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ABSTRACT 

Robotic technology can benefit disassembly operations 
by reducing human operators’ workload and assisting them 
with handling hazardous materials. Safety consideration 
and predicting human movement is a priority in human-
robot close collaboration. The point-by-point forecasting of 
human hand motion which forecasts one point at each time 
does not provide enough information on human movement 
due to errors between the actual movement and predicted 
value. This study provides a range of possible hand 
movements to enhance safety. It applies three machine 
learning techniques including Long Short-Term Memory 
(LSTM), Gated Recurrent Unit (GRU), and Bayesian Neural 
Network (BNN) combined with Bagging and Monte Carlo 
Dropout (MCD), namely LSTM-Bagging, GRU-Bagging, 
and BNN-MCD to predict the possible movement range. The 
study uses an Inertial Measurement Units (IMU) dataset 
collected from the disassembly of desktop computers to 
show the application of the proposed method. The findings 
reveal that BNN-MCD outperforms other models in 
forecasting the range of possible hand movement.   

Keywords: Human Motion Prediction, Gated 
Recurrent Unit, Bayesian Neural Network, Long Short-

Term Memory, Human-Robot Collaboration, Disassembly, 
Remanufacturing 

 
1. INTRODUCTION 

Human-robot collaboration in disassembly operations 
is receiving attention in recent years. Several topics such as 
disassembly sequence planning, object detection, human 
activity recognition, and human motion prediction, are 
important when it comes to the disassembly operation in 
human-robot collaboration. 

The above-mentioned topics aim to facilitate human-
robot collaboration from different aspects. The disassembly 
sequence planning determines the most suitable sequence 
for dismantling a product and sometimes specifies the task 
allocation between the human and the robot. Previous 
studies considered factors such as cost and safety when 
allocating disassembly tasks between humans and robots in 
human-robot collaboration [1]–[3]. The idea is to use the 
capabilities of robots for handling hazardous tasks and 
enhancing operator safety. Object detection allows the robot 
to identify the objects for grasping, picking, and holding 
actions [4]. Human activity recognition allows the robot to 
operate autonomously while increasing work productivity 
[5][6]. 
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Besides disassembly sequence planning, object 
detection, and human activity recognition, human motion 
prediction plays an important role in enhancing the 
operator’s safety [7][8]. One of the main challenges in 
human motion prediction is the complexity of considering 
uncertainties in human motion [9].  

Previous studies have used a wide range of methods in 
addressing human motion prediction in different 
applications. To name a few, Wang et al. [10] used the Long 
Short-Term Memory (LSTM) and Convolutional Neural 
Network (CNN) to predict human motion for objects such 
as cup, stone, sponge, spoon, and knife with different 
actions. Li et al. [11] applied Directed Acyclic Graph Neural 
Network (DA-GNN) to predict human motion in the CMU 
MOCAP and H3.6M dataset for actions such as walking and 
eating. Martinez et al. [12] used Gated Recurrent Unit 
(GRU) for human motion prediction using the H3.6M 
dataset, and Pavllo et al. [13] combined the Quarter Net 
framework with GRU to predict human motion using the 
H3.6M dataset. Zheng et al. [14] applied LSTM to forecast 
human arm motion on the generated data from a Franka 
Emika Panda Cobot. Wang and Shen [8] used the neural 
networks combined with Kalman filtering to predict human 
hand motion for picking actions. Wang et al. [15] applied 
LSTM for hand motion on the surface grinding plane. Zhang 
et al. [16] built a Recurrent Neural Network (RNN) model 
to predict motion trajectory prediction in the assembly 
process. Gril et al. [17] adopt the linear tensor regression 
model to predict the human motion in the assembly and 
disassembly operation of six pins, springs, and ball bearings 
repetitively. Liao et al. [18] combined Convolutional Long 
Short-term Memory (ConvLSTM) and You Only Look Once 
(YOLO) to predict human hand motion in the disassembly 
process of desktops.  

