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Abstract

Underlying many structured light systems, especially
those based on laser scanning, is a simple vision task:
tracking a light spot. To accomplish this, scanners use con-
ventional CMOS sensors to capture, transmit, and process
millions of pixel measurements. This approach, while capa-
ble of achieving high-fidelity 3D scans, is wasteful in terms
of (often scarce) sensing and computational resources. We
present a structured light system based on position sens-
ing diodes (PSDs), an unconventional sensing modality that
directly measures the centroid of the spatial distribution
of incident light, thus enabling high-resolution 3D laser
scanning with a minimal amount of sensor data. We de-
velop theory and computational algorithms for PSD-based
structured light under a variety of light transport effects.
We demonstrate the benefits of the proposed techniques us-
ing a hardware prototype on several real-world scenes, in-
cluding optically-challenging objects with long-range inter-
reflections and scattering.

1. Computational Position Sensors

Traditional photodetectors measure the intensity of light
incident on them. To measure the spatial intensity distribu-
tion of a scene (i.e. an image), a pixelated array of detec-
tors such as a CMOS sensor is used, which requires sophis-
ticated readout mechanisms and invariably results in large
bandwidth, compute, and memory requirements. There are
several downstream vision applications that do not require
the entire image, instead relying on some aggregate statis-
tics (e.g. histograms [13, 5]) of the intensity distribution.
For such applications, it is often desirable to create com-
pact, memory- and compute-efficient summary statistics of
the images. This raises a natural question: Why capture
high-resolution images, only to compress it later? Can we
design imaging modalities that directly capture compact and
accurate statistics of the scene’s intensity distribution?

We consider position sensing diodes (PSDs), a sensing
modality that can directly characterize the spatial distribu-
tion of incident light. A PSD, in addition to measuring the
amount of incident flux, also computes the centroid of the
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Figure 1: Structured light 3D scanning using a position
sensing diode. Computational position sensors can enable
high-speed, high-resolution 3D imaging at low power and
compute budgets. However, global illumination effects such
as interreflections in a V-groove significantly bias the mea-
surements, as seen in the poor surface reconstruction in the
middle. We propose methods that are robust to such effects,
enabling the high-fidelity reconstruction on the right.

image formed on it. While the centroid is a rather coarse
description of the spatial intensity distribution, there are nu-
merous applications where this is sufficient. For example,
consider a 3D scanning system where a laser spot scans an
object. In conventional scanning, the camera captures an
image for each spot location, often resulting in prohibitively
large amounts of data. In an ideal scenario, where the im-
age consists of a single illuminated spot, the centroid mea-
sured by the PSD tracks the light spot location on the sensor,
which can be used to establish projector-camera correspon-
dences and obtain 3D scans via triangulation at high-speeds,
while maintaining low power and compute budgets.

Position sensing and global illumination. Most real-
world scenes often have global illumination effects such as
interreflections and subsurface scattering. As a result, even
a single laser beam can create an intensity image consisting
of a large number of illuminated spots. This would bias the
centroid from the “direct” location of the laser spot, which
in turn will distort the estimated 3D shape resulting in large,
systematic errors. An example with a V-groove is shown in
Fig. 1. Such effects could limit the scope of this otherwise
powerful technology.

This paper proposes a technique for 3D scanning with
PSDs that is robust to global illumination. Our primary
contribution is a computational imaging design that reduces



the structured biases induced by global illumination on the
centroid measurements. Our proposed method accurately
recovers shape in scenes with strong global illumination ef-
fects, such as the V-groove in Fig. 1. We develop theoret-
ical foundations for PSD-based structured light (SL) imag-
ing under a wide range of global illumination effects and
develop computationally lightweight, practical techniques
that mitigate global illumination effects in PSD-based SL.

Contributions. This paper develops theory and algo-
rithms for a novel 3D scanning approach based on PSDs.

• 3D scanning with PSDs. We present a SL system for 3D
scanning with PSDs and analyze its performance under
noise and defocus.

• Handling global light. Under global effects such as in-
terreflections, the centroid measurements differ signifi-
cantly from the illuminated (direct) point. To resolve this,
we propose a direct-global separation method for PSDs
that operates without having access to images captured
by conventional cameras. This proposed approach ex-
tends prior work by Nayar et al. [28] using duality of light
transport and a robust estimation unique to our setup.

• Hardware prototype. We design and implement a proto-
type of the proposed scanner and demonstrate its perfor-
mance across different scenes and operating modes.

The software and data are available on our project page [21].
A PSD-based 3D scanning system does not have pixela-

tion at either the sensor or the projector (which is typically
implemented using 2D galvos). The resolution limits for the
proposed approach are atypical in that they are determined
by the size of the laser spot and its intensity. The system
also lacks the constraints imposed by readout in traditional
image sensors and simultaneously overcomes the fill factor
issues endemic to asynchronous readout sensors. Further-
more, due to lack of pixelation, defocus at the sensor does
not adversely affect the resulting 3D scans.

Limitations. The noise and errors in centroid measure-
ments obtained with a PSD are affected significantly by the
total incident flux. Hence, in its current implementation, it
is not conducive to scanning large scenes where light falloff
due to 1/r2-losses can be significant. Furthermore, the ac-
quisition time for a single 3D scan is limited by the analog-
to-digital converter’s (ADC) sampling rate and the PSD am-
plifier’s bandwidth. While these bandwidths may be pushed
to hundreds of MHz or a few GHz, our lab prototype has
modest specifications, resulting in long scan times.

