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ABSTRACT 
Electric vehicles (EVs) are considered an environmentally 

friendly option to conventional vehicles. As the most critical 
module in EVs, batteries are complex electrochemical 
components with nonlinear behavior. On-board battery system 
performance is also affected by complicated operating 
environments. Real-time EV battery in-service status prediction 
is tricky but vital to enable fault diagnosis and aid in the 
prevention of dangerous occurrences. Data-driven models with 
advantages in time series analysis can be used to capture the 
degradation pattern from data about certain performance 
indicators and predict the battery states. The Transformer model 
is capable of capturing long-range dependencies efficiently 
using a multi-head attention block mechanism. This paper 
presents the implementation of a standard Transformer and an 
encoder-only Transformer neural network to predict EV battery 
state of health (SOH). Based on the analysis of the lithium-ion 
battery from NASA Prognostics Center of Excellence website's 
publicly accessible dataset, 28 features related to the charge and 
discharge measurement data are extracted. The features are 
screened using Pearson correlation coefficients. The results 
show that the filtered features can effectively improve the 
accuracy of the model as well as the computational efficiency. 
The proposed standard Transformer shows good performance in 
SOH prediction. 
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1. INTRODUCTION 

Due to the ongoing use of fossil fuels and reliance on 
internal combustion engine cars for more than a century, the 

transportation industry is one of the main contributors to global 
greenhouse gas (GHG) emissions [1]. Electric vehicles (EVs) 
have been identified as a promising solution to mitigate the GHG 
effect and the ever-growing energy demand [2]. Lithium-ion 
batteries are the most technologically advanced energy storage 
systems for EVs due to their high energy and power densities, 
strong environmental adaptability, and low self-discharge rate 
[3,4]. 

To make EVs more competitive with gasoline-powered 
vehicles, extremely fast charging is a key indicator that batteries 
need to achieve [5,6]. High rates of charging and discharging, 
combined with the wide range of operating temperatures to 
which EVs might be exposed (−20 to 70°C), can accelerate 
battery degradation during cycling [7]. Battery degradation has 
been attributed to multiple mechanisms. The dominating are the 
growth of the solid-electrolyte-interphase layer, irreversible 
deposition of lithium metal on the anode, and loss of active 
material from the cathode [8]. The batteries age over time, 
leading to a reduction in their performance and safety [9]. The 
reliable operation of EV batteries requires real-time monitoring 
of their in-use states, such as state of health (SOH) [10,11].  
However, battery in-use characteristics cannot be measured 
directly but need to be inferred by building degradation models 
[12–14]. An effective battery management system relies on a 
reliable battery degradation model for status monitoring and 
health state assessment to ensure their safe and high-
performance operation. 

There are two broad approaches to developing a battery 
degradation model for predicting and diagnosing battery in-use 
SOH: the physics-based approach and the data-driven approach. 
The physics-based model, also known as the electrochemical 
model, is a set of coupled partial differential equations that 
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represent the microscopic chemical reactions occurring within 
the cell [15]. The pseudo-two-dimensional (P2D) model, for 
example, is one of the most widely used physics-based models 
[16]. This sophisticated model offers a thorough examination of 
the thermal energy balance, mass balances, charge balances, and 
kinetics of electrochemical reactions within the cell [17]. But the 
physics-based model typically requires solving a set of tightly 
coupled differential equations [18]. The process is too complex 
and slow to be used for real-time management of in-use batteries. 

The data-driven approaches estimate the effect of 
degradation on the battery's operational data. These approaches 
do not necessarily need to consider the underlying degradation 
behavior of the battery as well as its physical and chemical 
properties. In particular, the machine-learning based approaches 
can be trained on large datasets quickly, which makes them ideal 
for modeling complex systems like EV batteries. In addition, 
machine-learning models can be adapted to various battery 
chemistries and configurations [19,20]. In particular, deep neural 
networks can achieve higher prediction accuracy by training 
multiple layers of neural networks to match more closely to 
complex nonlinear battery systems [12,21–24].  

Many studies have proven that recurrent neural network 
(RNN) based neural networks, including gate recurrent unit 
(GRU) and long short-term memory (LSTM), are effective 
solutions for battery modeling because they can use internal 
states (memory) to represent battery aging information [25–27]. 
The LSTM network, for example, solves RNN's gradient 
disappearance and gradient explosion problems and has 
produced a relatively good performance for battery SOH 
prediction [28]. However, using LSTM to process sequential 
input in a recurrent manner is computationally intensive, which 
requires storing and updating memory cells at each time step. 
Transformer is a newer type of neural network architecture that 
uses self-attention mechanisms to process input sequences 
without recurrence [29]. Transformers can process input 
sequences in parallel, which is much faster than the sequential 
processing used in LSTMs [30].  