Previous studies also have investigated the uncertainty 
of tasks and human motion in human-robot collaboration. 
To name a few, Burks et al. [19] proposed an assisted robotic 
planning and sensing framework and applied the online 
partially observable Markov decision process for semantic 
sensing and planning under uncertain environments. Sajedi 
et al. [20] applied the Bayesian neural networks to quantify 
the uncertainty for semantic segmentation of hands in 
human-robot collaboration. Furnari et al. [21] discussed the 
loss function incorporating uncertainty for the egocentric 
action anticipation and recognition methods. Farha and Gall 
[22] developed a framework for modeling the uncertainty of 
future activities and predicted the probability distribution of 
activities. Casalino et al. [23] developed a fuzzy approach 
for scheduling assembly tasks considering uncertain 
durations of tasks in a human-robot collaboration setting.  

Although previous studies have extensively addressed 
human motion prediction, the literature on predicting the 
movement interval is still limited. This study aims to 
investigate the performance of three machine learning 
models - Long Short-Term Memory (LSTM), Gated 
Recurrent Unit (GRU), and Bayesian Neural Network 
(BNN) - in combination with Bagging and Monte Carlo 
Dropout (MCD) techniques for estimating the potential 
range of human motion. Specifically, we examine the 
performance of three model variants: LSTM-Bagging, 
GRU-Bagging, and BNN-MCD. We also explore the unique 
application of electronic waste (e-waste) disassembly. Table 
1 provides a comparison of this study with prior work. 

E-waste is becoming a serious environmental and 
economic problem. In 2019, 53.6 million tons of e-waste 
were generated around the globe with a growth rate of 21% 
[24]. Product recovery solutions such as eco-design policies 
and facilitating disassembly operations are important for e-
waste recovery [25]. 

TABLE 1: Comparison of literature and this study. 

Reference Methodology Type of forecast  Experimental Process Collision HRC E-waste 

[8] Neural Network with 
Kalman filtering Point Pick up tasks    

[10] LSTM with CNN Point Objects manipulation  √ √  

[11] Directed Acyclic Graph 
Neural Network Point CMU MOCAP and 

H3.6M    

[12] GRU Point Human 3.6M    
[13] QuaterNet with GRU Point Human 3.6M    
[14] LSTM Point Arm motion √ √  
[15] LSTM Point Surface grinding  √  
[16] RNN Point Assembly √ √  
[17] Linear tensor regression Interval Assembly & Disassembly √ √  
[18] ConvLSTM with YOLO Point Disassembly √ √ √ 

This study 
LSTM-Bagging 
GRU- Bagging 
BNN- MCD 

Interval Disassembly √ √ √ 
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E-waste disassembly is particularly unique since it 
involves the separation and recovery of a complex mix of 
materials ranging from metals to hazardous materials. Also, 
e-waste disassembly often requires considering small and 
complex parts that are difficult to dismantle. Further, the 
high variability in consumer electronics design makes 
disassembly challenging for the remanufacturing workforce. 
Also, chemical exposure and physical and ergonomic 
hazards increase the risk of disassembly operations for 
human workers. Thus, the disassembly of e-waste requires 
further investigation. 

The focus of the study will be on disassembling desktop 
computers. This paper is organized as follows. Section 2 
provides an overview of LSTM, GRU, and BNN models. 
Section 3 describes the dataset and data collection 
experiment. Section 4 provides the prediction results. 
Finally, Section 5 concludes the paper. 

 
2. METHODOLOGY 

This section describes the three machine learning 
models combined with Bagging and MCD.  

 
2.1 Long Short-Term Memory (LSTM) with 

Bagging 
LSTM network is proposed to alleviate the drawback of 

RNN on the vanishing gradient problem [26]. The LSTM 
consists of three gates namely forget gate, input, and output 
gates. The detail of LSTM equations can be found in [26]. 

We used PyTorch to construct the LSTM network [27]. 
The number of layers is 3 with 64 hidden sizes. The dropout 
probability is 20 in the last layer. The learning rate is set to 
1e-3 with a weight decay of 1e-6, and the number of epochs 
is 100. We used the Adam optimizer and the squared l2 norm 
as the loss function. 

Furthermore, we applied Bagging to LSTM. Bagging, 
also known as bootstrap aggregation [28], is an ensemble 
learning method for reducing the variance [29] and avoids 
the local optimal solution by repeating the training process 
[30]. Bagging has already shown his promise in previous 
literature [31]–[33]. In this paper, we trained LSTM 30 
times. The ensemble prediction is the mean of 30 predicted 
values from LSTM. 

