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Abstract
Workload autoscaling is widely used in public and private
cloud systems to maintain stable service performance and
save resources. However, it remains challenging to set the
optimal resource limits and dynamically scale each workload
at runtime. Reinforcement learning (RL) has recently been
proposed and applied in various systems tasks, including re-
source management. In this paper, we first characterize the
state-of-the-art RL approaches for workload autoscaling in
a public cloud and point out that there is still a large gap in
taking the RL advances to production systems. We then pro-
pose AWARE, an extensible framework for deploying and
managing RL-based agents in production systems. AWARE
leverages meta-learning and bootstrapping to (a) automati-
cally and quickly adapt to different workloads, and (b) provide
safe and robust RL exploration. AWARE provides a common
OpenAI Gym-like RL interface to agent developers for easy
integration with different systems tasks. We illustrate the
use of AWARE in the case of workload autoscaling. Our
experiments show that AWARE adapts a learned autoscal-
ing policy to new workloads 5.5× faster than the existing
transfer-learning-based approach and provides stable online
policy-serving performance with less than 3.6% reward degra-
dation. With bootstrapping, AWARE helps achieve 47.5% and
39.2% higher CPU and memory utilization while reducing
SLO violations by a factor of 16.9× during policy training.

1 Introduction
Motivation. Reinforcement learning (RL) has become an
active area in machine learning research and is widely used in
various systems tasks (e.g., resource scaling [23,47–49,59,62],
power management [58, 64], job scheduling [4, 5, 32, 33, 35,
63], video streaming [34, 60], and congestion control [22,
28, 31, 56, 60]). As a viable alternative to human-generated
heuristics, RL automates the repetitive process of heuristics
tuning and testing by enabling an agent to learn the optimal
policy directly from interaction with the environment.

One example is workload resource autoscaling for meeting
application service-level objectives (SLOs) while achieving
high resource utilization efficiency [8, 30, 47, 49, 50, 59]. Tra-
ditional rule-based approaches [2, 3, 6, 25] configure static
upper and lower thresholds offline for certain system metrics
(e.g., CPU or memory utilization) or application metrics (e.g.,
request arrival rate, throughput, or end-to-end latency) so that
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Figure 1: RL agent performance when managed by AWARE
compared to the baseline (FIRM [47]). Stages 1 , 2 , and
3 demonstrate the benefit of RL bootstrapping, incremental

retraining, and fast adaptation, respectively.

resources can be scaled accordingly when the measured met-
rics go above or below the thresholds. Tuning and testing of
fine-grained thresholds require significant application/system-
specific domain knowledge from experts to achieve optimal re-
source allocation. Further, repeated parameter tuning for each
workload can be labor-intensive, especially for microservice-
like applications in large-scale production systems. As differ-
ent types of services may use different amounts of resources
(e.g., CPU and memory) and are sensitive to different kinds
of interference and workload spikes, a customized threshold
has to be set for a service differently.

RL, on the other hand, is well-suited for learning optimal
policies, as it models a systems task (e.g., workload autoscal-
ing) as a sequential decision-making problem and provides a
tight feedback loop for exploring the state-action space and
generating optimal policies without relying on inaccurate as-
sumptions (i.e., heuristics or rules) [32, 48]. Integrating RL
with those complex systems management tasks in production
systems can (a) make full use of the abundant monitoring data
on applications and the infrastructure, and (b) automate the
process of developing optimal policies while freeing operators
from manual workload profiling and parameter tuning/testing.
For example, FIRM [47]’s RL agent learns an optimal work-
load autoscaling policy that adapts to specific application
workloads with online telemetry data that alleviates the need
for handcrafted heuristics (see §2.2 for details).
Challenges. However, even as RL is starting to show its
strength in the systems and networking domains [4, 5, 22,
23, 28, 31–35, 47–49, 56, 58–60, 62–64], there is still a large



gap in directly applying RL advances to real-world produc-
tion systems due to a series of assumptions that are rarely
satisfied in practice. First, a learned RL policy is workload-
specific and infrastructure-specific. Retraining is needed to
adapt to a new workload or underlying infrastructure in het-
erogeneous and dynamically evolving (possibly multi-cloud)
datacenters [18,37,53,54,58]. For instance: (a) In SLO-driven
resource management, application performance and utiliza-
tion differ significantly among heterogeneous workloads [47].
Fig. 1 stage 3 shows that FIRM’s trained RL policy suffers
performance degradation and requires substantial retraining.
(b) In power management, diverse power consumption and
workload sensitivity to core/uncore frequency require separate
training of RL policies [58]. (c) In video streaming and net-
work congestion control, different sets of traces have diverse
payload characteristics and network environments [60] (e.g.,
dynamic link bandwidth, delay, and loss rate). Even with trans-
fer learning (TL) [47], nontrivial retraining is needed to adapt
to new workloads and environment shifts in each problem
domain, which is a critical problem in making RL practical
in production. Further, TL requires fine-grained environment
clustering to identify the most appropriate model to transfer
from, and requires saving one model per cluster.

