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Abstract—With the emergence and fast development of cloud
computing and outsourced services, more and more companies
start to use managed security service providers (MSSP) as their
security service team. This approach can save the budget on
maintaining its own security teams and depend on professional
security persons to protect the company infrastructures and
intellectual property.

However, this approach also gives the MSSP opportunities to
honor only a part of the security service level agreement. To pre-
vent this from happening, researchers propose to use outsourced
network testing to verify the execution of the security policies.
During this procedure, the end customer has to design network
testing traffic and provide it to the testers. Since the testing traffic
is designed based on the security rules and selectors, external
testers could derive the customer network security setup, and
conduct subsequent attacks based on the learned knowledge. To
protect the network security configuration secrecy in outsourced
testing, in this paper we propose different methods to hide the
accurate information. For Regex-based security selectors, we
propose to introduce fake testing traffic to confuse the testers. For
exact match and range based selectors, we propose to use NAT
VM to hide the accurate information. We conduct simulation to
show the protection effectiveness under different scenarios. We
also discuss the advantages of our approaches and the potential
challenges.

Index Terms—Outsourced network testing, Security selector
secrecy, Prevent information leakage

I. INTRODUCTION

With the fast development and wide deployment of cloud
computing and light-weight container technology, organiza-
tions can focus more on their essential business and outsource
most other operations. Within those outsourced operations,
cyber security enforcement is a special case since it is not
easy to verify whether or not a security service provider
actually conducts the security scans or checks [1]. To verify
the outsourced security operations, researchers have designed
different methods to test their execution [2]-[5]. One of the
proposed approaches involves recruitment of a large number
of third party testers to send out carefully crafted network
packets to verify the security rules enforced by the managed
security service providers (MSSP) [6].

While such testing can effectively verify selected security
rules, a severe concern was the disclosure of the network
security policies and configurations. Specifically, in [6], the
authors proposed to build a third-party platform, which would
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then recruit a large number of testers to send out network
testing packets. Since the testing packets are carefully designed
to verify the security rules, the tester can reversely derive the
configuration. Through such reverse derivation (and maybe
data ggregation among multiple testers), the testers may figure
out the network security setup of the target environment, and
design subsequent targeted attacks.

Below we will show an example. Assuming that a malware
for a specific version of Windows has the payload signature
of s1. To test whether or not the outsourced network security
service can detect such malware, the customer can create a
network packet with the payload signature and request a third
party tester to send the packet. Through this operation, the
tester can learn the following facts: (1) the target IP address
of the packet is probably running that specific version of
Windows. (2) The customer is already aware of the malware
and its signature. (3) The port number of the target machine
is open for network traffic. While in real life the customer
may manipulate the network testing traffic to mislead testers
(we will study the impacts later in the paper), the tester can
still learn some information about the network security setup,
especially if multiple testers pull their information together.

This example illustrates the challenges that we face. When
a customer outsources security testing to a large number of
testers, it has to disclose certain amount of information to
external players. This procedure is different from using a
cloud security company or using a penetration testing company
for the organization. For the former case, the cloud security
company works with the customer to design and implement all
network security mechanisms, so it already has full knowledge
about the security setup. In the latter case, the penetration
tester usually needs to sign an NDA (non-disclosure agree-
ment) with the customer so that non of the testing results
or detected vulnerabilities will be disclosed. Neither of the
situations can fit into the approach in [6].

In this paper, we plan to investigate the questions described
above, specifically the secrecy protection to the network secu-
rity rules during the outsourced network testing operations.
To resolve such challenges, we need to: (1) classify the
network security selectors that we need to protect, and identify
methods through which information leakage could happen
during outsourced network testing; (2) based on the selector



classification results, design different methods to protect the
secrecy of network security rules; and (3) through experiments,
evaluate the trade-off between improved secrecy protection,
test coverage, and increases in overhead.

Our research efforts will make the following contributions to
the domain. First, as previous approaches focus on the overall
architecture design and incentivization models of outsourced
network testing, protection to network security configuration
secrecy for customers has not been fully studied. This research
will allow customers to weigh the benefit of outsourced
services against potential threats to its information secrecy.
Second, through classification of the security selectors and
the design of methods for their protection, we investigate the
outsourced network testing problem from a new aspect. Last
but not least, the experiment results provide references for end
users to consider trade-offs between outsourced services and
scerecy concerns.

