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ABSTRACT

Electric vehicles (EVs) are considered an environmentally
friendly option to conventional vehicles. As the most critical
module in EVs, batteries are complex electrochemical
components with nonlinear behavior. On-board battery system
performance is also affected by complicated operating
environments. Real-time EV battery in-service status prediction
is tricky but vital to enable fault diagnosis and aid in the
prevention of dangerous occurrences. Data-driven models with
advantages in time series analysis can be used to capture the
degradation pattern from data about certain performance
indicators and predict the battery states. The Transformer model
is capable of capturing long-range dependencies efficiently
using a multi-head attention block mechanism. This paper
presents the implementation of a standard Transformer and an
encoder-only Transformer neural network to predict EV battery
state of health (SOH). Based on the analysis of the lithium-ion
battery from NASA Prognostics Center of Excellence website's
publicly accessible dataset, 28 features related to the charge and
discharge measurement data are extracted. The features are
screened using Pearson correlation coefficients. The results
show that the filtered features can effectively improve the
accuracy of the model as well as the computational efficiency.
The proposed standard Transformer shows good performance in
SOH prediction.

Keywords: Lithium-ion battery; Electric vehicle; State of
health; Transformer

1. INTRODUCTION
Due to the ongoing use of fossil fuels and reliance on
internal combustion engine cars for more than a century, the
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transportation industry is one of the main contributors to global
greenhouse gas (GHG) emissions [1]. Electric vehicles (EVs)
have been identified as a promising solution to mitigate the GHG
effect and the ever-growing energy demand [2]. Lithium-ion
batteries are the most technologically advanced energy storage
systems for EVs due to their high energy and power densities,
strong environmental adaptability, and low self-discharge rate
[3,4].

To make EVs more competitive with gasoline-powered
vehicles, extremely fast charging is a key indicator that batteries
need to achieve [5,6]. High rates of charging and discharging,
combined with the wide range of operating temperatures to
which EVs might be exposed (—20 to 70°C), can accelerate
battery degradation during cycling [7]. Battery degradation has
been attributed to multiple mechanisms. The dominating are the
growth of the solid-electrolyte-interphase layer, irreversible
deposition of lithium metal on the anode, and loss of active
material from the cathode [8]. The batteries age over time,
leading to a reduction in their performance and safety [9]. The
reliable operation of EV batteries requires real-time monitoring
of their in-use states, such as state of health (SOH) [10,11].
However, battery in-use characteristics cannot be measured
directly but need to be inferred by building degradation models
[12—14]. An effective battery management system relies on a
reliable battery degradation model for status monitoring and
health state assessment to ensure their safe and high-
performance operation.

There are two broad approaches to developing a battery
degradation model for predicting and diagnosing battery in-use
SOH: the physics-based approach and the data-driven approach.
The physics-based model, also known as the electrochemical
model, is a set of coupled partial differential equations that
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represent the microscopic chemical reactions occurring within
the cell [15]. The pseudo-two-dimensional (P2D) model, for
example, is one of the most widely used physics-based models
[16]. This sophisticated model offers a thorough examination of
the thermal energy balance, mass balances, charge balances, and
kinetics of electrochemical reactions within the cell [17]. But the
physics-based model typically requires solving a set of tightly
coupled differential equations [18]. The process is too complex
and slow to be used for real-time management of in-use batteries.

The data-driven approaches estimate the effect of
degradation on the battery's operational data. These approaches
do not necessarily need to consider the underlying degradation
behavior of the battery as well as its physical and chemical
properties. In particular, the machine-learning based approaches
can be trained on large datasets quickly, which makes them ideal
for modeling complex systems like EV batteries. In addition,
machine-learning models can be adapted to various battery
chemistries and configurations [19,20]. In particular, deep neural
networks can achieve higher prediction accuracy by training
multiple layers of neural networks to match more closely to
complex nonlinear battery systems [12,21-24].

Many studies have proven that recurrent neural network
(RNN) based neural networks, including gate recurrent unit
(GRU) and long short-term memory (LSTM), are effective
solutions for battery modeling because they can use internal
states (memory) to represent battery aging information [25-27].
The LSTM network, for example, solves RNN's gradient
disappearance and gradient explosion problems and has
produced a relatively good performance for battery SOH
prediction [28]. However, using LSTM to process sequential
input in a recurrent manner is computationally intensive, which
requires storing and updating memory cells at each time step.
Transformer is a newer type of neural network architecture that
uses self-attention mechanisms to process input sequences
without recurrence [29]. Transformers can process input
sequences in parallel, which is much faster than the sequential
processing used in LSTMs [30].