2. Related Work
Position sensing diodes. The lateral photoeffect, the phe-
nomenon that enables an analog computation of the image

centroid, was first discovered in 1930 by Schottky. Sub-
sequent work [37] provided a theoretical explanation [23]
and analyzed various PSD configurations [38]. Research in
PSDs now includes applications spanning microscopic di-
mensioning [33], object tracking [2, 35, 32], ego-motion
sensing [20], and closed-loop beam steering [34]. Ide-
sawa proposed a triangulation-based range estimation sys-
tems using PSDs [15]. This method assumed only direct
reflection, and was designed to measure the depth of a sin-
gle point. Our goal is to develop a practical 3D scanning
system that can operate under real-world conditions.

Sparse event-driven sensors. Event cameras [22] sup-
port high-speed, sparse, and asynchronous data readout,
which has been used for high-speed SL 3D imaging sys-
tems [24, 26]. The proposed PSD SL approach shares the
same motivation in reducing the data bandwidth require-
ment, while achieving high-fidelity 3D scans. When com-
pared to PSDs, event sensors have high circuit complexity
for each pixel, thus lowering the fill-factor and low-light
sensitivity, and limiting the overall spatial resolution.

Global illumination. Active 3D imaging techniques such
as SL and time-of-flight (ToF) largely assume only direct
reflection, i.e., scene points receiving illumination only di-
rectly from the light source. This assumption is violated in
the presence of global illumination effects [28], which can
result in large, systematic errors in the recovered 3D ge-
ometry [6, 11, 12, 9, 10, 8, 29, 1, 31, 4, 7, 16, 30]. There
is an extensive body of work devoted to developing SL 3D
imaging techniques that are robust to global illumination ef-
fects. This includes methods based on projected pattern de-
sign [3, 25, 9, 11, 8, 4], as well as hardware approaches that
use a digital micromirror device [31] or a camera’s rolling
shutter [29] synchronized with a projector to optically block
a large portion of global light.

3. 3D Scanning with Position Sensing Diodes

For simplicity in exposition, we consider only an ideal
PSD whose lateral photocurrents are linear with the light
spot position; we refer the interested reader to [38] for a
detailed analysis of common diode geometries.

3.1. Measurement Model Underlying PSDs

A PSD can be modelled as a traditional photodiode that
is bonded on top of a resistor. Figure 2(a) shows a schematic
of a 1D PSD of length Lx mm, where a laser spot is incident
at a distance ℓmm from its left terminal. The equivalent cir-
cuit of this system is shown in Fig. 2(b). The photocurrents
measured at the two terminals are given by the current di-
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Figure 2: A schematic of a PSD and its equivalent circuit.

vider model [17, 18]:

Ix− =
Lx − ℓ

Lx
i(ℓ), Ix+ =

ℓ

Lx
i(ℓ), (1)

where i(ℓ) is a current that models the stream of photoelec-
trons produced by the incident light. We can now estimate
the location of the incident spot using the measurements as:

ℓ̂ = Lx
Ix+

Ix+ + Ix−
. (2)

When multiple light sources are incident on the PSD—
say, an image is formed on the diode—the model in
Fig. 2(b) includes multiple current sources along the resis-
tor. The photocurrents follow from linear superposition:

Ix− =
1

Lx

∫
(Lx − ℓ)i(ℓ)dℓ, (3)

Ix+ =
1

Lx

∫
ℓ i(ℓ)dℓ, (4)

and the expression for the spot location in (2) evaluates to:

ℓ̂ =

∫
ℓ i(ℓ)dℓ∫
i(ℓ)dℓ

. (5)

Since i(ℓ), the strength of the current source at the loca-
tion ℓ, is linear in the incident flux, ℓ̂ in (5) evaluates to the
weighted centroid of the image formed on the PSD.

Extension to 2D PSDs. The expressions above extend
mutatis mutandis to the 2D scenario. In practice, a tran-
simpedance amplifier converts the photocurrents at each ter-
minal to voltages. After some simple analog filtering that
performs appropriate subtractions and additions on the ter-
minal voltages, we can access the following voltages:



Vx
Vy
Vs


 = G

∫∫

x,y



x
y
1


 i(x, y) dx dy, (6)

where G is a constant. Here, Vs is proportional to the total
light incident on the diode, the only measurement a tradi-
tional photodiode provides. Hence, the weighted centroids

0 50 100 150
Laser power (mW)

0

50

C
en

tro
id

 R
M

SE
(7

m
)

Figure 3: Centroid resolution and incident light power.
Here, a laser with varying power is projected on a white-
board approximately 30cm using the prototype described in
Sec. 5.1. At 150mW, the centroid resolution attains 5µm.

(Cx, Cy) are estimated as:

Cx = Lx
Vx
Vs
, Cy = Ly

Vy
Vs
, (7)

where Lx and Ly are the dimensions of the PSD.

3.2. Properties of Estimated Centroids

Noise modeling. In the presence of read noise, we can
characterize Vx, Vy , and Vs as random variables. Using ba-
sic statistical analysis, which we present in the supplemen-
tal material, we can approximate the variance of Cx. If we
denote the noise-free centroid as µx, then the measured cen-
troid variance along the x dimension can be estimated by:

σ2

E(Vs)2
(
µ2
x + L2

x

)
, (8)

where σ2 is the variance of the read noise on each channel
(Vx, Vs), and E(Vs) is the expected value of Vs. The cen-
troid variance along the y dimension follows symmetrically.

We can use the (inverse of the) variance to character-
ize the resolution of the centroid estimate. This suggests
that the resolution is position-dependent; refer to the sup-
plemental material for empirical evidence supporting this.
This analysis of position-dependent resolution is derived
from signal-independent noise on the measurement chan-
nels and differs from prior work that examines the diode
geometry [38] or a phase-based positioning method [27],

Dependence on incident flux. Figure 3 empirically mea-
sures the centroid resolution with varying incident flux,
which depends on the laser power and object albedo. This
is in agreement with (8), which suggests that the standard
deviation of the centroid is inversely proportional to Vs.

