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ABSTRACT

Robotic technology can benefit disassembly operations
by reducing human operators’ workload and assisting them
with handling hazardous materials. Safety consideration
and predicting human movement is a priority in human-
robot close collaboration. The point-by-point forecasting of
human hand motion which forecasts one point at each time
does not provide enough information on human movement
due to errors between the actual movement and predicted
value. This study provides a range of possible hand
movements to enhance safety. It applies three machine
learning techniques including Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU), and Bayesian Neural
Network (BNN) combined with Bagging and Monte Carlo
Dropout (MCD), namely LSTM-Bagging, GRU-Bagging,
and BNN-MCD to predict the possible movement range. The
study uses an Inertial Measurement Units (IMU) dataset
collected from the disassembly of desktop computers to
show the application of the proposed method. The findings
reveal that BNN-MCD outperforms other models in
forecasting the range of possible hand movement.

Keywords: Human Motion Prediction, Gated
Recurrent Unit, Bayesian Neural Network, Long Short-

Term Memory, Human-Robot Collaboration, Disassembly,
Remanufacturing

1. INTRODUCTION

Human-robot collaboration in disassembly operations
is receiving attention in recent years. Several topics such as
disassembly sequence planning, object detection, human
activity recognition, and human motion prediction, are
important when it comes to the disassembly operation in
human-robot collaboration.

The above-mentioned topics aim to facilitate human-
robot collaboration from different aspects. The disassembly
sequence planning determines the most suitable sequence
for dismantling a product and sometimes specifies the task
allocation between the human and the robot. Previous
studies considered factors such as cost and safety when
allocating disassembly tasks between humans and robots in
human-robot collaboration [1]-[3]. The idea is to use the
capabilities of robots for handling hazardous tasks and
enhancing operator safety. Object detection allows the robot
to identify the objects for grasping, picking, and holding
actions [4]. Human activity recognition allows the robot to
operate autonomously while increasing work productivity

[51[6].
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Besides disassembly sequence planning, object
detection, and human activity recognition, human motion
prediction plays an important role in enhancing the
operator’s safety [7][8]. One of the main challenges in
human motion prediction is the complexity of considering
uncertainties in human motion [9].

Previous studies have used a wide range of methods in
addressing human motion prediction in different
applications. To name a few, Wang et al. [10] used the Long
Short-Term Memory (LSTM) and Convolutional Neural
Network (CNN) to predict human motion for objects such
as cup, stone, sponge, spoon, and knife with different
actions. Li et al. [11] applied Directed Acyclic Graph Neural
Network (DA-GNN) to predict human motion in the CMU
MOCAP and H3.6M dataset for actions such as walking and
eating. Martinez et al. [12] used Gated Recurrent Unit
(GRU) for human motion prediction using the H3.6M
dataset, and Pavllo et al. [13] combined the Quarter Net
framework with GRU to predict human motion using the
H3.6M dataset. Zheng et al. [14] applied LSTM to forecast
human arm motion on the generated data from a Franka
Emika Panda Cobot. Wang and Shen [8] used the neural
networks combined with Kalman filtering to predict human
hand motion for picking actions. Wang et al. [15] applied
LSTM for hand motion on the surface grinding plane. Zhang
et al. [16] built a Recurrent Neural Network (RNN) model
to predict motion trajectory prediction in the assembly
process. Gril et al. [17] adopt the linear tensor regression
model to predict the human motion in the assembly and
disassembly operation of six pins, springs, and ball bearings
repetitively. Liao et al. [18] combined Convolutional Long
Short-term Memory (ConvLSTM) and You Only Look Once
(YOLO) to predict human hand motion in the disassembly
process of desktops.

TABLE 1: Comparison of literature and this study.

Previous studies also have investigated the uncertainty
of tasks and human motion in human-robot collaboration.
To name a few, Burks et al. [19] proposed an assisted robotic
planning and sensing framework and applied the online
partially observable Markov decision process for semantic
sensing and planning under uncertain environments. Sajedi
et al. [20] applied the Bayesian neural networks to quantify
the uncertainty for semantic segmentation of hands in
human-robot collaboration. Furnari et al. [21] discussed the
loss function incorporating uncertainty for the egocentric
action anticipation and recognition methods. Farha and Gall
[22] developed a framework for modeling the uncertainty of
future activities and predicted the probability distribution of
activities. Casalino et al. [23] developed a fuzzy approach
for scheduling assembly tasks considering uncertain
durations of tasks in a human-robot collaboration setting.