The main contribution of this study is to develop a highly 
efficient battery SOH prediction framework, thus making the 
model more applicable to real-time prediction in the field. To 
achieve this target, the Transformers-based neural network that 
can process a sequence of data at once by using an attention 
mechanism is chosen as the prediction model. In addition to 
implementing a standard encoder-decoder Transformer, the 
performance of the encoder-only Transformer with a simpler 
architecture is investigated and compared. Moreover, the raw 
measurement data from the battery charge and discharge are 
extracted and screened for features before being input into the 
model. The computational efficiency of the model is thus further 
improved. 

The rest of the structure of this paper can be summarized as 
follows. Section 2 is the related works on deep learning and 
feature extraction for battery state prediction.  Section 3 
describes the proposed SOH prediction framework, including the 
rules for feature extraction and selection, as well as the 
architecture of the Transformer-based prediction models. Section 

4 gives details of the experimental implementation and the SOH 
prediction results of the models. Finally, Section 5 concludes the 
work in this study and the perspectives for future research. 

 
2. RELATED WORK 
2.1 Deep learning for SOH estimation 

SOH and remaining useful life (RUL) are state indicators 
related to the aging behavior of the battery. To achieve a more 
comprehensive literature review, prediction models relating to 
both SOH and RUL are discussed in this section. Numerous 
studies are focused on the application of deep learning based 
models for battery degradation estimation owing to their 
advantages in modeling complex nonlinear problems. Among 
them, RNNs that can utilize sequential information are well 
suited for battery state prediction problems that require 
processing time series data. As a variant of RNN, the LSTM 
network was designed to solve the gradient vanishing problem, 
which is one of the widely used models in the field of battery 
state prediction [31,32]. Kaur et al. [33] compared the 
performance of feedforward neural networks (FNN), 
convolutional neural networks (CNN), and LSTM for battery 
capacity estimation. Their results show that LSTM, which can 
recursively process time series information, had the best 
accuracy. However, it requires greater computational cost than 
FNN and CNN. As a variant, the Bi-LSTM integrates two 
LSTMs with positive and negative time series, allowing the 
model to detect information that the one-way network may 
overlook [34]. Sun et al. successfully implemented the Bi-LSTM 
for SOH prediction, and the model can explore the degradation 
behavior of Li-ion batteries deeply from two sequence directions 
[26]. The results demonstrate that Bi-LSTM can achieve more 
accurate SOH estimation than a single LSTM. Meanwhile, the 
bi-directional behavior makes the Bi-LSTM model significantly 
slower to compute than LSTM [34]. For RUL and SOH 
prediction, Qu et al. combined an LSTM network with particle 
swarm optimization and an attention mechanism [35]. The paper 
illustrated that the attention mechanism assigns weights to each 
feature according to its impact on the output, which leads to 
higher accuracy of the model.  

The other deep learning model that constructs key modules 
with attention mechanisms is the Transformer [29]. There is no 
recurrence or convolutional mechanism in Transformer. It has 
the ability to process a sequence of data all at once, using an 
attention mechanism that allows it to access any part of the 
historical data without being limited by distance [36]. In 
addition, it enables faster training than LSTM since the majority 
of operations can be computed in parallel [37]. Due to its ability 
to handle sequence data, Transformer has the potential to be 
employed in battery degradation modeling. To the best of our 
knowledge, there are few works that apply Transformers to 
battery status estimation. Chen et al. combined a denoising auto-
encoder with the Transformer encoder to complete the RUL 
estimation [30]. Their model achieved approximate or even 
better precision than single LSTM and required significantly less 
training time than LSTM. Mo et al. developed a Transformer 
encoder based neural network enhanced by gated convolutional 
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unit, which achieved relatively good performance and was 
computationally efficient [36]. These two studies prove the 
effectiveness of Transformers in reducing the computational 
burden of battery models. However, both of them use encoder-
only Transformer based structures, and the effect of the decoder 
in standard Transformer for battery state estimation was not 
discussed. 
 
2.2 Battery feature extraction 

An additional way to enhance the computational efficiency 
and accuracy of the model is to extract, select and optimize 
features from the raw data. The features from battery charge and 
discharge data can be divided into two categories: measured 
features and calculated features [38,39]. The measured features 
are extracted from the current, voltage, and temperature signals 
during the battery cycle that are available from the battery 
management system [40]. For example, Guo et al. extracted 14 
features from the charging process, which are related to capacity, 
charge time, temperature, and current/voltage drop [41]. Their 
results show that after selection using gray relational analysis 
and dimensionality reduction by PCA, the features that remain 
can well reflect the internal aging process of the battery.  

