aligned to the network topology

and functionality. It will become much more difficult for the

testers to identify the fake selectors even when they pool the

testing traffic at multiple testers together. The cost of the deep

fake, however, includes the generation and maintenance of the

network topology and its configuration, and the longer stays of

the rules in the database. The testing traffic for the exact match

and range based selectors upon the fake topology needs to pass

through NAT VM to prevent the MSSP from identifying the

testers.

B. Storage and Processing Overhead

The extra delay of the proposed approaches consists of

two parts. In the first part, the NAT VM needs to compare

the input and output packets with the rules to determine

whether or not a change to the packet header is needed.

The delay of this effort heavily depends on the layer of

hardware and software in which such search and replacement

is implemented. For example, the efforts in [30] show that

if the operations are conducted in cache, it needs tens of

microseconds to accomplish the tasks. Since our NAT VM

usually does not need a large size to store the rules, we expect

the similar length of delay.

The second source of extra delay is the increased database

size at the MSSP. There have been extensive research on the

performance of the firewalls and its relationship to the rule

set size. For example, in [31], experiments show that with

proper decomposition and composition, even when the rule

set size increases for about 40 times, the delay will increase

to two times. Therefore, we do not worry too much about the

increased processing delay.

The other overhead we need to consider is the increased

storage overhead since we introduce fake rules into the MSSP

database. Such increase is linear to the number of fake rules

that the customer generates. One thing we do not have space

to explore extensively in this paper, is the change of the rule

database internal structure caused by the insertion and deletion

of fake rules. The previous research [31] shows that such re-

organization could take multiple seconds before the structure

becomes stable again. Future research can be conducted to

evaluate the overhead in this aspect.

C. Aggregated Derivation of the Real Selectors

In this part, we will discuss the relationship between the

derivation of the real selectors and the amount of testing

traffic that is generated and distributed by the customer.

First, we would like to emphasize that if the testers operate



independently, the customer can always deliver the testing

packets for the same set of rules to the same node. Therefore,

a tester can only learn from that group of packets. However,

if multiple testers can put their knowledge together, they can

learn from a much larger set, and identify the real selectors

from different features such as the frequency that they are

verified. In this way, they can use these selectors as targets of

future attacks.

To illustrate the procedure, we conduct some simulation and

investigate the aggregated derivation by the testers. Here we

use the test frequency of different rules as an indicator. In

the first simulation, we mimic the first scenario described in

Section V.A. We assume that there are 100 real selectors and

800 fake selectors (in which the fake ones are about one degree

of magnitude larger than the real ones). We also assume that

the customer will conduct 100 times verification. For each

verification it will choose 10 real selectors, and 5 or 20 fake

selectors. Although in real situations we will choose as many

testers as possible to increase the difficulty of information

aggregation by them, here we assume that some parties will

get access to all of the testing traffic. Below we illustrate the

number of times that each rule is tested.

Fig. 5. Cumulative access rate based heat map: random choice of
fake selectors.

Figure 5 shows the simulation results as a heap map. Note

that we have 900 selectors altogether (30 x 30), and the first

100 are real ones (first 3.3 rows). In the left side, twice as many

real selectors as the fake ones are chosen by the customer in

each round of verification. The heat map shows the number of

times that each rule is selected: the darker is the green color,

the more times it is chosen. On the right side of the figure,

the meaning of the color is the same, but in each round twice

as many fake selectors as the real ones are chosen.

Based on the illustration, we can see that since the fake

selectors have a much larger size and the chosen procedure is

random, the real selectors have a much higher probability to

be tested. If the testers aggregate their information, they can

soon differentiate the fake ones from the real ones.

In the second simulation scenario, we make some adjust-

ment. First, instead of generating fake selectors randomly,

the customer will construct a set of fake selectors based on

a pre-generated fake network topology, as we described in

Section V.A. Therefore, the fake rules are also stable and

will not contain conflicting information. Second, because of

the complexity to construct and maintain the fake network

topology, we will have only 300 fake selectors. Therefore, we

will have a 20 x 20 matrix and the top 25% represent the real

rules.