Second, for the same application and environment, there
could be slight changes (e.g., patches and rolling updates),
unusual workload patterns not seen before (e.g., due to migra-
tion rollout), or traffic jitters. Without timely retraining, the
online policy-serving performance of the RL agent fluctuates
and leads to undesired degradation (as shown in Fig. 1 Stage
2 ). It is crucial to ensure robust online performance in case

of environment or model uncertainty [40, 46].
Third, RL training is through trial and error [32, 35, 47], so

worse-than-baseline or suboptimal decisions can be generated,
especially at an early stage of training (as shown in Fig. 1
Stage 1 ). Direct training in the production system leads to
suboptimal performance and undesired SLO violations, while
training in a simulator and then transitioning to the production
system face the problem of poor generalization [61].

A framework that can bring the RL advances to production
systems is needed so that (a) the RL model can be trained
in a safe and robust manner, (b) the learned RL policy can
be adapted to new workloads and altered environments seam-
lessly without significant retraining, and (c) the online RL
model policy-serving performance can be kept stable.
Our Work. We first performed a characterization study of
RL in production systems in the task of workload autoscal-
ing. The study focused on the impact of workload change
and environment shift regarding (a) RL agent performance
degradation or variation and (b) retraining cost. To facilitate
the deployment and operation of RL agents in the systems
management tasks of a production cloud environment, we
introduce an RL model-serving and management framework.
As a general framework to support a variety of RL agents for
systems management tasks, it can be used by system operators

to develop RL-based agents that can be quickly adapted to
new environments and achieve stable online policy-serving
performance with continuous monitoring and safe bootstrap-
ping (as shown in Fig. 1). In the end, system operators can
benefit from RL automation of systems management tasks.

• To achieve fast model adaptation in each domain or sys-
tems task, we leverage meta-learning [39] to model the RL
agent as a base-learner and create a meta-learner for learning
to generalize and adapt to new applications and environment
shifts. The base-learner discovers policies that generalize
across workload variations and intra-environment dynamic-
ity for an <application, environment> pair, while the meta-
learner generalizes across <application, environment> pairs
to address inter-environment dynamicity and application het-
erogeneity. We designed a novel framework that allows the
meta-learner to learn to generate an embedding [38, 39, 57]
that projects the application- and system-specific data to a
vector space. On this projected vector space, workloads with
similar characteristics are projected to closer locations, while
those with quite different characteristics are projected to lo-
cations far from each other. The embedding is generated by
encoding a set of episodes from the RL agent’s exploration of
the environment. Since each episode records a step-by-step in-
teraction of the RL agent with the environment, the time-series
episodes naturally encode spatial and temporal characteristics.
In the task of workload autoscaling, spatial characteristics cor-
respond to the workload’s performance sensitivity to different
resource allocations, and temporal characteristics correspond
to the time-varying load patterns. The generated embedding
is then fed as input to the base-learner to adapt to the appli-
cation and environment shift (from the environments with
similar characteristics). With the embedding, fewer retraining
iterations are needed for new, previously unseen workloads.
• To achieve stable online RL policy-serving performance,
we leverage continuous monitoring, and designed a retraining
detection and trigger mechanism. An RL agent observes a
state, performs an action, and gets a reward at every step in
an episode. The time series of states, actions, and rewards in
an episode form a trajectory. RL trajectories are collected and
stored in a time-series database. The most recent rewards are
used to calculate the average reward and variation for com-
parison against user-specified targets. Continuous monitoring
ensures that RL model retraining can be triggered or stopped
timely so that the RL policy can seamlessly adapt to any en-
vironment jitters. We intercept the RL model update logic to
enable the switch between RL policy serving and retraining.
• To achieve safe RL exploration, we designed an RL boot-
strapping module that combines offline and online train-
ing. The agent starts with offline training, and a traditional
heuristics-based controller (e.g., the Kubernetes Horizontal
Pod Autoscaler (HPA) [25] and the Vertical Pod Autoscaler
(VPA) [15] in the case of workload autoscaling), is used as
the navigator for (online) exploration of the state and action
space in the environment. After the RL model is trained to the



same level as the heuristics-based controller by comparing
rewards, the agent continues to be trained online.