The remainder of the paper is organized as follows. In
Section II, we will introduce related work, especially on the
outsourced network security testing and privacy protection for
such approaches. In Section III, we will introduce the basics
of outsourced network testing, the application scenarios of our
approaches, and the challenges we face. In Section IV, we
will introduce the classification of the security selectors and
the proposed mechanisms for their protection. We will discuss
the pros and cons of each mechanism. In Section V, we will
present the experiment results and the impacts of the proposed
approaches on the cost and overhead of the network testing
operations. Finally, in Section VI, we conclude the paper and
discuss future extensions.

II. RELATED WORK

With the fast development of entrepreneurship, more and
more small to medium sized companies are created for busi-
ness in niche markets. Such companies usually do not have
a cybersecurity team with needed expertise. Therefore, it is
quite popular for them to outsource the infrastructure and data
security services [7]-[9]. To maintain a balance between the
data and operation confidentiality and cost-effectiveness and
safety of the companies, investigators have designed different
mechanisms to identify the essential functions to outsource,
mechanisms to verify the execution of the security functions,
and protection to data privacy. Below we will discuss the
existing work in these domains.

Outsourcing of Cooperation Security Functions

A modern cooperation needs to handle multiple aspects
of cyber security, such as network security, access control,
data confidentiality, and information privacy. Depending on
the nature of a business, a company often needs to choose
the security functions to outsource. For example, in [5],
the authors study the security functions and show that the
management of security outsourcing depends on the security
efforts of both the managed security service provider (MSSP)
and the customers, and their allocation of efforts can change
dynamically during the contract period. The research also

shows that a third party can serve as the cyberinsurance
company to monitor the outsourced security function when
the cost is low. In [10], the authors propose to outsource
the data decryption function so that attribute based access
control can be achieved more efficiently while keeping the
same level of security in edge network in Internet of Vehicles.
In [3], the managed security services (MSS) are modeled as
bilateral liability-based contracts. The researchers design two
novel contracts: threshold-based liability contract and variable
liability contract, so that better results can be achieved when
we can verify the data breaches.

Monitoring and Verifying Security Functions

The concept of Managed Security Service Providers
(MSSP) is first used to achieve secure data sharing in large
scale corporations [11]. MSSP often offers a platform solution
for cyber threat monitoring and analytics, and conducts the
operations such as firewalls, anti-virus services, and intrusion
detection systems. Examples of such platforms include BT
Cyber Security Platform [12], threat monitoring and detection
software from BT and SAP, and the Enterprise Security
Manager from McAfee. Since different platforms often label
security incidents’ priority differently, researchers have also
studied relationship among cross-vendor incident indicators
[13]. The EU’s PALANTIR framework [14] tries to pull
together the cyber-security intelligence from both large corpo-
rations and small, medium business to enable more efficient
and effective attack detection and mitigation. The platform
supports different ways to host the security capabilities, and
integrates the threat intelligence, capability orchestration, and
attestation and recovery capabilities to enforce security and
resilience.

Another series of research focuses on outsourcing of se-
curity functions and verification of security SLA (service
level agreement). In [2], the researchers propose to verify the
outsourced data encryption operations by third parties. The
authors define the expected properties of such verification
operation, and investigate the relationship between the cus-
tomer, tester, and security service provider. In [6], the authors
push the application domain to the general network security
operations and propose to build a platform to recruit and
monitor the testing operations. In [15], the authors integrate
fully homomorphic encryption with polynomial factorization
algorithm to support public verification on the computation
result while protecting data security.

Privacy Preservation in Security Function Outsourcing

Outsourcing of data or infrastructure security functions usu-
ally needs to disclose sensitive data or company information to
third parties. Therefore, research efforts have been conducted
to assess such disclosure and protect data ownership. In [16],
the authors build a game theory model to compare in-house
security enforcement with outsourced security operations.
They suggested that partial outsourcing can help corporations
achieve a balance between cost efficiency and data security.
Their efforts also pave the way of integrating the information
leakage assessment into the game theory model.



In [17], the author shows that when event logs with per-
sonally identifiable information (PII) are released to external
security operation center (SOC), user privacy will be violated.
The paper extended beyond previous efforts that focused
only on IP address and investigated different methods of
pseudonymization to hide the sensitive information. While
the non-deterministic methods provide higher level of privacy
protection to end users, the utility of the data is also affected
since the association among log records is weakened.

In [18], the author used differential privacy guarantees as
guard for user data, and designed secure data outsourcing,
integration, and query mechanisms. The methods allow pub-
licly verifiable results while preserving the data privacy. The
author used Bitcoin transactions as the application scenario.
And the end users can verify the digital currency transactions
while keeping the transaction holding and total holding of the
participating parties.

