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Abstract

In robust Markov decision processes (MDPs), the uncertainty
in the transition kernel is addressed by finding a policy that
optimizes the worst-case performance over an uncertainty set
of MDPs. While much of the literature has focused on dis-
counted MDPs, robust average-reward MDPs remain largely
unexplored. In this paper, we focus on robust average-reward
MDPs, where the goal is to find a policy that optimizes the
worst-case average reward over an uncertainty set. We first
take an approach that approximates average-reward MDPs
using discounted MDPs. We prove that the robust discounted
value function converges to the robust average-reward as the
discount factor v goes to 1, and moreover, when + is large,
any optimal policy of the robust discounted MDP is also an
optimal policy of the robust average-reward. We further design
a robust dynamic programming approach, and theoretically
characterize its convergence to the optimum. Then, we in-
vestigate robust average-reward MDPs directly without using
discounted MDPs as an intermediate step. We derive the robust
Bellman equation for robust average-reward MDPs, prove that
the optimal policy can be derived from its solution, and further
design a robust relative value iteration algorithm that provably
find its solution, or equivalently, the optimal robust policy.

Introduction

A Markov decision process (MDP) is an effective mathemat-
ical tool for sequential decision-making in stochastic envi-
ronments (Derman 1970; Puterman 1994). Solving an MDP
problem entails finding an optimal policy that maximizes a
cumulative reward according to a given criterion. However,
in practice there could exist a mismatch between the assumed
MDP model and the underlying environment due to various
factors, such as non-stationarity of the environment, model-
ing error, exogenous perturbation, partial observability, and
adversarial attacks. The ensuing model mismatch could result
in solution policies with poor performance.

This challenge spurred noteworthy efforts on developing
and analyzing a framework of robust MDPs e.g., (Bagnell,
Ng, and Schneider 2001; Nilim and El Ghaoui 2004; Iyengar
2005). Rather than adopting a fixed MDP model, in the robust
MDP setting, one seeks to optimize the worst-case perfor-
mance over an uncertainty set of possible MDP models. The
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solution to the robust MDP problem provides performance
guarantee for all uncertain MDP models, and is thus robust
to the model mismatch.

Robust MDP problems falling under different reward op-
timality criteria are fundamentally different. In robust dis-
counted MDPs, the goal is to find a policy that maximizes
the discounted cumulative reward in the worst case. In this
setting, as the agent interacts with the environment, the re-
ward received diminishes exponentially over time. Much of
the prior work in the robust setting has focused on the dis-
counted reward formulation. The model-based method, e.g.,
(Iyengar 2005; Nilim and El Ghaoui 2004; Bagnell, Ng, and
Schneider 2001; Satia and Lave Jr 1973; Wiesemann, Kuhn,
and Rustem 2013; Tamar, Mannor, and Xu 2014; Lim and
Autef 2019; Xu and Mannor 2010; Yu and Xu 2015; Lim, Xu,
and Mannor 2013), where information about the uncertainty
set is assumed to be known to the learner, unveiled several
fundamental characterizations of robust discounted MDPs.
This was further extended to the more practical model-free
setting in which only samples from a simulator (the cen-
troid of the uncertainty set) are available to the learner. For
example, the value-based method (Roy, Xu, and Pokutta
2017; Badrinath and Kalathil 2021; Wang and Zou 2021;
Tessler, Efroni, and Mannor 2019; Zhou et al. 2021; Yang,
Zhang, and Zhang 2021; Panaganti and Kalathil 2021; Goyal
and Grand-Clement 2018; Kaufman and Schaefer 2013; Ho,
Petrik, and Wiesemann 2018, 2021; Si et al. 2020) optimizes
the worst-case performance using the robust value function
as an intermediate step; on the other hand, the model-free
policy-based method (Russel, Benosman, and Van Baar 2020;
Derman, Geist, and Mannor 2021; Eysenbach and Levine
2021; Wang and Zou 2022) directly optimizes the policy and
is thus scalable to large/continuous state and action spaces.

Although discounted MDPs induce an elegant Bellman op-
erator that is a contraction, and have been studied extensively,
the policy obtained usually has poor long-term performance
when a system operates for an extended period of time. When
the discount factor is very close to 1, the agent may prefer
to compare policies on the basis of their average expected
reward instead of their expected total discounted reward, e.g.,
queueing control, inventory management in supply chains,
scheduling automatic guided vehicles and applications in
communication networks (Kober, Bagnell, and Peters 2013).
Therefore, it is also important to optimize the long-term aver-



age performance of a system.

However, robust MDPs under the average-reward crite-
rion are largely understudied. Compared to the discounted
setting, the average-reward setting depends on the limiting
behavior of the underlying stochastic process, and hence is
markedly more intricate. A recognized instance of such in-
tricacy concerns the one-to-one correspondence between the
stationary policies and the limit points of state-action frequen-
cies, which while true for discounted MDPs, breaks down
under the average-reward criterion even in the non-robust
setting except in some very special cases (Puterman 1994;
Atia et al. 2021). This is largely due to dependence of the
necessary conditions for establishing a contraction in average-
reward settings on the graph structure of the MDP, versus the
discounted-reward setting where it simply suffices to have
a discount factor that is strictly less than one. Heretofore,
only a handful of studies have considered average-reward
MDPs in the robust setting. The first work by (Tewari and
Bartlett 2007) considers robust average-reward MDPs un-
der a specific finite interval uncertainty set, but their method
is not easily applicable to other uncertainty sets. More re-
cently, (Lim, Xu, and Mannor 2013) proposed an algorithm
for robust average-reward MDPs under the ¢; uncertainty
set. However, obtaining fundamental characterizations of the
problem and convergence guarantee remains elusive.

Challenges and Contributions

In this paper, we derive characterizations of robust average-
reward MDPs with general uncertainty sets, and develop
model-based approaches with provable theoretical guarantee.
Our approach is fundamentally different from previous work
on robust discounted MDPs, robust and non-robust average-
reward MDPs. In particular, the key challenges and the main
contributions are summarized below.

* We characterize the limiting behavior of robust dis-
counted value function as the discount factor v — 1.
For the standard non-robust setting and for a specific tran-
sition kernel, the discounted non-robust value function con-
verges to the average-reward non-robust value function as
~ — 1 (Puterman 1994). However, in the robust setting, we
need to consider the worst-case limiting behavior under all
possible transition kernels in the uncertainty set. Hence, the
previous point-wise convergence result (Puterman 1994)
cannot be directly applied. In (Tewari and Bartlett 2007),
a finite interval uncertainty set is studied, where due to its
special structure, the number of possible worst-case transi-
tion kernels of robust discounted MDPs is finite, and hence
the order of min (over transition kernel) and lim._,; can be
exchanged, and therefore, the robust discounted value func-
tion converges to the robust average-reward value function.
This result, however, does not hold for general uncertainty
sets investigated in this paper. We first prove the uniform
convergence of discounted non-robust value function to
average-reward w.r.t. the transition kernels and policies.
Based on this uniform convergence, we show the conver-
gence of the robust discounted value function to the robust
average-reward. This uniform convergence result is the
first in the literature and is of key importance to motivate

our algorithm design and to guarantee convergence to the
optimal robust policy in the average-reward setting.

* We design algorithms for robust policy evaluation and
optimal control based on the limit method. Based on the
uniform convergence, we then use robust discounted MDPs
to approximate robust average-reward MDPs. We show that
when v is large, any optimal policy of the robust discounted
MDFP is also an optimal policy of the robust average-reward,
and hence solves the robust optimal control problem in the
average reward setting. This result is similar to the Black-
well optimality (Blackwell 1962; Hordijk and Yushkevich
2002) for the non-robust setting, however, our proof is fun-
damentally different. Technically, the proof in (Blackwell
1962; Hordijk and Yushkevich 2002) is based on the fact
that the difference between the discounted value functions
of two policies is a rational function of the discount factor,
which has a finite number of zeros. However, in the robust
setting with a general uncertainty set, the difference is no
longer a rational function due to the min over the transition
kernel. We construct a novel proof based on the limiting
behavior of robust discounted MDPs, and show that the
(optimal) robust discounted value function converges to the
(optimal) robust average-reward as v — 1. Motivated by
these insights, we then design our algorithms by applying
a sequence of robust discounted Bellman operators while
increasing the discount factor at a certain rate. We prove
that our method can (i) evaluate the robust average-reward
for a given policy and; (ii) find the optimal robust value
function and, in turn, the optimal robust policy for general
uncertainty sets.

* We design a robust relative value iteration method
without using the discounted MDPs as an intermedi-
ate step. We further pursue a direct approach that solves
the robust average-reward MDPs without using the limit
method, i.e., without using discounted MDPs as an interme-
diate step. We derive a robust Bellman equation for robust
average-reward MDPs, and show that the pair of robust rel-
ative value function and robust average-reward is a solution
to the robust Bellman equation under the average-reward
setting. We further prove that if we can find any solution
to the robust Bellman equation, then the optimal policy
can be derived by a greedy approach. The problem hence
can be equivalently solved by solving the robust Bellman
equation. We then design a robust value iteration method
which provably converges to the solution of the robust Bell-
man equation, i.e., solve the optimal policy for the robust
average-reward MDP problem.