We have demonstrated the proposed framework in the
task of workload autoscaling on Kubernetes by implement-
ing AWARE (i.e., Automate Workload Autoscaling with
REinforcement learning). Each RL agent manages a Kuber-
netes Deployment and configures resources automatically,
adjusting both the number of replicas (horizontal scaling)
and the CPU/memory limits (vertical scaling) to maintain
workload service-level objectives (SLOs) and achieve high re-
source utilization. To integrate RL agents with Kubernetes, we
designed and implemented a multidimensional Pod autoscaler
(MPA) system. MPA provides system support for RL-based
controllers and translates RL outputs into multidimensional
autoscaling actions in a holistic manner by (a) providing an
API for RL agents to execute horizontal and vertical scaling
decisions on Pod CPU and memory limits, (b) combining
vertical and horizontal scaling actions in a single CRD ob-
ject [24], and (c) providing a user interface for user-defined
objective functions for multidimensional autoscaling.
Results. We present a detailed experimental evaluation of
AWARE, demonstrating that AWARE significantly improves
the practicality of applying RL in production cloud systems
(for workload autoscaling). We first show that the adaptation
process of a learned autoscaling policy to new workloads with
meta-learning is 5.5× faster than the existing transfer-learning-
based approach (§5.2), and then demonstrate that AWARE
provides stable online policy-serving performance with less
than 3.6% reward degradation (§5.3). AWARE’s bootstrap-
ping mechanism helps achieve 47.5% and 39.2% higher CPU
and memory utilization while reducing SLO violations by a
factor of 16.9× during training (§5.4).
Contributions. In summary, our main contributions are:
• A characterization of RL-based production workload au-

toscaling and the challenges involved in applying RL in
production cloud systems (§2.3).

• The design of a novel meta-learning-based framework for
fast RL model adaptation in workload autoscaling (§3.2).

• The design of an RL retraining management and boot-
strapping mechanism for stable policy-serving performance
(§3.3) and robust RL environment exploration (§3.4).

• An implementation of the proposed framework in the task of
workload autoscaling with MPA, which enables integration
of RL agents with Kubernetes (§4.1).

• A detailed evaluation of AWARE that demonstrates sub-
stantial improvements through meta-learning and RL life-
cycle management while maintaining workload SLOs and
resource utilization (§5).

2 Background & Characterization
2.1 Reinforcement Learning
In reinforcement learning (RL), an agent interacts with an
environment modeled as a discrete-time Markov decision pro-
cess (MDP) (as shown in Fig. 2). At time step t, the agent
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Figure 2: An RL agent interacting with an environment mod-
eled as a systems task (e.g., workload autoscaling or conges-
tion control) in the form of a Markov decision process (MDP).

perceives a state st ∈ S of the environment and takes an action
at ∈ A. The agent receives a reward rt ∈ R as feedback on
how good the decision is, and at the next time step t +1, the
environment transitions to a new state st+1. The whole se-
quence of transitions {(st ,at ,rt)}0≤t≤T is called a trajectory
or episode of length T . The agent’s goal is to learn a policy
πθ

1 that maximizes the expected cumulative rewards in the
future, i.e., E[∑T

t=0 γt · rt ], where the discount factor γ ∈ (0,1)
progressively de-emphasizes future rewards. RL consists of a
policy-training stage and a policy-serving stage [41]. At the
policy-training stage, the agent (using an initialized policy)
starts with no knowledge about the task and learns by rein-
forcement and directly interacting with the environment. At
the policy-serving stage, the trained policy is used to generate
an action based on the current state of the environment, and
model parameters are no longer being updated.

2.2 Workload Autoscaling with RL
Because of the sequential nature of the decision-making pro-
cess, RL is well-suited for learning resource management poli-
cies, as it provides a tight feedback loop for exploring the state-
action space and generating optimal policies without relying
on inaccurate assumptions (i.e., heuristics or rules) [32, 48].
In addition, since the decisions made for workloads are highly
repetitive, an abundance of data is generated to train such
RL algorithms even with deep neural networks2. By directly
learning from the actual workload and operating conditions
to understand how the allocation of resources affects appli-
cation performance, the RL agent can optimize for a specific
workload and adapt to varying conditions in the learning envi-
ronment. RL [23, 47–49, 59, 62] has been shown to automate
resource management and outperform heuristics-based ap-
proaches in terms of meeting workload SLOs and achieving
higher resource utilization.

Specifically, we adopted the design and took the open-
source implementation of an RL-based workload autoscaler
from FIRM [47], which is the state-of-the-art RL-based au-
toscaling solution, to the best of our knowledge. FIRM uses
an actor-critic RL algorithm called DDPG [29].

The RL agent monitors the system- and application-specific
measurements and learns how to scale the allocated resources
vertically and horizontally. Table 1 shows the model’s state

1A policy πθ maps the state space S to the action space A and is usually
represented by neural networks (with parameters denoted by θ).

2Deep neural networks can express complex system-application environ-
ment dynamics and decision-making policies but are data-hungry.



Table 1: State-action space of the RL agent.

