








3.3.1. Transfer learning approaches for citizen

science datasets

For the Zooniverse platform, this study provides an av-
enue to build quick access for projects to use machine
learning frameworks for simple tasks (e.g., image seg-
mentation), by transfer learning from existing models on
a small sample of volunteer annotated data sets. How-
ever, despite the results presented here, there are still
several key questions which need to be answered:

Domain dependency: It is unclear how much of the
performance gained from COCO was a ‘global truth’.
That is, whether COCO (or similarly diverse datasets)
are immediately applicable to out-of-domain data, for
all domains, or if there are domain-specific restrictions
which allow these performance gains to occur on data
such as Floating Forests. This requires more experiments
with increasingly different data sets on Zooniverse to
investigate the range of performance gains possible.

Task dependency: Previous studies on transfer
learning across domains show significant variations in
performance across different task types. For example, im-
age classification tasks (e.g., [12, 17]) show lower gains
than image segmentation based tasks (e.g., [18]). We need
to further investigate the inherent difficulty associated
with different tasks on Zooniverse projects, and how ef-
fectively they can be transferred between domains. [12],
for example, show that significant boosts to performance
is only provided by using in-domain transfer learning.

Target data purity: For Zooniverse projects, data
labels are generally provided by volunteers and are ag-
gregated based on volunteer consensus. In this study, we
found that transfer learning can help mitigate data purity
effects, since transfer learnt feature extraction models
are generally robust to mislabeled data. The extent to
which transfer learning models are sensitive to data pu-
rity effects needs to be further investigated.
In conclusion, we find that transfer learning can pro-

vide a significant boost to projects that contain similar
tasks on Zooniverse. However, the extent to which this
can be generalized across the full Zooniverse ecosystem
is a question of ongoing study.
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