Related Work

Robust discounted MDPs. Model-based methods for robust
discounted MDPs were studied in (Iyengar 2005; Nilim and
El Ghaoui 2004; Bagnell, Ng, and Schneider 2001; Satia and
Lave Jr 1973; Wiesemann, Kuhn, and Rustem 2013; Lim and
Autef 2019; Xu and Mannor 2010; Yu and Xu 2015; Lim, Xu,
and Mannor 2013; Tamar, Mannor, and Xu 2014), where the
uncertainty set is assumed to be known, and the problem can
be solved using robust dynamic programming. Later, the stud-
ies were generalized to the model-free setting where stochas-



tic samples from the centroid MDP of the uncertainty set are
available in an online fashion (Roy, Xu, and Pokutta 2017,
Badrinath and Kalathil 2021; Wang and Zou 2021, 2022;
Tessler, Efroni, and Mannor 2019) and an offline fashion
(Zhou et al. 2021; Yang, Zhang, and Zhang 2021; Panaganti
and Kalathil 2021; Goyal and Grand-Clement 2018; Kaufman
and Schaefer 2013; Ho, Petrik, and Wiesemann 2018, 2021;
Si et al. 2020). There are also empirical studies on robust
RL, e.g., (Vinitsky et al. 2020; Pinto et al. 2017; Abdullah
et al. 2019; Hou et al. 2020; Rajeswaran et al. 2017; Huang
et al. 2017; Kos and Song 2017; Lin et al. 2017; Pattanaik
et al. 2018; Mandlekar et al. 2017). For discounted MDPs,
the robust Bellman operator is a contraction, based on which
robust dynamic programming and value-based methods can
be designed. In this paper, we focus on robust average-reward
MDPs. However, the robust Bellman operator for average-
reward MDPs is not a contraction, and its fixed point may
not be unique. Moreover, the average-reward setting depends
on the limiting behavior of the underlying stochastic process,
which is thus more intricate.

Robust average-reward MDPs. Studies on robust average-
reward MDPs are quite limited in the literature. Robust
average-reward MDPs under a specific finite interval uncer-
tainty set was studied in (Tewari and Bartlett 2007), where the
authors showed the existence of a Blackwell optimal policy,
i.e., there exists some ¢ € [0, 1), such that the optimal robust
policy exists and remains unchanged for any discount factor
v € [6,1). However, this result depends on the structure of
the uncertainty set. For general uncertainty sets, the existence
of a Blackwell optimal policy may not be guaranteed. More
recently, (Lim, Xu, and Mannor 2013) designed a model-free
algorithm for a specific £1-norm uncertainty set and charac-
terized its regret bound. However, their method also relies on
the structure of the ¢;-norm uncertainty set, and may not be
generalizable to other types of uncertainty sets. In this paper,
our results can be applied to various types of uncertainty sets,
and thus is more general.

Preliminaries and Problem Model

In this section, we introduce some preliminaries on dis-
counted MDPs, average-reward MDPs, and robust MDPs.

Discounted MDPs. A discounted MDP (8, A,P,r,v) is
specified by: a state space 8, an action space A, a transi-
tion kernel P = {p? € A(8),a € A, s € 8}!, where p? is
the distribution of the next state over 8 upon taking action a
in state s (with pg ., denoting the probability of transitioning
to s'), a reward function r : § x A — [0, 1], and a discount
factor v € [0, 1). At each time step ¢, the agent at state s,
takes an action a;, the environment then transitions to the
next state s;11 according to pg’, and produces a reward sig-
nal r(s¢, ar) € [0,1] to the agent. In this paper, we also write
ry = r(8¢, at) for convenience.

A stationary policy 7 : 8§ — A(A) is a distribution over
A for any given state s, and the agent takes action a at state
s with probability 7 (a|s). The discounted value function of
a stationary policy 7 starting from s € § is defined as the

YA(8): the (|| — 1)-dimensional probability simplex on 8.

expected discounted cumulative reward by following policy
m VB (s) £ Erp [Y oo VTS0 = s].

Average-Reward MDPs. Different from discounted MDPs,
average-reward MDPs do not discount the reward over time,
and consider the behavior of the underlying Markov process
under the steady-state distribution. More specifically, under a
specific transition kernel P, the average-reward of a policy 7
starting from s € 8 is defined as

n—1
. 1
gﬁﬁéggﬁm%n;;%%=%, (D

which we also refer to in this paper as the average-reward
value function for convenience.

The average-reward value function can also be equiva-
lently written as follows: g5 = lim,, oo % ;:&(P’T)’fnT =
PTr., where (P™);s = Y, m(als)ps o and 7 (s)
> m(als)r(s, a) are the transition matrix and reward func-
tion induced by , and PT £ lim,, -, & " (P s the
limit matrix of P™.

In the average-reward setting, we also define the following
relative value function

>l

6 2B S-S =], @

t=0

which is the cumulative difference over time between the
reward and the average value g5. It has been shown that
(Puterman 1994): V' = Hfr,, where H} £ (I-P+
PT)~1(I — PT) is defined as the deviation matrix of P™.

The relationship between the average-reward and the rel-
ative value functions can be characterized by the following
Bellman equation (Puterman 1994):

VE(s) = Ex | (s, A) — gE(s) + Zpﬁslvaf(s’)]. 3
s'e8

Robust discounted and average-reward MDPs. For robust
MDPs, the transition kernel is not fixed but belongs to some
uncertainty set P. After the agent takes an action, the envi-
ronment transits to the next state according to an arbitrary
transition kernel P € P. In this paper, we focus on the (s, a)-
rectangular uncertainty set (Nilim and El Ghaoui 2004; Iyen-
gar 2005), i.e., P = ®S7a P%, where P* C A(S8). We note
that there are also studies on relaxing the (s, a)-rectangular
uncertainty set to s-rectangular uncertainty set, which is not
the focus of this paper.

Under the robust setting, we consider the worst-case perfor-
mance over the uncertainty set of MDPs. More specifically,
the robust discounted value function of a policy 7 for a dis-
counted MDP is defined as

VE ()2 min E
P, ™K
v REQ, >0 P

ZVM%—%7<®

t=0

where r = (Po, P1...) € @, P



In this paper, we focus on the following worst-case average-
reward for a policy 7:

1 n—1
~ > rilSo s] . ®)

t=0

to which, for convenience, we refer as the robust average-
reward value function.

For robust discounted MDPs, it has been shown that the
robust discounted value function is the unique fixed-point of
the robust discounted Bellman operator (Nilim and El Ghaoui
2004; Iyengar 2005; Puterman 1994):

T.V(s) £ Y w(als) (r(s,a) +709:(V)),  (6)
acA

where e (V) £ minyeps p' V is the support function of
V on P2. Based on the contraction of T, robust dynamic
programming approaches, e.g., robust value iteration, can
be designed (Nilim and El Ghaoui 2004; Iyengar 2005) (see
Appendix for a review of these methods). However, there is
no such contraction result for robust average-reward MDPs.
In this paper, our goal is to find a policy that optimizes the
robust average-reward value function:

max 95(s), forany s € 8, @)

where I/ is the set of all stationary policies, and we denote
by g (s) £ max, g7 (s) the optimal robust average-reward.

Limit Approach for Robust Average-Reward
MDPs

We first take a limit approach to solve the problem of robust
average-reward MDPs in eq. (7). It is known that under the
non-robust setting, for any fixed 7 and P, the discounted value
function converges to the average-reward value function as
the discount factor v approaches 1 (Puterman 1994), i.e.,

Jim (1 =7)VE,, = gp- ®)

We take a similar idea, and show that the same result holds
in the robust case: lim, 1 (1 — y)V{_ = g7 under a mild
assumption. Based on this result, we further design algo-
rithms (Algorithms 1 and 2) that apply a sequence of robust
discounted Bellman operators while increasing the discount
factor at a certain rate. We then theoretically prove that our
algorithms converge to the optimal solutions.

In the following, we first show that the convergence
lim, 1 (1 — )V, = gf is uniform on the set IT x P.
In studies of average-reward MDPs, it is usually the case
that a certain class of MDPs are considered, e.g., unichain
and communicating (Wei et al. 2020; Zhang and Ross 2021;
Chen, Jain, and Luo 2022; Wan, Naik, and Sutton 2021). In
this paper, we focus on the unichain setting to highlight the
major technical novelty to achieve robustness.

Assumption 1. For any s € §,a € A, the uncertainty set
P2 is a compact subset of A(8). And for any w € II,P € P,
the induced MDP is a unichain.