State Space (st )
Resource Limits (CPU, RAM), Resource Utilization (CPU,
Memory, I/O, Network), SLO Preservation Ratio (Latency,
Throughput), Observed Load Changes

Action Space (at )
Resource Limits (CPU, RAM), Number of Replicas

Table 2: RL training hyperparameters.

Parameter Value

# Time Steps per Episode 100 × 64 mini-batches
Replay Buffer Size 106

Learning Rate Actor (3×10−4), Critic (3×10−3)
Discount Factor 0.99
Soft Update Coefficient 3×10−3

Random Noise µ (0), σ (0.2)
Exploration Factor ε (1.0), ε-decay (10−6)

and action spaces. The goal is to achieve high resource uti-
lization (RU) while maintaining application SLOs (if there
are any). SLO preservation (SP) is defined as the ratio be-
tween the SLO metric and the measured metric. If no SLO is
defined for the workload (e.g., best-effort jobs) or the mea-
sured metric is smaller than the SLO metric, SP = 1. An SLO
metric can be either request serving latency (e.g., the 99th
percentile of the requests are completed in 100ms) or through-
put (e.g., request processing rate is no less than 100/s). The
reward function is then defined the same as in FIRM [47],
rt = α · SPt · |R |+(1−α) ·∑i∈R RUi, where R is the set of
resources. Table 2 lists the hyperparameters tuned for better
performance in the experiments. The RL algorithm is trained
in an episodic setting. In each episode, the agent manages the
autoscaling of the application workload for a fixed period of
time (100 RL time steps in our experiments).

2.3 Characterization of RL in Production
In the characterization study of FIRM for workload autoscal-
ing, we selected 16 representative production cloud work-
loads based on a survey of 89 industry use cases of server-
less computing applications [11], as serverless workloads are
highly dynamic (and thus require autoscaling) and rely on the
provider to manage the resources. The selected production
workloads include CPU-intensive tasks (e.g., floating-point
number computation), image manipulation, text processing,
data compression, web serving, ML model serving, and I/O
services (e.g., read, write, and streaming). Next, we deployed
the selected workloads as Deployments in a five-node Ku-
bernetes cluster in a public cloud and ran an RL-based multi-
dimensional autoscaler (i.e., a FIRM agent) with each work-
load. All nodes run Ubuntu 18.04 with four cores, 16 GB
memory, and a 200 GB disk. For RL agent training and infer-
ence, we used real-world datacenter traces [65] released by
Microsoft Azure, collected over two weeks in 2021.

We next present the key insights from the characterization
study in the order of adaptation, online policy-serving, and
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Figure 3: Retraining cost of RL models.

early-stage of RL training.
Insight 1: Adaptation Retraining Cost. To study the retrain-
ing cost of adapting a trained RL policy to new application
workloads, we selected each application from the workload
pool, trained an RL agent for the application until conver-
gence, and retrained the learned RL policy to serve all the
other different applications. We then measured the reward
drop after the workload changed and the number of episodes
each agent took to retrain to convergence. As shown in Fig. 3
(column 1), we observed a 45.6% average per-episode reward
drop percentage when the workload had been changed, and
retraining to convergence required around 230 episodes (with
the model parameter transfer learning used in FIRM [47]).
Insight 2: Online Policy-serving Performance Jitters. We
introduced seven scenarios to explore the performance insta-
bility of RL-based workload autoscaling agents when facing
application or service payload size changes and load pattern
changes. For I/O services to a backend file system (e.g., AWS
S3) and the compression/decompression services, the size of
files being read, written, or streaming was changed from [128
KB, 256 KB, 384 KB] to [512 KB, 768 KB, 1024 KB]. For
database services, the size of the table being scanned was
changed from 1024 items to 10240 items. For floating-point
number calculation, the number of operations was changed
from 108 to 208. For image manipulations, the dimension was
changed from 40×40 to 160×160. For text processing, the
JSON file size was changed from [250 B, 500 B, 1 KB] to
[2 KB, 3 KB, 5 KB]. For ML model serving, we changed
the matrix multiplication dimension from 50 to 150. For load
pattern changes, we divided the Azure workload traces into
two parts, one half with a higher daily load (> 105 per day)
and the other half with a lower daily load (≤ 105 per day).

Fig. 3 (columns 2–9) shows the per-episode reward drop
percentage and the retraining cost of each scenario. File size
changes led to the lowest 12.8% reward drop and around
70 episodes of retraining. We attribute this to I/O-intensive
workloads’ relatively low sensitivity to CPU/memory alloca-
tion, compared to compute- or memory-intensive workloads.
Other payload-related changes (i.e., table size, ML model,
floating-point number operations, image dimension, and text
size) resulted in a 15.6–19.9% reward drop. Load changes
from high request arrival rates to low arrival rates (i.e., H→L



Table 3: Workload performance and utilization efficiency
deficit (i.e., the relative difference compared to the rule-based
approach) in early-stage RL model training.