 
2.2 Gated Recurrent Unit with Bagging 

The GRU is a type of RNN introduced in 2014 by Cho 
et al. [34]. The GRU addresses the vanishing gradient issue 
in the standard RNN [35] which occurs when the gradient is 
too small to change the weight. The GRU formulation can 
be found in [34]. 

The parameters for the GRU model are set the same as 
the LSTM model. GRU has a simple structure for training 
and can address the issues of memory use, gradient 
disappearance, and gradient explosion [36]. As proven by 
previous studies [37], [38], Bagging can improve the 
performance of LSTM and GRU. Therefore, we utilized 
Bagging in both LSTM and GRU. 

2.3 Bayesian Neural Network with Monte Carlo 
Dropout 
The BNN estimators are formulated by the maximum a 

posteriori (MAP) estimator to decide the parameters. The 
weights of BNN are decided by the probability of the 
Gaussian process compared to the traditional neural 
networks with fixed weights [39][40]. According to [41], the 
parameters can be estimated from: 

𝑃(𝑊|𝐷) =
𝑃(𝐷|𝑊)𝑃(𝑊)

𝑃(𝐷)
 (1) 

W and D are the weight parameters and the observed 
data respectively. 𝑃(𝑊|𝐷)  is the posterior probability,  
𝑃(𝐷|𝑊)  is the likelihood observation, and 𝑃(𝑊)  is the 
prior probability for the weights. In this paper, we built the 
BNN model from the package by Lee et al. [42] and 
included two hidden layers.  

The activation function of the first and second layers are 
ReLU and linear. Each layer has a dropout with a probability 
of 20%. The loss function by the default package is the 
combination of squared l2 norm and Kullback–Leibler 
divergence. The remaining parameters such as the optimizer, 
learning rate, and other hyperparameters are the same as the 
LSTM setting. 

In addition, we applied MCD to reproduce the results 
from the BNN model. The MCD is proposed by Gal and 
Ghahramani [43]. It allows the activation of the dropout in 
the testing phase [44]. The MCD changes the model 
architecture each time when providing the prediction. This 
paper runs MCD on BNN 30 times. After conducting the 30 
predictions, the ensemble prediction outcome can be 
computed. Monte Carlo Dropout combined with Bayesian 
inference has received attention in different fields due to its 
simplicity, scalability, and computational efficiency [45].  

 
2.4 Possible hand movement area 

After estimating the possible hand movement areas, the 
information can be provided to the robot control algorithm 
to avoid collisions. Figure 1 shows the concept of possible 
hand movement area from GRU with Bagging.  

 
FIGURE 1: Possible hand movement area by applying 

Bagging or MCD.  
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The upper and lower bounds can be calculated from 
multiple runs of Bagging and MCD. Each model will run 30 
times by applying Bagging or MCD. The number of 
predicted values is 30. Among these 30 predictions, the 
maximum and minimum values are considered as the 
boundary. 
 
3. THE DISASSEMBLY DATASET 

This section describes the data collection procedure and 
the disassembly experiment for a desktop computer.  

 
3.1 Dataset of Dell OptiPlex 7050 Micro desktop for 

disassembling 
The required dataset has been collected by using Inertial 

Measurement Units (IMU) sensors. Six sensors were 
deployed on a participant as shown in Figure 2. The product 
under disassembly is a Dell OptiPlex 7050 Micro desktop 
computer. Six components have been dismantled from the 
desktop in the following order: 1) screw, 2) cover, 3) hard 
disk drive, 4) fan, 5) heat sink, and 6) RAM (Figure 3).  

 

 
FIGURE 2: Six IMU sensors on the participant.     

 

 
FIGURE 3: Each component of Dell OptiPlex 7050 Micro 

desktop. 
 

The participant has completed the consent information 
and the experiment was authorized by the University of 
Florida Institutional Review Board (IRB 202200211). The 
frequency of IMU sensors is 60 HZ meaning the output of 
the sensor is 60 samples per second. The total samples are 
6,686 with a total disassembly time of around 111 seconds. 
The duration between the samples is 16.67 milliseconds. 
The number of collected samples for 1) screw, 2) cover, 3) 
hard disk drive, 4) fan, 5) heat sink, and 6) RAM are 607 
(10.1s), 335 (5.6 s), 464 (7.7 s), 734 (12.2 s), 3773 (62.9 s), 
and 775 (12.9 s), respectively. The proportion of training, 
validation, and testing is 70%, 20%, and 10% for each 
component. For example, the number of training, validation, 
and testing samples for the screw is 425 (70%), 121 (20%), 
and 61 (10%). The duration between the current time t and 
the predicted time for t+1, t+2, and t+3 is 16.67 ms, 33.34 
ms, and 50.01 ms, respectively. 