Defocus invariance. The estimated centroids are largely
invariant to defocus blur. Specifically, let I(x, y) be the im-
age formed on the PSD surface and b(x, y) be a spatially-
invariant point spread function. The centroid of the blurred
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Figure 4: 3D scanning using PSDs. On the left, a laser projector scans a light spot across the scene. We synchronously
measure the projector angles and PSD voltages, producing light spot positions (centroids) at each time interval. These
measurements are sufficient to recover the dual image (an image from the projector’s view) and the primal image (an image
from the PSD’s view) by resampling the measurements on a discrete grid. At each projector location, we compute the scene
depth by triangulating the projector and PSD rays to obtain a point cloud and complete surface reconstruction.

image (I ∗ b)(x, y), on a sufficiently large sensor is:
[
C ′

x

C ′
y

]
=

[
Cx + Cb

x

Cy + Cb
y

]
, (9)

where (Cb
x, C

b
y) is the centroid of the blur kernel. Hence, the

centroid is unaffected by any symmetric blur kernel, which
is often the case with defocus blur. This simple result, how-
ever, breaks down near the boundary of the sensor as the de-
focus kernel is clipped, and that resulting asymmetry causes
biased centroids.

3.3. 3D Scanning using PSDs

To obtain 3D scans, we envision a setup with a point-
scanning projector, a 2D galvo that scans a collimated laser
beam, and a PSD with a lens focused on the scene. The
2D galvo continuously steers the beam over its field-of-
view, while the PSD reports a triplet of voltage values as
described in (6). We now have a time-synchronized pentu-
plet set of measurements:

{θp(t), ψp(t), Vx(t), Vy(t), Vs(t)}, (10)

where {θp(t), ψp(t)} describe the 2D angles scanned
by the galvo, in the projector’s reference, and
{Vx(t), Vy(t), Vs(t)} are the analog voltages measured by
the PSD. Using (7), we can compute the set of associated
centroids {Cx(t), Cy(t)} as well.

Primal and dual images. One way to interpret the mea-
surements from our device is via the mindset of dual pho-
tography [36]. Consider a laser scanning system and a tradi-
tional photodiode, where we measure only the incident flux

for each projected ray. We can create the so-called “dual
image” by associating the intensity/flux measured with the
corresponding projector ray; this dual image is a view of the
scene from the projector’s view, illuminated from the PSD’s
location. Similar dual images can be estimated for the cen-
troids as well, where we visualize the centroids in the pro-
jector’s viewpoint. This remapping of measurements in the
projector’s view is useful both as a visualization tool and for
subsequent processing techniques that we will develop.

Since we have access to the centroid of the light inten-
sity on the sensor, we can also create a “primal image” of
the scene observed from the viewpoint of the PSD by asso-
ciating the measured flux with the centroid. Figure 4 shows
the processing pipeline including the primal-dual image sets
for a simple scene. Note that these stereo images provide
sufficient information to compute depth. However, unlike
traditional stereo where correspondences need to be esti-
mated, our system outputs corresponding pairs of projector
and sensor locations.

Obtaining 3D scans. Our measurement set gives us
corresponding pairs of projector and sensor locations in
{θp(t), ψp(t)} and {Cx(t), Cy(t)}, respectively. With
knowledge of the projector and camera intrinsics and extrin-
sics, we can obtain a set of 3D points—one for each t—by
triangulating the pre-images of the respective points. Since
the centroid estimates are noisier than the projector rays,
we enforce the epipolar constraint on the centroids using
the known PSD-projector geometry prior to triangulation.
The depth map is then smoothed in the projector viewpoint
using a bilateral filter. Finally, we obtain surface normals
on the estimated point cloud using simple local plane fitting



techniques and generate a surface using screened Poisson
surface reconstruction [19].

The effect of global illumination. A complicating factor
in obtaining reliable 3D scans with PSDs is the presence of
global illumination. While the projector directly illuminates
only a single scene point, that point can indirectly illuminate
other scene points. The image formed on the PSD, hence,
is no longer a single spot but an extended image depending
on the specific global light transport effect.

Figure 5 illustrates the effect of global light on the mea-
surements and the final 3D scans. For example, convex
opaque objects have little global effects, which results in
unbiased centroids; even in the presence of sensor defocus,
our scans remain fairly reliable due to properties discussed
in Sec. 3.2. Similarly, short-range global effects like sub-
surface scattering generally do not bias the centroid mea-
surements, especially for dense scatterers like wax; here,
while the directly illuminated spot does spread out, the
spread is often symmetric except near geometric edges,
leading to little change in the centroids. Long-range global
effects, however, can significantly bias the centroid mea-
surements. This is easily seen in scenes with strong inter-
reflections, such as a V-groove. Here, the presence of global
illumination produces significant errors in an object’s esti-
mated shape.

4. Handling Global Illumination
To reduce the effects of global illumination, we design a

computational imaging system around the PSD.

Imaging setup. We propose a novel imaging system that
collocates an amplitude spatial light modulator (SLM) with
the PSD. Figure 6 illustrates the imaging setup. The scene
is focused on to the SLM using an imaging lens through
a polarizing beamsplitter, which linearly polarizes the light.
The SLM rotates the polarization state; in a binary operating
mode, the pixels selected as “white” on the SLM change
their polarization state by 90◦; such light reflects off the
beamsplitter towards the sensors. We use two lenses, first to
collimate the light from the SLM, and the second to focus it
on the PSD. A helper camera is introduced between the two
lenses via a non-polarizing beamsplitter; the lens in front of
this camera is focused at infinity, ensuring that it observes
the SLM plane. To maximize light levels on the PSD, we
use a 90:10 beamsplitter.