The main contribution of this study is to develop a highly
efficient battery SOH prediction framework, thus making the
model more applicable to real-time prediction in the field. To
achieve this target, the Transformers-based neural network that
can process a sequence of data at once by using an attention
mechanism is chosen as the prediction model. In addition to
implementing a standard encoder-decoder Transformer, the
performance of the encoder-only Transformer with a simpler
architecture is investigated and compared. Moreover, the raw
measurement data from the battery charge and discharge are
extracted and screened for features before being input into the
model. The computational efficiency of the model is thus further
improved.

The rest of the structure of this paper can be summarized as
follows. Section 2 is the related works on deep learning and
feature extraction for battery state prediction.  Section 3
describes the proposed SOH prediction framework, including the
rules for feature extraction and selection, as well as the
architecture of the Transformer-based prediction models. Section

4 gives details of the experimental implementation and the SOH
prediction results of the models. Finally, Section 5 concludes the
work in this study and the perspectives for future research.

2. RELATED WORK
2.1 Deep learning for SOH estimation

SOH and remaining useful life (RUL) are state indicators
related to the aging behavior of the battery. To achieve a more
comprehensive literature review, prediction models relating to
both SOH and RUL are discussed in this section. Numerous
studies are focused on the application of deep learning based
models for battery degradation estimation owing to their
advantages in modeling complex nonlinear problems. Among
them, RNNs that can utilize sequential information are well
suited for battery state prediction problems that require
processing time series data. As a variant of RNN, the LSTM
network was designed to solve the gradient vanishing problem,
which is one of the widely used models in the field of battery
state prediction [31,32]. Kaur et al. [33] compared the
performance of feedforward neural networks (FNN),
convolutional neural networks (CNN), and LSTM for battery
capacity estimation. Their results show that LSTM, which can
recursively process time series information, had the best
accuracy. However, it requires greater computational cost than
FNN and CNN. As a variant, the Bi-LSTM integrates two
LSTMs with positive and negative time series, allowing the
model to detect information that the one-way network may
overlook [34]. Sun et al. successfully implemented the Bi-LSTM
for SOH prediction, and the model can explore the degradation
behavior of Li-ion batteries deeply from two sequence directions
[26]. The results demonstrate that Bi-LSTM can achieve more
accurate SOH estimation than a single LSTM. Meanwhile, the
bi-directional behavior makes the Bi-LSTM model significantly
slower to compute than LSTM [34]. For RUL and SOH
prediction, Qu et al. combined an LSTM network with particle
swarm optimization and an attention mechanism [35]. The paper
illustrated that the attention mechanism assigns weights to each
feature according to its impact on the output, which leads to
higher accuracy of the model.

The other deep learning model that constructs key modules
with attention mechanisms is the Transformer [29]. There is no
recurrence or convolutional mechanism in Transformer. It has
the ability to process a sequence of data all at once, using an
attention mechanism that allows it to access any part of the
historical data without being limited by distance [36]. In
addition, it enables faster training than LSTM since the majority
of operations can be computed in parallel [37]. Due to its ability
to handle sequence data, Transformer has the potential to be
employed in battery degradation modeling. To the best of our
knowledge, there are few works that apply Transformers to
battery status estimation. Chen et al. combined a denoising auto-
encoder with the Transformer encoder to complete the RUL
estimation [30]. Their model achieved approximate or even
better precision than single LSTM and required significantly less
training time than LSTM. Mo et al. developed a Transformer
encoder based neural network enhanced by gated convolutional
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unit, which achieved relatively good performance and was
computationally efficient [36]. These two studies prove the
effectiveness of Transformers in reducing the computational
burden of battery models. However, both of them use encoder-
only Transformer based structures, and the effect of the decoder
in standard Transformer for battery state estimation was not
discussed.

2.2 Battery feature extraction

An additional way to enhance the computational efficiency
and accuracy of the model is to extract, select and optimize
features from the raw data. The features from battery charge and
discharge data can be divided into two categories: measured
features and calculated features [38,39]. The measured features
are extracted from the current, voltage, and temperature signals
during the battery cycle that are available from the battery
management system [40]. For example, Guo et al. extracted 14
features from the charging process, which are related to capacity,
charge time, temperature, and current/voltage drop [41]. Their
results show that after selection using gray relational analysis
and dimensionality reduction by PCA, the features that remain
can well reflect the internal aging process of the battery.