 
3.2 Time length for input and output 

The hand’s X, Y, and Z positions are collected by the 
sensors for the entire disassembling operation. The 
movement of collected samples is shown in Figure 4. The 
unit for hand positions is mm. 

 

 
FIGURE 4: The visual representation of 6,686 sensor data 

collected for each component of the desktop. 
 

According to Figure 4, the hand movement for each 
component is different. The length of the input window is 
decided based on the Pearson correlation coefficient (PCC) 
from the next time t+1 to the previous time e.g. t, t-1,…, t-
n. One advantage of the Pearson correlation coefficient is 
that it can quantify the degree to which variables are linearly 
related and provide a measure of the proportion of variance 
shared between them.[46]. The input time length is selected 
when the PCC between the next time and the previous time 
is above 0.99. The higher length of input will increase the 
complexity and computation time. Therefore, we only 
selected lag features with 0.99 PCC.   

The concept of the input window for input and output 
is described in Figure 5. For predicting the value of the 
hand's X position at time t+1 as output, the size of the input 
window is 7 time points, from t-6 to t, as input. Similarly, 
for predicting the Y position at time t+1, we used a longer 
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window of the previous 10 time points, from t-9 to t, as 
input. And for predicting the Z position at time t+1, we used 
a window of the previous 9 time points, from t-8 to t, as 
input. The PPC of each input time and output time is at least 
0.99 above. When forecasting t+2, the input window will be 
shifted with 1 time lag without changing its size. For 
example, when forecasting t+2 in hand position X, the input 
will be from t-5 to t+1. 

 

 
FIGURE 5: The input and output window for predicting 

the hand’s Y position. 
 

Figure 5 shows that the LSTM model uses a window of 
the previous 9 time points, from t-9 to t, as input for 
predicting the position of the hand's Y coordinate at time 
t+1. The predicted value for Y at time t+1, along with the 
input window from t-8 to t, are then used as inputs for 
predicting the hand's position at time t+2. This process is 
repeated for predicting the hand's position at time t+3. In 
Figure 6, the maximum hand movement between time t and 
t+3 is 53.26 mm (5.32 cm), meaning the hand moves 5.32 
cm in 50 milliseconds. The hand movement is rapid as the 
hand can move 5.32 cm in 50 milliseconds and should be 
carefully predicted to avoid any collision.  

 

 
FIGURE 6: The displacement (x, y) between t and t+3. 

 
4. THE RESULTS OF HUMAN HAND MOTION 

PREDICTION 
This section discusses the results and compares the 

findings of the three models.  

4.1 Human hand motion prediction 
The mean absolute error (MAE), mean square error 

(MSE), and root mean square error (RMSE), are used to 
evaluate the performance of applying the three models for 
predicting t+1 to t+3. After training and validation, the 
testing results are listed in Tables 2-4. According to Table 2, 
the BNN-MCD model outperforms other models in 
predictions of the hand’s X positions. The range of MAE, 
MSE, and RMSE is from 9.7 to 13.2, 166.3 to 293.6, and 
12.9 to 17.1 for BNN-MCD.  

According to Table 3, LSTM-Bagging outperforms 
other models in predicting the Y position. The MAE of the 
LSTM-Bagging model increases from 15.9 to 18.5 for t+1 
to t+3, and the MSE increases from 371.5 to 653.4. The 
LSTM-Bagging has better results in terms of RMSE as well. 

 
TABLE 2: The ensemble prediction results of each model 

for hand position X. 

Model Time MAE MSE RMSE 
LSTM-Bagging t+1 12.5 310.8 17.6 
GRU-Bagging t+1 11.1 274.3 16.6 
BNN-MCD t+1 9.7 166.3 12.9 
LSTM-Bagging t+2 13.7 385.8 19.6 
GRU-Bagging t+2 13.9 377.7 19.4 
BNN-MCD t+2 10.2 221.8 14.9 
LSTM-Bagging t+3 15.9 475.8 21.8 
GRU-Bagging t+3 17.2 487.2 22.1 
BNN-MCD t+3 13.2 293.6 17.1 

 

TABLE 3: The ensemble prediction results of each model 
for hand position Y. 