Suppose we denote the amplitude mask introduced by
the SLM as a binary image m(x, y); then the measurement
model of (6) is changed to:


Vx
Vy
Vs


 = G

∫∫

x,y



x
y
1


 i(x, y)m(x, y) dx dy. (11)
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Figure 5: Global illumination significantly affects the
surface reconstructions. The second row shows the scene
from a helper camera view to illustrate such global effects.
In the first two columns, the bust and candle are faith-
fully reconstructed, despite the candle’s subsurface scatter-
ing as that effect does not bias the measurements. How-
ever, long-range interreflections between the playing cards
significantly bias the measurements, causing an erroneous
reconstruction.
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Figure 6: Optical schematic. The main imaging lens fo-
cuses the scene onto the SLM. The PSD images the masked
scene on the SLM. A helper camera views the scene for cal-
ibration and ground truth depth experiments.

As we will see next, this spatial blocking of light allows
us to remove the global illumination effects by capturing
multiple sets of measurements under different masks.

Connections to prior work. The optical setup above can
be interpreted as the optical dual of Nayar et al. [28], where



instead of projecting high-frequency patterns, we introduce
a high-frequency spatial mask on the sensor. However, there
are significant differences in the additional centroid mea-
surements that the PSD provides; as we will see next, we
can design a noise-robust technique that avoids the tradi-
tional min-max processing of [28].

Direct-global separation. Our direct global separation
procedure repeatedly raster scans the object, cycling
through a set of mask patterns on the SLM. Suppose that we
displayM masks, denoted {mk(x, y)}Mk=1, on the SLM; for
each mask, we obtain the pentuplet of measurements from
the devices as in (10). We can then construct a set of M
dual images, denoted as {V k

x , V
k
y , V

k
s }, corresponding to

the PSD measurements at each point on the projector plane.
This dual image stack is visualized in Fig. 7. Note that each
dual image is constructed by resampling the PSD measure-
ments on a discrete grid in the projector’s view. This dis-
crete grid defines the “projector pixels” to which our subse-
quent analysis will refer.

One approach to perform direct-global separation on
these images is to use the processing framework suggested
in Nayar et al. [28], which we refer to as the min-max tech-
nique. Specifically, if the global light transport is only com-
prised of low-frequency effects, then the global component
measured at a projector pixel is roughly the same, regardless
of the mask (provided the mask is comprised of high fre-
quency patterns). The measured global component in this
case would be approximately half the amount of global light
we would receive if we did not mask any pixels. Hence, the
minimum at each pixel across the stack of M images pro-
vides this half-global component, and the maximum across
the stack provides the sum of the direct and half-global
component. This strategy can be applied to our measure-
ments as well. However, it discards all but two of the cap-
tured measurements at each pixel. As we see next, we can
exploit the specifics of our setup to use the entire stack of
M measurements to extract the centroid at a higher fidelity.

Robust centroid estimation. Consider now the intensity
V k
s [m,n] measured on the PSD that is associated with a

projector pixel [m,n] in the dual image and the k-th mask
pattern on the SLM. We can write

V k
s [m,n] = αk[m,n]d[m,n] + g[m,n], (12)

where d[m,n] and g[m,n] are the direct and half-global
intensity components associated with this projector pixel.
The term αk[m,n] is the attenuation of the direct compo-
nent due to the k-th mask, and since the directly illumi-
nated spot can be partially blocked by the SLM, we assume
αk[m,n] ∈ [0, 1]. Note that, as with Nayar et al. [28], the
half-global term is assumed to be independent of the spe-
cific pattern shown on the SLM. Since we will process each
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Figure 7: Robust centroid estimation. Our method dis-
plays masks on the SLM (a), captures the corresponding
PSD measurements (Vs dual image shown in (b)), and per-
forms a linear regression technique to estimate the centroid
of the directly illuminated spot. In (c), we plot the pairwise
differences of real data using Eq. (15) to illustrate the linear
relationship (see text for details).

dual image pixel independently, we drop the dependence on
[m,n] in the following derivation.

Since the direct component corresponds to a tightly fo-
cused spot on the PSD—ideally, a delta function at a lo-
cation (Cx, Cy)—we can express the measurements at the
dual pixel [m,n] as



V k
x

V k
y

V k
s


 =



Cx

Cy

1


αkd+



gx
gy
g


 . (13)

Here, gx is the x-weighted global intensity, given as
∫∫

x,y

x g(x, y)mk(x, y) dx dy. (14)

The smoothness arguments made earlier for global illumi-
nation allows us to approximate this integral with an inten-
sity gx that is independent of the mask. Now consider a pair
of difference measurements, V k

x − V j
x and V k

s − V j
s ; from

(13), they are related as

V k
x − V j

x = Cx(V
k
s − V j

s ). (15)

This suggests that the we can directly estimate the centroid
of the direct component by applying linear regression tech-
niques to these pairwise differences. Critically, this allows
us to use all the measurements made by the PSD. Applying
this across all projector pixels, we can estimate the centroids
in the absence of global illumination. We visualize the as-
sociated measurements in Fig. 7.

Effectiveness of global suppression. We implemented a
physically-accurate two-bounce renderer and simulated the
setup in Fig. 6 for two scenes: a V-Groove and a concave
bowl. Figure 8 shows relative performance of various meth-
ods on both scenes, and Fig. 9 characterizes performance as



-100 -50 0 50
x in [mm]

150

200

250

300

350

z 
in

 [m
m

]

-100 0 100
x in [mm]

200

250

300

350

z 
in

 [m
m

]