RL Episodes EP 1–100 EP 101–200 EP 201–300 EP 301–400

CPU Util -32.3% ± 14% -42.9% ± 15% -22.1% ± 12% -10.0% ± 6%
Memory Util -28.8% ± 11% -30.5% ± 10% -26.5% ± 8% -7.8% ± 2%
SLO Violations 56.1 ± 14 × 22.2 ± 7 × 12.7 ± 5 × 10.1 ± 3 ×

in Fig. 3) and from low rates to high rates (i.e., L→H) resulted
in 19.9% and 21.8% reward drops, which required around 98
and 107 episodes of model retraining, respectively.
Insight 3: Cost of Early-stage RL Training. As mentioned
in §2.2, RL training proceeds in episodes. When the initial-
ized RL agent starts to learn the optimal policy, especially at
an early stage of policy training, the policy might be worse
than the baseline heuristics-based approach or even produce
undesired actions, such as an oscillating scaling up and down
behavior. This is primarily due to the exploration of the state-
action space and RL agent learning through trial and error.
To study what is lost during policy training, we compared
workloads managed by RL agents with the same workloads
managed by the rule-based autoscaling approach (i.e., HPA
and VPA). We define the early stage of RL training to be the
training process from the beginning to the episode at which
the RL agent starts to get better than the rule-based approach
(which is around 400 episodes in our experiments) because
we are interested in the loss due to RL training compared to
non-RL-based approaches. We then divided the 400 episodes
(in the early training stage) into four segments. For each seg-
ment, we calculated the accumulated utilization deficit and
SLO violations of the application workloads controlled by
the RL agents; the results are shown in Table 3. The rela-
tive difference in utilization or SLO performance is based on
the comparison between the RL agent and the rule-based ap-
proach when used to control the same application workloads
with the same set of traces.

Results show that RL policies necessarily lead to poor deci-
sions in the early stages of training. In the first 100 episodes,
the RL agents inevitably caused more SLO violations than in
the other segments (56.1× more than the rule-based approach,
which had five SLO violations per 100 episodes). We observe
that most SLO violations were due to the under-provisioning
of resources, so the CPU and memory utilization deficits
(32.3% and 28.8% lower, respectively, than for the rule-based
approach) were smaller than those in the later segments. In
the last three segments, we observe a utilization deficit (i.e.,
10–42.9% lower CPU utilization and 7.8–30.5% lower mem-
ory utilization) and more SLO violations (i.e., 10.1–22.7×)
compared to the rule-based approach.
Summary and Implications. Workloads running in produc-
tion cloud systems might be user-facing or high-stakes. To en-
joy the benefit of RL in systems management, the key challenge
is to produce fast-adapting, effective, and robust RL-based
solutions under the constraints of production cloud systems.
As of now, to the best of our knowledge, there are no systems
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Figure 4: Overview of AWARE.

that can help agent developers address this challenge.

3 AWARE Design
3.1 Overview
Driven by the insights from §2.3, we describe the design of
AWARE, a framework that supports RL agents for multidi-
mensional Pod autoscaling (MPA) of workloads in production
Kubernetes systems. AWARE manages the RL agent lifecycle
to deliver stable and robust agent performance. Fig. 4 provides
an overview of AWARE. We next present a brief summary of
each component in this section.
RL Environment. The RL environment (denoted by 1 in
Fig. 4) of AWARE consists of a cluster deployment (e.g.,
Kubernetes) and an MPA wrapper. The MPA wrapper is de-
signed and implemented as a shim layer that follows an “agent-
centric” pattern of request-response interaction advocated by
OpenAI Gym [44]. The purpose of the MPA wrapper is to
translate measurements and scaling recommendations to and
from RL abstractions (i.e., states/rewards and actions), respec-
tively. The communication between the wrapper and the RL
agent is through remote procedure calls (RPCs). When the
agent steps the environment forward by sending an action
to the MPA wrapper through the RPC request, the wrapper
translates the received action to vertical and horizontal scal-
ing configurations and applies it to the cluster deployments
(e.g., by setting the VPA object [15] and calling the replica
re-scaling API). The wrapper gets measurements from the
monitoring service in the cluster (e.g., Prometheus [7] in Ku-
bernetes), translates them to RL states and rewards, and sends
them back to the agent through the RPC response. The wrap-
per then waits on the RPC server for the next action request.
We describe implementation details in §4.1.