The calculated features are designed to mine more sensitive 
information from the measurement data. For this process, the 
signal that can be directly provided by the battery measurer is 
first transformed. The features extracted from the transformed 
signal profile are defined as calculated features [39]. For 
example, Li et al. applied the incremental capacity analysis 
(ICA) technique to process battery voltage data [42]. This 
procedure could convert a flat voltage profile into an incremental 
capacity (IC) profile, which would have a series of peaks and 
valleys. As the battery ages, the shape, amplitude, and position 
of the IC peaks change, which can be considered features 
reflecting degradation.  

 

However, the computed feature extraction imposes more 
computational burden on the model than measured features. The 
main objective of this study is to develop more efficient battery 
SOH prediction system. Therefore, the measured features from 
the previous studies are referred to be used for feature extraction 
[38,40–42]. 
 
3. METHODOLOGY 
3.1 Framework of the SOH estimation 

A crucial factor to characterize the performance the battery 
is capable of in its present state is the state of health (SOH). It 
could also be a sign of battery deterioration. Many factors, 
including capacity and battery resistance, can be used to 
calculate the SOH. The SOH is determined in this study as the 
ratio of the nominal capacity to the releasable capacity, and it is 
displayed as 

𝑆𝑂𝐻(%) =
𝑄𝑚𝑎𝑥

𝑄𝑛𝑜𝑟𝑚
× 100% (1) 

where 𝑄𝑚𝑎𝑥  is the maximal available capacity at the current 
cycle, and 𝑄𝑛𝑜𝑟𝑚   is the nominal capacity given by the 
manufacturer. Since the nominal capacity of the battery is 
constant, the calculation of SOH is directly related to the 
available capacity of the battery. 

Figure 1 depicts the flowchart for the SOH estimation. For 
feature extraction and optimization, the framework makes use of 
the raw testing and monitoring data from Li-ion batteries. First, 
the initial extracted features are determined by investigating the 
relationship between the trends of the charge/discharge profiles 
and the degradation of the battery system. Following the 
extraction of the features from the measured parameters, a 
correlation analysis is performed to evaluate the features' 
potential to capture battery degradation. Based on selecting 
valuable features, a standard transformer neural network and an 
encoder-only transformer are employed to estimate the SOH. 

 
 

 
FIGURE 1: FRAMEWORK OF THE SOH ESTIMATION 
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3.2 Data description 
The data are obtained from the NASA lithium-ion battery 

aging dataset [31]. This public dataset tested the 18,650 
commercially available lithium-ion rechargeable batteries at 
experiment control conditions. This study selected data from 
Battery 0005 for the experiment. The charging and discharging 
of Battery 0005 were repeated at room temperature. The 
charging process was carried out first at a constant current (CC) 
of 1.5 A. After the battery voltage reaches 4.2 V, it shifts to 
charging at a constant voltage (CV) mode until the current drops 
to 20 mA [44]. The discharging process was performed at a 
constant current of 2 A until the voltage dropped to 2.7 V. The 
signals of current (I), voltage (V), and temperature (T) during 
charging and discharging were recorded every 10 Hz. The 
battery aged significantly as it was subjected to repeated charge 
and discharge cycles. The test came to an end when the battery's 
rated capacity had faded by 30%, signaling the end of its useful 
life. The variation in the capacity of the target battery is shown 
in Figure 2.  

 

 
FIGURE 2: CAPACITY DEGRADATION OF BATTERY 0005 

 
3.3 Feature extraction and selection 
3.3.1 Feature extraction 

The raw data for feature extraction is selected as the full 
range of V, I, and T signals measured in the state of charging and 
discharging [45]. The changes in the charging and discharging 
profiles as the battery ages are illustrated in Figure 3.  

From Equation (1), it is known that the extrapolation of the 
available battery capacity is the key to estimating the SOH. The 
battery capacity is the amount of electric charge that can be 
accumulated during charging and released reversibly during 
discharging [46]. The battery charging process is divided into 
two steps: CC mode and CV mode. According to the definition 
of capacity, the time required for the CC charging process is 
directly proportional to the charging capacity in CC mode. From 
Figure 3(a) and (b), it can be found that as the number of cycles 
increases, the time required to complete CC charging of the 
battery decreases. It thus implies that the time spent charging at 
a constant current can indicate the degree of battery aging.  

