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Abstract

Many scientific domains gather sufficient labels to train machine algorithms through human-in-the-loop techniques provided
by the Zooniverse.org citizen science platform. As the range of projects, task types and data rates increase, acceleration of
model training is of paramount concern to focus volunteer effort where most needed. The application of Transfer Learning
(TL) between Zooniverse projects holds promise as a solution. However, understanding the effectiveness of TL approaches
that pretrain on large-scale generic image sets vs. images with similar characteristics possibly from similar tasks is an open
challenge. We apply a generative segmentation model on two Zooniverse project-based data sets: (1) to identify fat droplets
in liver cells (FatChecker; FC) and (2) the identification of kelp beds in satellite images (Floating Forests; FF) through transfer
learning from the first project. We compare and contrast its performance with a TL model based on the COCO image set, and
subsequently with baseline counterparts. We find that both the FC and COCO TL models perform better than the baseline
cases when using > 75% of the original training sample size. The COCO-based TL model generally performs better than the
FC-based one, likely due to its generalized features. Our investigations provide important insights into usage of TL approaches
on multi-domain data hosted across different Zooniverse projects, enabling future projects to accelerate task completion.
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1. Introduction training models from scratch e.g., [3, 4, 5,6, 7, 8, 9, 10, 11].

To accelerate labeling efficiencies across the platform, the
Citizen Science has established itself as a valuable method  Zooniverse human-machine system should take advan-
for distributed data analysis enabling research teams from  tage of transfer learning techniques, especially when
diverse domains to solve problems involving large quan- volunteer engagement is at a premium. When applying
tities of data with complexity levels requiring human  transfer learning, a new project would require fewer la-
pattern recognition capabilities [1, 2]. As the largest cit-  bels from volunteers to achieve the same performance as
izen science platform, Zooniverse.org has enabled over  training a model from scratch. Volunteer labelers would
2.5 million volunteers to provide over half a billion an- thyus be able to focus on tasks more suited to humans
notations on hundreds of projects across the sciences guch as anomaly detection e.g., [12].
and humanities. Many of these projects use the result- Transfer learning (TL) is an established approach,
ing labels to train machine learning algorithms typically ~where the feature space from a pretrained model can
be transferred to another framework and fine tuned to
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perform analogous or different tasks. Feature extraction
is typically performed using Deep Convolutional Neu-
ral Networks (CNNs) such as [13, 14]. Transfer learning
generally uses models trained on data that is either “out-
of-domain” (i.e., training data characteristics are different
from data at hand) or “in-domain” (data that are similar
or closely relatable to the data at hand). Quantifying the
gains provided by these different TL approaches is an



active area of research, where studies find several factors
to be at play that govern its effectiveness: Accuracy and
architecture choice of the pretrained model [15], robust-
ness of model to input adversarial noise [16], and type of
task to which the TL is being applied [17]. Recent works
(e.g., [12, 8]) have demonstrated that transfer learning
from a model pretrained on in-domain data performs bet-
ter than transfer learning from out-of-domain data. On
the other hand, some studies find that TL models based
on out-of-domain data (e.g., ImageNet or COCO datasets)
perform on par with or better than the in-domain TL
models [18, 19].

In order to leverage the Zooniverse’s large library of
image-label pairs across multiple domains, there is thus
a clear need to better understand the effectiveness of
cross-domain transfer learning. In particular, we are in-
terested in the application of transfer learning specifically
to projects that share task similarity across a wide range
of domains. For example, image segmentation tasks vary
across vastly different disciplines, from cell biology to
satellite imagery. Frameworks such as the U-Net [20],
Recurrent Convolutional Networks such as Mask-RCNNs
[21], and Generative Adversarial Networks (GANS; e.g.,
[22, 23]) have been used to perform such object segmenta-
tion across multiple domains and data sets. However, ro-
bust learning of such segmentation models from scratch
often requires large annotated training samples that may
not be available (e.g., medical imaging), which can lead to
poor generalizability of the learnt features to newer data,
even in related domains. While Zooniverse can provide
these large annotation sets per project, this comes at the
cost of volunteer effort which we seek to optimize.

In an effort to increase project completion rates, this
study investigates potential machine performance gains
through transfer learning across domains by leveraging
the shared task similarity between Zooniverse projects.
We use a PatchGAN-based [23] segmentation model'
to investigate the effectiveness of segmenting kelp beds
from satellite images. Particularly, we test transfer learn-
ing from the COCO dataset (i.e., out-of-domain) and mi-
croscopy imaging of lipid droplets in liver cells (pseudo-
in-domain) and compare them to their corresponding
“trained from scratch” counterparts.

2. Methods

In this section, we detail our PatchGAN architecture [23],
the training and testing data and its preparation, and the
description of the five models analyzed in our work.