The first part of Assumption 1 amounts to assuming that
the uncertainty set is closed. We remark that many standard
uncertainty sets satisfy this assumption, e.g., those defined
by e-contamination (Huber 1965), finite interval (Tewari and
Bartlett 2007), total-variation (Rahimian, Bayraksan, and
De-Mello 2022) and KL-divergence (Hu and Hong 2013).
The unichain assumption is also widely used in studies of
average-reward MDPs, e.g., (Puterman 1994; Wan, Naik, and
Sutton 2021; Zhang and Ross 2021; Lan 2020; Zhang, Zhang,
and Maguluri 2021). Also it is worth noting that under the
unichain assumption, the robust average-reward is identical
for every starting state, i.e., g5 (s1) = g5(s2),Vs1,s2 € 8
(Bertsekas 2011).

Remark 1. The results in this section actually only re-
quire the uniform boundedness of |Hf||,VYm € II,P € P
(Lemma 2 in Appendix). Assumption 1 is one sufficient condi-
tion.

In (Puterman 1994), the convergence lim,_,i(1 —
v)V,{ . = gp for a fixed policy 7 and a fixed transition
kernel P (non-robust setting) is point-wise. However, such
point-wise convergence does not provide any convergence
guarantee on the robust discounted value function, as the
robust value function measures the worst-case performance
over the uncertainty set and the order of lim and min may not
be exchanged in general. In the following theorem, we prove
the uniform convergence of the discounted value function
under the foregoing assumption.

Theorem 1 (Uniform convergence). Under Assumption I,
the discounted value function converges uniformly to the
average-reward value function on IT x P as vy — 1, i.e.,

lim (1= 9)VE,, = g5, uniformly ©)

With uniform convergence in Theorem 1, the order of the
limit v — 1 and minp can be interchanged, then the follow-
ing convergence of the robust discounted value function can
be established.

Theorem 2. The robust discounted value function in eq. (4)

converges to the robust average-reward uniformly on 11 :
lim (1 —)Vg , = g5 uniformly. (10)
y—1 ’

We note that a similar convergence result is shown in
(Tewari and Bartlett 2007), but only for a special uncertainty
set of finite interval. Our Theorem 2 holds for general com-
pact uncertainty sets. Moreover, it is worth highlighting that
our proof technique is fundamentally different from the one
in (Tewari and Bartlett 2007). Specifically, under the finite
interval uncertainty set, the worst-case transition kernels are
from a finite set, i.e., Vj{ S minpeoy Vp’f ~ for a finite set
M C P. This hence implies the interchangeability of lim and
min. However, for general uncertainty sets, the number of
worst-case transition kernels may not be finite. We demon-
strate the interchangeability via our uniform convergence
result in Theorem 1.

The previous two convergence results play a fundamental
role in limit method for robust average-reward MDPs, and
are of key importance to motivate the design of the following



two algorithms, the basic idea of which is to apply a sequence
of robust discounted Bellman operators on an arbitrary ini-
tialization while increasing the discount factor at a certain
rate.

We first consider the robust policy evaluation problem,
which aims to estimate the robust average-reward g7, for a
fixed policy 7. This problem for robust discounted MDPs
is well studied in the literature, however, results for robust
average-reward MDPs are quite limited except for the one
in (Tewari and Bartlett 2007) for a specific finite interval
uncertainty set. We present the a robust value iteration (robust
VI) algorithm for evaluating the robust average-reward with
general uncertainty sets in Algorithm 1.

Algorithm 1: Robust VI: Policy Evaluation
Input: 7, V5 (s) = 0,Vs, T

I: fort =0,1,....,T —1do

. t+1

2: Yt tiQ
3 for all s € S do
4 Viri(s) <= Ex[(1 = y)r(s, A) + yopa(Vi)]
5.  end for
6:
7T

end for
return Vo
At each time step ¢, the discount factor v; is set to ii—é

which converges to 1 as ¢ — oo. Subsequently, a robust
Bellman operator w.r.t discount factor -+, is applied on the
current estimate V; of the robust discounted value function
(1 —)Vy . As the discount factor approaches 1, the es-
timated robust discounted value function converges to the
robust average-reward g7, by Theorem 2. The following result
shows that the output of Algorithm 1 converges to the robust
average-reward.

Theorem 3. Algorithm 1 converges to robust average reward,
iLe., limT%OO VT = ggi.

Besides the robust policy evaluation problem, it is also of
great practical importance to find an optimal policy that max-
imizes the worst-case average-reward, i.e., to solve eq. (7).
Based on a similar idea as the one of Algorithm 1, we ex-
tend our limit approach to solve the robust optimal control
problem in Algorithm 2.

Algorithm 2: Robust VI: Optimal Control
Input: Vy(s) =0,Vs, T
I: fort =0,1,....,T —1do

end for
return Vo, mp

2: Yt < ii%

3: foralls e Sdo

4 Vinls) < max {(1 = %)r(s,a) + i09: (Vi) }
5:  end for

6: end for

7: for s € S do

8:

9:

0:

Ju—

Similar to Algorithm 1, at each time step, the discount fac-
tor -y, is set to be closer to 1, and a one-step robust discounted
Bellman operator (for optimal control) w.r.t. v, is applied to

Tr(8) < argmaXeea {(1 —Y)r(s,a) + ’YtU?g(VT)}

the current estimate V;. The following theorem establishes
that V7 in Algorithm 2 converges to the optimal robust value
function, hence can find the optimal robust policy.

Theorem 4. The output V in Algorithm 2 converges to the
optimal robust average-reward g3,: Vi — g5 as T — oo.

As discussed in (Blackwell 1962; Hordijk and Yushkevich
2002), the average-reward criterion is insensitive and under
selective since it is only interested in the performance un-
der the steady-state distribution. For example, two policies
providing rewards: 100+0+4+0+--- andO+0+0+ - --
are equally good/bad. Towards this issue, for the non-robust
setting, a more sensitive term of optimality was introduced
by Blackwell (Blackwell 1962). More specifically, a policy
is said to be Blackwell optimal if it optimizes the discounted
value function for all discount factor v € (4,1) for some
d € (0, 1). Together with eq. (8), the optimal policy obtained
by taking v — 1 is optimal not only for the average-reward
criterion, but also for the discounted criterion with large ~.
Intuitively, it is optimal under the average-reward setting, and
is sensitive to early rewards.

Following a similar idea, we justify that the obtained policy
from Algorithm 2 is not only optimal in the robust average-
reward setting, but also sensitive to early rewards.

Denote by II7, the set of all the deterministic optimal poli-
cies for robust average-reward (proved to exist in Lemma 7),
ie IIy, ={m € Ilp : g5 = g5}.

Theorem 5 (Blackwell optimality). There exists 0 < § < 1,
such that for any v > 0, the deterministic optimal robust
policy for robust discounted value function Vi, . belongs to
IT7,. Moreover, when II7, is a singleton, there exists a unique
Blackwell optimal policy.

This result implies that using the limit method in this sec-
tion to find the optimal robust policy for average-reward
MDPs has an additional advantage that the policy it finds not
only optimizes the average reward in steady state, but also is
sensitive to early rewards.

It is worth highlighting the distinction of our results from
the technique used in the proof of Blackwell optimality
(Blackwell 1962). In the non-robust setting, the existence
of a stationary Blackwell optimal policy is proved via contra-
diction, where a difference function of two policies 7 and v:
frn(y) & Ve, — V,#ﬁ is used in the proof. It was shown by
contradiction that f has infinitely many zeros, which however
contradicts with the fact that f is a rational function of v with
a finite number of zeros. A similar technique was also used in
(Tewari and Bartlett 2007) for the finite interval uncertainty
set. Specifically, in (Tewari and Bartlett 2007), it was shown
that the worst-case transition kernels for any 7, vy are from a
finite set M, hence f, ., () = minpey VE., —minpen VFf‘ﬁ
can also be shown to be a rational function with a finite num-
ber of zeroes. For a general uncertainty set P, the difference
function fr , (), however, may not be rational. This makes
the method in (Blackwell 1962; Tewari and Bartlett 2007)
inapplicable to our problem.



Direct Approach for Robust Average-Reward
MDPs

The limit approach in Section is based on the uniform conver-
gence of the discounted value function, and uses discounted
MDPs to approximate average-reward MDPs. In this section,
we develop a direct approach to solving the robust average-
reward MDPs that does not adopt discounted MDPs as inter-
mediate steps.

For average-reward MDPs, the relative value iteration
(RVI) approach (Puterman 1994) is commonly used since
it is numerically stable and has convergence guarantee. In
the following, we generalize the RVI algorithm to the robust
setting, and design the robust RVI algorithm in Algorithm 3.

We first generalize the relative value function in eq. (2) to
the robust relative value function. The robust relative value
function measures the difference between the worst-case
cumulative reward and the worst-case average-reward for a
policy 7.