The CV charging step is to keep the battery at a maximum 
specified potential while allowing the current to decrease 

through a current taper [47]. While the more time spent in CV 
mode, the more difficult it proves to be for the lithium ions to 
migrate inside the battery [45]. Consequently, it indicates the 
aggravation of the aging mechanism, such as elevated impedance 
and the formation of solid electrolyte interphase (SEI). In the 
charging temperature profile, the time point when the battery 
reaches its maximum temperature and the time point when the 
CC mode ends are largely coincident (Figure 3(c)). Based on the 
considerations above, it is worthwhile to extract and analyze the 
I/V/T features associated with the beginning as well as the end 
of the CC and CV modes during the charging phase. As the 
current for CC charging, cut-off current, and the maximum 
voltage are fixed, these three values are not considered in the 
extraction of features. However, temperature is considered 
valuable to be extracted and evaluated since temperature is one 
of the significant factors affecting the aging rate of the battery. 

Figure 3(d)/(e)/(f) presents the profiles of battery discharge 
at different degradation levels. It can be seen that as the number 
of battery cycles increases, the time for the battery to complete 
constant current discharge, reach the cut-off voltage, and the time 
to reach the maximum temperature all become shorter and 
shorter. The available battery capacity is highly sensitive to the 
discharge process since it is gained by integrating the current 
curve over a full discharge process [46]. Therefore, several of the 
discharge features are also extracted pending subsequent 
evaluation. Based on the above analysis and on references from 
other similar battery feature extraction methods [38,40,45], a 
total of 28 charging and discharging features are initially 
extracted and summarized in Table 1. Examples of the profiles 
of the extracted features are displayed in Figure 4. 

 

 
FIGURE 3: CURRENT, VOLTAGE, AND TEMPERATURE 
CURVES DURING CHARGING AND DISCHARGING OF 

BATTERY 0005 AFTER DIFFERENT NUMBER OF CYCLES 
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FIGURE 4: PROFILES OF EXTRACTED FEATURES F1, F2, F4, 

F5, F9, AND F10 
 

3.3.2 Feature selection 
Pearson correlation coefficient (PCC) is employed to 

identify the degree of correlation between each feature and the 
battery's health status [48]. The most relevant features for 
prediction and modeling can be identified by calculating the 
correlation coefficient. A Pearson correlation coefficient of 1 or 
-1 implies a perfect positive or negative linear relationship. A 
coefficient of 0 indicates no linear relationship. 

The purpose of selecting the extracted features is to remove 
noise and redundant features in order to reduce computational 
cost while ensuring model performance. The feature selection 
using the Pearson correlation coefficient in this study has the 
following two steps.  
• Calculate the PCC between each feature and battery SOH. 

The features with a correlation coefficient absolute value 
greater than 0.9 are chosen. 

• Calculate the PCC between each pair of features retained 
during step 1. The pair of features with an absolute PCC 
value greater than 0.999 is considered "duplicate" 
features. Only the one that is more correlated with SOH 
should be kept as model input. The remaining features 
that do not have "duplicates" are also kept. 

TABLE 1: FEATURE EXTRACTION [38,40] 
Group Feature  Description Type 

Charging 
features 

F1  Area covered by current curves of the CC charging 
Current-related F2  Area covered by current curves of CV charging 

F3  Minimum slope of current curves in CV charging 
F4  Area covered by voltage curves of CC charging 

Voltage-related F5  Area covered by voltage curves of CV charging 
F6  Maximum slope of voltage curves in CC charging 
F7  Maximum temperature of charging 

Temperature-
related 

F8  Minimum temperature of charging 
F9  Area covered by temperature curves of the CC charging 

F10  Area covered by temperature curves of the CV charging 
F11  Maximum temperature minus minimum temperature of charging 

F12  The ratio of CC charging area under temperature curve to the corresponding area 
under the current curve 

F13  The ratio of CV charging area under temperature curve to the corresponding area 
under the current curve 

F14  CC charging time 

Time-related 

F15  CV charging time 
F16  CC charging time / (CC+CV charging time) 
F17  Time to the minimum current in charging 
F18  Time to reach the maximum voltage in charging 
F19  Time to the maximum temperature in charging 

Discharging 
features 

F20  Area covered by current curves of discharging Current-related 
F21  Area covered by voltage curves of discharging Voltage-related 
F22  Area covered by temperature curves of discharging 

Temperature-
related 

F23  Maximum temperature of discharging 
F24  Minimum temperature of discharging 
F25  Maximum temperature minus minimum temperature of discharging 
F26  Time discharged under a constant current 

Time-related F27  Time to the minimum voltage in discharging 
F28  Time to the max temperature in discharging 
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3.4 Model structure 
An encoder and a decoder compensate for the sequence-to-

sequence architecture of the standard Transformer. The encoder 
maps the input sequence into a high-dimensional vector, which 
is then provided to the decoder to generate the output sequence 
[30].  