In [19], the authors proposed to use homomorphic encryp-
tion to support the outsourced data so that query and process-
ing can be conducted while the plain text of data is kept from
the managed security services (MSS). The challenges include
the computation overhead, especially when the mechanism
is deployed in a large scale environment, and the types of
supported operations using homomorphic algorithms.

Based on the discussion, we can see that some of the
methods, especially the assessment of information leakage,
can benefit our research on the protection to the security
configurations secrecy at the end customers. Below we will
describe our application scenarios and the design of several
methods for the research goals.

III. APPLICATION SCENARIOS AND CHALLENGES TO
INFORMATION SECRECY

A. Application Scenario

Figure 1 shows the basic working scenario of the outsourced
network testing. To verify that the MSSP actually enforces the
negotiated security services, the end customer U allows the
external third parties to send network testing traffic to assess
the network security policies. To accurately assess the policies,
the customer U needs to design the testing packets diligently.
For example, assuming that MSSP is supposed to check the
signature s; of a known malware in the packet payload. The
customer needs to embed s; into the testing packet and based
on whether or not it can receive the packet from the tester, it
can determine whether or not the content based security rule
is enforced.

While such operations allow the verification of security
enforcement by MSSP, they also disclose sensitive information
about U. For example, the case above tells the tester that
“U is aware of the attack and avoid using it for compromise
attempt”. To generalize the scenario, if the packets are used to
test the open ports on existing IP addresses on the customer
network, it actually becomes a weaker version of netscan for
the testers.

This analysis shows that certain methods must be designed
and adopted to help U maintain a balance between the

effectiveness of outsourced network testing and the secrecy
of its network security configurations. While there have been
different ways to classify the network security policies, in this
paper we use the classification described in [20]. Specifically,
we consider two types of security policies and their leakage
prevention. Although these two types do not cover all possible
classification methods, we choose them since they demand
different ways of protection.

tester

tester tester

Fig. 1. Application scenarios of the proposed approach. Courtesy of
authors of [6].

The first type of security selectors covers the ‘exact match
selector’ and ‘range-based selector’ described in [20]. These
are the frequently seen security policies that use IP addresses
or port numbers as filters for equality check or range check.
The IP address prefix also falls into this type.

The second type covers the ‘regex-based selector’ and
‘customer check selector’ in [20]. An example of the former
selector is string match such as URL links. An example of the
latter selector includes the specific patterns used by malware
analysis and intrusion detection systems (IDS) tools, as the
case described at the beginning of this section.

B. Threat Model and Leakage Prevention Challenges

We assume that the outsourced network testers are recruited
by the testing platform P. The primary criteria for tester
recruitment is the trustworthiness on their faithful execution
of the testing tasks. Specifically, the testers will send out the
testing traffic as the customer requests. Their other usage
of the testing traffic is a less concern. Therefore, in this
paper we adopt the curious but not malicious model for the
testers. Specifically, we assume that the testers will not actively
generate network probing packets to the customer to explore
its network configuration and potential vulnerabilities. On the
contrary, the testers will collect useful information from the
testing traffic and try to derive network security configurations.

As described in [2], the network testing traffic must be sent
by different testers to prevent the MSSP from identifying the
packets and treating them differently. Some researchers may
consider this as a natural protection to the network security
configuration since each tester can get only a small share of
the information. However, since the testers could collaborate
offline to put their information together, the testing platform
cannot tell which nodes are actually sharing information
among them, and how much information a group of testers can



actually learn. Therefore, some mechanisms must be designed
to protect the information secrecy.

IV. PREVENTING INFORMATION LEAKAGE DURING
OUTSOURCED NETWORK TESTING

Through previous analysis, we can see that special mech-
anisms must be designed to prevent information leakage
through the outsourced network testing. Our initial study
shows that different types of security policies need different
schemes for protection. Below we will describe the mecha-
nisms and analyze the protection effectiveness.

Since we focus on the security selectors discussed in [20], in
Figure 2 we show some examples in each type. The operations
that the MSSP adopts will be determined by the rule set. Here
the customer could directly provide the selector rules to MSSP,
or it can provide only the functional and security requirements
from the high level, and the MSSP can then use the policy
language [21], [22] to accomplish policy construction and
orchestration. To verify whether or not the security policies are
accurately executed, the customer can work with the testers to
design and deliver the testing traffic.

Type 1 selector

Exact match rules:
(1) DestIP=135.5.4.35
(2) Srcport=23

Type 2 selector
Regex based rules:
Opl (1} URL=www.utoday.org
Op2 - - -
- - - Custom check rules:
Range based rules: (1) Data hash = Oxff45 0067 Op3
(1) Src portin (1000, 1050) ©Op2 - - -
{2) SrciPin 156.5.x.x Op3

Op4

Fig. 2. Example rule table at the MSSP.