The calculated features are designed to mine more sensitive
information from the measurement data. For this process, the
signal that can be directly provided by the battery measurer is
first transformed. The features extracted from the transformed
signal profile are defined as calculated features [39]. For
example, Li et al. applied the incremental capacity analysis
(ICA) technique to process battery voltage data [42]. This
procedure could convert a flat voltage profile into an incremental
capacity (IC) profile, which would have a series of peaks and
valleys. As the battery ages, the shape, amplitude, and position
of the IC peaks change, which can be considered features
reflecting degradation.

Access to raw data

Feature extraction and selection

However, the computed feature extraction imposes more
computational burden on the model than measured features. The
main objective of this study is to develop more efficient battery
SOH prediction system. Therefore, the measured features from
the previous studies are referred to be used for feature extraction
[38,40-42].

3. METHODOLOGY
3.1 Framework of the SOH estimation

A crucial factor to characterize the performance the battery
is capable of in its present state is the state of health (SOH). It
could also be a sign of battery deterioration. Many factors,
including capacity and battery resistance, can be used to
calculate the SOH. The SOH is determined in this study as the
ratio of the nominal capacity to the releasable capacity, and it is
displayed as

SOH (%) = Omax. x 100% (1)
norm

where Q4. 1s the maximal available capacity at the current

cycle, and Qorm 1s the nominal capacity given by the
manufacturer. Since the nominal capacity of the battery is
constant, the calculation of SOH is directly related to the
available capacity of the battery.

Figure 1 depicts the flowchart for the SOH estimation. For
feature extraction and optimization, the framework makes use of
the raw testing and monitoring data from Li-ion batteries. First,
the initial extracted features are determined by investigating the
relationship between the trends of the charge/discharge profiles
and the degradation of the battery system. Following the
extraction of the features from the measured parameters, a
correlation analysis is performed to evaluate the features'
potential to capture battery degradation. Based on selecting
valuable features, a standard transformer neural network and an
encoder-only transformer are employed to estimate the SOH.

SOH prediction
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FIGURE 1: FRAMEWORK OF THE SOH ESTIMATION
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3.2 Data description

The data are obtained from the NASA lithium-ion battery
aging dataset [31]. This public dataset tested the 18,650
commercially available lithium-ion rechargeable batteries at
experiment control conditions. This study selected data from
Battery 0005 for the experiment. The charging and discharging
of Battery 0005 were repeated at room temperature. The
charging process was carried out first at a constant current (CC)
of 1.5 A. After the battery voltage reaches 4.2 V, it shifts to
charging at a constant voltage (CV) mode until the current drops
to 20 mA [44]. The discharging process was performed at a
constant current of 2 A until the voltage dropped to 2.7 V. The
signals of current (I), voltage (V), and temperature (T) during
charging and discharging were recorded every 10 Hz. The
battery aged significantly as it was subjected to repeated charge
and discharge cycles. The test came to an end when the battery's
rated capacity had faded by 30%, signaling the end of its useful
life. The variation in the capacity of the target battery is shown
in Figure 2.
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Capacity (Ah)

70% of nominal capacity
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FIGURE 2: CAPACITY DEGRADATION OF BATTERY 0005

3.3 Feature extraction and selection
3.3.1 Feature extraction

The raw data for feature extraction is selected as the full
range of V, [, and T signals measured in the state of charging and
discharging [45]. The changes in the charging and discharging
profiles as the battery ages are illustrated in Figure 3.

From Equation (1), it is known that the extrapolation of the
available battery capacity is the key to estimating the SOH. The
battery capacity is the amount of electric charge that can be
accumulated during charging and released reversibly during
discharging [46]. The battery charging process is divided into
two steps: CC mode and CV mode. According to the definition
of capacity, the time required for the CC charging process is
directly proportional to the charging capacity in CC mode. From
Figure 3(a) and (b), it can be found that as the number of cycles
increases, the time required to complete CC charging of the
battery decreases. It thus implies that the time spent charging at
a constant current can indicate the degree of battery aging.