The framework can also be applied to other systems man-
agement tasks (e.g., job scheduling or network congestion
control) by replacing the RL environment. Decoupling the RL
environment (i.e., the environment wrapper) from the rest of
the framework and using the standard OpenAI Gym interface



make environment replacement easy [33].
RL API Gateway. The RL API gateway connects the RL
agent to the MPA wrapper by sending the RL action in an
RPC request and unpacking the state and reward in the RPC
response for the RL agent. Each RL trajectory consists of
<state, action, reward> transitions in one episode where the RL
environment defines the length or the terminating condition of
an episode. The trajectories from each RL agent, along with
the logical timestamp (i.e., the episode and time step index),
are saved to the RL trajectory database.
RL Agent (Base-learner). The RL agent implements the
DDPG RL algorithm (as described in FIRM [47]) and inter-
acts with the RL environment to perform policy training or
policy serving (i.e., inference). Since the interface between
the RL agent and the MPA wrapper follows the OpenAI Gym
standard, different advanced RL algorithms can be used to
replace the original RL algorithm DDPG.
Meta-learner. To help adapt to new workloads or environ-
ment updates within the problem domain, the meta-learner
(denoted by 2 ) selects RL trajectories from the database and
generates an embedding that accurately represents the work-
load running in the environment. RL trajectories are selected
per application, and the criteria are based on the reward asso-
ciated with each trajectory. The embedding is then fed to the
base-learner (i.e., the RL agent) as part of the input. The RL
agent leverages the embedding to adapt (fine-tune) its policy
by differentiating heterogeneous workloads and environment
updates. See §3.2 for more details.
RL Retraining Detector and Trigger. At the end of each
episode, the RL retraining detector (denoted by 3 ) pulls the
recent episode rewards gained by the agent from the trajectory
database. The mean and standard deviation of the per-episode
rewards are calculated and compared to predefined thresholds
for performance and variability assessment. If conditions are
met, the RL retraining trigger will intercept the inference or
training loop of the RL agent to switch retraining on or off,
respectively. See §3.3 for more details.
RL Bootstrapper. The RL bootstrapper (denoted by 4 ) de-
termines whether the RL training is online or offline. In the
online RL training mode, the RL agent interacts directly with
the RL environment. However, offline RL training avoids
worse-than-baseline performance or illegal actions in the early
stages of RL training, which is desired by production systems.
In the offline RL training mode, the RL policy training hap-
pens offline based on data collected using a fallback option
(i.e., a heuristics-based method), while the RL policy is not
used for interacting with the environment. The RL bootstrap-
per intercepts the request-response path between the RL agent
and the RL API gateway and replaces the RL agent with the
controller implemented as the fallback option. For instance,
in the case of workload autoscaling, the default autoscalers
widely used are the traditional rule-based approaches HPA
(for horizontal scaling) and VPA (for vertical scaling). Given
the states at each time step, corresponding autoscaling actions
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Figure 5: Architecture of meta-learning for RL.

are then generated based on the HPA and VPA algorithms and
sent back to the RL API gateway for execution. The trajecto-
ries recorded in the RL trajectory database will be used for
the offline RL policy training. See §3.4 for more details.

3.2 Meta-learner
Traditional RL-based resource management approaches [23,
47, 48, 59, 62] require the collection of large amounts of train-
ing data samples and retraining (even with transfer learning)
to adapt to new environments for (a) updated or previously un-
seen application workloads or (b) constantly evolving cloud
infrastructures [18, 37, 53, 58]. Pure RL-based approaches
are no longer tenable in such dynamic cloud environments or
even in the context of multi-cloud computing [54]. A novel
approach that provides fast model adaptation is needed to
make RL practical in production cloud systems.

In AWARE, we leverage meta-learning to reduce the re-
training overhead and thus adapt quickly to new environments.
In essence, the RL agent is treated as the base-learner for
an individual environment, and a meta-learner is designed
to generate representative embeddings that help differentiate
environments. We next give a brief primer on meta-learning
and the concept of embeddings before presenting AWARE’s
meta-learning model and an interpretation of embeddings
from a systems perspective.
Meta-learning Primer. Meta-learning is known as learning to
learn [26]. A good meta-learning model is capable of adapting
well or generalizing to new environments that have never been
encountered during training time. The adaptation process,
essentially a mini-learning session (with limited exposure
to the new environment), happens after the meta-learning
model training stage. In the meta-learning model training
stage, rather than training the learner on a single environment
(with the goal of generalizing to unseen “intra-environment”
samples from a similar data distribution), a meta-learner is
trained on a distribution of environments, with the goal of
learning a strategy that generalizes to unseen environments
(i.e., “inter-environment”). Even without any explicit fine-
tuning (i.e., with no gradient back-propagation on trainable
variables), the meta-learning model autonomously adjusts
internal hidden states to learn [12, 20, 39, 43].