Definition 1. The robust relative value function is defined as

Vi(s) = Nemin
t>0

Ey r [Z(Tt — 95|80 = s], (11)
t=0

where g5, is the worst-case average-reward defined in eq. (5).

The following theorem presents a robust Bellman equation
for robust average-reward MDPs.

Theorem 6. For any s and wr, (V, g%) is a solution to the
following robust Bellman equation:

V(s)+g=> m(als) (r(s,a) + op:(V)).  (12)

a

It can be seen that the robust Bellman equation for average-
reward MDPs has a similar structure to the one for discounted
MDPs in eq. (6) except for a discount factor. This actually
reveals a fundamental difference between the robust Bellman
operator of the discounted MDPs and the average-reward
ones. For a discounted MDP, its robust Bellman operator is
a contraction with constant y (Nilim and El Ghaoui 2004;
Iyengar 2005), and hence the fixed point is unique. Based on
this, the robust value function can be found by recursively ap-
plying the robust Bellman operator (see Appendix ). In sharp
contrast, in the average-reward setting, the robust Bellman
is not necessarily a contraction, and the fixed point may not
be unique. Therefore, repeatedly applying the robust Bell-
man operator in the average-reward setting may not even
converge, which underscores that the two problem settings
are fundamentally different.

We first derive the following equivalent optimality condi-
tion for robust average-reward MDPs.

Theorem 7. For any (g, V') that is a solution to
max {r(s,a) —g+o0p.(V) = V(s)} =0,Vs, (13)
g = g5- If we further set
7*(s) = arg max {r(s,a) +op.(V)} (14)

forany s € 8, then ™" is an optimal robust policy.

Theorem 7 suggests that as long as we find a solution
(g,V) to eq. (13), which though may not be unique, then g is
the optimal robust average-reward g7, and the greedy policy
7* is the optimal policy to our robust average-reward MDP
problem in eq. (7).

In the following, we generalize the RVI approach to the
robust setting, and design a robust RVI algorithm in Algo-
rithm 3. We will further show that the output of this algo-
rithm converges to a solution to eq. (13), and further the
optimal policy could be obtained by eq. (14). Here 1 de-

Algorithm 3: Robust RVI

Input: Vj, € and arbitrary s* € 8
I: wy < Vp — V()(S*)]l
2: while sp(w; — wi4+1) > edo
3: foralls e Sdo

4: Vig1(s) < max,(r(s,a) + ope (wy))
5: wis1(s) = Viga(s) = Vi (s*)

6: end for

7: end while

8:

return wy, V;

notes the all-ones vector, and sp denotes the span semi-norm:
sp(w) = max, w(s) —ming w(s). Different from Algorithm
2, in Algorithm 3, we do not need to apply the robust dis-
counted Bellman operator. The method directly solves the
robust optimal control problem for average-reward robust
MDPs.

To study the convergence of the robust RVI algorithm, we
first make an additional assumption as follows.

Assumption 2. There exists a positive integer J such that for
any P = {p? € A(8)} € P and any stationary deterministic
policy , there exists k > 0 and a state s € §, such that
(P™) )z > Kk, Va € 8.

This assumption is shown to be equivalent to assuming
unichain and aperiodic (Bertsekas 2011). It can be also re-
placed using some weaker ones, e.g., Proposition 4.3.2 of
(Bertsekas 2011), or be removed by designing a variant of
RVI, e.g., Proposition 4.3.4 of (Bertsekas 2011). In the fol-
lowing theorem, we show that our Algorithm 3 converges to
a solution of eq. (13), hence according to Theorem 7 if we
set 7 according to (14), then 7 is the optimal robust policy.

Theorem 8. (w:,V;) converges to a solution (w,V) to
eq. (13)ase — 0.

Remark 2. In this section, we mainly present the robust RVI
algorithm for the robust optimal control problem, and its con-
vergence and optimality guarantee. A robust RVI algorithm
for robust policy evaluation can be similarly designed by
replacing the max in line 4, Algorithm 3 with an expectation
w.r.t. m. The convergence results in Theorem 8 can also be
similarly derived.

Examples and Numerical Results

In this section, we study several commonly used uncertainty
set models, including contamination model, Kullback-Lerbler
(KL) divergence and total-variation defined model.



As can be observed from Algorithms 1 to 3, for different
uncertainty sets, the only difference lies in how the support
function opa (V') is calculated. In the sequel, we discuss
how to efficiently calculate the support function for various
uncertainty sets.

We numerically compare our robust (relative) value itera-
tion methods v.s. non-robust (relative) value iteration method
on different uncertainty sets. Our experiments are based on
the Garnet problem §(20, 40) (Archibald, McKinnon, and
Thomas 1995). More specifically, there are 20 states and
30 actions; the nominal transition kernel P = {p% € A(8)}
is randomly generated according to the uniform distribu-
tion, and the reward functions 7(s,a) ~ N(0, 0, ), where
0s,a ~ Uniform[0, 1]. In our experiments, the uncertainty
sets are designed to be centered at the nominal transition ker-
nel. We run different algorithms, i.e., (robust) value iteration
and (robust) relative value iteration, and obtain the greedy
policies at each time step. Then, we use robust average-
reward policy evaluation (Algorithm 1) to evaluate the robust
average-reward of these policies. We plot the robust average-
reward against the number of iterations.

Contamination model. For any (s, a) the uncertainty set P¢
is defined as P¢ = {q:q = (1 — R)p® + Rp’,p’ € A(S8)},
where p? is the nominal transition kernel. It can be viewed
as an adversarial model, where at each time-step, the en-
vironment transits according to the nominal transition ker-
nel p with probability 1 — R, and according to an arbi-
trary kernel p’ with probability R. Note that op. (V) =

(1 — R)(p*) TV + Rmin, V(s). Our experimental results
under the contamination model are shown in Figure 1.
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0 |
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03 ﬁr
02
01

ol |
1 —— non-robust value iteration
robust value iteration

Robust average-reward

Robust average-reward

% w0 B0 a0 o %o o &
Number of iteration

(b) Robust RVL.
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Figure 1: Comparison on contamination model with R = 0.4.

Total variation. The total variation distance is another
commonly used distance metric to measure the differ-
ence between two distributions. For two distributions p
and ¢, it is defined as Dry(p,q) = %Hp — ¢||1. Con-
sider an uncertainty set defined via total variation: P¢ =
{q: Drv(q||p%) < R}. Then, its support function can be ef-
ficiently solved as follows (Iyengar 2005): opa (V) = pTV —
Rmin,>o {maxs(V(s) — p(s)) — ming (V (s) — pu(s))}.
Our experimental results under the total variation model
are shown in Figure 2.
Kullback-Lerbler (KL) divergence. The Kullback—Leibler
divergence is widely used to measure the distance be-

tween two probability distributions. For distributions p, g,

it is defined as Dk (q|lp) = >, q(s)log ZE;; Consider

an uncertainty set defined via KL divergence: P¢ =
{q: Dkr(q|[p%) < R}. Then, its support function can be
efficiently solved using the duality result in (Hu and Hong

2 f/—

' (
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robust value iteration
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Figure 2: Comparison on total variation model with R = 0.6.

2013): opa(V) = —ming>o {Ra + alog (pTe%)} .
Our experimental results under the KL-divergence model
are shown in Figure 3.
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Figure 3: Comparison on KL-divergence model with R = 0.8.

It can be seen that our robust methods can obtain policies
that achieve higher worst-case reward. Also, both our limit-
based robust value iteration and our direct method of robust
relative value iteration converge to the optimal robust policies,
which validates our theoretical results.

Conclusion

In this paper, we investigated the problem of robust MDPs
under the average-reward setting. We established uniform
convergence of the discounted value function to average-
reward, which further implies the uniform convergence of the
robust discounted value function to robust average-reward.
Based on this insight, we designed a robust dynamic pro-
gramming approach using the robust discounted MDPs as an
approximation (the limit method). We theoretically proved
their convergence and optimality and proved a robust version
of the Blackwell optimality (Blackwell 1962). We then de-
signed a direct approach for robust average-reward MDPs,
where we derived the robust Bellman equation for robust
average-reward MDPs. We further designed a robust RVI
method, which was proven to converge to the optimal robust
solution. Technically, our proof techniques are fundamen-
tally different from existing studies on average-reward robust
MDPs, e.g., those in (Blackwell 1962; Tewari and Bartlett
2007).
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Review of Robust Discounted MDPs

In this section, we provide a brief review on the existing methods and results for robust discounted MDPs.

Robust Policy Evaluation

We first consider the robust policy evaluation problem, where we aim to estimate the robust value function V7' | for any policy
7. It has been shown that the robust Bellman operator T is a y-contraction, and the robust value function Vi _ is its unique

fixed-point. Hence by recursively applying the robust Bellman operator, we can find the robust discounted value function (Nilim
and El Ghaoui 2004; Iyengar 2005).

