®

Check for
updates

A New Semantics for Action Language

mA*

Loc Pham®™) | Yusuf Izmirlioglu®), Tran Cao Son, and Enrico Pontelli

New Mexico State University, Las Cruces, NM, USA
ocpham,yizmir,eponte nmsu.edu, tson@cs.nmsu.edu
locpham,yizmir,epontell}@ d e d

Abstract. The action language mA* employs the notion of update mod-
els in defining transitions between states. Given an action occurrence and
a state, the update model of the action occurrence is automatically con-
structed from the given state and the observability of agents. A main
criticism of this approach is that it cannot deal with situations when
agents’ have incorrect beliefs about the observability of other agents.
The present paper addresses this shortcoming by defining a new seman-
tics for mA*. The new semantics addresses the aforementioned problem
of mA* while maintaining the simplicity of its semantics; the new def-
initions continue to employ simple update models, with at most three
events for all types of actions, which can be constructed given the action
specification and independently from the state in which the action occurs.

Keywords: Epistemic reasoning - Update models + Action language

1 Introduction

In multi-agent environments, agents not only need to reason about properties
of the world, but also about agents’ knowledge and beliefs. Among the various
formalisms for reasoning about actions in Multi-Agent Systems (MAS), a com-
monly used one is the action model, introduced in [1,2] and later extended to the
update model [5,9]. Update models have been employed in the study of epistemic
planning problems in MAS [3,6,11]. The action language m.A*, proposed in [4],
and its earlier versions are among the first action languages that utilize update
models in defining a transition function based semantics for multi-agent domains.
Update models have also been adopted in [13]. Given an action occurrence, a
corresponding update model is automatically derived from the action description
and the pointed Kripke model encoding the current state of the world and the
state of beliefs/knowledge of agents; such update model is used to compute the
resulting state from the action occurrence. This simple construction only uses
update models with at most three events. However, as discussed in [4,8], the
simplicity of mA* presents some challenges for its application.

Ezxample 1. Three agents, A, B and C, are in a room with a box containing a
coin. It is common knowledge that: (1) no agent knows whether the coin lies
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

R. Aydogan et al. (Eds.): PRIMA 2022, LNAI 13753, pp. 553-562, 2023.
https://doi.org/10.1007/978-3-031-21203-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21203-1_33&domain=pdf
https://doi.org/10.1007/978-3-031-21203-1_33

554 L. Pham et al.

heads or tails up; (2) the box is locked and only A can open it; (3) an agent
needs to peek into the open box to learn the position of the coin; and (4) if one
agent is looking at the box and a second agent peeks into the box, then the first
agent will learn that the second agent knows the status of the coin; nevertheless,
the first agent’s knowledge about which face of the coin is up will not change.

Tead head, ‘
opene
Tead Tead opened | /A looking,| /2 c
—opened —opened Jookinga lookingp;
looking, looking, o g ~lookingc| B —Tead
lookingp lookingp A 1 g —opened
o kil ap apc ao |||k
B c. d ngs
‘ A, C- R A lookingc
, ? : i 4,B
o -Co ¢
40 B 40 ! . Tead I\ "t 4c A"
B B pre:1 preit Tookinga Ac
—— A, B u) | lookngs B
_ lookinge| g, B
A,B,C A, B, Aopensthebox head | [“head |LH—c-
AB ||| opened | | opened A,B,C
‘ 4,B,C , looking. | | looking. ead
lookingp| | lookingp| _opened
lookingc | |lookinge Opemed A, B, C- ;
head head 9 =l looking, il !
—opened —opened S —head
looking 4 looking 4 —opened
lookingss lookings; ¢ |looking,
lookingc lookingc 17 \lookingp
lookinge
L ¢

Fig. 1. A opens the box

Suppose that only A and B are looking at the box. However, B believes
that all three agents have their eyes on the box. The situation is illustrated
by the pointed Kripke structure on left of Fig.1. Assume that A opens the
box and anyone who is looking at the box will observe this action. Intuitively,
after A opens the box, B should believe that C' is also aware of the box being
open. The design of mA* produces the pointed Kripke structure on the right
of Fig. 1, leading to the conclusion that B thinks that C' considers the box still
closed. This is because the current update models in mA* assume that all full
observers know about the observability of all other agents. While this assumption
is reasonable in many situations, it implies that the use of mA* requires very
careful considerations by the domain designers, as pointed out in [4].