Although previous studies have extensively addressed
human motion prediction, the literature on predicting the
movement interval is still limited. This study aims to
investigate the performance of three machine learning
models - Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), and Bayesian Neural Network
(BNN) - in combination with Bagging and Monte Carlo
Dropout (MCD) techniques for estimating the potential
range of human motion. Specifically, we examine the
performance of three model variants: LSTM-Bagging,
GRU-Bagging, and BNN-MCD. We also explore the unique
application of electronic waste (e-waste) disassembly. Table
1 provides a comparison of this study with prior work.

E-waste is becoming a serious environmental and
economic problem. In 2019, 53.6 million tons of e-waste
were generated around the globe with a growth rate of 21%
[24]. Product recovery solutions such as eco-design policies
and facilitating disassembly operations are important for e-
waste recovery [25].

Reference  Methodology Type of forecast  Experimental Process Collision HRC E-waste

[8] EZ?éﬂnNgf:gﬁ;kgwnh Point Pick up tasks

[10] LSTM with CNN Point Objects manipulation \ \

[11] Directed Acyclic Graph Point CMU MOCAP and
Neural Network H3.6M

[12] GRU Point Human 3.6M

[13] QuaterNet with GRU Point Human 3.6M

[14] LSTM Point Arm motion \ \

[15] LST™M Point Surface grinding \

[16] RNN Point Assembly \ \

[17] Linear tensor regression  Interval Assembly & Disassembly \

[18] ConvLSTM with YOLO  Point Disassembly \ \ \
LSTM-Bagging

This study ~ GRU- Bagging Interval Disassembly \ \ \

BNN- MCD
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E-waste disassembly is particularly unique since it
involves the separation and recovery of a complex mix of
materials ranging from metals to hazardous materials. Also,
e-waste disassembly often requires considering small and
complex parts that are difficult to dismantle. Further, the
high variability in consumer electronics design makes
disassembly challenging for the remanufacturing workforce.
Also, chemical exposure and physical and ergonomic
hazards increase the risk of disassembly operations for
human workers. Thus, the disassembly of e-waste requires
further investigation.

The focus of the study will be on disassembling desktop
computers. This paper is organized as follows. Section 2
provides an overview of LSTM, GRU, and BNN models.
Section 3 describes the dataset and data collection
experiment. Section 4 provides the prediction results.
Finally, Section 5 concludes the paper.

2. METHODOLOGY
This section describes the three machine learning
models combined with Bagging and MCD.

21 Long Short-Term Memory

Bagging

LSTM network is proposed to alleviate the drawback of
RNN on the vanishing gradient problem [26]. The LSTM
consists of three gates namely forget gate, input, and output
gates. The detail of LSTM equations can be found in [26].

We used PyTorch to construct the LSTM network [27].
The number of layers is 3 with 64 hidden sizes. The dropout
probability is 20 in the last layer. The learning rate is set to
le-3 with a weight decay of 1e-6, and the number of epochs
is 100. We used the Adam optimizer and the squared 12 norm
as the loss function.

Furthermore, we applied Bagging to LSTM. Bagging,
also known as bootstrap aggregation [28], is an ensemble
learning method for reducing the variance [29] and avoids
the local optimal solution by repeating the training process
[30]. Bagging has already shown his promise in previous
literature [31]-[33]. In this paper, we trained LSTM 30
times. The ensemble prediction is the mean of 30 predicted
values from LSTM.

(LSTM)  with

2.2 Gated Recurrent Unit with Bagging

The GRU is a type of RNN introduced in 2014 by Cho
et al. [34]. The GRU addresses the vanishing gradient issue
in the standard RNN [35] which occurs when the gradient is
too small to change the weight. The GRU formulation can
be found in [34].