The simulation results are shown in Figure 6. Note that the

first five rows contain the real selectors. Since the total number

of selectors is much smaller in this scenario, the grids are

larger. On the lest side, twice as many real selectors as the fake

ones are chosen by the customer in each round of verification.

On the right side, three times as many fake selectors as the

real ones are chosen in each round of verification. Since the

number of fake selectors is three times of the real ones, in the

right side figure we cannot tell any difference only based on

access frequency. Advanced mechanisms must be adopted by

the testers to identify the real selectors.

When we compare the results in Figures 5 and 6, we can

see that if the customer wants to prevent a tester from learning

its network security configuration from the testing traffic only

through the test frequency, it must control the sample rate

of the selectors. At the same time, deep fake through the

generation of a stable yet deceptive network topology and

corresponding selectors will achieve muxh better protection

to information secrecy.

Fig. 6. Cumulative access rate based heat map: pre-generated fake
network infrastructure.

D. Cost of the Protection

In [6], the authors have analyzed a model for the customer

to achieve a balance between the coverage of verification of

the selectors and the total cost. When we start to introduce

fake selectors and testing traffic into the approach, the total

cost will also be impacted. The impacts can be categorized

as follows. First, although in [6] the authors adopt a linear

cost model with the number of testing packets, in real life

the testers could adopt a non-linear price, especially when

it is getting close to the testing capacity. It will introduce

more complicated constraints into the solution space and incur

higher computation overhead.

The second impact is on the coverage of the real selectors

that are tested. To control the overall test cost, the cus-

tomer needs to control the number of testing packets. But

the introduction of fake selectors will reduce the portion of

real selectors that are tested. In this paper, we use only the

frequency of access as the evaluator to differentiate the real



selectors from the fake ones. Since the testers could adopt

more complicated ML algorithms to achieve the goal, the

customer must adapt the selection procedure to protect the

information secrecy.

VI. FUTURE EXTENSIONS AND CONCLUSION

A. Future Extension

In this paper, we introduce the problem of network security

policy leakage caused by the outsourced testing. We use fake

selectors and NAT VM to hide the real information. For the

next steps, we plan to investigate from the following aspects.

Moving Target for Privacy Protection

Part of the reason that information leakage through the test-

ing traffic is caused by the static network security configuration

of the customer. If moving target defense mechanisms are

adopted, the internal topology of the customer network will

continue to change. Therefore, the information that the testers

learned from the testing traffic will expire after each round of

changes. The challenges, however, include the determination

of the change frequency, maintenance of existing connections,

and re-configuration of network devices and MSSP policies.

The frequency of topology changes will also impact the

frequency of outsourced testing.

Unified Cost-Coverage-Privacy Model

For the outsourced network testing, we have investigated

the overall architecture, cost function, and incentivization of

the testers through separate efforts. Our next step is to build a

unified cost-coverage-privacy model for the outsourced testing

efforts. The three factors will impact each other and it may

create different choice criteria based on the needs of the

customers. The model will also motivate the MSSP to better

serve the security service level agreement (SSLA).

B. Conclusion

In this paper, we study the protection of the network security

configuaration secrecy under the assumtion that the customer

depends on outsourced network testing to verify the execution

of the security policies. We first show the importance of

such protection since the disclosed information could be used

as network probing results and enable subsequent attacks.

Based on the types of security selectors, we propose different

protection approaches. For the Regex based selectors, we

propose to use fake selectors to protect their secrecy. For the

exact match and range based selectors, because of their unique

features, we propose to use NAT VM to hide the accurate

information from the testers. We conduct some simulation to

investigate the advantages of the approaches. We also discuss

the challenges we face.

Security service level agreement, as a special type of cloud

services, is usually difficult to verify its execution. However,

with the continuous development of vertical segmentation in

technology, new corporations will depend more on the out-

sourced security service providers. Therefore, the verification

of the implementation of the security policies will provide

confidence in end customers on the safety and reliability of

their business. The research direction deserves more efforts

from a larger research population.
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