An input layer, a layer for positional encoding, stack-
identical encoder layers make up the encoder module [49]. 
Through a fully-connected network, the input layer converts the 
input time series data to a vector of self-defined dimensions 
(𝑑_𝑚𝑜𝑑𝑒𝑙). The positions of the data points in the sequence are 
characterized by the position encoding layer performing sine and 
cosine functions, giving each position a unique representation 
between 0 and 1. The encoder layer is tasked with generating  
encodings that contain information about which parts of the input 
are relevant to each other [50]. There are two sub-layers that 
comprise each encoder layer: multi-Head self-attention and a 
fully-connected feed-forward. Each sub-layer is followed by a 
normalization layer. The encoder generates a vector of 
dimension 𝑑_𝑚𝑜𝑑𝑒𝑙 for utilization by subsequent decoders. 

The decoder is also composed of the input layer, decoder 
layers, and an output layer. The decoder in the Transformer 
model takes two main inputs: the encoded source sequence and 
the previous decoder output. The encoded source sequence is 
generated by the encoder and contains representations of the 
input sequence. The previous decoder output, in the general 
Transformer, consists of previously generated tokens from the 
decoder. It serves as the reference for the model to learn from 
during training and to generate predictions during inference. 
However, the Transformer presented in this paper is simplified 
in this step. The previous decoder output is replaced with a 
sequence consisting of the last data point of the encoder input. In 
other words, the input features at the last battery cycle are used 
as the second input to the decoder in our case. The decoder layer 

is similar to the encoder layer in that it includes self-attention 
mechanism and feed-forward neural network. However, the self-
attention mechanism in the decoder also attends to the output 
sequence of the Encoder. Finally, a fully-connected layer is used 
to map the representations learned by the last Transformer unit, 
producing the SOH estimation. 

In this study, the standard Transformer and the encoder of 
the Transformer are applied to learn the long-term dependencies 
of the SOH degradation from charging and discharging features 
(Figure 5). With an encoder-only Transformer, the hidden 
features output from the encoder enters directly into the final 
fully-connected layer for prediction.  

 
4. RESULTS AND DISCUSSION 
4.1 Feature selection results 

According to the features described in Table 1, twenty-eight 
features are extracted from the Battery 0005 in the NASA 
dataset. The correlation coefficient between features and battery 
SOH is summarized in Table 2 in descending order [38,41,45]. 
The results show that the features with a PCC greater than 0.9 
with SOH include: F1, F2, F4, F5, F9, F10, F14, F15, F16, and 
F18 from the charging group, and F20, F21, F22, F23, F25, F26, 
F27, F28 from discharging group. The feature least associated 
with SOH is the minimum temperature during charging and 
discharging. This is due to the fact that the lowest temperature 
during battery operation usually occurs at the beginning or end 
of the charging and discharging phases when the battery is 
relatively inactive. This value is highly correlated with the 
ambient temperature and therefore has little correlation with the 
status of the battery.  

 
 

 
FIGURE 5: STRUCTURE OF STANDARD TRANSFORMER AND ENCODER-ONLY TRANSFORMER  
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In this particular dataset, there are multiple battery features 
from charging and discharging that are present with high 
correlation coefficients to the prediction target. The reason is that 
the batteries in the dataset are charged and discharged with a 
regular and stable behavior. It is possible that using linear 
regression (LR) to fit the SOH curve would also achieve good 
performance. However, LR model is difficult to adapt if there is 
randomness in the battery data. Due to the consideration of the 
stochasticity of the battery usage in real situations, the feasibility 
of the Transformer is still chosen to be discussed in this paper. 

 
TABLE 2: PEARSON CORRELATION COEFFICIENT 
(ABSOLUTE VALUE) BETWEEN FEATURES AND SOH IN 
DESCENDING ORDER 

Group Feature PCC with SOH  
(absolute value) 

Charging 
features  

F4 0.9962 
F14 0.9961 
F1 0.9961 

F16 0.9936 
F9 0.9898 
F2 0.9877 

F15 0.9757 
F5 0.9756 

F10 0.9692 

F18 0.9578 
F17 0.7744 

F6 0.6366 
F11 0.6341 
F3 0.6098 

F13 0.6000 

F12 0.4008 
F7 0.3829 
F8 0.0159 

F19 0.0063 

Discharging 
features 

 

F26 0.9999 
F20 0.9999 

F27 0.9999 

F28 0.9999 
F21 0.9999 
F22 0.9927 
F25 0.9788 
F23 0.9369 

F24 0.0519 
* The bold are the features whose PCC is higher than 0.9 

 
The features with high correlation from the charging data 

are mainly related to the start and end time of the CC and CV 

step-charging. The available capacity of a battery is determined 
by the amount of electric charge accumulated during charging, 
which is why the duration of the two phases of charging is critical 
to SOH estimation. On the other hand, the features from the 
discharge data, except for the minimum temperature, are all 
highly correlated with SOH. In particular, F20, F21, F26, F27, 
and F28 have a high correlation of 0.9999 with the predicted 
target, which can be almost linear. 