In this paper, we propose an extension of the language mA* that can handle
situations where agents’ have incorrect beliefs about the observability of other
agents, using edge-conditioned event update models, introduced by [7]. We begin
with a short review of m.A*, then show how to apply the edge-conditioned event
update models to help mA* solve the problems mentioned in the previous exam-
ple. We prove relevant properties and provide final considerations.

2 Background

Belief Formulae. A multi-agent domain (AG, F) includes a finite and non-empty
set of agents AG and a set of fluents (atomic propositions) F encoding properties
of the world. Belief formulae over (AG, F) are defined by the BNF: “p 1= p |
| (eA@) | (pVe)|B;p’ where p € F is a fluent and i € AG. We refer to a

A New Semantics for Action Language m.A* 555

belief formula which does not contain any occurrence of B; as a fluent formula.
In addition, for a formula ¢ and a non-empty set o C AG, B, ¢ and C,¢ denote
Nica Biv and A;~ BEo, where BLp=B,p and BEo=BE "B,y for k > 1,
respectively. £ denotes the set of belief formulae over (AG, F).

Satisfaction of belief formulae is defined over pointed Kripke structures [10].
A Kripke structure M is a tuple (S, 7, {B;}icag), where S is a set of worlds
(denoted by M[S]), m : S + 27 is a function that associates an interpretation
of F to each element of S (denoted by M|n]), and for i € AG, B; C S x S is a
binary relation over S (denoted by M[i]). For convenience, we will often draw
a Kripke structure M as a directed labeled graph, whose set of labeled nodes

represents S and whose set of labeled edges contains s — t iff (s,t) € B;; the
label of each node is the name of the world and its interpretation is displayed as
a text box next to it (see, e.g., Fig 1). For u € S and a fluent formula ¢, M[r](u)
and Mr](u)(¢) denote the interpretation associated to w via 7 and the truth
value of ¢ with respect to M[r](u). For a world s € M[S], (M, s) is a pointed
Kripke structure, hereafter called a state.

The satisfaction relation = between belief formulae and a state (M, s) is
defined as follows: (1) (M,s) = p if p is a fluent and M[r](s)(p) is true; (2)
(M, 5) |= ~if (M, 5) i ; (3) (M, 5) |= o1 Ao if (M, s) b= o1 and (M, 5) = ga;
(4) (M, s) = o1 Vo if (M,5) |= 1 or (M, s) = 33 and (5) (M, s) - By if
vi(s,t) € M[i] = (M,) | .

Edge-Conditioned Update Models. The formalism of update models has been
used to describe transformations of states according to a predetermined trans-
formation pattern (see, e.g., [1,5]). This formalism makes use of the notion of
L 4g-substitution, which is a set {p1 — ¢1,...,pr — @i}, where each p; is a
distinct fluent in F and each ¢; € Lag. SUB.,, denotes the set of all £ 4g-
substitutions. To handle the nested belief about agents’ observability problem,
in this extension of mA*, we will utilize the edge-conditioned event update mod-
els as proposed by [7]. An edge-conditioned event update model X is a tuple
(X {R;}icag,pre, sub) where X is a set of events, R; C X x Lg X X is the
accessibility relation of agent ¢ between events, pre : Y — L 4¢ is a function
mapping each event e € X to a formula in L4g, sub: ¥ — SUB. ,, is a func-
tion mapping each event e € X' to a substitution in SUB ,,. Elements of R; are
of the form (e1,7,e2) where 7 is a belief formula. In the graph representation,
such an accessibility relation is shown by a directed edge from e; to e; with the
label i : v. We will omit v and write simply ¢ as label of the edge when v = T.
Given an edge-conditioned update model X, an update instance w is a pair
(3, e) where e is an event in X, referred to as a designated event (or true event).
For simplicity of presentation, we often draw an update instance as a graph whose
events are rectangles, whose links represent the accessibility relations between
events, and a double square represents the designated event (see, e.g., Fig. 2).
Given a Kripke structure M and an edge-conditioned update model 3 =
(X, {Ri}icag,pre, sub), the update of M induced by X results in a new
Kripke structure M’, denoted by M’ = M®X, defined by: (i) M’'[S] =
{(s,7) | T€Z,5eM[S], (M, 5) | pre(r)}; (i) ((5,7), (,7) € M'[i] iff (s,7),