The CV charging step is to keep the battery at a maximum
specified potential while allowing the current to decrease

through a current taper [47]. While the more time spent in CV
mode, the more difficult it proves to be for the lithium ions to
migrate inside the battery [45]. Consequently, it indicates the
aggravation of the aging mechanism, such as elevated impedance
and the formation of solid electrolyte interphase (SEI). In the
charging temperature profile, the time point when the battery
reaches its maximum temperature and the time point when the
CC mode ends are largely coincident (Figure 3(c)). Based on the
considerations above, it is worthwhile to extract and analyze the
I/V/T features associated with the beginning as well as the end
of the CC and CV modes during the charging phase. As the
current for CC charging, cut-off current, and the maximum
voltage are fixed, these three values are not considered in the
extraction of features. However, temperature is considered
valuable to be extracted and evaluated since temperature is one
of the significant factors affecting the aging rate of the battery.

Figure 3(d)/(e)/(f) presents the profiles of battery discharge
at different degradation levels. It can be seen that as the number
of battery cycles increases, the time for the battery to complete
constant current discharge, reach the cut-off voltage, and the time
to reach the maximum temperature all become shorter and
shorter. The available battery capacity is highly sensitive to the
discharge process since it is gained by integrating the current
curve over a full discharge process [46]. Therefore, several of the
discharge features are also extracted pending subsequent
evaluation. Based on the above analysis and on references from
other similar battery feature extraction methods [38,40,45], a
total of 28 charging and discharging features are initially
extracted and summarized in Table 1. Examples of the profiles
of the extracted features are displayed in Figure 4.
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3.3.2 Feature selection

Pearson correlation coefficient (PCC) is employed to
identify the degree of correlation between each feature and the
battery's health status [48]. The most relevant features for
prediction and modeling can be identified by calculating the
correlation coefficient. A Pearson correlation coefficient of 1 or
-1 implies a perfect positive or negative linear relationship. A
coefficient of 0 indicates no linear relationship.

The purpose of selecting the extracted features is to remove
noise and redundant features in order to reduce computational
cost while ensuring model performance. The feature selection
using the Pearson correlation coefficient in this study has the

following two steps.

—F4

greater than 0.9 are chosen.

—F10

cycle

FIGURE 4: PROFILES OF EXTRACTED FEATURES F1, F2, F4,
F5, F9, AND F10

cycle

TABLE 1: FEATURE EXTRACTION [38,40]

e Calculate the PCC between each feature and battery SOH.
The features with a correlation coefficient absolute value

® (Calculate the PCC between each pair of features retained
during step 1. The pair of features with an absolute PCC
value greater than 0.999 is considered "duplicate"”
features. Only the one that is more correlated with SOH
should be kept as model input. The remaining features
that do not have "duplicates" are also kept.

Group Feature Description Type
F1 Area covered by current curves of the CC charging
F2 Area covered by current curves of CV charging Current-related
F3 Minimum slope of current curves in CV charging
F4 Area covered by voltage curves of CC charging
F5 Area covered by voltage curves of CV charging Voltage-related
F6 Maximum slope of voltage curves in CC charging
F7 Maximum temperature of charging
F8 Minimum temperature of charging
F9 Area covered by temperature curves of the CC charging
Charging F10 Area covered by temperature curves of the CV charging Temperature-
features F11 Maximum temperature minus minimum temperature of charging related
F12 The ratio of CC charging area under temperature curve to the corresponding area
under the current curve
F13 The ratio of CV charging area under temperature curve to the corresponding area
under the current curve
F14 CC charging time
F15 CV charging time
F16 CC charging tlr.ne. / (CC+CV ch.argmg tl.me) Time-related
F17 Time to the minimum current in charging
F18 Time to reach the maximum voltage in charging
F19 Time to the maximum temperature in charging
F20 Area covered by current curves of discharging Current-related
F21 Area covered by voltage curves of discharging Voltage-related
F22 Area covered by temperature curves of discharging
) ) F23 Maximum temperature of discharging Temperature-
Discharging - - -
foatures F24 Minimum temperature of discharging related
F25 Maximum temperature minus minimum temperature of discharging
F26 Time discharged under a constant current
F27 Time to the minimum voltage in discharging Time-related
F28 Time to the max temperature in discharging
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3.4 Model structure

An encoder and a decoder compensate for the sequence-to-
sequence architecture of the standard Transformer. The encoder
maps the input sequence into a high-dimensional vector, which
is then provided to the decoder to generate the output sequence
[30].