Algorithm 4: Policy evaluation for robust discounted MDPs
Input: 7, V,,, T

1. fort =0,1,....,7T —1do

for all s € S do

Vigr(s) + Exlr(s, A) + 709 (Vo)

end for
end for
return Vo

AN AN

Robust Optimal Control

Another important problem in robust MDP is to find the optimal policy which maximizes the robust discounted value function:

7t = argmax Vj . (15)

A robust value iteration approach is developed in (Nilim and El Ghaoui 2004; Iyengar 2005) as follows.

Algorithm 5: Optimal Control for robust discounted MDPs
Input: V5, T
1. fort=0,1,....,T — 1do
2: foralls € 8do
3 Vig1(s) < maxg {r(s,a) +yopa (V) }
4:  end for
5: end for
m*(s) « argmaxg {r(s,a) + yops (Vr)}, Vs
7: return 7*

A

Equivalence between Time-Varying and Stationary Models

We first provide an equivalence result between time-varying and stationary transition kernel models under stationary policies,
which is an analog result to the one for robust discounted MDPs (Iyengar 2005; Nilim and EI Ghaoui 2004). This result will be
used in our following proofs.

Recall the definitions of robust discounted value function and worst-case average reward in eqgs. (4) and (5), the worst-case
is taken w.r.t. £ = (Po, P1...) € @, P, therefore, the transition kernel at each time step could be different. This model is
referred to as time-varying transition kernel model (as in (Iyengar 2005; Nilim and El Ghaoui 2004)). Another commonly used
setting is that the transition kernels at different time step are the same, which is referred to as the stationary model (Iyengar
2005; Nilim and El Ghaoui 2004). In this paper, we use the following notations to distinguish the two models. By Ep[], we

denote the expectation when the transition kernels at all time steps are the same, P, i.e., the stationary model. We also denote by
g5 (s) £ lim, o0 Ep & H ?:_01 rt‘So = 5] and VJ'_ () £ Ep . [Zio ~iry ’SO = s] being the expected average-reward and
expected discounted value function under the stationary model P. By E,[-], we denote the expectation when the transition kernel
at time ¢ is Py, i.e., the time-varying model.

For the discounted setting, it has been shown in (Nilim and El Ghaoui 2004) that for a stationary policy 7, any v € [0, 1), and
any s € 8,

Vr}rﬁ(s) = min E., lZ’ytrtSo = 5:|
t=0

”€®t20 P



= mln E:p

27 r¢|So = s:| . (16)

t=0

In the following theorem, we prove an analog of eq. (16) for robust-average reward MDPs that if we consider stationary policies,
then the robust average-reward problem with the time-varying model can be equivalently solved by a stationary model.
Specifically, we define the worst-case average reward for the stationary transition kernel model as follows:

1 n—1
nznysozs]. (17)

t=0

min lim E;p
PP n—oo

Recall the worst-case average reward for the time-varying model in eq. (5). We will show that for any stationary policy, eq. (5)
can be equivalently solved by solving eq. (17).

Theorem 9. Consider an arbitrary stationary policy w. Then, the worst-case average-reward under the time-varying model is
the same as the one under the stationary model.:

1n71
A
p(s) = min lim E. . [— r¢|So = s
)L min e |3 i) }
o
= Bl g e nanso:s]- (18)

Similar result also holds for the robust relative value function:

Vi(s)= min E, . )|So = s
7 (s) @y P ; —95)15 }
= gleing,ﬂ [Z(rt —95)|S0 = s} . (19)

t=0

Proof. From the robust Bellman equation in Theorem 6 2 we have that

Vi (s) + g5 = Y _w(als) (r(s,a) + op: (V). (20)

a

Denote by arg minpcpa (p) " VF £ p43, and denote by P™ £ {p? : s € 8,a € A}. It then follows that

V$(8)=Z (als) (r(s,a) — g% + op: (VF))

= Z (als) —95)+ Z (als)Ep- [V (S1)]So = s, Ao = q]

- Z (als)(r(5,0) — g) + Bpn <[V (S1)]S0 = 5

= S ls) o) )+ e {wawl)(r(sl,a) GBS0 = } + Eprs {ZW(M&)UCP; (VE)ISo = s
= 3 als)ir(5,0) = G5) + B 1~ 510 = ]+ Eon 930, (VIS0 =5

- Z (als) — g%) + Epr » {rl 93]S0 = s} +Epr & {(pg;)Tumso = s]

= Epr » [7“0 - g5 +11—g5/S0 = 5} + Epr «[V5 (S2)[S0 = 5]

2The proof of Theorem 6 is independent of theorem 9 and does not relay on the results to be showed here.
3We pick one arbitrarily, if there are multiple minimizers.



= Epr » {Z(rt - g§)|s} : Q1)
t=0

By the definition, the following always hold:

in K., — ¢%)|So = 5| < minEp , )So = 22
Heggofp ,{;(n 95)So s] min Ep, [; — 95)|S0 8} (22)

This hence implies that a stationary transition kernel sequence x = (P™, P™, ...) is one of the worst-case transition kernels for
V7 . Therefore, eq. (19) can be proved.

Consider the transition kernel P™. We denote its non-robust average-reward and the non-robust relative value function by gg-
and V... By the non-robust Bellman equation (Sutton and Barto 2018), we have that

VE(s) = 3 m(als)(r(s,a) — gx) + Epr o[V (S1)]5. (23)
On the other hand, the robust Bellman equation shows that
VF(s) = Viu(s) = Y _ m(als)(r(s,a) — g5) + Epr (Vi (S1)]s]. 24)

These two equations hence implies that gF, = gZ., and hence the stationary kernel (P™, P™, ...) is also a worst-case kernel of
robust average-reward in the time-varying setting. This proves eq. (18). U

Proof of Theorem 1

In the proof, unless otherwise specified, we denote by ||v|| the [, norm of a vector v, and for a matrix A, we denote by || 4| its
Az o

matrix norm induced by [, norm, i.e.,

Lemma 1. [Theorem 8.2.3 in (Puterman 1994)] For any P, ~, T,

1
Vi, = g 0F + hE S (), 25)

where i = Hgre, and f§(7) = £ Sy (<1)" (52 ) (Hp)™*
Following Proposition 8.4.6 in (Puterman 1994), we can show the following lemma.

Lemma2. HT i
constant h, such that |HE || < h for any 7, P.

For simplicity, denote by

B || is uniformly bounded on IT x P, i.e., there exists a

1fj o (B22) e,

1 N _ n
s L (2 .

Clearly ST (P,v) = f5 () and limy_,o S§ (P, y) = SZ (P, ) for any specific 7, P.
Lemma 3. There exists § € (0,1), such that

\2

lim S5 (P,v) = S%(P,7) 27
N—o0
uniformly on IT X P x [§,1].
Proof. Note that || HZ || < h, hence there exists J, s.t.

1_
Téh§k<1 (28)

for some constant k. Then for any v > 9,

1-— 1-9

< ——h<k. (29)



Moreover, note that

Lo (120 ] < L (120) e <
Z(=1)m HE)" el < = (—1) pnt < = 2, (30)
Hv( ) ( v (&) TNT 0

which is because ||A + B|| < ||Al| + || B|| for induced I, norm, ||Az|| < ||All||z] and ||rx || < 1.
Note that

Sk

hence by Weierstrass M-test (Rudin 2022), S7; (P, ~) uniformly converges to ST (P, ~) on IT x P x [4, 1]. O
Lemma 4. There exists a uniform constant L, such that

IS8 (P, 71) = SR (P, 72)ll < Lim — 72l (32)

forany N, 71, P,v1,v2 €[4, 1].

Proof. We first show that vS%, (P, ) = 22]21(*1)" (1777) (HE)"*lr, & T%(P,~) is uniformly Lipschitz w.r.t. the I,

norm, i.e.,
TR (Psv1) = TR (P, v2)ll < ly1 — 2l (33)

forany N, 7, P,v1,v2 € [9, 1] and some constant [.
Clearly, it can be shown by verifying VI'J; (P, ) is uniformly bounded for any 7, N, P or 7.
First, it can be shown that

N n—1
1- 1
VT%(RnO::E:c—U”n<7> — (HE)" e, (34)
o Y Y
and moreover
N 1_ ~y n—1 1
IvTEel < Son(F20) S 2 i), (39)
ot Y Y
Note that
N n
1—v 1—x 1 9
h—LIn(y) = n() — "2 (36)
v () ; v ok

then, we can show that

N n—1 1 N 1_ n 1
_Zn< ’Y) th+lzn< ’Y> hn+2
Y Y

n=1 n=1 Y ’Y
N n—1

1 1 ’Y) N+2 ( 7) 1 +1
=_—_h-N —h + — A"

v? ( ¥ Z 72

1 h21-— 1
< Sk +— R .