The parameters for the GRU model are set the same as
the LSTM model. GRU has a simple structure for training
and can address the issues of memory use, gradient
disappearance, and gradient explosion [36]. As proven by
previous studies [37], [38], Bagging can improve the
performance of LSTM and GRU. Therefore, we utilized
Bagging in both LSTM and GRU.

2.3 Bayesian Neural Network with Monte Carlo

Dropout

The BNN estimators are formulated by the maximum a
posteriori (MAP) estimator to decide the parameters. The
weights of BNN are decided by the probability of the
Gaussian process compared to the traditional neural
networks with fixed weights [39][40]. According to [41], the
parameters can be estimated from:

PDIW)P(W)
POVID) == (M

W and D are the weight parameters and the observed
data respectively. P(W|D) is the posterior probability,
P(D|W) is the likelihood observation, and P(W) is the
prior probability for the weights. In this paper, we built the
BNN model from the package by Lee et al. [42] and
included two hidden layers.

The activation function of the first and second layers are
ReLU and linear. Each layer has a dropout with a probability
of 20%. The loss function by the default package is the
combination of squared 12 norm and Kullback—Leibler
divergence. The remaining parameters such as the optimizer,
learning rate, and other hyperparameters are the same as the
LSTM setting.

In addition, we applied MCD to reproduce the results
from the BNN model. The MCD is proposed by Gal and
Ghahramani [43]. It allows the activation of the dropout in
the testing phase [44]. The MCD changes the model
architecture each time when providing the prediction. This
paper runs MCD on BNN 30 times. After conducting the 30
predictions, the ensemble prediction outcome can be
computed. Monte Carlo Dropout combined with Bayesian
inference has received attention in different fields due to its
simplicity, scalability, and computational efficiency [45].

2.4 Possible hand movement area

After estimating the possible hand movement areas, the
information can be provided to the robot control algorithm
to avoid collisions. Figure 1 shows the concept of possible
hand movement area from GRU with Bagging.

Max. boundary

- Min. boundary Possible movement area
0.06

20 160 180 200 220

FIGURE 1: Possible hand movement area by applying
Bagging or MCD.
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The upper and lower bounds can be calculated from
multiple runs of Bagging and MCD. Each model will run 30
times by applying Bagging or MCD. The number of
predicted values is 30. Among these 30 predictions, the
maximum and minimum values are considered as the
boundary.

3. THE DISASSEMBLY DATASET
This section describes the data collection procedure and
the disassembly experiment for a desktop computer.

3.1 Dataset of Dell OptiPlex 7050 Micro desktop for

disassembling

The required dataset has been collected by using Inertial
Measurement Units (IMU) sensors. Six sensors were
deployed on a participant as shown in Figure 2. The product
under disassembly is a Dell OptiPlex 7050 Micro desktop
computer. Six components have been dismantled from the
desktop in the following order: 1) screw, 2) cover, 3) hard
disk drive, 4) fan, 5) heat sink, and 6) RAM (Figure 3).

FIGURE 3: Each component of Dell OptiPlex 7050 Micro
desktop.

The participant has completed the consent information
and the experiment was authorized by the University of
Florida Institutional Review Board (IRB 202200211). The
frequency of IMU sensors is 60 HZ meaning the output of
the sensor is 60 samples per second. The total samples are
6,686 with a total disassembly time of around 111 seconds.
The duration between the samples is 16.67 milliseconds.
The number of collected samples for 1) screw, 2) cover, 3)
hard disk drive, 4) fan, 5) heat sink, and 6) RAM are 607
(10.1s), 335 (5.6 5), 464 (7.7 8), 734 (12.2 5), 3773 (62.9 ),
and 775 (12.9 s), respectively. The proportion of training,
validation, and testing is 70%, 20%, and 10% for each
component. For example, the number of training, validation,
and testing samples for the screw is 425 (70%), 121 (20%),
and 61 (10%). The duration between the current time t and
the predicted time for t+1, t+2, and t+3 is 16.67 ms, 33.34
ms, and 50.01 ms, respectively.

3.2 Time length for input and output

The hand’s X, Y, and Z positions are collected by the
sensors for the entire disassembling operation. The
movement of collected samples is shown in Figure 4. The
unit for hand positions is mm.