556 L. Pham et al.

(s',7") € M'[S], (s,s") € M[i], (1,7,7")€R; and (M, s) | ~; and (iii) for all

(s,7) e M'[S) and f € F, M'[r]((s,7)) = [if f — ¢ € sub(7) and (M, s)=¢p.
An update template is a pair (X, I'), where X is an update model with the set

of events X and I' C X'. The update of a state (M, s) given an update template

(3,71") is a set of states, denoted by (M, s) ® (X,I"), where (M,s) ® (X,I') =

{M®3%,(s,7)) | TeT,(M,s) = pre(r)}.

Syntaz of mA*. An action theory in the language mA* over (AG, F) consists of

a set of action instances AZ of the form a{«), representing that a set of agents
« performs action a, and a collection of statements of the following forms:

a executable_if (1) a announces ¢ (4)
a causes /if o (2) z observes a if 4, (5)
a determines ¢ (3) z awareof aif 6, (6)

where £ is a fluent literal (a fluent f € F or its negation —f), ¢ is a belief
formula, ¢, §, and 6, are fluent formulae, a € AZ, and z € AG. (1) encodes
the executability condition of a. (2) describes the effect of the ontic (i.e., world-
changing) action a. (3) enables the agents who execute a to learn the value of
the formula ¢. (4) encodes an announcement action, whose owner announces
that ¢ is true. (5) indicates that agent z is a full observer of a if 4, holds. (6)
states that agent z is a partial observer of a if 8, holds. It is assumed that the
sets of ontic actions, sensing actions, and announcement actions are pairwise
disjoint. Furthermore, for every pair of a and z, if z and a occur in a statement
of the form (5) then they do not occur in any statement of the form (6) and vice
versa. An action domain is a collection of statements (1)—(6). An action theory
is a pair of an action domain and a set of statements of the form “initially ¢”,
indicate that 1 is true in the initial state. By this definition, action domains are
deterministic in that each ontic action, when executed in a world, results in a
unique world.

3 Edge-Conditioned Event Update Models

In this section, we will show how to define the transition function m.A* using
edge-conditioned event update models. We will use Example 1 as a running
example to illustrate the application of edge-conditioned event update models.
We follow the same notation and rules as in Sect. 2.

Let us denote the multi-agent domain described in Example 1 by D . For
this domain, we have that AG = {A, B, C}. The set of fluents F for this domain
consists of head (the coin is heads up), looking, (agent x is looking at the box
where x € {A, B, C}), and opened (the box is open). D,y has two actions: open
and peek, that can be represented by the following mA* statements:

A New Semantics for Action Language m.A* 557

x observes open{x)
open{x) causes opened (7) . }
. y observes open(x) if looking,
peek(x) executable_if opened (8) ‘
. x observes peek(x)
peek(x) determines head (9)

—
—_
~ — ~— —

y aware_of peek(x) if looking,

where x,y € {4, B,C} and = # y.

Initially, the coin is heads up, the box is closed and A, B are looking at it;
however, B thinks that all three agents are looking at the box. The initial state
(Mo, so) of Deoin is on the left of Fig. 1. Suppose that agent A would like to
know whether the coin lies heads or tails up. She would also like to let agent B
know that she knows this fact. However, she would like to make B also thinks
that agent C' is aware of this fact. Intuitively, because B has already believed
that C is looking at the box, agent A could achieve her goals by: (1) opening
the box; and then (2) peeking into the box.

Observe that under the current semantics of mA* [4], A could not achieve
her goal by executing the above sequence of actions. This is because B believes
that C' does not know that the box is open (as showed in Fig. 1), therefor B
would conclude that C' is not observing the execution of the action of A opening
the box. When A peeks into the box, B reasons that C is still thinking that A
knows nothing because, according to B, C still believes that the box is closed.
Therefore, B will think that C’s belief about A’s belief about the state of the coin
does not change. This is not intuitive. A more intuitive outcome with respect
to B’s beliefs after the execution of the plan [open(A); peek(A)] is as follows: B
should believe that C knows that the box is open and that A knows the value
of the coin after the execution of the plan.