PSD
Min-Max
Proposed
Ground Truth

Figure 8: Simulation results demonstrating global illu-
mination suppression. (left) a V-Groove, and (right) a
concave bowl. We compare reconstuction without global
suppression (denoted as “PSD”), Nayar et al. global sup-
pression (denoted as “Min-Max”), and the proposed work
that estimates centroids robustly. The plots show a 2D cross
section of 3D reconstuctions. There are significant biases
in the reconstructed shapes in the absence of global sup-
pression. Both the Min-Max approach and the proposed
approach suppress these biases; however, as seen in Fig. 9,
their performance under noise is significantly different.
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Figure 9: Error as a function as number of SLM pat-
terns. Simulation-based performance evaluation as a func-
tion of the number of SLM mask patterns used, characteriz-
ing 2D centroid localization of the laser spot (left) and the
3D triangulation error (right). The min-max global suppres-
sion approach, adapted from Nayar et al., which relies only
on information on maximum and minimum intensity mea-
surements does not significantly benefit from an increase in
the number of patterns. In contrast, the robust centroid es-
timation significantly improves with increasing number of
patterns. For comparison, we provide the reconstruction er-
ror associated with a direct-only reconstruction.

a function of the number of patterns used for global suppres-
sion. For Nayar et al. and the proposed technique, we used
random binary patterns for the mask. Since the laser spot
on the scene had a finite radius corresponding to ∼ 8 pixels
on the SLM, we also performed a parameter sweep over the
size of the binary patches and picked the best performing
patch size for each technique in each trial.

PSD
Mirror

Galvanometer

Laser

Helper
Camera

SLM

Component Part Number

PSD Thorlabs PDP90a
Helper camera Point Grey FL3-U3-13E4C-C
Spatial Light Modulator Holoeye HES6001
2D Galvonometer Thorlabs GVS002
Laser Coherent Sapphire LP 532-150
ADC NI USB-6343

Figure 10: Component layout of our prototype.

These simulation results provide two clear conclusions.
First, we observe that in the absence of global suppression,
the recovered depth is grossly inaccurate. Second, Nayar’s
method does not benefit as much as the proposed approach
from increasing the number of measurements; this can be
attributed to their reliance on just minimum and maximum
statistics, which ignores a large majority of captured data.

5. Experimental Results
We now validate the performance of our technique on a

lab prototype.

5.1. Lab Prototype

We describe the hardware prototype and calibration pro-
cedure. Our system depicted in Figs. 6 and 10 uses a
10 × 10mm PSD. The PSD observes the scene through a
24mm lens. The helper camera observes the scene from
the PSD’s viewpoint and is only used for initial calibra-
tion and obtaining ground truth depth. The projector is a
165mW 532nm laser into a 2D mirror galvanometer. The
ADC measures the system’s five measurements in Eq. (10)
and controls the galvo mirrors at 15KHz.

To calibrate the system, we obtain 3D-2D point corre-
spondences by imaging a 10 × 10 point array on a planar
checkerboard at 4 different depths. The calibrated helper
camera provides the point array locations in world coor-
dinates. Following the camera calibration procedure de-
scribed in [14], we initially estimate the intrinsic and ex-
trinsic parameters via RANSAC with the direct linear trans-
form. We refine this estimate and include a radial distor-
tion model via Levenberg-Maraquardt optimization. The fi-
nal PSD calibrations attains 14.1µm 2D reprojection RMSE
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Figure 11: Effectiveness of global illumination suppres-
sion. A line scan of two scenes with strong interreflections
demonstrates our method’s robustness to global illumina-
tion. Each object’s concave shape creates large, systemic
centroid errors, resulting in erroneous depth estimates (red).
In both scenes, our proposed method (yellow) closely tracks
the ground-truth depth obtained using the helper camera.

and 98.1µm 3D RMSE over the calibration inliers (n = 258
point correspondences).

To obtain robustness to ambient light, we capture a single
measurement without any illuminated laser spot and sub-
tract it from subsequent measurements. We could further
suppress ambient light using a narrow band-pass filter to
only pass the laser illumination.

Effectiveness of global illumination suppression on ex-
perimental data. Figure 11 showcases the effectiveness
of the proposed direct-global separation scheme on two ob-
jects with strong interreflections using the lab prototype de-
scribed in Sec. 5.1. Here we scan a line across two objects:
a V-groove and concave object. We compare the result-
ing depth slices with the ground truth depth obtained us-
ing a helper camera. Our proposed method (yellow) closely
tracks the ground truth depth, while the naive centroid esti-
mates (red) are severely biased due to interreflections.

To further quantify the method’s effectiveness, we fit two
planes to the V-groove surface in Fig. 1. The reconstruction
using our direct-global separation achieves a 320µm plane
fit root-mean-square error (RMSE) with an angle θ = 89◦

between the two cards (ground truth: 92◦). By contrast,
the surface reconstruction without global illumination sup-
pression attains a 1598µm plane fit RMSE, with an angle
θ = 113◦.

Surface reconstructions. Figure 12 presents results us-
ing our proposed direct-global separation method on scenes
with strong long-range global illumination. Each scene is
captured under different masks on the SLM, and we com-
pare the reconstructions using both the min-max and regres-
sion technique to estimate the centroid of the directly illu-
minated light spot. Our regression technique is less noisy
than the min-max technique.

Scan time. Our method to suppress global illumination
necessitates multiple captures. Each surface reconstruction
using the direct-global separation procedure uses 32 cap-
tures: 31 masks with checkerboards and random tiling pat-
terns, along with a single capture using an all-white mask.
With this approach, our direct-global separation captures
take approximately 10 minutes. For single raster scans
without direct-global separation, we perform a slower, 2
minute raster scan to improve robustness to noise.

The prototype’s imaging speed is constrained by engi-
neering limitations. While our system operates at 15KHz,
significantly higher bandwidth PSDs, transimpedance am-
plifiers, and ADCs would speed up the scanning. Alongside
this, replacing the 2D mirror galvanometer with a MEMS
laser projector is a natural extension for faster scans.

6. Conclusion and Discussion
This paper presents a new approach for SL 3D where we

use the position sensing capabilities of an unconventional
diode to obtain 3D scans. We present a theoretical treatment
of PSDs for SL applications along with a practical system
design that robustly scans scenes in the presence of global
illumination. The results in this work suggest that, for many
vision tasks, coarse spatial statistics suffice and, hence, the
use of unconventional sensors can provide a different set of
tradeoffs. Given this, we hope that this work renews interest
in PSDs and other non-traditional sensors in the computa-
tional imaging community.