Embedding Techniques. Embeddings map variables to low-
dimensional vectors in a way that similar variables are close
to each other [38, 57]. Embeddings have been widely used in
the area of NLP and software engineering (e.g., word or code
embeddings) and can also be applied to dense data to create
a meaningful similarity metric. In AWARE, embeddings are
used to explicitly represent and differentiate environments,
and meta-learning enables learning to generate embeddings.
AWARE’s Meta-learning Model Design. There are three
key components in the design of the meta-learning model:
• A Distribution of MDPs (i.e., RL environments): Each MDP

corresponds to one agent to which the base-learner will
adapt. During the training of each agent, the meta-learner is
exposed to a variety of environments and is trained to adapt
to different MDPs. In our case of workload autoscaling,
each environment represents a different application work-
load managed by the base-learner, where workloads can
have heterogeneous SLOs, payloads, or architecture.

• A Model with Memory: We use a recurrent neural network
(RNN) [17, 52, 55] that maintains a high-dimensional hid-
den state with nonlinear dynamics to acquire, process, and
memorize knowledge about the current environment. In an
RNN, hidden layers are recurrently used for computation.
Compared to memoryless models such as autoregressive
models and feed-forward neural networks, RNNs store in-
formation in the hidden states for a long time, so they are
effective in capturing both spatial and temporal patterns.
We did not explicitly use memory augmentation [51] for
our RNN meta-learner because we found that the features
of our application workloads are not as high-dimensional
as those of computer vision tasks [51], and the RNN hidden
states suffice to provide good representations.

• Meta-learning Algorithm: A meta-learning algorithm learns
to update the base-learner to optimize for the purpose of
adapting quickly to a previously unseen environment [20,
39]. Our novel approach uses an ordinary gradient descent
update of RNN with a hidden state reset at a switch of
MDPs. As training proceeds, the algorithm learns how to
generate an embedding to best represent the environment
and differentiate one environment from another.

Integration between Meta-learner and Base-learner. The
base-learner discovers a rule that generalizes across data
points for an <application, environment> pair, while the meta-
learner generalizes across <application, environment> pairs.
Fig. 5 illustrates the interaction between the meta-learner ( 2

in Fig. 4) and the base-learner. Suppose that each data point
used in the training and inference of the RL agent (i.e., a
base-learner) with the <application, environment> pair i is
{(st ,at ,rt)}0≤t≤T , i.e., one RL trajectory T Ri from the envi-
ronment i; then, each data point in the meta-learner is a bundle
of M trajectories from the same environment, i.e., [T Ri

1, T Ri
2,

. . . , T Ri
M]. These episodes contain characteristics of the on-

going task that can be used to abstract some specific informa-
tion about the environment (through <state, action, reward>

transition sequences). The meta-learner uses a bidirectional
RNN [52] to generate an embedding given a sequence of RL
trajectories from the same environment (same base-learner).
Unidirectional RNN has the limitation that it processes inputs
in strict temporal order, so the current input has the context
of previous inputs but not the future. Bidirectional RNN, on
the other hand, duplicates the RNN processing chain so that
the inputs are processed in both forward and backward orders
to enable looking into future contexts as well.

The input trajectories (to the meta-learner) are selected
from the RL trajectory database (that are generated by the
RL agent interacting with the current RL environment) dy-
namically at runtime. We chose the top M trajectories that
have resulted in the highest rewards so far because the experi-
mental results show that the trajectories with lower rewards
are unhelpful or even harmful. Intuitively, those lower-reward
trajectories are generated with a random policy or a poorly
trained policy, so they are not representative of the workloads.

The output from the bidirectional RNN of the meta-learner
is an embedding that is used to fingerprint/represent the <ap-
plication, environment> pair with which the base-learner is
interacting. As shown in Fig. 5, the generated embedding
based on past experience (i.e., the episodes previously ex-
plored by the base-learner) is fed to the base-learner as part
of the input at each time step. Since we adopted as our base-
learner the RL design from FIRM [47], which is an actor-critic
RL algorithm, the embedding is taken by the actor network.
Interpreting Embeddings from Systems Perspective. The
environment-specific embedding is able to differentiate one
<application, environment> pair from another and thus guides
the base-learner to adapt to the new environment. Fig. 6 visu-
alizes the key idea of embedding. The spatial and temporal
characteristics of the workloads are encoded and mapped onto
a low-dimensional latent vector space by the embedding layer.
Workloads with similar characteristics are projected to loca-
tions that are close to each other on that vector space. By
calculating the cosine similarity between any two generated
vectors (i.e., embeddings), we can get a monotonic similar-
ity measure. To help understand how generated embeddings
can represent spatial and temporal characteristics, we selected
RL trajectories from <application, environment> pairs with
human-detectable different performance sensitivities or load
patterns, and then the plotted embedding projection shows
that indeed similar workloads are closer to each other when
comparing cosine similarities of their embeddings. In Fig. 6
(upper), the sensitivity of application performance to different
resource allocations is shown in the heatmaps to illustrate
the spatial characteristics, with the X-axis being CPU cores
and the Y -axis being allocated RAM. Darker colors represent
worse performance in terms of application request-serving
latency. In Fig. 6 (lower), the application load-per-second
time series are plotted to represent the temporal characteris-
tics. Again, workloads with similar patterns are projected to
adjacent locations in the output vector space.
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Figure 6: An example illustrating the idea of workload em-
bedding for encoding spatial and temporal characteristics
from a systems perspective. The yellow points (upper figure)
indicate that workloads with similar performance sensitivities
(to resource allocations) are projected to locations near each
other in the embedding vector space. The blue points (lower
figure) show that workloads with similar load arrival patterns
are projected to adjacent locations in the embedding vector
space. The similarity metric used is cosine similarity.