A. Protecting the Regex-based Selectors

In this subsection, we will focus on the protection of regex-
based selectors. Here the security rules are usually string based
or binary value based. The MSSP will examine the contents
of the packets and make corresponding operations based on
the rules.

Since the security rules are dynamic, the customer U can
continuously add new rules to the database. Therefore, it is
essential to keep the secrecy of the database contents from
external parties so that we can deter or reduce the impacts of
the attacks. However, to verify whether or not the MSSP is
actually enforcing the security rules, the testing traffic needs
to be designed based on the active rules.

To solve this dilemma, we propose to introduce fake se-
curity selectors into the database and construct the testing
traffic based on these selectors as well. Specifically, through
introducing the fake links of malicious webpages or binary
content signatures, we can test the enforcement of security
rules by MSSP while preventing the testers from learning our
real security policies.

As a specific example, assuming that the customer U
constructs a fake signature sig,,, of a non-existent malware and
introduces it into the selector database. It will then construct
a testing packet based on the selector and provide it to the

tester. From the tester’s point of view, since it does not
recognize the signature, it will treat it as some new knowledge
that it learns about the customer U. It will not impact the
execution of the testing activity since it just needs to send the
packet and conduct subsequent interactions if needed. From
the MSSP’s point of view, dynamic updates to the security
selector database is also a very normal operation. If it is honest
and faithfully executing the operations, it just needs to take
suggested actions based on the rules.

A.1 Challenges and Methods

While it seems to be straightforward to add or remove
fake security selectors to protect the secrecy of security rules,
we still face some challenges. First, what is the impact of
fake selectors on the effectiveness, efficiency, and cost of
outsourced network testing? Second, how will the fake selector
impact the flow of normal traffic? Specifically, will the fake
signatures lead to silent discard of benign data? Last but not
least, can the MSSP or the tester distinguish a real selector
from a fake selector? If so, how will they handle the packet
differently? Below we will discuss these questions.

First, let us investigate how the size of the fake selectors
impacts the efficiency and cost of the outsourced network
security services. Based on a report released by RSI Security
[23], MSSP usually charges the price of $75 to $250 per
user per month based on the size of the company and the
complexity of the business functions. Some popular third party
security services, such as AWS Network Pricing, charge the
customers based on the number of firewall endpoints and the
amount of traffic [24]. As each Azure Network Security Group
(NSG) can have a maximum of 1000 rules, introducing a
certain number of fake selectors will not impact the price to
a large extent.

Research in [25] shows that as the number of rules in
a firewall increases, the overall performance will decrease.
With the adoption of certain methods such as segmentation
and rule indexing, we can make the impact acceptable. For
example, when the number of rules increases from 1 to 1000,
the throughput will decrease by about 6% [25]. However, when
the number of rules increases to 10000, the throughput will
decrease by about 75%. From this data, we can see that when
we do not add too many fake selectors, the performance impact
is acceptable.

The second challenge we face is the impact of the fake
selectors on benign traffic. For example, if the customer
introduces a fake binary signature sig,, into the selector
database, there is a chance that some benign data will match
to the signature and get dropped. As the number of fake
selectors increases, the probability that a benign data has
signature collision also increases. To reduce the probability
of signature collision with benign traffic, we propose the
following approaches. (a) use long hash results to label binary
signatures of the selectors. Using a long hash results (e.g. 128
bits instead of 64 bits) will drastically reduce the probability of
random collision. (b) Since addition and removal of selectors
can be dynamically conducted, the customer can choose to add



the fake signatures into the database and provide the testing
packets to t. After the testing operations, it can then remove
the fake signatures. Since this procedure is transparent to the
testers, they cannot learn about the changes of the database.

The third challenge we face is the fake URL links since they
are different from the fake binary signatures. When a curious
tester receives a binary signature that it does not recognize,
it will assume that this is a new malware. However, this
cannot be applied to fake URL for selectors. If the customer
chooses to use a real URL as a selector, any traffic targeting at
that website will be filtered out. This will impact the normal
network operations. If the customer uses a fake URL, the tester
can easily identify it by surfing the Internet.

To address this challenge, we propose to use the policy-
level capability proposed in [20]. Specifically, we propose to
design an abstract decision criteria for the action to apply
only when the testing packet satisfies two or more conditions
simultaneously. For example, while we can add a real URL as
the selector, a quadruple consisting of (the source IP and port,
and the destination IP and port) can be used as the second
criteria to avoid packet discard by accident. In this way, the
tester could not link the two conditions together to identify
the fake selector.