50
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o 2: Cover
3: Hard disk drive ~ « 4: Fan
= 5: Heat sink * 6: RAM
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Hand position X
FIGURE 4: The visual representation of 6,686 sensor data
collected for each component of the desktop.

According to Figure 4, the hand movement for each
component is different. The length of the input window is
decided based on the Pearson correlation coefficient (PCC)
from the next time t+1 to the previous time e.g. t, t-1,..., t-
n. One advantage of the Pearson correlation coefficient is
that it can quantify the degree to which variables are linearly
related and provide a measure of the proportion of variance
shared between them.[46]. The input time length is selected
when the PCC between the next time and the previous time
is above 0.99. The higher length of input will increase the
complexity and computation time. Therefore, we only
selected lag features with 0.99 PCC.

The concept of the input window for input and output
is described in Figure 5. For predicting the value of the
hand's X position at time t+1 as output, the size of the input
window is 7 time points, from t-6 to t, as input. Similarly,
for predicting the Y position at time t+1, we used a longer
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window of the previous 10 time points, from t-9 to t, as
input. And for predicting the Z position at time t+1, we used
a window of the previous 9 time points, from t-8 to t, as
input. The PPC of each input time and output time is at least
0.99 above. When forecasting t+2, the input window will be
shifted with 1 time lag without changing its size. For
example, when forecasting t+2 in hand position X, the input
will be from t-5 to t+1.

t-9 t-8 t-7

=

FIGURE 5: The input and output window for predicting
the hand’s Y position.

t t+1 t+2 t+3

Figure 5 shows that the LSTM model uses a window of
the previous 9 time points, from t-9 to t, as input for
predicting the position of the hand's Y coordinate at time
t+1. The predicted value for Y at time t+1, along with the
input window from t-8 to t, are then used as inputs for
predicting the hand's position at time t+2. This process is
repeated for predicting the hand's position at time t+3. In
Figure 6, the maximum hand movement between time t and
t+3 is 53.26 mm (5.32 cm), meaning the hand moves 5.32
cm in 50 milliseconds. The hand movement is rapid as the
hand can move 5.32 cm in 50 milliseconds and should be
carefully predicted to avoid any collision.

60

4.1 Human hand motion prediction

The mean absolute error (MAE), mean square error
(MSE), and root mean square error (RMSE), are used to
evaluate the performance of applying the three models for
predicting t+1 to t+3. After training and validation, the
testing results are listed in Tables 2-4. According to Table 2,
the BNN-MCD model outperforms other models in
predictions of the hand’s X positions. The range of MAE,
MSE, and RMSE is from 9.7 to 13.2, 166.3 to 293.6, and
12.9 to 17.1 for BNN-MCD.

According to Table 3, LSTM-Bagging outperforms
other models in predicting the Y position. The MAE of the
LSTM-Bagging model increases from 15.9 to 18.5 for t+1
to t+3, and the MSE increases from 371.5 to 653.4. The
LSTM-Bagging has better results in terms of RMSE as well.

TABLE 2: The ensemble prediction results of each model
for hand position X.

Model Time MAE MSE RMSE
LSTM-Bagging t+1 12.5 310.8 17.6
GRU-Bagging t+1 11.1 2743  16.6
BNN-MCD t+1 9.7 166.3 129
LSTM-Bagging t+2 13.7 385.8 19.6
GRU-Bagging t+2 13.9 3777 194
BNN-MCD t+2 10.2 221.8 149
LSTM-Bagging t+3 159 475.8  21.8
GRU-Bagging t+3 17.2 487.2 221

50

.
=}

Displacement (mm)

4. THE RESULTS OF HUMAN HAND MOTION
PREDICTION
This section discusses the results and compares the
findings of the three models.

BNN-MCD t+3 13.2 2936 17.1
TABLE 3: The ensemble prediction results of each model
for hand position Y.