Comparison with CMOS SL. It is expected that well-
established CMOS SL systems outperform our prototype as
they have enjoyed decades of sustained research and devel-
opment. However, we claim PSDs hold potential in imaging
regimes in which there is an inherent difficulty fabricating
high-resolution sensors. Two immediate examples are 3D
scanning in shortwave infrared, where high-resolution In-
GaAs sensors are extremely expensive, and SPAD arrays
for LIDAR, which require per-pixel timing circuits. In both
cases, a pixelated sensor does not scale well at higher reso-
lutions. Solutions built on PSDs could, in principle, provide
better tradeoffs in both instances.

The PSD’s other advantage over CMOS lies in its min-
imal readout. We postulate that the PSD’s minimal sen-
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Figure 12: Gallery of results. To reduce the effect of global illumination, we repeatedly raster scan the scene using different
high-frequency patterns on the SLM. This provides a corresponding set of dual images in (b) and (c). Observe how the
dual image is from the projector’s view as if the object were illuminated using a masked light source at the PSD. Surface
reconstructions without any global illumination suppression are shown in (d); note the significant errors in the object concav-
ities. The final two columns illustrate the improvements using min-max (e) and our more robust regression technique (f) to
suppress global illumination.

Table 1: Comparison with existing SL techniques. Read-
out cost for different SL systems capturing an n × n depth
map using an n × n pixel array. For our PSD system,
M denotes the number of SLM patterns. C0, C1, C2 are
application-specific constants, and note that C0 and M are
for robustness to global illumination.

SL System Readout Cost

CMOS point scanning n4

CMOS line scanning n3

CMOS gray codes C0 · n2 log n
Event-based line scanning C1 · n2
PSD C2 ·Mn2

sor readout (see Table 1) in combination with our proposed
global illumination suppression technique could render it a
more practical solution for ultra-high resolution scanning.
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Calvo, I. Bravo-Muñoz, A. Gardel-Vicente, G. Tsirigotis,
and J. Iglesias-Miguel. Indoor positioning system based on a
PSD detector, precise positioning of agents in motion using
AoA techniques. Sensors, 17(9), 2017. 2

[36] P. Sen, B. Chen, G. Garg, S. Marschner, M. Horowitz, M.
Levoy, and H. Lensch. Dual photography. ACM Transactions
on Graphics, 24(3):745–755, 2005. 4

[37] J. Wallmark. A new semiconductor photocell using lateral
photoeffect. Proceedings of the IRE, 45(4):474–483, 1957.
2

[38] H. Woltring. Single- and dual-axis lateral photodetectors of
rectangular shape. IEEE Transactions on Electron Devices,
22(8):581–590, 1975. 2, 3



Computational 3D Imaging with Position Sensors
Supplementary Material

Jeremy Klotz∗, Mohit Gupta†, Aswin C. Sankaranarayanan‡

Columbia University∗, University of Wisconsin–Madison†, Carnegie Mellon University‡

Abstract

We present supplementary analyses of our global illumi-
nation suppression technique in Sec. 1. We then detail the
centroid variance and present proofs of system invariants in
Sec. 2 and conclude with an implementation notes in Sec. 3.

1. Surface Reconstructions
We detail the method and results using the proposed

global illumination suppression technique.

1.1. Direct and Global Images

Figure 1 shows the direct and global images of three dif-
ferent scenes presented in the main paper. For each scene,
we follow the min-max procedure in [3] to decompose the
dual image stack into direct and global images. Specifically,
for each dual image pixel, we identify the SLM mask cor-
responding to the largest intensity value on the PSD. Along
with the capture under that mask’s complement, we com-
pute the direct and global images following the method de-
scribed in [3]. Despite the use of multiple SLM patterns,
this separation technique produces vertical artifacts in Fig. 1
(b) and (c). This observation motivates our robust separa-
tion technique detailed in the main paper that uses the entire
stack of measurements rather than a single pair to estimate
the image centroids.

Each global image highlights strong interreflections in
the object concavities that would otherwise bias the centroid
measurements if not properly handled. Specifically, the V-
groove interreflections are strongest at the center, the plastic
toy’s interreflections are strongest within the concavity, and
the skull shows strong global illumination within the eye
sockets.

1.2. Min-Max v. Regression Technique

Alongside these reconstructions, we also present line
scans of the V-groove and concave toy to compare the min-
max processing with our proposed regression technique for
suppressing global illumination. The line scans in Fig. 2 and
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Figure 1: Direct and global images of three different scenes.
Since our imaging setup corresponds to the optical dual of
Nayar et al. [3], the direct and global images in (b) and (c)
are seen from the projector’s view. Each direct and global
image is computed using the min-max technique. Note that
the images are scaled and gamma corrected for visualiza-
tion, and the global image is further scaled by 2× to in-
crease contrast.

Fig. 3 demonstrate the effectiveness of our regression-based
global illumination suppression method.

1.3. Scan Time Comparison

The results presented in the main paper using our global
illumination suppression method takes 10 minutes to scan.
By contrast, a single raster scan without global illumina-
tion suppression takes 2 minutes. To evaluate the difference
in surface reconstructions, Fig. 4 shows three different re-
constructions of the skull using various scanning times. In
Fig. 4 (a) and (b), we compare a single raster scan with the
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Figure 2: Depth slice of the V-groove comparing depth es-
timates using two methods to estimate the direct-only cen-
troid on the PSD. Our proposed robust separation method
(yellow) produces a smoother depth slice than the min-max
method (red).
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Figure 3: Depth slice of the concave toy comparing the
depth estimates. Similar to the V-groove depth slice above,
our global illumination suppression method improves the
depth estimates.

global illumination suppression method under same time
budget (2 minutes). In this case, the scan with global il-
lumination suppression is significantly noisier. In Fig. 4 (c),
we show the same object using global illumination suppres-
sion using a slower scan, which provides a higher quality
reconstruction.