Model Time MAE MSE RMSE 
LSTM-Bagging t+1 15.9 371.5 19.3 
GRU-Bagging t+1 16.7 445.6 21.1 
BNN-MCD t+1 27.7 1266.7 35.6 
LSTM-Bagging t+2 18.6 557.1 23.6 
GRU-Bagging t+2 19.1 614.9 24.8 
BNN-MCD t+2 40.4 2697.3 51.9 
LSTM-Bagging t+3 18.5 653.4 25.6 
GRU-Bagging t+3 19.7 721.9 26.9 
BNN-MCD t+3 47.4 3606.0 60.1 

 
According to the results in Table 4, the LSTM-Bagging 

outperforms the other models in forecasting the hand 
position for the Z coordinate. Specifically, the range of 
MAE, MSE, and RMSE values for the LSTM-Bagging 
model are between 9.9 and 13.3, 222.9 and 376.1, and 14.9 
and 19.4, respectively. 



                                                  6                                  © 2023 by ASME 
 

TABLE 4: The ensemble prediction results of each model 
for hand position Z. 

Model Time MAE MSE RMSE 
LSTM-Bagging t+1 9.9 222.9 14.9 
GRU-Bagging t+1 14.2 343.8 18.5 
BNN-MCD t+1 29.1 1402.1 37.4 
LSTM-Bagging t+2 10.4 254.3 15.9 
GRU-Bagging t+2 16.3 457.6 21.4 
BNN-MCD t+2 51.5 3154.6 56.2 
LSTM-Bagging t+3 13.3 376.1 19.4 
GRU-Bagging t+3 18.6 576.6 24.0 
BNN-MCD t+3 61.8 4368.3 66.1 

 
Figures 7-9 show the prediction results for the X 

position by BNN-MCD, the Y position by GRU-Bagging, 
and the Z position by LSTM-Bagging. The x-axis shows the 
time in 16.67 milliseconds between each interval and the 
order of the six disassembly tasks described in Section 3.1. 
Figure 10 shows the prediction performance for hand 
position X by BNN-MCD and LSTM-Bagging for hand 
positions Y and Z over time. 

 
FIGURE 7: The testing results of BNN-MCD for the 

hand’s X position. 
 

 
FIGURE 8: The testing results of GRU-Bagging for the 

hand’s Y position. 

 
FIGURE 9: The testing results of LSTM-Bagging for the 

hand’s Z position. 
 

Although the prediction trend is similar to observations, 
there are still errors between the predicted values and 
observed values.  
 

 
FIGURE 10: The prediction performance for hand 

position X by BNN-MCD, and LSTM-Bagging for hand 
positions Y and Z over time. 

 
4.2 Prediction results of the potential range of 

motion for human hand 
The upper and lower bounds of motion movement can 

be determined from the 30 prediction results by each model. 
Figures 11, 12, and 13 show the results for GRU-Bagging, 
LSTM-Bagging, and BNN-MCD, respectively. In Figures 
11 and 12, the boundaries miss covering the hand position 
for some disassembly tasks, e.g. heat sink due to the errors 
between the predicted values and the observed values as the 
models overestimate or underestimate. However, the 
boundaries defined by BNN-MCD provide the reasonable 
movement area of hand position as shown in Figure 13. The 
MCD is a Gaussian process that randomly drops out 
neurons, while the BNN is a probabilistic model that treats 
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weights as random variables. The combination of these two 
models, both of which have uncertainty features, appears to 
be better suited for defining the possible movement area 
than fixed models like the GRU-Bagging and LSTM-
Bagging. 

 

 
FIGURE 11: The testing results of GRU-Bagging on the 
possible movement area of the hand’s Y position in time 

t+1. 
 

 
FIGURE 12: The testing results of LSTM-Bagging on the 

possible movement area of the hand’s Y position in time 
t+1. 

 

 
FIGURE 13: The testing results of BNN-MCD on the 
possible movement area of the hand’s Y position in time t+1. 