A.2 Quantitative Results

As the discussion above shows, we can add a group of fake
selectors into the security database and use them as the test
cases to preserve the secrecy of the network configurations. In
this part, we will conduct some analysis to show that under
different cases, what a tester can learn from the test traffic
generated by the customer.

We assume that customer U has r real security selectors.
To protect the secrecy of network security configuration, U
also introduces f fake selectors. To verify the execution of
the security rules by MSSP, U will choose t; rules from r
and ¢, rules from f to construct the testing traffic. When the
tester receives the constructed packets from U, it will try to
figure out which rules are real and which rules are fake. To
present the analysis results in a more conservative way, we
assume that the tester knows the ratio between t; and 5. In
real life, of course, the customer U will not share the ratio
with any third party.

Here we will present two scenarios. In the first scenario, the
tester will select up to ¢; packets provided by U and hope that
all of them are from r. In the second scenario, the tester will
also choose multiple packets from U and hope that a portion
of them are drawn from r. Note that the two cases represent
the optimal result and a more practical result for the tester,
respectively.

Case 1: In this case, the tester will choose p (p =1 to 1)
packets from the (¢ + ¢2) packets provided by U and hope
that all of them are real. The probability is C’(tpl )/C (tl ib).

Case 2: In this case, the tester will choose p (p =1 to t1 +
to) packets from the (¢; + t2) packets provided by U and
hope that x; selectors are real while x5 selectors are fake.
Here (z1 + z2) = p. At this time, the tester will not know

which ones it selects are real. Therefore, the probability is
C() *e(@) /o)

Figure 3 shows the simulation results. As a special case, we
choose t; + to = 30 (thus the tester will receive 30 testing
packets from U and it tries to identify which are real). Here
the number of packets constructed based on real selectors t;
ranges from 10 to 20, and the fake selectors are (30 - £1). We
assume that the tester chooses p’s value between 4 and 10.
The following two figures show the results.

In Figure 3.(a), on the X-axis, we show the number of real
selectors that the customer sends out. Therefore, the number of
fake selectors is (30 - X-axis). The four lines in the figure show
the number of selectors that the tester picks from the packets
that the customer provides. For example, the blue line shows
the situation in which the tester selects 4 packets provided by
the customer. On the Y-axis, we show the probability that the
packets selected by the tester are all real selectors.
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(a) Probability that all identified selectors are real.
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(b) Probability that half of identified selectors are real. But do not know
which half.

Fig. 3. Simulation results of the selector identification accuracy at the tester
node.

From the figure, we can see that as the number of real
selectors increases in the provided packets, the tester has
higher probability to select them. However, even when the
customer puts 20 real selectors into the 30 packets, the
probability that all four of the selected packets are real is still
smaller than 20%. As the number of selected packets increases,
the probability decreases fast. For example, when ¢; = 20 and
p = 10, the probability is smaller than 1%.

In Figure 3.(b), the X-axis has the same set of values.
However, when the tester selects packets from the set, it
expects half of the selectors are real while the other half are



fake. For example, the blue line shows ‘select 2’ which means
2 of the selected packets are real and 2 are fake (in total
the tester still selects 4 packets). On the Y-axis, we have the
probability.

From the figure, we can first see that the lines are symmetry.
This is caused by our experiment setup in which the selected
packets will contain half real and half fake. The second
observation we have is that the probability is much higher in
Figure 3.(b) than that in Figure 3.(a). This is also reasonable
since now the tester will choose from two pools (one fake and
one real) and there are more combinations of the selectors.
However, we have to emphasize that even though the tester
has a much better chance to have half of the selectors to be
real, it cannot differentiate real selectors from the fake ones.
Therefore, it still faces difficulties in deriving knowledge about
the customer network and conducting attacks.

B. Protecting the Exact Match and Range Selectors

Protection of the exact match and range based selectors
are more challenging. First, while we can still introduce fake
selectors into the database, it will be much easier for the
MSSP to figure out that this selector is fake. For example, the
customer may configure a fake rule stating that “All incoming
traffic to IP address a.b.c.d will be silently droped”. However,
it will not be hard for the MSSP to figure out that there is
no machine in the customer’s network that owns the specific
IP address. Therefore, the sender of a packet satisfying the
rule can be labeled as a ‘tester’. As a counter example, in
the Regex based selectors, it is much more difficult for the
MSSP to figure out whether or not a binary signature of a
virus actually exists. For the similar reason, we cannot just
use the abstract decision criteria that we discussed in above
sections since the combination of multiple criteria can prevent
a rule from being triggered by external traffic, but it cannot
prevent the MSSP from figuring out the fake address.