An input layer, a layer for positional encoding, stack-
identical encoder layers make up the encoder module [49].
Through a fully-connected network, the input layer converts the
input time series data to a vector of self-defined dimensions
(d_model). The positions of the data points in the sequence are
characterized by the position encoding layer performing sine and
cosine functions, giving each position a unique representation
between 0 and 1. The encoder layer is tasked with generating
encodings that contain information about which parts of the input
are relevant to each other [50]. There are two sub-layers that
comprise each encoder layer: multi-Head self-attention and a
fully-connected feed-forward. Each sub-layer is followed by a
normalization layer. The encoder generates a vector of
dimension d_model for utilization by subsequent decoders.

The decoder is also composed of the input layer, decoder
layers, and an output layer. The decoder in the Transformer
model takes two main inputs: the encoded source sequence and
the previous decoder output. The encoded source sequence is
generated by the encoder and contains representations of the
input sequence. The previous decoder output, in the general
Transformer, consists of previously generated tokens from the
decoder. It serves as the reference for the model to learn from
during training and to generate predictions during inference.
However, the Transformer presented in this paper is simplified
in this step. The previous decoder output is replaced with a
sequence consisting of the last data point of the encoder input. In
other words, the input features at the last battery cycle are used
as the second input to the decoder in our case. The decoder layer

— { Output SOH }
| f
[ Hidden features ] [ Linear mapping }
EncI)der / Decoder \

Add and normalize
L

[ Encoder-decoder attention ]

Add and normalize

Add and normalize
Self-attention

1 Nx
[ Positional encoding ]
i N /
[ Input layer ]
1 [ Input layer }
[ Encoder input ]
{ Decoder input J

Standard Transformer

is similar to the encoder layer in that it includes self-attention
mechanism and feed-forward neural network. However, the self-
attention mechanism in the decoder also attends to the output
sequence of the Encoder. Finally, a fully-connected layer is used
to map the representations learned by the last Transformer unit,
producing the SOH estimation.

In this study, the standard Transformer and the encoder of
the Transformer are applied to learn the long-term dependencies
of the SOH degradation from charging and discharging features
(Figure 5). With an encoder-only Transformer, the hidden
features output from the encoder enters directly into the final
fully-connected layer for prediction.

4. RESULTS AND DISCUSSION
4.1 Feature selection results

According to the features described in Table 1, twenty-eight
features are extracted from the Battery 0005 in the NASA
dataset. The correlation coefficient between features and battery
SOH is summarized in Table 2 in descending order [38,41,45].
The results show that the features with a PCC greater than 0.9
with SOH include: F1, F2, F4, F5, F9, F10, F14, F15, F16, and
F18 from the charging group, and F20, F21, F22, F23, F25, F26,
F27, F28 from discharging group. The feature least associated
with SOH is the minimum temperature during charging and
discharging. This is due to the fact that the lowest temperature
during battery operation usually occurs at the beginning or end
of the charging and discharging phases when the battery is
relatively inactive. This value is highly correlated with the
ambient temperature and therefore has little correlation with the
status of the battery.

Output SOH
i
[ Hidden features ] Linear mapping
1
Encoder
Add and normalize

Feed-forward
Add and normalize

t

[ Positional encoding ]
t

[ Input layer ]
t

[ Encoder input ]

Encoder-only Transformer

FIGURE 5: STRUCTURE OF STANDARD TRANSFORMER AND ENCODER-ONLY TRANSFORMER
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In this particular dataset, there are multiple battery features
from charging and discharging that are present with high
correlation coefficients to the prediction target. The reason is that
the batteries in the dataset are charged and discharged with a
regular and stable behavior. It is possible that using linear
regression (LR) to fit the SOH curve would also achieve good
performance. However, LR model is difficult to adapt if there is
randomness in the battery data. Due to the consideration of the
stochasticity of the battery usage in real situations, the feasibility
of the Transformer is still chosen to be discussed in this paper.