2.1. PatchGAN Framework

The implemented PatchGAN framework is inherited from
the Pix2Pix GAN architecture in [23], which is a condi-

'https://github.com/ramanakumars/patchGAN/

tional GAN for realizing paired image-to-image transla-
tion. The PatchGAN architecture consists of a Generator
(G) and Discriminator (D):

The generator is composed of a U-Net [20], a U-shaped
encoder-decoder neural network, with skip connections
across the bottleneck layer (Figure 1). The encoder (de-
coder) comprises of 6 downsampling (upsampling) blocks,
each consisting of 4 X 4 convolution (transposed con-
volution), Leaky ReLU activation, and a batch normal-
ization layer. All the blocks in the inner layers of the
network also include a dropout layer which omits 50%
of the extracted features during training. The outputs of
the transposed convolutions are also concatenated with
the corresponding skip connection feature map from the
encoder block.
1-channel
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Figure 1: U-Net Generator (top) and Discriminator (bottom)
of our PatchGAN framework.

The discriminator is a patch-wise binary classifier that
takes a concatenation of the input image and its corre-
sponding ground truth or generated mask and outputs a
30 x 30 probability matrix. Each unit of this matrix rep-
resents a 70 x 70 patch of the input image, and provides
the probability that the patch is real.

2.2. Data

For this study, we use three sources for our image-mask
pairs: the Floating Forests dataset, Etch-a-Cell dataset
and the COCO-stuff. The former two are Zooniverse
projects focusing on image segmentation, while the lat-
ter represents a generic image dataset that is used in
computer vision, representing an out-of-domain dataset
compared to the former two. These three data sources
represent a diverse feature set on which to perform our
transfer learning experiment. Figure 2 shows an example
of an image-mask pair from each dataset.



2.2.1. Floating Forests (F'F)

Floating Forests is an ecology-based citizen science
project hosted on Zooniverse.org” to identify kelp beds in
Landsat imagery. The project presents segments of Land-
sat data to Zooniverse volunteers, who draw outlines
around the kelp beds. These annotations are aggregated
using a pixel-by-pixel consensus to create masks of the
kelp beds in the corresponding Landsat segments. We
use 4 channels from the Landsat data (Blue, Green, Red
and near Infrared) to train the patchGAN on the image-
mask pairs. This FF data comprises 6,967 (350 x 350 pix)
image-mask pairs. We pre-process these data such that
each pair is cropped into four 256 x 256 overlapping
cutouts, and augment each crop 5 times (rotation and
flipping). This resulted in 118,440 training and 4180
testing images.

2.2.2. Etch-a-Cell: Fat Checker (F'C)

Etch-a-Cell: Fat Checker is a cell biology project hosted
on Zooniverse.org’ to identify lipid droplets in electron
microscopy data. The Zooniverse project presents 2D
slices of the data to volunteers who annotate the outline
of the lipid droplet. The lipid mask is generated by ag-
gregating the annotations by multiple volunteers based
on consensus. The data set consists of 2341 image-mask
pairs and each image is 1200 x 1200 pix in shape, with
3 channels. We split the sample into 2, 106 training and
235 testing sets. We transform these images and masks
to work with our PatchGAN framework by resizing them
to 512 x 512 pix and generating five crops (four corners
and one center crop). We further augment them by apply-
ing three rotations (90, 180, 270 deg) per image, yielding
augmented training and testing samples of 42120 and
4700 images, respectively.

2.2.3. COCO-Stuff

The Common Objects in COntext (COCO; [24]) is a large
collection of several real-world images with objects set in
various simple to complex scenes, which are annotated
by outlines®. [25] further processed the COCO data set
to produce dense pixel-wise annotations for them (the
COCO-Stuff data set; hereafter COCO). These images
and annotated masks vary widely in their shapes, and
therefore, we standardize these images by resizing them
to a 256 x 256 pix shape. For our PatchGAN training,
we limit the training and testing data to those that host
the ‘person’ class. This amounts to 63785 training and
2673 testing image-mask pairs.

Zhttps://www.zooniverse.org/projects/zooniverse/floating-forests/

Shttps://www.zooniverse.org/projects/dwright04/
etch-a-cell-fat-checker

*https://github.com/nightrome/cocostuff
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Figure 2: Visualization of example input image, truth mask,
and patchGAN predicted output mask.

2.3. Experimental Design

In this work, we investigate the potential of cross-domain
transfer learning by training 5 models. The first 3
models are trained from scratch - Arr, Arpc, and
Acoco - using 100% of their corresponding data sets
FF, FC, and COCO, respectively. Next, we train
the Arcorr and Acoco—rr by transferring the
weights from the trained Apc and Acoco models to
the Apr. By comparing between the baseline Arr to
the transfer learnt models Arc_ rr and Acoco—rr,
we quantify the impact of performing transfer learning
on the accelerated learning of the Apr model from
two distinct feature initializations. During this transfer
learning exercise, we also vary the amount of training
data used from 10%-100%.

3. Training & Results

In this section, we outline the training strategy and pro-
vide details of the hyper parameters. We also present the
results of our training and discuss the outcomes of our
transfer learning exercise.