The second challenge we face is on the information leakage
through specific port numbers. We know that certain network
services are associated with well accepted port numbers.
Therefore, when testing traffic is provided to a tester for a
specific (IP address, port) combination, the tester can easily
figure out that this is a server for the application.

The third challenge we face is the information leakage
through the test of range based selectors. To verify that the
MSSP actually implements the range based rules instead of
examining individual values, we need to construct multiple
testing packets for a rule. This scheme, however, could leak
information on the value range.

To respond to these challenges, we propose to dynamically
deploy a NAT (Network Address Translation) VM in front of
the MSSP gateway to accomplish address hiding and replace-
ment. While the NAT technology was originally designed for
home networks and small scale enterprise networks since they
often do not have an enough number of globally recognized
IP addresses, it is still widely adopted in the modern cloud
environment. For example, in the EdgeVPN.io environment
[26], the authors proposed a deployment of virtual networks

spanning across distributed edge and cloud resources. Since
the edge nodes could be deployed in a large distributed area,
they will often be assigned private addresses. Therefore, the
NAT middle-boxes are used to connect them through a virtual
network. A similar technique was also presented in [27].

As shown in Figure 4, the NAT VM is deployed in front
of the MSSP server. The customer will configure the rules of
the NAT based on the generated packets. Specifically, since
the customer will know the IP address of the tester, it can
set up the triggering condition of a certain rule by identifying
the (src IP, src port, dest IP, dest port) tuple. In this way,
only the specific testing packets will trigger the rules. Note
that the rules need to be configured in dual directions for
multi-round testing. When such a rule is triggered, the NAT
box will replace corresponding fields in the packets so that
selectors in MSSP can be activated. This procedure, however,
is transparent to the tester.

tester

tester

Fig. 4. Protecting the exact match and range based selectors through
NAT VM.

Such configuration will not impact the normal operations of
the customer network. We will provide an example. Assume
that the customer provides a service at the IP address a.b.c.d
to a certain group. The tester, however, does not belong to the
group. Therefore, during the network testing procedure, the
customer does not want to disclose the real IP to the tester.
To achieve the goal, it will configure the NAT for the traffic
between the tester and the customer. From the tester’s view,
it is really communicating with the fake IP address. From the
MSSP’s point of view, it only sees a packet for the normal
service address.

B.1 Robustness against Traffic Analysis by Testers

In this part, we are going to discuss the robustness and
hiding capability of the NAT VM to protect the network
security configuration of the customer network. In past years,
machine learning algorithms have been adopted to analyze the
traffic patterns and other properties to identify the IP address
clusters. For example, in [28], the authors proposed to use
machine learning algorithms to identify and count total number
of hosts behind NAT. Their primary goal is to figure out the
number of nodes behind one or a small group of IP addresses
that are conducting the DoS attacks. The basic idea is to
analyze patterns in network traffic through flow level statistics.



As another example, in IPvest [29], the authors also tried
to identify the number of nodes behind a NAT and cluster
their traffic based on the patterns. The system will first use
the features such as time and duration, traffic direction and
amount, and http-cookies to label the flows. They then build
a DGA (dynamic grid algorithm) to discover the number of
nodes. Specifically, the time and OS related features are used
jointly to figure out the number of devices. They then use the
Gaussian mixture modeling (GMM) and Ward’s agglomerative
algorithm (Ward) to accomplish the traffic flow clustering.

From the discussion, we can see that the ML algorithms
need to have access to a large volume of data from the node
groups for classification and clustering. In our application
scenarios, through controlling the number of testing traffic to
individual testers, we can reduce the machine learning output
accuracy on the node identification and traffic clustering. At
the same time, since all the testing traffic is carefully crafted
by the customer, it can use a different pattern from that of its
normal traffic to better hide the connections.

V. EVALUATION OF THE PROPOSED APPROACHES

In the previous sections, we have introduced the mecha-
nisms to protect the secrecy of the network security config-
uration at the customer from the testers. Since the MSSP is
helping the customer to secure the network, we do not need
to protect the information from it. However, we still do not
want the MSSP to differentiate testing packets for real security
selectors from those for the fake ones since the MSSP can treat
the packets differently to pass the verification.

In this part we will evaluate the proposed approaches.
There are multiple aspects from which we can investigate the
impacts of the approaches on the network performance, cost
of testing, information collection and derivation at testers, and
the effectiveness of the approaches. Below we will first present
the evaluation setups, and then the details of the results.