Model Time MAE MSE RMSE

LSTM-Bagging  t+1 15.9 371.5 19.3
GRU-Bagging t+1 16.7 445.6 21.1
BNN-MCD t+1 27.7 1266.7 35.6
LSTM-Bagging  t+2 18.6 557.1 23.6
GRU-Bagging t+2 19.1 614.9 24.8
BNN-MCD t+2 40.4 2697.3 519
LSTM-Bagging  t+3 18.5 653.4 25.6
GRU-Bagging t+3 19.7 721.9 26.9
BNN-MCD t+3 47.4 3606.0 60.1

According to the results in Table 4, the LSTM-Bagging
outperforms the other models in forecasting the hand
position for the Z coordinate. Specifically, the range of
MAE, MSE, and RMSE values for the LSTM-Bagging
model are between 9.9 and 13.3, 222.9 and 376.1, and 14.9
and 19.4, respectively.
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TABLE 4: The ensemble prediction results of each model
for hand position Z.

Model Time MAE MSE RMSE
LSTM-Bagging  t+1 9.9 222.9 14.9
GRU-Bagging t+1 14.2 343.8 18.5
BNN-MCD t+1 29.1 1402.1 374
LSTM-Bagging  t+2 10.4 254.3 15.9
GRU-Bagging t+2 16.3 457.6 214
BNN-MCD t+2 51.5 31546 56.2
LSTM-Bagging  t+3 13.3 376.1 19.4
GRU-Bagging t+3 18.6 576.6 24.0
BNN-MCD t+3 61.8 4368.3  66.1

Figures 7-9 show the prediction results for the X
position by BNN-MCD, the Y position by GRU-Bagging,
and the Z position by LSTM-Bagging. The x-axis shows the
time in 16.67 milliseconds between each interval and the
order of the six disassembly tasks described in Section 3.1.
Figure 10 shows the prediction performance for hand
position X by BNN-MCD and LSTM-Bagging for hand
positions Y and Z over time.

400 - Observation —Prediction t+1
—Prediction_t+2 —Prediction_(+3
300 - -
200 F
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FIGURE 7: The testing results of BNN-MCD for the
hand’s X position.

200 - P
100 + Observation ~ —Prediction_t+1
0 —Prediction_t+2 —Prediction_t+3
-100
-200
-300
-400
-500
-600 ——
—-mmg@;—mmr—o—mmho\—‘mmho—
Sl =] IO O N W00 Ol W 00— SF 00 — <t I~ 'O <t

FIGURE 8: The testing results of GRU-Bagging for the
hand’s Y position.
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—Prediction_t+2 —Prediction_t+3

FIGURE 9: The testing results of LSTM-Bagging for the
hand’s Z position.

Although the prediction trend is similar to observations,
there are still errors between the predicted values and
observed values.

0
Ha
ng Posi; 100

10 X 200

gg —600

FIGURE 10: The prediction performance for hand
position X by BNN-MCD, and LSTM-Bagging for hand
positions Y and Z over time.

4.2 Prediction results of the potential range of

motion for human hand

The upper and lower bounds of motion movement can
be determined from the 30 prediction results by each model.
Figures 11, 12, and 13 show the results for GRU-Bagging,
LSTM-Bagging, and BNN-MCD, respectively. In Figures
11 and 12, the boundaries miss covering the hand position
for some disassembly tasks, e.g. heat sink due to the errors
between the predicted values and the observed values as the
models overestimate or underestimate. However, the
boundaries defined by BNN-MCD provide the reasonable
movement area of hand position as shown in Figure 13. The
MCD is a Gaussian process that randomly drops out
neurons, while the BNN is a probabilistic model that treats
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weights as random variables. The combination of these two
models, both of which have uncertainty features, appears to
be better suited for defining the possible movement area
than fixed models like the GRU-Bagging and LSTM-

Bagging.

100 | - Observation

0
-100
-200
-300
-400
-500
-600

—Ensemble prediction

--- Max. boundary =~ - Min. boundary

FIGURE 11: The testing results of GRU-Bagging on the
possible movement area of the hand’s Y position in time
t+1.
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FIGURE 12: The testing results of LSTM-Bagging on the
possible movement area of the hand’s Y position in time

t+1.
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FIGURE 13: The testing results of BNN-MCD on the
possible movement area of the hand’s Y position in time t+1.