In simpler scenes, a single raster scan is sufficient. Fig-
ure 5 shows surface reconstructions on opaque busts using
a single scan.

(b) Global illumination 
suppression

2 minutes, 32 scans

(c) Global illumination 
suppression

10 minutes, 32 scans

(a) Single raster scan
2 minutes, 1 scan

Figure 4: We compare a single, slow scan (a) with our
global illumination suppression method under the same
time budget (b) and an extended time budget (c). Note that
suppressing global illumination is necessary in this scene
since interreflections in the eye cavities bias the depth es-
timates. Since our global illumination suppression method
uses 32 raster scans, the faster raster scans produce a noisier
surface in (b). In (c), we scan the same object using global
illumination suppression with slower raster scans and ob-
serve a qualitative improvement in the surface.

Figure 5: In simple scenes without global illumination, a
single raster without global illumination suppression is suf-
ficient. Here we present various reconstructions of opaque
busts using a single 2-minute raster scan.

2. Details of PSD Analysis and Invariants

2.1. Centroid Variance Approximation

We consider the variance of the centroid measurement in
two separate cases. In case 1, Vx = 0 when the light spot
is at the center of the diode. This corresponds to the con-
figuration of our lab prototype, thus our empirical results
follow this form. In case 2, Vx = 0 when the light spot
strikes the edge of the diode. This configuration follows the
simple form used in section 2 of the main paper to explain
the principles of a PSD.

The centroid variance for each case differs slightly. For
a fixed light level, the centroid variance is minimized when
Vx = 0, corresponding to different physical locations on the
diode. In practice, the engineer may choose the configura-
tion by adding an appropriate offset voltage to Vx.



Case 1: Vx = 0 at the center of the diode. Consider a
PSD with length Lx such that Vx = 0 when the light spot
strikes the center of the diode. We will denote the centroid
as C1x using the subscript to differentiate it from the cen-
troid C2x in case 2. Given the following voltages[

Vx
Vs

]
= G

∫∫
x,y

[
x
1

]
i(x, y) dx dy, (1)

the centroid, with C1x = 0 at the diode’s center, is:

C1x =
Lx

2

Vx
Vs
. (2)

Let Ṽx, Ṽs be measurements with uncorrelated signal-
independent noise:

Ṽx = Vx +N (0, σ2) (3)

Ṽs = Vs +N (0, σ2) (4)

Then, the estimated centroid C̃1x is:

C̃1x =
Lx

2

Ṽx

Ṽs
(5)

There is no analytical random variable describing C̃1x when
Ṽx and Ṽs have non-zero means. However, C̃1x is approx-
imately normal when σ ≪ Vx, Vs [1]. Following the first-
order Taylor series expansion of C̃1x described in [1], we
approximate the measured centroid’s variance as:

Var
[
C̃1x

]
≈ L2

x

4

σ2

V 2
s

(
V 2
x

V 2
s

+ 1

)
(6)

≈ σ2

V 2
s

(
C2

1x +
L2
x

4

)
(7)

Note that the least variance occurs when Vx is small and Vs
is large, corresponding to a bright light spot at the center of
the diode.

The normal approximation above requires Vx and Vs to
be strictly positive. When the light spot appears on the other
side of the diode, Vx will be negative. We can show by
substitution that the normal approximation still holds in this
case:

Suppose E[Ṽx] < 0. Let Ṽx
′
= −Ṽx. Then:

C̃x

′
=
Ṽx

′

Ṽs
= −C̃x (8)

(9)

The approximation holds for C̃x

′
since the Ṽx

′
and Ṽs have

strictly positive means, and the moments are related as:

E[C̃x

′
] = −E[C̃x], (10)

Var [C̃x

′
] = Var [C̃x] (11)
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Figure 6: Empirical and predicted centroid resolution along
a vertical line on the PSD. Over all points in a 13×13 point
array, the predicted centroid resolution RMSE is 0.55µm.
In this example, the centroid RMSE attains 7µm at the cen-
ter of the diode.

We validate this noise model by capturing a 13×13 point
array on a plane and comparing the empirical and predicted
centroid resolutions. At each point, the empirical cen-
troid resolution is the root-mean-square error (RMSE) of
the centroid over 59k samples; the predicted centroid res-
olution is the square root of Eq. (7), replacing Vx, Vs with
their respective sample means E[Ṽx], E[Ṽs] and C1x with
Lx

2
E[Ṽx]

E[Ṽs]
.

Fig. 6 shows agreement between the predicted and em-
pirical centroid resolution of points along a vertical line near
the center of the PSD. Over all points (n = 169), the pre-
dicted centroid resolution from Eq. (7) attains an RMSE of
0.55µm from the empirical resolution.

Case 2: Vx = 0 at the edge of the diode. In section 2 of
the main paper, we defined Vx such that Vx = 0 at the edge
of the diode. In this case, we denote the centroid as C2x to
differentiate it from the centroid C1x in case 1:

C2x = Lx
Vx
Vs

In the presence of signal-independent measurement
noise on each channel as described above, the measured
centroid is:

C̃2x = Lx
Ṽx

Ṽs

Applying the same normal approximation to C̃2x as in
case 1, we have:

Var [C̃2x] ≈
L2
xσ

2

V 2
s

(
V 2
x

V 2
s

+ 1

)
(12)

≈ σ2

V 2
s

(
C2

2x + L2
x

)
, (13)

corresponding to eq. 5 in the main paper.