2 v oy 1-1=22p

K h?1-— 1
R =T o7

>

Hence, we have that

1 K2 h21—~ 1
VTGP, <Iv() < —— [+ B0
VIR P < In(v) EyRe (72 R 1_1%)



1 (k2 B2k
P T A
_1_k(52+521_k>, (38)

which implies a uniform bound on ||VTF (P, ~v)||-
Now, we have that

|S]7{I(P771) - S]‘I{I(P772)|

|72 — 71|
——||T% (P, +
7o || N( ’Yl)”

To show || T% (P, ~)|| is uniformly bounded, we have that

175 (P, 1) — TR (P, 7).
Y2

<

(39)

IT% (P, )l

] =

(40)
Then, it follows that
[SX(P,v) = SR (P, v2)ll

— TH(P, 1) — TH(P
— ’ Y2 ’VlT]@(P,,}/l)_~_ N( 571) N( 7’72) ‘
Y172 72

(L, k11 (R Rk 1 —
S\ Sk Tk N\ T2 ok)) T

2 Ly — 2, (41)

2 2 . .
where L = <6%hﬁ + %1% (2—2 + b L)) is a universal constant that does not depend on N, P, 7 or . O

Lemma 5. S7_(P, ) uniformly converges as v — 1 on II x P. Also, ST_(P,~) is L-Lipschitz for any vy > ¢: for any 7, P and
any 1,72 € (,1].

1S5 (P, m) = S5 (P, v2)ll < Liy = 7el- 42)
Proof. From Lemma 3, for any e, there exists Ve, such that for any n > N, w,P, v > 6,
195 (P, y) = Sp(P.y)l <e. (43)

Thus for any v1,72 € (6, 1],
155 (P, 71) = S5 (P y2)l
S NS (P, v1) = SE(Poy) [ + 157 (Poy1) = SE(P y2) | 4 1197 (P, v2) — S (P, 72|
<2+ HSZ{(P,M) - S’:‘L—(P7’Y2)H
<2+ Ly — 72, (44)

where the last step is from Lemma 4.
Thus, for any ¢, there exists w = max {J, 1 — €}, such that for any 71,72 > w,

155 (Py71) = S5 (P,y2)ll < (24 L)e, (45)

and hence by Cauchy’s criterion we conclude that ST_(P, ) converges uniformly on IT x P.
On the other hand, since eq. (44) holds for any e, it implies that

15% (P, 71) = S5 (P, y2)ll < Ll — 7l (46)
which completes the proof. O



We now prove Theorem 1. For any P, 7, we have that

T 1 T s T
Ve, = 1% +he + fE (7). (47)

It then follows that
(I =NVe, =gp + (1 =hp + (1 =) fE (7). (48)
Clearly (1 — v)hj — 0 uniformly on I x P because ||h]|| = |[HErx|| < h is uniformly bounded. Then,

(L =) fE () — (1 =72) f5 (v2)l
<@ =) fe () = A=) F )+ 11 =7) 5 (r2) — (T = 22) fE ()l
< (1 =)Ly =2 + 15 ()l — 2l (49)

For any 7, P,~ > 4,

el = | I e U

n=1

< ‘1 3 <1V> prtt
v v

n=1

chlzy,
T oy 1-17h

h_k_
01—k
£ cy. (50)

Hence, (1 — ) f5 () — 0 uniformly on IT x P due to the fact that || fZ (+y)]| is uniformly bounded for any 7,y > ¢, P.
Then we have that limy 1 (1 —7)VE ", = gp uniformly on P x II. This completes the proof of Theorem 1.
Proof of Theorem 2

We first show a lemma which allows us to interchange the order of lim and max.

Lemma 6. If a function f(x,y) converges uniformly to F(x) on X as y — yo, then

max lim f(z,y) = lim maxf(x ). (1)
Y—Yo

T Y—Yo

Proof. For each f(z,y), denote by arg max, f(z,y) = z,, and hence f(x,,y) > f(z,y) for any z,y. Also denote by
arg max, F'(x) = z’. Now because f(z,y) uniformly converges to F'(x), then for any e, there exists ¢’, such that V|y — yo| < ¢,

|f(z,y) — F(z)[ < e (52)
for any 2. Now consider | f(xy,y) — F(z)| for |y — yo| < 0'. If f(zy,y) — F(2’) > 0, then
|f(zy,y) — F(2")| = f(zy,y) — F(2') = fzy,y) — F(xy) + F(z,) — F@') < & (53)
On the other hand if f(x,,y) — F(z') < 0, then
|f(xy,y) = F(a)| = F(a') — fzy,y) = F(2') = f(2',y) + f(2',y) — fzy,y) <e (54)
Hence, we showed that for any e, there exists ', such that V|y — yo| < d’,
£ @y,y) = F@')] = | max f(z,) - max F@)] < e (55)
and hence
lim max f(z,y) = max F(z) = max lim f(z,y), (56)
Y=Y T x T Y—yYo
and this completes the proof. O

Then, we show that the robust discounted value function converges uniformly to the robust average-reward as the discounted
factor approaches 1.



Theorem 10 (Restatement of Theorem 2). The robust discounted value function converges uniformly to the robust average-reward
on II:

lim (1 = 7)V5, = 5. (57)
y—1

Proof. Due to Theorem 9, for any stationary policy 7, g (s) = minpep g5 (s) under the stationary model. Hence from the
uniform convergence in Theorem 1, we first show the following:

vy : T
gp = mingg

= min lim (1 — 7) Vg
= min lim (1 — )V,

(@) .. .
= lim min(1 — 7))V
vl—>1 Pelg( NV,

= %L}rnl(]‘ _’Y)VP,V’ (58)

where (a) is because Lemma 6. Moreover, note that lim.,_,; (1 — 'y)VP’t - = gp uniformly on II X ‘P, hence the convergence in
(58) is also uniform on I/. Thus, we complete the proof. O

Proof of Theorem 3
Theorem 11 (Restatement of Theorem 3). Vr generated by Algorithm 1 converges to the robust average-reward g3 as T’ — oo.

Proof. From discounted robust Bellman equation (Nilim and El Ghaoui 2004), it can be shown that

(1 =73)VF,, = (L=7) Y wlals)(r(s,a) + vops (V). (59)

Then we can show that for any s € S,
Vega(s) = (1 =74) V5, ,, (5)]
= Viga(s) = (UL =7)V5 () + (1 =7) Vg, (8) = (1 = 7e40)Vip 4, (5] (60)
S|A =7)Vpq, () = (1= 41) V5 4, ()] + [Viga(s) = (1 =) V5, (s)]
= (1 =7)V5,, () = (1 =74)V5 ,, ,, (5)]

as><<1 o )r(5,0) 30w (Vi) — (L= 0)r(s, @) + 70w (1 — )V m)\

= =)V5,, () = (L = 22)V5 ,,,, (8)] +

57 atale) (092 V) o (1 =203, )|

a

= (1 =)V5 () = (L =24 ) Vi 5, ()] +

S atae) (o0 V) - aos (L= 0V, ). 6D

}. (62)

It can be easily verified that opa (V') is a 1-Lipschitz function, thus the second term in (62) can be further bounded as

3wl
<Z (als) [V = (1 = 7V, 1

- ||‘/t - (1 ’Yt)v?,%”OO? (63)

If we denote by A; = ||V; — (1 — V)V ., llocs then

Bt £ 0= 90V, = (1= 2041V e+ e { 3 (el

a

opa (Vi) — opa (1 —1)Vp,5,)

opa (V) = opa((1 =)V ,,)

and hence

A1 <A =7)VE,, — (L= 2+10)VF 4, oo + 7t A (64)



Recall that
A=y)Vg,, =1 —m) mgn Ve, (65)
Let s7 £ argmax, |(1 — V)V 4, () = (L= 741)VF ., ,, (s)]- Then it follows that

1A =9)V5 o, = (L= 940 VF o oo = 11 =7) Vi, (s7) = (L= 340) V5, (7)1 (66)
Note that from (Nilim and El Ghaoui 2004; Iyengar 2005), for any stationary policy 7, there exists a stationary model P such
that Vg’{ 7(s) = Ep Zfi 0 'ytrt|So =s| & ng v Hence in the following, for each ~;, we denote the worst-case transition
kernel of Vig' by P.
If (L =)V, (s7) = (1= y41)ViE,, ., (s7), then
(1 =7)V5,, () = (1 =740) V5 o, (7))
= min(1 = )VE, (57) — min(l = 91)VE,,,, (57)
=1 =7)VB, 4, (s8) = (L= n41)Vp, 4,0 (57)
= =7)VE, 4, (58) = (L =9)VE, 1, (s) + (L =)V, 5, (55) = (L= 7)) VB, 1,y (57)

AV 57) — (L 3R (50)
SHA=9)Ve, e = (L= )VE, o (67)
where (a) is due to (1 — )V (s7) = minp (1 — ) VE" (s7) < (1 — 'Yt)VPT;“,% (s3)-
Now, according to Lemma 1,
(L =y)VE e = 9P, + (L =2)hp, + (1 =) fp,,, (), (63)
(I =Y+ OVE ey = 9Py + (L= ye)hp, + (L= 1) fEL, (Vet1). (69)
Hence, for any v; > 9, eq. (67) can be further bounded as
=)V — (=2 ) VB s oo
=[(ver1 —w)hp,, + X =7)fp, () — (L= v+) fP,,, (1) [lo

< (1 = )RB, oo + 118, () = f8, s (Ve ) oo + Ve £7,, (1) — 2P, (00 loo

(a)

< h(err — ) + Lverr — ve) + e f8, (1) — vefe, 0 () lloo

< h(yerr = 7)) + Lvesr — ) + a1 08, (1) = w1 S8, (V)lloo + e 108, () — vefe,,, (00 lloo
< h(yerr = ve) + Lvesr —v) + v 15, (1) — £8 (V) oo + 118, (V) oo (Ve — )

®)
< (h+L+vnL+ sup /5 (Mloo) (Vi1 — 72)
™,y

< K(ver1 — ), (70)
where (a) is from Lemma 5 for any ~y; > 6, ¢y is defined in (50) and K L h4+2L+ ¢y 18 a uniform constant; And (b) is from
Lemma 5.