The reason for this is that the experimental condition of 
Battery 0005 is a continuous release at a constant current during 
the discharge process until the cut-off voltage is reached. 
According to the calculation method of battery capacity, when 
the battery is discharged at a constant current, its capacity is 
given by the discharge current multiplied by the discharge 
duration [46]. Therefore, for the dataset adopted in this study, the 
features related to the discharge duration would be nearly 
linearly correlated with the battery SOH.  

However, in practical applications, the discharge pattern of 
EV batteries is completely dependent on driving behavior and is 
a random discharge behavior. The discharge features are still 
essential for the prediction of randomly discharged battery states, 
except that they will not have this strong linear relationship. In 
addition, it is not common in practice to allow an EV battery to 
complete a full discharge process. The operating conditions of 
EV discharging are not as stable as parking and charging at a 
charging station. Therefore, after feature selection, the 
performance of the model with only charging features is also 
tested and compared to the model with full feature input. 

The similarity between high-correlation features is also 
calculated and presented in Figure 6. According to the feature 
selection rules defined in Section 3.3.2, a pair of features with an 
absolute correlation value greater than 0.999 is considered a 
"duplicate". The one with a lower correlation with SOH should 
be removed. Finally, the valuable features that are selected 
include: F1, F2, F4, F5, F9, F10, F16, F18 from charging group, 
and F20, F21, F22, F23, F25 from discharging group. 
 

 
FIGURE 6: SIMILARITY BETWEEN FEATURES WITH 
CORRELATION COEFFICIENTS GREATER THAN 0.9 WITH SOH 
 
4.2 SOH estimation results 
4.2.1 Experiments implementation details 

The two steps of feature selection as described in Section 
3.3.2 include selecting features with a higher correlation with the 
predicted target and deleting duplicate features. According to the 
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results, a total of 13 valuable features from the raw charging and 
discharging data are obtained. However, due to the specificity of 
the dataset used in this study, a portion of the features from the 
discharge process has a very high linear correlation with SOH. It 
is not reasonable to use these discharge features to examine the 
effectiveness of the developed time series prediction model. 
Therefore, during the evaluation of the model, the model inputs 
are divided into four cases: all 28 available features, 19 available 
features from the charging data only, 13 selected features from 
the charging and discharging process, and 8 selected features 
from the charging data only (Table 3). By comparing the 
performance of models with different input groups, the effect of 
feature selection and the effect of discharge features are 
discussed in the following sections. 
 
TABLE 3: FOUR INPUT GROUPS 

Input 
group Description Feature 

1 All the 28 available features F1 – F28 

2 19 available features from 
the charging data only F1 – F19 

3 
13 selected features from 

the charging and 
discharging data 

F1, F2, F4, F5, F9, 
F10, F16, F18, F20, 
F21, F22, F23, F25 

4 8 selected features from the 
charging data only 

F1, F2, F4, F5, F9, 
F10, F16, F18  

 
The two Transformer architectures employed for SOH 

estimation are implemented in Python utilizing the PyTorch 
framework. The models are run on a single CPU and utilizes the 
Mean Squared Error (MSE) loss function during the training 
process. The dataset is split into a 70% training set and a 30% 
test set. The developed Transformer-based models have seven 
key parameters: number of time steps to be input (sampler size), 
number of expected features in the transformer encoder/decoder 
inputs (𝑑_𝑚𝑜𝑑𝑒𝑙), number of encoder layers, number of decoder 
layers, number of heads in the multi-head attention mechanism, 
dimension of the feed-forward network and the fraction of 
neurons affected by Dropout. The parameters are determined by 
grid-search on the validation error. Table 4 provides a summary 
of the range of grid search and optimized hyperparameter 
settings for the Transformer-based models. The process of 
parameter optimization is based on input Group 1 on a standard 
encoder-decoder Transformer. The encoder-only Transformer 
used in this study adopts the same parameter settings in Table 4, 
except that the decoder module is masked. 