Normal approximation limitations. The normal approx-
imation requires strictly positive samples from the numer-
ator (Ṽx) and denominator (Ṽs). This breaks down at low
light levels when Vs → 0 or when near the location on the
diode corresponding to Cx = 0 (configuration-dependent).

2.2. Proof of Invariance to Uniform Image Scaling

Let α be a uniform scaling term on the image I(x, y).
The measured centroid is:

[
C ′

x

C ′
x

]
=

∫∫
x,y

[
x
y

]
αI(x, y) dx dy∫∫

x,y

αI(x, y) du dv

(14)

=

∫∫
x,y

[
x
y

]
I(x, y) dx dy∫∫

x,y

I(x, y) dx dy

(15)

=

[
Cx

Cy

]
(16)

2.3. Proof of Defocus Invariance

Let I(x, y) be the in-focus image and b(x, y) be the ker-
nel of a spatially-invariant point spread function. The cen-
troids of I(x, y) and b(x, y) are given by:

[
Cx

Cy

]
=

∫∫
x,y

[
x
y

]
I(x, y) dx dy∫∫

x,y

I(x, y) dx dy

(17)

[
Cb

x

Cb
y

]
=

∫∫
x,y

[
x
y

]
b(x, y) dx dy∫∫

x,y

b(x, y) dx dy

(18)

The centroid of the measured image on an infinitely large
sensor is given by:

[
C ′

x

C ′
y

]
=

∫∫
x,y

[
x
y

]
(I ∗ b)(x, y) dx dy∫∫

x,y

(I ∗ b)(x, y) dx dy
(19)

=

∫∫
x,y

[
x
y

] ∫∫
u,v

b(u, v)I(x− u, y − v) du dv dx dy∫∫
x,y

∫∫
u,v

b(u, v)I(x− u, y − v) du dv dx dy

(20)

=

∫∫
u,v

b(u, v)

∫∫
x,y

[
x
y

]
I(x− u, y − v) dx dy du dv∫∫

u,v

b(u, v)

∫∫
x,y

I(x− u, y − v) dx dy du dv

(21)

Since we are integrating over an infinitely large sensor,
any image translation by a finite (u, v) will not change the
final integral. Thus, we can remove the dependence on
(u, v) in the image in the denominator.

=

∫∫
u,v

b(u, v)

∫∫
x,y

[
x
y

]
I(x− u, y − v) dx dy du dv∫∫

u,v

b(u, v) du dv

∫∫
x,y

I(x, y) dx dy

(22)

=

∫∫
u,v

b(u, v)

[
Cx + u
Cy + v

]
du dv∫∫

u,v

b(u, v) du dv

(23)

By separating the integral, this expression simplifies to:

=

[
Cx

Cy

] ∫∫
u,v

b(u, v) du dv∫∫
u,v

b(u, v) du dv

+

∫∫
u,v

[
u
v

]
b(u, v) du dv∫∫

u,v

b(u, v) du dv

(24)

=

[
Cx + Cb

x

Cy + Cb
y

]
(25)

Ignoring boundary conditions where the point spread kernel
extends beyond the finite sensor area, the measured centroid
is uniformly biased by the point spread kernel’s centroid.

3. Implementation Notes
Pseudocode for global illumination suppression. Algo-
rithm 1 shows pseudocode to estimate direct-only image
centroids using the regression technique.

Calibration procedure. Both the PSD and projector are
calibrated in the helper camera’s coordinate frame. To ob-
tain 2D-3D point correspondences for the PSD calibration,
we project a 10 × 10 point array on a planar checkerboard
of known geometry at varying depths. At each point in the



Algorithm 1 Robust centroid estimation algorithm.

M : Number of masks
T : Number of points on the dual image grid
for k = 1 . . .M do

Display mask mk on SLM and raster scan
{V k

x (t), V k
y (t), V k

s (t)} ← PSD readout
end for
for t = 1 . . . T do

Cx(t), Cy(t)←
ROBUSTCENTROID({V k

x (t), V k
y (t), V k

s (t)}Mk=1)
end for

function ROBUSTCENTROID({V k
x , V

k
y , V

k
s }Mk=1)

Compute pairwise differences
P ← {(i, j) ∈ {1, . . . ,M} × {1, . . . ,M} : i ̸= j}
Dx ← [

(
V i
x − V j

x

)
∀ (i, j) ∈ P ]

Dy ← [
(
V i
y − V j

y

)
∀ (i, j) ∈ P ]

Ds ← [
(
V i
s − V j

s

)
∀ (i, j) ∈ P ]

Estimate centroids using linear regression
Cx ←

∑
(Ds ·Dx) /

(∑
(Ds ·Ds) + 10−8

)
Cy ←

∑
(Ds ·Dy) /

(∑
(Ds ·Ds) + 10−8

)
return Cx, Cy

end function

point array, we capture a high-dynamic range image using
the helper camera, measure the image centroid on the PSD,
and record the galvo mirror angles. We know the 2D loca-
tion of the laser spot in the helper camera’s image, and the
view of the checkerboard gives us the plane orientation used
to compute the 3D spot location.

As described in the main paper, we follow the calibra-
tion procedure in [2] to estimate the intrinsics, extrinsics,
and lens distortion coefficients of the PSD. Since the 3D
locations are in the helper camera’s coordinate frame, the
PSD’s extrinsics are also in that coordinate frame.

The distance between the galvo mirrors in our lab pro-
totype causes the projector to violate the pinhole projection
model, thereby creating distortion and triangulation errors.
To account for this, we fit a polynomial model to map the
mirror angles (tan θp, tanψp) from the calibration point ar-
ray to rays in 3D space. At each mirror angle in the calibra-
tion point array, the helper camera gives us the 3D location
of the projector ray’s intersection with the calibration plane
at different depths. The polynomial model attains 66.1µm
RMSE in estimating the 3D points from measured mirror
angles on the calibration data.
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