3.1. Training Strategy

Our Arr, Arc, and Acoco models have been trained
for 50 epochs. For the generator, we use the Focal Tversky
Loss (FTL; [26]), which is a generalized version of the
Tversky Loss (TL) defined in terms of the Tversky Index
(TI) as:
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Figure 3: Comparison of generated mask from different model runs on the Floating Forests data, showing different performance

gains from transfer learning.

For our training, we use « = 0.7 and 8 = 0.3. The «v
parameter controls the non-linearity of the TL with re-
spect to the T'I, enabling the learning to focus on easier
(v < 1) vs. harder (v > 1) examples. We use v = 0.75
during our training. For the discriminator optimization,
we use the Binary Cross-Entropy (BCE) loss. Specifically,
our total discriminator loss is the average of two compo-
nents: the discriminator applied on the generated mask
(i.e., against a fake label), and applied on the true mask
(i.e., the real label). For both the generator and discrimi-
nator, we use the Adam optimizer with an initial learning
rate 5 X 10™* and 1 x 107 respectively, decayed expo-
nentially by 7 = 0.95, applied every 5 epochs.

3.2. Transfer learning strategy

For our transfer learning based model training of
Arc—rr and Acoco—rr, we load the weights of the
Arc and Acoco models into the freshly initialized A g
model architecture. To account for the 3 vs 4 channel
mismatch between the Acoco, Arc and Arr, we load
model layer parameters excluding the input layer. For
each model, we train 5 different versions, using random
subsets of 10%, 25%, 50%, 75% and 100% of the full
Floating Forests data, to compare TL efficiency gains
from having a smaller dataset. For these experiments,
we also use only the first 6,967 un-augmented images
for re-training. We train the Arc—, rr and Acoco—rr
models with the same hyper-parameter settings as the
aforementioned “from scratch” models for 50 epochs.

3.3. Results and discussion

We find that our Arr, Arc and Acoco generally pre-
dict the annotation masks reasonably well (Figure 2),
qualitatively matching with the ground truths. Figures 3
and 4 show our transfer learning results. In Figure 4,
we show our average validation loss for the different
model training runs. As expected, larger training sam-
ples provide much better performance, but we also find
that the model pretrained on the COCO dataset provides
noticeably better performance on the Floating Forests
data, compared to both Apc_, pr and also App. In fact,
the Acoco— Fr is able to match the performance of the
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Figure 4: Comparison of mean final loss on Floating Forests
validation data across the different models.

A rr model with between 50-75% of the training Floating
Forests dataset.

In Figure 3, we show examples highlighting the dif-
ference between the generated masks from Apr and
corresponding masks from Arc— rr and Acoco—FF.
The sharpness of the kelp beds is poorly reconstructed
by the Arr model but is well captured by the transfer
learnt models (particularly when training Acoco—rr
with more than 75% of the original data). The transfer
learnt models are also better at capturing kelp beds not
identified in the original consensus data. For example,
both the ground truth and A g fail to reveal the kelp
beds in the top left of the image, but these are picked up
well by the transfer learnt models.

This is likely due to the large diversity of the features
in the COCO dataset, making it a much more robust
feature extraction network to transfer learn from. In-
deed, compared to Arc—, rr, the Acoco— rr model-
detected kelp beds are qualitatively better visually (e.g.,
Figure 3), especially at lower training data sizes. This is
likely compounded with the lower feature diversity in
both the Floating Forest and Fat Checker data sets, given
the fewer number of samples in the training data and low
variety in target classes.



3.3.1. Transfer learning approaches for citizen
science datasets

For the Zooniverse platform, this study provides an av-
enue to build quick access for projects to use machine
learning frameworks for simple tasks (e.g., image seg-
mentation), by transfer learning from existing models on
a small sample of volunteer annotated data sets. How-
ever, despite the results presented here, there are still
several key questions which need to be answered:

Domain dependency: It is unclear how much of the
performance gained from COCO was a ‘global truth’.
That is, whether COCO (or similarly diverse datasets)
are immediately applicable to out-of-domain data, for
all domains, or if there are domain-specific restrictions
which allow these performance gains to occur on data
such as Floating Forests. This requires more experiments
with increasingly different data sets on Zooniverse to
investigate the range of performance gains possible.

Task dependency: Previous studies on transfer
learning across domains show significant variations in
performance across different task types. For example, im-
age classification tasks (e.g., [12, 17]) show lower gains
than image segmentation based tasks (e.g., [18]). We need
to further investigate the inherent difficulty associated
with different tasks on Zooniverse projects, and how ef-
fectively they can be transferred between domains. [12],
for example, show that significant boosts to performance
is only provided by using in-domain transfer learning.

Target data purity: For Zooniverse projects, data
labels are generally provided by volunteers and are ag-
gregated based on volunteer consensus. In this study, we
found that transfer learning can help mitigate data purity
effects, since transfer learnt feature extraction models
are generally robust to mislabeled data. The extent to
which transfer learning models are sensitive to data pu-
rity effects needs to be further investigated.

In conclusion, we find that transfer learning can pro-
vide a significant boost to projects that contain similar
tasks on Zooniverse. However, the extent to which this
can be generalized across the full Zooniverse ecosystem
is a question of ongoing study.
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