Root mean square error (RMSE) and mean absolute error 
(MAE) are utilized as evaluation criteria to assess the efficacy of 
the designed model for SOH estimation. The model's stability is 
indicated by the RMSE, which measures the difference between 
the true and predicted values. MAE, a linear score of the 
prediction error, can be used to show how accurate a model is. 
 

TABLE 4: GRID SEARCH AND OPTIMIZED 
HYPERPARAMETERS SETTING FOR THE TRANSFORMER-
BASED MODELS 

Hyperparameters Grid search Setting 
Sampler size 5, 10, 15, 20 15 
𝐷_𝑚𝑜𝑑𝑒𝑙 64, 128, 256 64 
Number of 

encoder layers 1, 3, 5 1 

Number of 
decoder layers 1, 3, 5 1 

Attention head 4, 8 8 
Dimension of the 

feed-forward 
network 

256, 512 512 

Dropout 0, 0.1 0 
 
4.2.2 Model performance 

The performance of the two Transformers-based neural 
networks using four different sets of inputs is summarized in 
Table 5. Based on the comparison of RMSE and MAE, the 
standard Transformers with input Groups 3 and 4 are the ones 
with the best performance. 

The performance of the standard Transformers and encoder-
only Transformers for the SOH prediction task can be compared 
and discussed. The transformer encoder uses self-attention to 
capture the dependencies between the different time steps in the 
sequence. The resulting hidden representations are then used as 
input to downstream prediction tasks. Therefore, the hidden 
representations obtained by the encoder module can be directly 
fed into a fully connected layer for SOH prediction. The SOH 
prediction curves from both Transformer-based models are 
shown in Figure 7 and Figure 8. The comparison shows that the 
encoder-only Transformer does not perform as well as the 
standard Transformer, especially when the number of features in 
the input is small. For example, the model with a decoder and 
without a decoder has the largest performance gap when the 
input is Group 4. However, the advantage of encoder-only 
Transformers is its computational speed. Without decoder 
module, it runs over 30% faster than the standard Transformer. 
In future studies, if the performance of the Transformer encoder 
can be enhanced by further parameter optimization or feature 
enhancement, it will be a more suitable model for real-time 
monitoring. 

On the other hand, the effect of the features from the 
discharge data on the model is worth being discussed. As 
explained in Section 4.1, since the experimental conditions of 
Battery 0005 are constant current continuous discharge, the 
duration of discharge and SOH show a nearly linear relationship. 
The impact of features that have such a high correlation with the 
predicted target on model performance is apparent. As shown in 
Figures 7 and 8, models that employed discharge features, with 
or without a decoder module, can be more accurate in prediction 
than models that use only charging features.  
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TABLE 5: PERFORMANCE OF TWO TRANSFORMER-BASED 
MODES WITH DIFFERENT INPUT 

Input 
group 

Standard Transformer Encoder-only 
Transformer 

RMSE MAE 
Time 
cost 
(s) 

RMSE MAE 
Time 
cost 
(s) 

1 0.0359 0.0322 55 0.0553 0.0465 37 

2 0.1109 0.1021 49 0.1073 0.0958 27 

3 0.0238 0.0212 42 0.0672 0.0614 30 

4 0.0290 0.0258 44 0.2180 0.2030 29 
 

 
FIGURE 7: PREDICTED RESULTS FOR STANDARD 
TRANSFORMER 
 

 
FIGURE 8: PREDICTED RESULTS FOR ENCODER-ONLY 
TRANSFORMER 
 

However, constant current continuous discharge of batteries 
is not common in real-world applications. Although the 
extraction and selection of discharge features can substantially 
improve the performance of the model in the current dataset, the 
effectiveness of this type of feature in actual EV battery SOH 
prediction needs to be verified. With the absence of the discharge 
feature, the standard Transformer with the selected charging 
feature (input group 4) can still achieve good model 

performance, with RMSE and MAE of 0.029 and 0.0258, 
respectively. Regarding the computational cost of feature 
extraction, it takes about 20 seconds to compute features for 168 
cycles of charge/discharge data. 

The validity of feature selection can be verified on standard 
Transformers which perform more stable. It is also necessary to 
exclude the interference of discharging features on the model 
performance in this respect due to the high correlation between 
discharge features and SOH. Feature selection is evaluated only 
by comparing the influence of all available and selected features 
from charging data on the model. The RMSE and MAE of 
standard Transformers using input group 2 are 0.1109 and 
0.1021, respectively. After feature selection, the RMSE and 
MAE of standard Transformers with input group 4 are reduced 
to 0.0290 and 0.0258. This demonstrates the effectiveness of the 
feature selection rule proposed in the paper. In addition to the 
improvement in the accuracy of the model, the computation time 
of the model has been improved by around 10%. Fast and 
accurate are the characteristics required for EV battery 
management systems. Our results demonstrate that feature 
extraction and selection is a promising direction to be explored 
for EV batteries. In addition, feature optimization, such as noise 
reduction and enhancement, is also an interesting problem to be 
explored in the future. 