TABLE 2: PEARSON CORRELATION COEFFICIENT
(ABSOLUTE VALUE) BETWEEN FEATURES AND SOH IN
DESCENDING ORDER

Group Feature PCC with SOH
(absolute value)

F4 0.9962

F14 0.9961

F1 0.9961

F16 0.9936

F9 0.9898

F2 0.9877

F15 0.9757

F5 0.9756

F10 0.9692

Charging F18 0.9578
features

F17 0.7744

F6 0.6366

F11 0.6341

F3 0.6098

F13 0.6000

F12 0.4008

F7 0.3829

F8 0.0159

F19 0.0063

F26 0.9999

F20 0.9999

F27 0.9999

Discharging F28 0.9999

features F21 0.9999

F22 0.9927

F25 0.9788

F23 0.9369

F24 0.0519

* The bold are the features whose PCC is higher than 0.9

The features with high correlation from the charging data
are mainly related to the start and end time of the CC and CV

step-charging. The available capacity of a battery is determined
by the amount of electric charge accumulated during charging,
which is why the duration of the two phases of charging is critical
to SOH estimation. On the other hand, the features from the
discharge data, except for the minimum temperature, are all
highly correlated with SOH. In particular, F20, F21, F26, F27,
and F28 have a high correlation of 0.9999 with the predicted
target, which can be almost linear.

The reason for this is that the experimental condition of
Battery 0005 is a continuous release at a constant current during
the discharge process until the cut-off voltage is reached.
According to the calculation method of battery capacity, when
the battery is discharged at a constant current, its capacity is
given by the discharge current multiplied by the discharge
duration [46]. Therefore, for the dataset adopted in this study, the
features related to the discharge duration would be nearly
linearly correlated with the battery SOH.

However, in practical applications, the discharge pattern of
EV batteries is completely dependent on driving behavior and is
a random discharge behavior. The discharge features are still
essential for the prediction of randomly discharged battery states,
except that they will not have this strong linear relationship. In
addition, it is not common in practice to allow an EV battery to
complete a full discharge process. The operating conditions of
EV discharging are not as stable as parking and charging at a
charging station. Therefore, after feature selection, the
performance of the model with only charging features is also
tested and compared to the model with full feature input.

The similarity between high-correlation features is also
calculated and presented in Figure 6. According to the feature
selection rules defined in Section 3.3.2, a pair of features with an
absolute correlation value greater than 0.999 is considered a
"duplicate". The one with a lower correlation with SOH should
be removed. Finally, the valuable features that are selected
include: F1, F2, F4, F5, F9, F10, F16, F18 from charging group,
and F20, F21, F22, F23, F25 from discharging group.
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FIGURE 6: SIMILARITY BETWEEN FEATURES WITH
CORRELATION COEFFICIENTS GREATER THAN 0.9 WITH SOH

4.2 SOH estimation results
4.2.1 Experiments implementation details

The two steps of feature selection as described in Section
3.3.2 include selecting features with a higher correlation with the
predicted target and deleting duplicate features. According to the
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results, a total of 13 valuable features from the raw charging and
discharging data are obtained. However, due to the specificity of
the dataset used in this study, a portion of the features from the
discharge process has a very high linear correlation with SOH. It
is not reasonable to use these discharge features to examine the
effectiveness of the developed time series prediction model.
Therefore, during the evaluation of the model, the model inputs
are divided into four cases: all 28 available features, 19 available
features from the charging data only, 13 selected features from
the charging and discharging process, and 8 selected features
from the charging data only (Table 3). By comparing the
performance of models with different input groups, the effect of
feature selection and the effect of discharge features are
discussed in the following sections.

TABLE 3: FOUR INPUT GROUPS

Input Description Feature
group
1 All the 28 available features F1-F28

) 19 available features from F1 —F19

the charging data only
13 selected features from F1, F2, F4, F5, F9,
F10, F16, F18, F20,

3 the charging and
discharging data F21, F22, F23, F25
8 selected features from the F1, F2, F4, F5, F9,
F10, F16, F18

charging data only

The two Transformer architectures employed for SOH
estimation are implemented in Python utilizing the PyTorch
framework. The models are run on a single CPU and utilizes the
Mean Squared Error (MSE) loss function during the training
process. The dataset is split into a 70% training set and a 30%
test set. The developed Transformer-based models have seven
key parameters: number of time steps to be input (sampler size),
number of expected features in the transformer encoder/decoder
inputs (d_model), number of encoder layers, number of decoder
layers, number of heads in the multi-head attention mechanism,
dimension of the feed-forward network and the fraction of
neurons affected by Dropout. The parameters are determined by
grid-search on the validation error. Table 4 provides a summary
of the range of grid search and optimized hyperparameter
settings for the Transformer-based models. The process of
parameter optimization is based on input Group 1 on a standard
encoder-decoder Transformer. The encoder-only Transformer
used in this study adopts the same parameter settings in Table 4,
except that the decoder module is masked.