The main reason for the above inadequacy of mA* lies in the fact that the
construction of the update models in mA* assumes that full observers have the
correct observability of all agents, which is not the case for B, who is a full
observer, and C: B believes that C' is a full observer while C' is not. One possible
way to address the above issue is to create different update models, whose set of
events depends on the effects of actions, as done in [13], or to define transition
functions by directly manipulating the accessibility relations and the worlds in
the resulting Kripke structure as in [8]. In this paper, we introduce a different
approach to this problem, through the use of edge-conditioned update models.

3.1 Omntic Actions

We assume that an action domain D is given. As in mA*, we assume that an
agent can either observe or not observe the execution of an ontic action, i.e.,
for an ontic action instance a, there exists no statement of the form (6) whose
action is a.

Definition 1 (Ontic Actions). Leta be an ontic action instance with the pre-
condition 1. The update model for a, denoted by w(a), is defined by (X, {R;}icAg,
pre, sub) where: (1) X = {o,€¢}; (2) R; = {(0,9;,0),(0,7d;,€), (e, T,€)} where

558 L. Pham et al.

i€ AG:§; AG
zEAg—\(SZ
o €
pre: Y pre: T

Fig. 2. Edge-conditioned update Fig. 3. (Mi,vo) after A opened the box
model for an ontic action using edge-conditioned update model

“ observes aif §;” belongs to D; (3) pre(o)= and pre(e)=T; and (4) sub(e)=0
and sub(c) ={p = ¥ (p,a)V (pA—¥ (p,a)) | p € F}, where U*(p,a) = \/{¢|
[a causes p if ¢|eD} and ¥~ (p,a) = \/{¢ | [a causes —p if @] D}.

When an ontic action occurs, an agent may or may not observe its occurrence.
As such, w(a) has two events. o is the designated event representing the true
occurrence of the action whereas € denotes the null event representing that the
action does not occur. o is the event full observers believe occurring and € is
the event seen by oblivious agents. Figure 2 shows the edge-conditioned update
model of an ontic action a. In the figure, we use i € X : §; as a shorthand for
the set of links with labels {i: d; | i € X}.

Observe that the presence of the condition attached to the link and the
definition of the cross product between a Kripke structure and the update model
enable a flexible update of the accessibility relations, allowing us to eliminate
the problem of the definition in [4]. For example, given a state (M, s), the link
(0,i:0;,0) inw(a) indicates that ((c, s), 1, (0, 5)) is an element in the accessibility
relation of ¢ in the state resulting from the execution of a in (M, s) iff (M, s) = ;.

The update induced by the edge-conditioned update model for open(A) on
the pointed Kripke structure at the left of Fig. 1 is shown in Fig. 3. In this figure,
the worlds and their interpretations are the same as in the pointed Kripke struc-
ture at the right of Fig. 1. The differences lie in the removal of the links labeled C'
from wg /usz to ug/uy and the addition of the loops labeled C' at us/ug. The loops
labeled C' at us and us, denoting the worlds (s2,0) and (s3,0), respectively, are
added because (Mg, s2) |= lookinge and (M, s3) | lookinge hold. This is also
the reason for the removal of the links labeled C from wus and ugz to ug and wuy.

A New Semantics for Action Language m.A* 559

i€ AG:6; Vb; i€ AG:6; VO;

pre: P A @

i€ AG:6; VO; 1€ AG:6; vV O;

Fig.4. Edge-conditioned update models for sensing action (left) and truthful
announcement Action (right)

3.2 Sensing Actions and Announcement Actions

An agent can either observe, partially observe, or not observe the occurrence of
a sensing or announcement action occurrence. Therefore, the update models for
sensing or announcement actions are different from that of update models for
ontic actions. They are defined as follows.