The proposed model is also performed on other batteries 
from the NASA dataset. The results show that fine-tuning of the 
hyperparameters is necessary when applying the model to other 
batteries, since the charging and discharging conditions are not 
identical. 
 
4.2.3 Comparison of estimation results and computational 
cost with other models 

The computational cost of standard Transformers is 
compared with LSTM and GRU in Table 6, that are widely used 
in the field of battery SOH estimation. All three models use the 
input group 4 and the number of time steps to be input is 15. The 
parameter settings for the standard transformer are shown in 
Table 4 for optimum parameters. The LSTM and GRU are 
designed with two LSTM/GRU layers with 256 hidden units per 
layer. As can be seen from the results, the standard Transformer 
works with the best prediction results while using the lowest time 
cost. In this case, the LSTM and GRU are only roughly tuned for 
hyperparameters, so these do not represent the best results that 
can be achieved by RNN models. Deepening the model 
architecture may improve the prediction results of LSTM or 
GRU, but it may also cause a further increase in computational 
cost. 
 
TABLE 6: COMPARISON OF MODEL COMPUTATIONAL 
COSTS 

Model RMSE MAE Time cost (s) 
Standard Transformer 0.0290 0.0258 44 

LSTM 0.0637 0.0594 60 

GRU 0.0345 0.0267 54 
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The performance of models from standard Transformers 
using the selected charging features is compared with models 
from other literature. The prediction results from the other 
models were also implemented on Battery 0005 from the NASA 
public dataset. Moreover, they have a similar training and test set 
split (70%: 30%) as the one in this study. Although the raw data 
are the same, the data pre-processing or feature extraction 
employed by different models are varied. Therefore, the 
performance comparison here is rough and not entirely fair. The 
results of the comparison are presented in Table 7. The results 
show that our standard Transformers have advantages in terms 
of accuracy compared to single models, such as LSTM and 
ARIMA. However, advanced variants of the simple model, such 
as LSTM with the addition of enhanced optimization 
mechanisms as well as self-attention mechanisms and bi-
directional LSTM, perform better than the Transformers in this 
paper. The standard Transformer has the advantage of simplicity 
and the ability to make fast predictions for the battery timing 
prediction problem, but there is still potential for accuracy 
improvement. 
 
TABLE 7: COMPARISON OF MODEL PREDICTION RESULTS 
WITH OTHER LITERATURE 

Model RMSE MAE Reference 
Standard Transformer 0.0290 0.0258 This study 

LSTM 0.0387 0.0439 [50] 

Autoregressive Integrated 
Moving Average Model 

(ARIMA) 
0.0375 - [51] 

LSTM with swarm 
optimization and attention 

mechanism 
0.006 - [35] 

Bi-LSTM 0.005 - [26] 

 
5. CONCLUSION 

This paper presents an efficient framework for estimating 
battery SOH that comprises feature extraction/selection and a 
predictive model based on Transformers. Based on battery 
current, voltage, and temperature data measured during battery 
charging and discharging, 28 features for battery SOH estimation 
are extracted. The correlation between features and SOH, as well 
as the similarity between features, is subsequently evaluated 
using the Pearson correlation coefficient. In this way, features 
with a high correlation with the prediction target are retained, 
and duplicate features are removed to avoid adding noise and 
computational burden to the model. 

The performance of the standard Transformer, as well as the 
encoder-only Transformer model, are tested on four different 
input sets. The results show that the standard Transformer 
performs better than the encoder-only model. The standard 
Transformer with the selected charging-only features can 
achieve good model performance, with RMSE and MAE of 
0.029 and 0.0258, respectively.  In addition, the discharge 
characteristics of the cells with constant-current continuous 

discharge behavior effectively improve the accuracy of the 
models. However, the constant and stable discharge behavior is 
the result of controlled experimental conditions. The 
effectiveness of the discharge characteristics in predicting the 
state of batteries with random discharge behavior remains to be 
verified.  

Future research directions can focus on feature extraction 
for partial charge-discharge profiles. Most of the current 
prediction models for SOH use the full range of charge and 
discharge data. However, in real driving situations, EV batteries 
do not always complete a whole charging or discharging cycle. 
Therefore, it would be more practical to use partial battery data 
for state prediction. 
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