Root mean square error (RMSE) and mean absolute error
(MAE) are utilized as evaluation criteria to assess the efficacy of
the designed model for SOH estimation. The model's stability is
indicated by the RMSE, which measures the difference between
the true and predicted values. MAE, a linear score of the
prediction error, can be used to show how accurate a model is.

TABLE 4: GRID SEARCH AND OPTIMIZED
HYPERPARAMETERS SETTING FOR THE TRANSFORMER-
BASED MODELS

Hyperparameters Grid search Setting
Sampler size 5,10, 15,20 15
D_model 64, 128, 256 64
Number of 1.3.5 |
encoder layers
Number of
decoder layers 13,5 !
Attention head 4,8 8
Dimension of the
feed-forward 256,512 512
network
Dropout 0,0.1 0

4.2.2 Model performance

The performance of the two Transformers-based neural
networks using four different sets of inputs is summarized in
Table 5. Based on the comparison of RMSE and MAE, the
standard Transformers with input Groups 3 and 4 are the ones
with the best performance.

The performance of the standard Transformers and encoder-
only Transformers for the SOH prediction task can be compared
and discussed. The transformer encoder uses self-attention to
capture the dependencies between the different time steps in the
sequence. The resulting hidden representations are then used as
input to downstream prediction tasks. Therefore, the hidden
representations obtained by the encoder module can be directly
fed into a fully connected layer for SOH prediction. The SOH
prediction curves from both Transformer-based models are
shown in Figure 7 and Figure 8. The comparison shows that the
encoder-only Transformer does not perform as well as the
standard Transformer, especially when the number of features in
the input is small. For example, the model with a decoder and
without a decoder has the largest performance gap when the
input is Group 4. However, the advantage of encoder-only
Transformers is its computational speed. Without decoder
module, it runs over 30% faster than the standard Transformer.
In future studies, if the performance of the Transformer encoder
can be enhanced by further parameter optimization or feature
enhancement, it will be a more suitable model for real-time
monitoring.

On the other hand, the effect of the features from the
discharge data on the model is worth being discussed. As
explained in Section 4.1, since the experimental conditions of
Battery 0005 are constant current continuous discharge, the
duration of discharge and SOH show a nearly linear relationship.
The impact of features that have such a high correlation with the
predicted target on model performance is apparent. As shown in
Figures 7 and 8, models that employed discharge features, with
or without a decoder module, can be more accurate in prediction
than models that use only charging features.

8 © 2023 by ASME



TABLE 5: PERFORMANCE OF TWO TRANSFORMER-BASED
MODES WITH DIFFERENT INPUT

Standard Transformer Encoder-only
Input Transformer
r(l:: Time Time
8TOUP | RMSE | MAE | cost | RMSE | MAE | cost
(©) (©)
1 0.0359 0.0322 55 0.0553 | 0.0465 37
2 0.1109 0.1021 49 0.1073 | 0.0958 27
3 0.0238 0.0212 42 0.0672 | 0.0614 30
4 0.0290 0.0258 44 0.2180 | 0.2030 29
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However, constant current continuous discharge of batteries
is not common in real-world applications. Although the
extraction and selection of discharge features can substantially
improve the performance of the model in the current dataset, the
effectiveness of this type of feature in actual EV battery SOH
prediction needs to be verified. With the absence of the discharge
feature, the standard Transformer with the selected charging
feature (input group 4) can still achieve good model

performance, with RMSE and MAE of 0.029 and 0.0258,
respectively. Regarding the computational cost of feature
extraction, it takes about 20 seconds to compute features for 168
cycles of charge/discharge data.

The validity of feature selection can be verified on standard
Transformers which perform more stable. It is also necessary to
exclude the interference of discharging features on the model
performance in this respect due to the high correlation between
discharge features and SOH. Feature selection is evaluated only
by comparing the influence of all available and selected features
from charging data on the model. The RMSE and MAE of
standard Transformers using input group 2 are 0.1109 and
0.1021, respectively. After feature selection, the RMSE and
MAE of standard Transformers with input group 4 are reduced
t0 0.0290 and 0.0258. This demonstrates the effectiveness of the
feature selection rule proposed in the paper. In addition to the
improvement in the accuracy of the model, the computation time
of the model has been improved by around 10%. Fast and
accurate are the characteristics required for EV battery
management systems. Our results demonstrate that feature
extraction and selection is a promising direction to be explored
for EV batteries. In addition, feature optimization, such as noise
reduction and enhancement, is also an interesting problem to be
explored in the future.