 
Table 5 presents partial testing samples of the BNN-

MCD model, while Table 6 shows the number of 
observations that fall outside the boundary. Although some 
observations in Table 5 still do not fall within the boundary, 

the BNN-MCD model performs better than LSTM-Bagging 
and GRU-Bagging, as it has fewer out-of-bounds 
observation points, as shown in Table 6. Specifically, for 
t+1, BNN-MCD has an error rate of only around 5% 
(31/669), while LSTM-Bagging and GRU-Bagging have 
error rates of 76% (506/669) and 66% (438/669), 
respectively. These results demonstrate that the BNN-MCD 
model is more effective in forecasting the possible areas of 
hand movements. 

 
TABLE 5: The partial testing results of BNN-MCD for the 
first two prediction results on each task. 

Task Obs. Pred. Errors Max. 
boundary 

Min.  
boundary 

1 -213 -147 66 -97 -211 
1 -215 -150 65 -85 -237 
2 -249 -212 37 -154 -281 
2 -249 -201 48 -115 -295 
3 -431 -432 1 -280 -596 
3 -434 -409 25 -197 -633 
4 -71 -51 20 -31 -79 
4 -82 -56 26 -27 -87 
5 -38 -51 13 23 -78 
5 -38 -54 16 -27 -105 
6 -578 -563 14 -264 -933 
6 -578 -586 9 -315 -790 

 
TABLE 6: The number of observation testing samples 
outing of the upper and lower bounds for hand position Y 
(Total test samples: 669). 

Time LSTM-Bagging GRU-Bagging BNN-MCD 
t+1 506 438 31 
t+2 357 509 61 
t+3 405 410 67 

 
Figure 14 displays the PDF of the Gaussian distribution 

generated by BNN-MCD, which was run 30 times at each 
time point. The PDFs are normally distributed with mean 
and standard deviation calculated from 30 samples at each 
time. The width of the distributions is narrower in the range 
of approximately 200 to 400, indicating a smaller range of 
possible movement and lower uncertainty. In contrast, other 
ranges show a wider width of distributions, implying higher 
uncertainty and a larger range of possible movement.  

It should be noted that since the PDF is drawn from 
simulation samples generated by BNN-MCD rather than 
real data, the actual observations may still fall outside the 
boundary, as shown in Table 6. This issue requires further 
discussion on how to improve forecasting accuracy in future 
research. 
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FIGURE 14: The Gaussian distribution of testing results for 
the hand position Y in time t+1, as plotted by every 25th 
order, using the BNN-MCD model. 
 
5. CONCLUSION 

This paper investigated the capability of three machine 
learning techniques including LSTM-Bagging, GRU-
Bagging, and BNN-MCD for predicting the range of hand 
motion in the disassembly of consumer electronics. A case 
study of disassembling a desktop computer was used to 
show the application and IMU sensors were utilized to 
collect the required movement data. The Bagging and MCD 
procedures were performed 30 times, and the resulting 
ensemble prediction was calculated. The findings indicate 
that for forecasting hand position X, BNN-MCD 
outperforms LSTM-Bagging and GRU-Bagging. On the 
other hand, for hand positions Y and Z, LSTM-Bagging 
demonstrates better performance compared to the other 
models. The possible movement range is defined to enhance 
the safety of the human operator. In terms of defining the 
upper and lower bounds, BNN-MCD outperforms LSTM-
Bagging and GRU-Bagging. The BNN model, which is a 
probabilistic model, is combined with MCD, a Gaussian 
process, to adjust the model's architecture to account for 
uncertainty. 

The study can be extended in several ways. The current 
study analyzed each hand position separately to provide a 
detailed comparison of each model's performance. The 
results showed that BNN-MCD outperformed other models 
for position X, while LSTM-Bagging demonstrated superior 
performance for position Y. While comparing the three 
models separately provided different perspectives, it is 
computationally expensive. To decrease computation, it 
may be useful to consider all three positions together in 
future research, for instance, by inputting positions X, Y, and 
Z into each model and outputting the forecasting results for 

all three positions. Also, currently, each disassembly 
operation is conducted once by a human operator, future 
work is needed to collect more samples across participants 
and across more complex disassembly tasks.   

Moreover, the focus of data collection in this study was 
on the upper extremity and hand motion in disassembling 
tasks, however, the study can be extended to consider the 
whole-body motion. Besides IMU sensors, other sensors 
like RGB video images can be combined with IMU sensors 
to define different possible movement areas. Further, 
machine learning models can be combined with computer 
vision techniques to equip robots with more accurate scene 
monitoring techniques. 
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