A. Experiment Settings

During the generation of the network testing traffic, a part
of the packets will be generated based on the real selectors,
while the remaining parts of the testing packets are built upon
fake selectors. Here we assume that when we construct the
packets for real selectors, the selectors are picked based on a
uniform distribution. In this way, we can prevent the MSSP
from predicting which selectors have higher probability to be
verified.

For the test of fake selectors, we will consider two scenarios.
In the first scenario, the customer will dynamically generate
the group of fake selectors and insert them into the database
of the MSSP. It will then construct testing traffic based on
these dynamically generated rules. Since these selectors are
generated to mislead the testers, they will be removed from
the database after usage. At the same time, since the fake
selectors are dynamically generated when they are needed,
the network security configuration represented by the rules
demonstrate an ad hoc format. In other words, the fake
selectors and their testing packets may contain conflicting

information. For example, when a tester cross compares two
sets of testing packets, it may find that the customer is adopting
two conflicting decisions on the same URL, which could lead
to the identification of fake selectors.

For the second scenario, the customer will adopt the deep
fake policies. Specifically, the customer will construct a group
of selectors based on a pre-generated fake network topology
and its security configuration. From an external party’s point of
view, it seems that this component of network actually exists
and the security rules are aligned to the network topology
and functionality. It will become much more difficult for the
testers to identify the fake selectors even when they pool the
testing traffic at multiple testers together. The cost of the deep
fake, however, includes the generation and maintenance of the
network topology and its configuration, and the longer stays of
the rules in the database. The testing traffic for the exact match
and range based selectors upon the fake topology needs to pass
through NAT VM to prevent the MSSP from identifying the
testers.

B. Storage and Processing Overhead

The extra delay of the proposed approaches consists of
two parts. In the first part, the NAT VM needs to compare
the input and output packets with the rules to determine
whether or not a change to the packet header is needed.
The delay of this effort heavily depends on the layer of
hardware and software in which such search and replacement
is implemented. For example, the efforts in [30] show that
if the operations are conducted in cache, it needs tens of
microseconds to accomplish the tasks. Since our NAT VM
usually does not need a large size to store the rules, we expect
the similar length of delay.

The second source of extra delay is the increased database
size at the MSSP. There have been extensive research on the
performance of the firewalls and its relationship to the rule
set size. For example, in [31], experiments show that with
proper decomposition and composition, even when the rule
set size increases for about 40 times, the delay will increase
to two times. Therefore, we do not worry too much about the
increased processing delay.

The other overhead we need to consider is the increased
storage overhead since we introduce fake rules into the MSSP
database. Such increase is linear to the number of fake rules
that the customer generates. One thing we do not have space
to explore extensively in this paper, is the change of the rule
database internal structure caused by the insertion and deletion
of fake rules. The previous research [31] shows that such re-
organization could take multiple seconds before the structure
becomes stable again. Future research can be conducted to
evaluate the overhead in this aspect.

C. Aggregated Derivation of the Real Selectors

In this part, we will discuss the relationship between the
derivation of the real selectors and the amount of testing
traffic that is generated and distributed by the customer.
First, we would like to emphasize that if the testers operate



independently, the customer can always deliver the testing
packets for the same set of rules to the same node. Therefore,
a tester can only learn from that group of packets. However,
if multiple testers can put their knowledge together, they can
learn from a much larger set, and identify the real selectors
from different features such as the frequency that they are
verified. In this way, they can use these selectors as targets of
future attacks.

To illustrate the procedure, we conduct some simulation and
investigate the aggregated derivation by the testers. Here we
use the test frequency of different rules as an indicator. In
the first simulation, we mimic the first scenario described in
Section V.A. We assume that there are 100 real selectors and
800 fake selectors (in which the fake ones are about one degree
of magnitude larger than the real ones). We also assume that
the customer will conduct 100 times verification. For each
verification it will choose 10 real selectors, and 5 or 20 fake
selectors. Although in real situations we will choose as many
testers as possible to increase the difficulty of information
aggregation by them, here we assume that some parties will
get access to all of the testing traffic. Below we illustrate the
number of times that each rule is tested.
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Fig. 5. Cumulative access rate based heat map: random choice of
fake selectors.

Figure 5 shows the simulation results as a heap map. Note
that we have 900 selectors altogether (30 x 30), and the first
100 are real ones (first 3.3 rows). In the left side, twice as many
real selectors as the fake ones are chosen by the customer in
each round of verification. The heat map shows the number of
times that each rule is selected: the darker is the green color,
the more times it is chosen. On the right side of the figure,
the meaning of the color is the same, but in each round twice
as many fake selectors as the real ones are chosen.