Definition 2 (Sensing and Announcement Actions). Let a be a sens-
ing action instance that senses @ or an announcement action instance that
announces @ with the precondition . The update model for a, denoted by
w(a), is defined by (X, {R;}icag,pre, sub) where: (1) X = {o,1,¢}; (2) R; =
{(0’, 51\/01; 0'), (’T, (57;\/01', 7'), (0, _‘(51'/\91', T), (’T, _\(52'/\01'7 CT), (J, _‘52'/_‘82', 6), (T, _|(51'/\
—0;,€), (€, T,e)} where % observes a if §;” and “ aware_of a if 6;” belong
to D; (3) pre(c) = A, pre(t) =1 A~ and pre(e) = T; and (4) sub(z) =0
for each x € X.

Observe that an update model of a sensing or announcement action instance
has three events. However in sensing actions, the true event can be ¢ or 7 whereas
in announcement actions, the true event is o. As for ontic actions, € is the “null
event” representing that the action does not occur. Sensing and announcement
actions do not alter the state of the world and thus sub is empty for every event.
Figure4 illustrates the edge-conditioned update model for an announcement a

that truthfully announces ¢ (right) and a sensing action a that determines ¢
(left).

560 L. Pham et al.

Fig.5. (M2, wo) after A peeked into the box

The application of the edge-conditioned update model for peek(A) in the
state (Mi,ug) from Fig.3 is given in Fig.5. In this figure, wo-ws have the
same interpretation as ug-us3; and w4-w1; have the same interpretation as ug-wz.
Observe that A now achieves her goals: not only does A realize that the coin lies
head up ((Mz,wo) |E Bahead) but B also believes that C knows the fact that A
knows the value of the coin now ((Maz, wg) = BpBc(BaheadVB s—head)). This
example shows that the use of edge-conditioned update models enables mA* to
avoid the side problem discussed in [4].

Having defined the update models for actions in a multi-agent domain D, we
can define the transition function @p in D in the similar fashion as in [4]. We
omit the details for brevity.

3.3 Properties of Edge-Conditioned Update Models

The use of edge-conditioned update models enables the modification of the
semantics of mA* that takes into consideration the observability of the agents
at the local level. A consequence of this treatment is that the belief of an agent
i about the belief of another agent j with respect to the action occurrence will
change in accordance to the belief of ¢+ about j before. The following proposition
indicates these properties of edge-conditioned update models.

Proposition 1. Let (M,s) be a state and a be an ontic action instance that is
executable in (M, s) and w(a) be given in Definition 1. It holds that:

1. For every agent v € AG, [x observes a if 0,] and [a causes ¢ if] belong
to D, if (M,s) = b, (M,s) E Byp and (M',s") = (M,s) ® (w(a),o) then
(M, s") E B,L.

2. For every pair of agents z,y € AG, |a causes (if ¢], [t observes a if ¢,]
and [y observes a if §,] belong to D, if (M,s) = 6, (M,s) = Bgd,,
(M,s) =B;Byyp and (M',s") = (M, s) ® (w(a),o) then (M’',s") = B,B,¢.

A New Semantics for Action Language m.A* 561

3. For every pair of agents x,y € AG, a belief formula n, [x observes a if ¢,]
and [y observes a if §,] belong to D, if (M,s) = 8z, (M,s) = Bg—d,,
(M, 5) = B, By and (M, s') = (M,5) & (w(a),0) then (M',) = B, By,

Proof. All proofs are omitted for lack of space and detailed in [12].

The second and third item of Proposition 1 show that a full observer will
update her beliefs about another agent’s beliefs, if she thinks that the agent is
also a full observer, or her own beliefs about the other agent will not change
if she believes that such agent is unaware of the action occurrence. These two
items do not hold w.r.t. the old semantics of m.A*. Similar propositions can be
established for sensing/announcement actions and can be found in [12].

4 Discussion and Related Work

Update models have been used in formalizing actions in multi-agent domains
by several authors [1,2,5,6,9,11]. However, the automatic generation of update
models from an action description has only been discussed with the introduc-
tion of actions languages for multi-agent domains in [3] and subsequent ver-
sions of languages like m.A*. To the best of our knowledge, the present work is
among the first that attempts to use edge-conditioned update models, intro-
duced by [7], in an action language. As shown in Proposition 1, the use of
edge-conditioned update models eliminates the problem encountered by ear-
lier semantics of m.A*. We note that [7] discussed only edge-conditioned update
models for world-altering actions (ontic actions), while we use it in modeling
other types of actions as well.