Similarly, the inequality also holds for the case when (1 —v)V , (s7) < (1 = v41)V3 ., (s7). Thus we have that for any
t such that v; > 9,

A1 < K(ve41 — 7)) + 714, (71)
where K is a uniform constant.
Following Lemma 8 from (Tewari and Bartlett 2007), we have that A; — 0. Note that

Vi = g5 lloe < [IVi = (1 =7)V5 , lloo + 11 = 7))V, = g5lloc = At + (1 =) VF ,, — 95 lloo- (72)
Together with Theorem 2, we further have that
. o _
Jm (Vi = g5loe =0, (73)

which completes the proof.



Proof of Theorem 4

Note that the optimal robust average-reward is defined as
g (s) & max g5 (s). (74)
We further define
Vi (s) £ max Vg (s). (75)

Theorem 12 (Restatement of Theorem 4). Vr generated by Algorithm 2 converges to the optimal robust average-reward g3, as
T — oo.

Proof. Firstly, from the uniform convergence in Theorem 2, it can be shown that

lim (1= )V5 ,, = g5 (76)

We then show that for any s € S,

Vira(s) = (1 =7e41) Vs 4, (5)]

< Viga(s) = (L =)V o, () + 11 =)V 1, (8) = (1 = 7e41)Vip 5, (5]

(a) * *

= X =)Vp,, () = (L= 741)V5p 5, , (5)]

o (0= 20,0 0 () = (0= 3005, 0) 4 20901~ 20V5.,) )|

<A =)V, () = (1 =740) V5, ()]

) (77)

+max | (1 —)r(s, a) + y09s (Vi) = (1= 72)r(s,a) + 709a (1L =)V )

where (a) is because the optimal robust Bellman equation, and the last inequality is from the fact that | max,, f(z)—max, g(x)| <
max, | f(x) — g(z)|.

Hence eq. (77) can be further bounded as
Vit1(s) = (1 = %41V ,,, (5)]

SN =)V 4, () = (1= 741) V5 o, (8)] + e max |opa (Vi) — 092 (1 = 7) Vi 5, ) |- (78)
If we denote by A; = ||V, — (1 — Y) Vs -, loo» then
A1 SN =7)Vp,, = (L= 241) V5 4 oo + 7 max |op (Vi) —opa (1 —7)V5,,)|- (79)
Since the support function op« (V') is 1-Lipschitz, then it can be shown that for any s, a,
09 (Vi) = o9 (1= 300V )| < Vi = (1= 30) Vil (30)
Hence
A1 <A =7)Vp = (L =v41)Ve o, loo + 724 (81)
Similar to (70) in Theorem 3, we can show that
(1 =v)Vp 5, = (L =241V o oo < K7 — Y241l (82)
and similar to Lemma 8 from (Tewari and Bartlett 2007),
tlim Ay =0. (83)
—00

Moreover, note that
Vi =93 lloe < IVi = (1 =7)V5 5, lloc + (1 =7) V5, = 9plloc = A +[[(1 =7) V5, — 97 llo (84)
which together with eq. (76) implies that
Vi = g3llc — 0, (85)
and hence it completes the proof.

Lemma 7. There exists a deterministic optimal policy, i.e., I7* € IIp, s.t. ggg* = g = MaXrer1 §5-



Proof of Lemma 7
Lemma 8. (Restatement of Lemma 7). There exists a deterministic optimal policy, i.e., A7* € Ilp, s.t. gg* = g5 = maXyec §p-

Proof. Assume that there is no deterministic optimal robust policy, i.e., there exists a strictly random policy 7, € I1, such that
for any deterministic policy 7 € Il p,

93" > 95p- (86)
According to theorem 2, we have that
lim (1 =)V, = 657, (87)
%E(l—v)Vﬁvzgg,VﬂeﬂD. (83)
Since there are only finite number of deterministic policies, there exists § < 1, such that for any v > J,
V}r,y > Vg,V € llp. (89)
This implies that for v > §, the random policy 7, is better than all the deterministic policies, i.e.,
Var Vg .. 90
Py > 7?61?7); Py ( )

However, Theorem 3.1 of (Iyengar 2005) implies that there exists deterministic optimal robust policy, i.e.,

max VJ  =maxVy., > VIir 91
wellp Py Tell Py = TP ( )

which contradicts to (90). Hence it implies that there exists a deterministic optimal robust policy, and completes the proof. [

Proof of Theorem 5

Theorem 13 (Restatement of Theorem 5). There exists 0 < § < 1, such that for any v > 9§, a deterministic optimal robust
policy for robust discounted value function Vg . is also an optimal policy for robust average-reward, i.e.,

Vi, =V (92)
Moreover, when arg max ¢ yp g5 is a singleton, there exists a unique Blackwell optimal policy.

Proof. According to Lemma 7, there exists 7* € I D such that

9% =95 - ©3)
Assume the robust average-reward of all deterministic policies are sorted in a descending order:
Gp =gp' =05’ = ..=gp" > gp > .. > gk 94)

for all 7}, m; € ITP, and we define IT* = {n} : i = 1,...,m}. Denote by d = g;i* — g5t
From Theorem 2, we know that for any = € IT7,

%1311(1 —NVg, =95 (95)
Because the set ITP is finite, for any € < ¢ there exists &’ < 1, such that for any v > ¢, 7} and T,
(L =NVp, —gbl <, (96)
(1 =y)Val, — g5 | <e 97)
It hence implies that
(L=)Val, > (d—2€) + (1 =7)Vpl > (1 —7)Vg?, (98)
and
VgirjV > Vpl. (99)

Note that from Theorem 3.1 in (Iyengar 2005), i.e., max,¢ o Vg, = Vg |, we have that for any -, there exists a deterministic
policy € ITP, such that Vp ., = Vg . Together with (99), it implies that all the possible optimal robust polices of Vi | belong
to {77, ...m, }, i.e., the set IT*. Hence, there exists 7; € II*, such that

xt .
Vy?, = max Vi, = Vg, (100)

For the second part, when the optimal robust policy of robust average-reward is unique, i.e., IT* = {7*}. Then from the
results above, there exists ¢’, such that for any v > ¢', VI 7 > Vg, forany * # 7 € ITP, and hence 7* is the optimal policy

for discounted robust MDPs, which is the unique Blackwell optimal policy.
O



Proof of Results for Direct Approach

Recall that
VZ(s)2 min E,Mr{ e — gp)|S —5}, (101)
7 (s) e t:O(t 99)|0
where
1n71
5= i lim E, . |— So=s]. 102
9= i f B [ 2 rilsi ] (102

We first show that the robust relative function is always finite.
Lemma 9. For any m, Vi is finite.
Proof. According to Theorem 9, VJ = minpcy VZ7 = minpep Ep » [Zfﬁ olre — gg)] . Note that V] can be rewritten as
r o0

Vi =minEp — g7
P Ipnelg P, _tiO(Tt 9?)]

r n
=minE lim E T — g
Pes P, nroo 0( )

- n
=minEp | lim Y (re —gF + g — 953)]
- t=0

PeP
= minEp _nli_{go(Rn —ngp +ngp — ng;’f»)] ; (103)
where R,, = Z?:o r¢. Note that for any P € P and n, ng§ > ng%, hence
lim (R, — ng§ +ngf —ngf) > lim (R, — ngf), (104)
and thus the lower bound of V7' can be derived as follows,
o0
V& > minEp e — gp
? =8 P, L:o( t QP)}
= min V¥
iy V¥
— min HXr. . 105
glen?} prr (105)

which is finite due to the fact that HJ is continuous on the compact set P.
From Theorem 9, we denote the stationary worst-case transition kernel of g7 by P,. Then the upper bound of ViJ can be
bounded by noting that