Based on the illustration, we can see that since the fake
selectors have a much larger size and the chosen procedure is
random, the real selectors have a much higher probability to
be tested. If the testers aggregate their information, they can
soon differentiate the fake ones from the real ones.

In the second simulation scenario, we make some adjust-
ment. First, instead of generating fake selectors randomly,
the customer will construct a set of fake selectors based on
a pre-generated fake network topology, as we described in
Section V.A. Therefore, the fake rules are also stable and
will not contain conflicting information. Second, because of

the complexity to construct and maintain the fake network
topology, we will have only 300 fake selectors. Therefore, we
will have a 20 x 20 matrix and the top 25% represent the real
rules.

The simulation results are shown in Figure 6. Note that the
first five rows contain the real selectors. Since the total number
of selectors is much smaller in this scenario, the grids are
larger. On the lest side, twice as many real selectors as the fake
ones are chosen by the customer in each round of verification.
On the right side, three times as many fake selectors as the
real ones are chosen in each round of verification. Since the
number of fake selectors is three times of the real ones, in the
right side figure we cannot tell any difference only based on
access frequency. Advanced mechanisms must be adopted by
the testers to identify the real selectors.

When we compare the results in Figures 5 and 6, we can
see that if the customer wants to prevent a tester from learning
its network security configuration from the testing traffic only
through the test frequency, it must control the sample rate
of the selectors. At the same time, deep fake through the
generation of a stable yet deceptive network topology and
corresponding selectors will achieve muxh better protection
to information secrecy.
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Fig. 6. Cumulative access rate based heat map: pre-generated fake
network infrastructure.

D. Cost of the Protection

In [6], the authors have analyzed a model for the customer
to achieve a balance between the coverage of verification of
the selectors and the total cost. When we start to introduce
fake selectors and testing traffic into the approach, the total
cost will also be impacted. The impacts can be categorized
as follows. First, although in [6] the authors adopt a linear
cost model with the number of testing packets, in real life
the testers could adopt a non-linear price, especially when
it is getting close to the testing capacity. It will introduce
more complicated constraints into the solution space and incur
higher computation overhead.

The second impact is on the coverage of the real selectors
that are tested. To control the overall test cost, the cus-
tomer needs to control the number of testing packets. But
the introduction of fake selectors will reduce the portion of
real selectors that are tested. In this paper, we use only the
frequency of access as the evaluator to differentiate the real



selectors from the fake ones. Since the testers could adopt
more complicated ML algorithms to achieve the goal, the
customer must adapt the selection procedure to protect the
information secrecy.

VI. FUTURE EXTENSIONS AND CONCLUSION
A. Future Extension

In this paper, we introduce the problem of network security
policy leakage caused by the outsourced testing. We use fake
selectors and NAT VM to hide the real information. For the
next steps, we plan to investigate from the following aspects.

Moving Target for Privacy Protection

Part of the reason that information leakage through the test-
ing traffic is caused by the static network security configuration
of the customer. If moving target defense mechanisms are
adopted, the internal topology of the customer network will
continue to change. Therefore, the information that the testers
learned from the testing traffic will expire after each round of
changes. The challenges, however, include the determination
of the change frequency, maintenance of existing connections,
and re-configuration of network devices and MSSP policies.
The frequency of topology changes will also impact the
frequency of outsourced testing.

Unified Cost-Coverage-Privacy Model

For the outsourced network testing, we have investigated
the overall architecture, cost function, and incentivization of
the testers through separate efforts. Our next step is to build a
unified cost-coverage-privacy model for the outsourced testing
efforts. The three factors will impact each other and it may
create different choice criteria based on the needs of the
customers. The model will also motivate the MSSP to better
serve the security service level agreement (SSLA).

B. Conclusion

In this paper, we study the protection of the network security
configuaration secrecy under the assumtion that the customer
depends on outsourced network testing to verify the execution
of the security policies. We first show the importance of
such protection since the disclosed information could be used
as network probing results and enable subsequent attacks.
Based on the types of security selectors, we propose different
protection approaches. For the Regex based selectors, we
propose to use fake selectors to protect their secrecy. For the
exact match and range based selectors, because of their unique
features, we propose to use NAT VM to hide the accurate
information from the testers. We conduct some simulation to
investigate the advantages of the approaches. We also discuss
the challenges we face.

Security service level agreement, as a special type of cloud
services, is usually difficult to verify its execution. However,
with the continuous development of vertical segmentation in
technology, new corporations will depend more on the out-
sourced security service providers. Therefore, the verification
of the implementation of the security policies will provide
confidence in end customers on the safety and reliability of

their business. The research direction deserves more efforts
from a larger research population.
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