The proposed model is also performed on other batteries
from the NASA dataset. The results show that fine-tuning of the
hyperparameters is necessary when applying the model to other
batteries, since the charging and discharging conditions are not
identical.

4.2.3 Comparison of estimation results and computational
cost with other models

The computational cost of standard Transformers is
compared with LSTM and GRU in Table 6, that are widely used
in the field of battery SOH estimation. All three models use the
input group 4 and the number of time steps to be input is 15. The
parameter settings for the standard transformer are shown in
Table 4 for optimum parameters. The LSTM and GRU are
designed with two LSTM/GRU layers with 256 hidden units per
layer. As can be seen from the results, the standard Transformer
works with the best prediction results while using the lowest time
cost. In this case, the LSTM and GRU are only roughly tuned for
hyperparameters, so these do not represent the best results that
can be achieved by RNN models. Deepening the model
architecture may improve the prediction results of LSTM or
GRU, but it may also cause a further increase in computational
cost.

TABLE 6: COMPARISON OF MODEL COMPUTATIONAL

COSTS
Model RMSE MAE Time cost (s)
Standard Transformer 0.0290 0.0258 44
LSTM 0.0637 0.0594 60
GRU 0.0345 0.0267 54
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The performance of models from standard Transformers
using the selected charging features is compared with models
from other literature. The prediction results from the other
models were also implemented on Battery 0005 from the NASA
public dataset. Moreover, they have a similar training and test set
split (70%: 30%) as the one in this study. Although the raw data
are the same, the data pre-processing or feature extraction
employed by different models are varied. Therefore, the
performance comparison here is rough and not entirely fair. The
results of the comparison are presented in Table 7. The results
show that our standard Transformers have advantages in terms
of accuracy compared to single models, such as LSTM and
ARIMA. However, advanced variants of the simple model, such
as LSTM with the addition of enhanced optimization
mechanisms as well as self-attention mechanisms and bi-
directional LSTM, perform better than the Transformers in this
paper. The standard Transformer has the advantage of simplicity
and the ability to make fast predictions for the battery timing
prediction problem, but there is still potential for accuracy
improvement.

TABLE 7: COMPARISON OF MODEL PREDICTION RESULTS
WITH OTHER LITERATURE

Model RMSE MAE Reference
Standard Transformer 0.0290 | 0.0258 This study
LSTM 0.0387 | 0.0439 [50]
Autoregressive Integrated
Moving Average Model 0.0375 - [51]
(ARIMA)
LSTM with swarm
optimization and attention 0.006 - [35]
mechanism
Bi-LSTM 0.005 - [26]

5. CONCLUSION

This paper presents an efficient framework for estimating
battery SOH that comprises feature extraction/selection and a
predictive model based on Transformers. Based on battery
current, voltage, and temperature data measured during battery
charging and discharging, 28 features for battery SOH estimation
are extracted. The correlation between features and SOH, as well
as the similarity between features, is subsequently evaluated
using the Pearson correlation coefficient. In this way, features
with a high correlation with the prediction target are retained,
and duplicate features are removed to avoid adding noise and
computational burden to the model.

The performance of the standard Transformer, as well as the
encoder-only Transformer model, are tested on four different
input sets. The results show that the standard Transformer
performs better than the encoder-only model. The standard
Transformer with the selected charging-only features can
achieve good model performance, with RMSE and MAE of
0.029 and 0.0258, respectively. In addition, the discharge
characteristics of the cells with constant-current continuous

discharge behavior effectively improve the accuracy of the
models. However, the constant and stable discharge behavior is
the result of controlled experimental conditions. The
effectiveness of the discharge characteristics in predicting the
state of batteries with random discharge behavior remains to be
verified.

Future research directions can focus on feature extraction
for partial charge-discharge profiles. Most of the current
prediction models for SOH use the full range of charge and
discharge data. However, in real driving situations, EV batteries
do not always complete a whole charging or discharging cycle.
Therefore, it would be more practical to use partial battery data
for state prediction.
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