5 =minEp . —9p
Vyp glelg P, |:Z(7"t QPQ)}

t=0

< Ep,# |:Z(7"t - ggg)}
=0
— Vg, (106)

which is also finite and P, denotes the worst-case transition kernel of g7. Hence we show that V7 is finite for any 7 and hence
complete the proof. O

After showing that the robust relative value function is well-defined, we show the following robust Bellman equation for
average-reward robust MDPs.
Theorem 14 (Restatement of Theorem 6). For any s and m, (V' g%) is a solution to the following robust Bellman equation.:
V(s)+g=> ml(als) (r(s,a) + ops(V)). (107)

a



Proof. From the definition,

Vp(s)= min E,, re — gp)|So = s, (108)
T( ) REQ >0 P {;( ! gT)| 0 :|
hence
Vi(s)= min E., re —gn)|So = s
y() RE@1o0 P , [;( t gy)’ 0 ]
= min E,.|(ro— + )| —s}
L [ 0~ 9%) ; — 9%)|0
- Zw<a|s>r<s,a>—gz;+ER,ﬁ[Z<n—g;MSO=s}
KEQ >0 P “ =1
= Y wlals) (r(s.0) ~g5) +_min {3 wlals)Ps ﬂ[z - )lsi =9/
a e®t>() a75/ t=1
=Y m(als) (r(s,a + min m(als)(Po)s. s Ex x )|S1=s
S () r(s,0) ~B) iy min - Sal) [; ~a)lsi =
= - g% i Po)¢ . i )|S1 =
%:W(GIS) (r(s,a) = g5) + min agﬂ(a\S)( 0 s Hz(Pl’”rr_l)lg(thIT{ Lz_; — 95|81 = s”
:Z’/T(CL|S)(7"(S +Z (als) Z IIllIl ps SVE(S)
= ZW(aIS) (r(s,a) — g5) + Z?T als)ope (V?)
_Z (als) gy+arpa(v?)) (109)
This hence completes the proof. O

Theorem 15. [Restatement of Theorem 7, Part 1] For any (g, V') that is a solution to max, {r(s,a) — g + opa (V) = V(s)} =
0,VYs, then g = g5.

Proof. In this proof, for two vectors v, w € R™, v > w denotes that v(s) > w(s) entry-wise.
Let B(g,V)(s) £ max, {r(s,a) — g+ op« (V) — V(s)}. Since (g, V) is a solution to (13), hence for any a € A and any
s €S,

r(s,a) — g+ opa (V) = V(s) <0, (110)

from which it follows that for any policy 7,
9(s) 2 7x(s) +Y_m(als)opa (V) = V(s) £ ra(s) + Y wlals)(pd) TV = V(s), (111)

where r.(s) £ Y, m(als)r(s, a), p? £ argminyepe p' V, and Py = {p? : s € 8,a € A}. We also denotes the state transition

matrix induced by 7 and Py, by P7;.
Using these notations, and rewrite eq. (111), we have that

gL > e + (PY — )V (112)

Since the inequality in eq. (112) holds entry-wise, all entries of P, are positive, then by multiplying both sides of eq. (112) by
PT,, we have that

gl = gPy1 > Pyr, + PY(PY — I)V. (113)
Multiplying the both sides of eq. (113) by P7,, and repeatedly doing that, we have that
gL > (Py)?rx + (PY)*(PT — )V, (114)



: : (115)
gl > (P)" e + (PY)" 1Py — I)V. (116)

Summing up these inequalities from eq. (112) to eq. (116), we have that
ngl > (I + Py + ..+ (PY)" )re + (I + Py + ...+ (PT)" " H)(P — D)V, (117)

and from which, it follows that

1
gl > = (I +P% 4+ ... 4+ (PT)" Hr, + 5(1 + P 4 o+ (PR H(PT — DV

1

n
1 1

= £(1+P7{/+...+(P7{/)”_1)rﬂ+g((PT{/)”fI)V. (118)

It can be easily verified that lim,,_, o = ((P,)™ — I)V = 0, and hence it implies that

1
gl > lim —(I +Py + ...+ (PT)" Yr,

n—oo N
1 n

= nli}n;o EEP(/J‘- l:; Tt:|

= gf{({/]l

> gpl. (119)

Since eq. (119) holds for any policy 7, it follows that g > gJ. On the other hand, since B(g, V') = 0, there exists a policy 7 such
that

g1 =1, + (P} — D)V, (120)

T

where 7, P{, are similarly defined as for 7. From Theorem 9, there exists a stationary transition kernel P

such that g5 = gp. .
We denote the state transition matrix induced by 7 and P] . by P™. Then because P, is the worst-case transition of V/, it follows

that

P,V <PTV. (121)
Thus
gl <r. 4 (PT - 1D)V. (122)
Similarly, we have that
gl < (PT) 'y + (PTY Y (PT - 1)V, (123)

for j = 2, ...,n. Summing these inequalities together we have that

ngl < (I+P" 4 ...+ (PT)" Vre 4 (I 4+ P + ...+ (PT)" H)(PT)" L (P" = D)V

=T +P 4. .. +P)" Y, + (P = I)V. (124)
Hence
gl < lim. %]EP;W,T [gn} =gp; 1 =gpl < g3l (125)
Thus g = g5, and this concludes the proof. O
Theorem 16 (Restatement of Theorem 7, Part 2). For any (g, V') that is a solution to
max {r(s,a) —g+ o9 (V) = V(s)} =0,Vs, (126)
if we set
m™*(s) = arg max {r(s,a) +op:(V)} (127)

forany s € 8, then ™" is an optimal robust policy.



Proof. Note that for any stationary policy 7, we denote by o= (V) £ (3, m(alsi)ope (V), ..., >, w(alsis)ope (V) being

a vector in RIS!. Then eq. (14) is equivalent to -
Tar + opre (V) = max {rr +op=(V)}. (128)
Hence,
Tar — g+ 0pr (V) —V:mTz?x{r7T —g+op-(V)=V}. (129)
Since (g, V) is a solution to (13), it follows that
Tre — g+ 0pe (V) =V =0. (130)

According to the robust Bellman equation eq. (12), (gaﬁ* VE ") is a solution to eq. (130). Thus from Theorem 15, ggr,* = g5, and
hence 7* is an optimal robust policy. O

Theorem 17 (Restatement of Theorem 8). (wr, V;) in Algorithm 3 converges to a solution of eq. (13).
Proof. We first denote the update operator as

Lu(s) £ max(r(s,a) + ope (v)). (131)

Now, consider sp(Lv — Lu). Denote by § = arg max(Lv(s) — Lu(s)) and 5 2 arg ming(Lv(s) — Lu(s)). Also denote by
a, £ argmax,(r($,a) + ope(v)) and ay, £ argmax,(r(%,a) + ope(u)) Then
Lo($) — Lu($) = max(r(s,a) + ops(v)) — max(r(s, a) + ope (u))

2 r($,a,) + opan (V) = (1($, au) + opau (1))

< 7(8,a0) + opre (v) = (7(8, a0) + opee (u))
= oy (1) = 000 1)
2 (05" v = ") T, (132)
where p¢"" = arg min,,cpav p'vand pi" = arg min,epav p " . Thus eq. (132) can be further bounded as
Lo($) — Lu($)
< @) o= T
< (™) (v —u). (133)
Similarly,
Lo(3) — Lu(3) > (pi*) T (v — u). (134)
Thus
sp(Lv — Lu) < (p"") T (v —u) = (p") T (v — ). (135)
Now denote by v —u £ (21, T2, ..., T ), P = (D1, .oy pn) and ps** = (g1, ..., ¢ ). Further denote by b; = min{p;, ¢;} Then

n n
E pixi — E qiZ;
i= i=1

n

(pi — bi)ai = Y (gi — bi)a

i=1

b;) max{x;} — Z i — b;) min{z; }

M: =

-
Il
-

'Mﬁ

N
Il
—

n

(v — bi)sple (Zm—z = Y0~ b)) minga)

=1

‘MS

ﬁ
Il
-



= (1 - b,»)sp(x). (136)

i=1

Thus we showed that
sp(Lv — Lu) < <1 - Z bi> sp(v — u). (137)
i=1

Now from Assumption 2, and following Theorem 8.5.3 from (Puterman 1994), it can be shown that there exists 1 > A > 0, such
that for any a, u, v,

Zbi >\ (138)
=1

Further, following Theorem 8.5.2 in (Puterman 1994), it can be shown that L is a J-step contraction operator for some integer .J,
ie.,

sp(L7v — L7u) < (1 — N)sp(v — u). (139)

Then, it can be shown that the relative value iteration converges to a solution of the optimal equation similar to the relative
value iteration for non-robust MDPs under the average-reward criterion (Theorem 8.5.7 in (Puterman 1994), Section 1.6.4
in(Sigaud and Buffet 2013)), and hence (w;, V;) converges to a solution to eq. (13) as € — 0. [