Table 5 presents partial testing samples of the BNN-
MCD model, while Table 6 shows the number of
observations that fall outside the boundary. Although some
observations in Table 5 still do not fall within the boundary,

the BNN-MCD model performs better than LSTM-Bagging
and GRU-Bagging, as it has fewer out-of-bounds
observation points, as shown in Table 6. Specifically, for
t+1, BNN-MCD has an error rate of only around 5%
(31/669), while LSTM-Bagging and GRU-Bagging have
error rates of 76% (506/669) and 66% (438/669),
respectively. These results demonstrate that the BNN-MCD
model is more effective in forecasting the possible areas of
hand movements.

TABLE 5: The partial testing results of BNN-MCD for the
first two prediction results on each task.

Task Obs. Pred. Errors 1;/‘1)?:; dary ll:/‘l)il:lr'ldary
1 213 -147 66 97 -211
1 215 -150 65 -85 -237
2 249 212 37 -154 -281
2 249 201 48 -115 -295
3 431 432 1 -280 -596
3 434 409 25 -197 -633
4 71 -5 20 -31 -79
4 82 56 26 27 -87
5 38 51 13 23 -78
5 38 5416 27 -105
6 578 -563 14 264 -933
6 578 -586 9 315 -790

TABLE 6: The number of observation testing samples
outing of the upper and lower bounds for hand position Y
(Total test samples: 669).

Time LSTM-Bagging GRU-Bagging BNN-MCD
t+1 506 438 31
t+2 357 509 61
t+3 405 410 67

Figure 14 displays the PDF of the Gaussian distribution
generated by BNN-MCD, which was run 30 times at each
time point. The PDFs are normally distributed with mean
and standard deviation calculated from 30 samples at each
time. The width of the distributions is narrower in the range
of approximately 200 to 400, indicating a smaller range of
possible movement and lower uncertainty. In contrast, other
ranges show a wider width of distributions, implying higher
uncertainty and a larger range of possible movement.

It should be noted that since the PDF is drawn from
simulation samples generated by BNN-MCD rather than
real data, the actual observations may still fall outside the
boundary, as shown in Table 6. This issue requires further
discussion on how to improve forecasting accuracy in future
research.
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FIGURE 14: The Gaussian distribution of testing results for
the hand position Y in time t+1, as plotted by every 25th
order, using the BNN-MCD model.

5. CONCLUSION

This paper investigated the capability of three machine
learning techniques including LSTM-Bagging, GRU-
Bagging, and BNN-MCD for predicting the range of hand
motion in the disassembly of consumer electronics. A case
study of disassembling a desktop computer was used to
show the application and IMU sensors were utilized to
collect the required movement data. The Bagging and MCD
procedures were performed 30 times, and the resulting
ensemble prediction was calculated. The findings indicate
that for forecasting hand position X, BNN-MCD
outperforms LSTM-Bagging and GRU-Bagging. On the
other hand, for hand positions Y and Z, LSTM-Bagging
demonstrates better performance compared to the other
models. The possible movement range is defined to enhance
the safety of the human operator. In terms of defining the
upper and lower bounds, BNN-MCD outperforms LSTM-
Bagging and GRU-Bagging. The BNN model, which is a
probabilistic model, is combined with MCD, a Gaussian
process, to adjust the model's architecture to account for
uncertainty.

The study can be extended in several ways. The current
study analyzed each hand position separately to provide a
detailed comparison of each model's performance. The
results showed that BNN-MCD outperformed other models
for position X, while LSTM-Bagging demonstrated superior
performance for position Y. While comparing the three
models separately provided different perspectives, it is
computationally expensive. To decrease computation, it
may be useful to consider all three positions together in
future research, for instance, by inputting positions X, Y, and
Z into each model and outputting the forecasting results for

all three positions. Also, currently, each disassembly
operation is conducted once by a human operator, future
work is needed to collect more samples across participants
and across more complex disassembly tasks.

Moreover, the focus of data collection in this study was
on the upper extremity and hand motion in disassembling
tasks, however, the study can be extended to consider the
whole-body motion. Besides IMU sensors, other sensors
like RGB video images can be combined with IMU sensors
to define different possible movement areas. Further,
machine learning models can be combined with computer
vision techniques to equip robots with more accurate scene
monitoring techniques.
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