The use of event models for reasoning about effects of actions in multi-agent
domains is also studied in [13] within the language DER. In this language, the
observability of agents is encoded by an observations set O and no distinction
between ontic, sensing, and announcement actions is made. Comparing with
the update models used in [13], we can see that updated models used in the
present paper have a fixed number of events, given the type of the action: two
events for ontic actions and three events for sensing/announcement actions. On
the other hand, the number of events in DER can vary given the number of
statements specifying its effects and observations. We believe that this feature
might bring some advantages if update models are used for planning, where
efficient construction of update models is critical (in the new m.A*, the model
need to be constructed only once).

5 Conclusion

We define a new semantics for the high-level action language mA* using edge-
conditioned update models. In this method, edge-conditioned update models are
constructed directly from the domain specification and are independent from
the states in which the action occurs. We prove that the new semantics satisfies
a desirable property that second order beliefs of agents about other agents’

562 L. Pham et al.

beliefs change consistently with its first-order beliefs about observability of action
occurrence, i.e., it overcomes a problem of the earlier semantics of m.A*. This
overcomes a limitation of the earlier version of m.A*, which requires a careful
domain design for dealing with certain types of questions as described in [4].

Acknowledgments. The authors have been partially supported by NSF grants
2151254, 1914635 and 1757207. Tran Cao Son was also partially supported by NSF
grant 1812628.

References

1. Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 139, 165-224 (2004)

2. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: 7th TARK, pp. 43-56 (1998)

3. Baral, C., Gelfond, G., Pontelli, E., Son, T.C.: Reasoning about the beliefs of agents
in multi-agent domains in the presence of state constraints: the action language
mAL. In: Leite, J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.)
CLIMA 2013. LNCS (LNAI), vol. 8143, pp. 290-306. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40624-9_18

4. Baral, C., Gelfond, G., Pontelli, E., Son, T.C.: An action language for multi-agent
domains. Artif. Intell. 302, 103601 (2022)

5. van Benthem, J., van Eijck, J., Kooi, B.P.: Logics of communication and change.
Inf. Comput. 204(11), 1620-1662 (2006)

6. Bolander, T., Andersen, M.: Epistemic planning for single and multi-agent systems.
J. Appl. Non-Classical Logics 21(1), 9-34 (2011)

7. Bolander, T.: Seeing is believing: formalising false-belief tasks in dynamic epistemic
logic. In: van Ditmarsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and
Game-Theoretical Semantics. OCL, vol. 12, pp. 207-236. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-62864-6_8

8. Buckingham, D., Kasenberg, D., Scheutz, M.: Simultaneous representation of
knowledge and belief for epistemic planning with belief revision, pp. 172-181 (2020)

9. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, 1st edn.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-4020-5839-4

10. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
press, Cambridge (1995)

11. Lowe, B., Pacuit, E., Witzel, A.: DEL planning and some tractable cases. In: van
Ditmarsch, H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS (LNAI), vol. 6953, pp.
179-192. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24130-
713

12. Pham, L., Izmirlioglu, Y., Son, T.C., Pontelli, E.: A new semantics for the action
language ma*. Technical report, NMSU (2022). https://github.com/phhuuloc/
New-semantic-mAstar

13. Rajaratnam, D., Thielscher, M.: Representing and reasoning with event models
for epistemic planning. In: Proceedings of the 18th International Conference on
Principles of Knowledge Representation and Reasoning, pp. 519-528 (11 2021)

https://doi.org/10.1007/978-3-642-40624-9_18
https://doi.org/10.1007/978-3-319-62864-6_8
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-3-642-24130-7_13
https://doi.org/10.1007/978-3-642-24130-7_13
https://github.com/phhuuloc/New-semantic-mAstar
https://github.com/phhuuloc/New-semantic-mAstar

	A New Semantics for Action Language mA
	1 Introduction
	2 Background
	3 Edge-Conditioned Event Update Models
	3.1 Ontic Actions
	3.2 Sensing Actions and Announcement Actions
	3.3 Properties of Edge-Conditioned Update Models

	4 Discussion and Related Work
	5 Conclusion
	References