Meta-learner Training. During the training of the meta-
learner, both the meta-learner and base-learner model param-
eters are updated. After each RL episode, the loss value is
generated by the base-learner and is backward-propagated
to update the model parameters in the base-learner. Since
the meta-learner is trained across a distribution of environ-
ments, the total loss of all sampled environments in the train-
ing dataset is used to update the model parameters in the
meta-learner. In the end, the trained meta-learner is capable
of abstracting the individuality of each <application, environ-
ment> pair; the trained base-learner is a shared RL model
that is able to generate optimal workload autoscaling policies
conditioned on the workload embeddings provided by the
meta-learner. The base-learner can be used as a starting point
and as the basis for fine-tuning a specific novel <application,
environment> pair in the inference stage.

Meta-learner Inference. After the meta-learner is trained,
the meta-learning model is able to adapt the base-learner to
a new <application, environment> pair that has never been
encountered during training. Note that even though the new
environment has never been encountered during training, it
comes from the same distribution as, or shares similar pat-
terns with, the encountered ones, so that transferring is still
possible [12, 20, 39, 43]. The adaptation process only requires
limited exposure to the new environment. Therefore, AWARE
simply samples RL episodes and runs the meta-learner to

Algorithm 1 RL agent lifecycle transition management for
bootstrapping and triggering of online retraining. Four status
codes INITIALIZED, ONLINE, OFFLINE, and SERVING stand
for agent-initialized, online training, offline training, and on-
line policy-serving, respectively.

Require: Rewards R = [rt ]t∈T , User Profile P
1: procedure OBSERVEANDTRIGGER(R, P)
2: stage← INITIALIZED
3: while True do
4: if state.equal(INITIALIZED) then
5: if P.BOOTSTRAP == True then
6: stage← OFFLINE ▷ Bootstrapping
7: else
8: stage← ONLINE ▷ Skip Bootstrapping
9: end if

10: else if state.equal(OFFLINE) then
11: if avg(R) ≥ P.Tonline then
12: stage← ONLINE
13: end if
14: else if state.equal(ONLINE) then
15: if avg(R) ≥ P.Tserving & std(R) ≤ P.Tvar then
16: stage← SERVING
17: end if
18: else if state.equal(SERVING) then
19: if avg(R) < P.Tserving ∥ std(R) > P.Tvar then
20: stage← ONLINE
21: end if
22: end if
23: end while
24: end procedure

generate the workload embedding. With the workload embed-
ding, the base-learner can be continuously trained to learn the
workload autoscaling policy for the new <application, envi-
ronment> pair. The meta-learner model parameters are fixed
during the inference stage.

3.3 Incremental Retraining
When deploying the RL agent in a production system, one
needs to ensure that the policy behaves as expected and scales
to the workload in production. AWARE leverages continu-
ous monitoring to detect any anomalous behavior and trigger
retraining when needed. Alg. 1 describes how AWARE’s
RL retraining module ( 3 in Fig. 4) manages the lifecycle
of the agent and enables incremental retraining at runtime
(lines 14–21). The input to the retraining module includes (a)
the user profile specifying the configuration, and (b) recent
rewards pulled from the RL trajectory database. When the
mean and the standard deviation of the recent rewards sat-
isfy the threshold-based condition (i.e., agent performance is
bounded to a target value), the agent enters the policy-serving
stage; otherwise, the agent enters the policy-training stage.
Retraining of the RL agent is by online interaction with the RL
environment. As discussed in §3.4, non-RL-based approaches



(i.e., HPA and VPA) can be used as a fallback option for RL
agents when high-stakes applications want to keep the RL
agent in the offline mode during retraining.

3.4 Bootstrapping
The policy at the early RL training stages could be worse
than the baseline approaches. For example, overprovisioning
leads to low resource utilization, while under-provisioning
results in SLO violations. For production workloads, espe-
cially high-stakes applications, such suboptimal actions are
not acceptable. In AWARE, an RL bootstrapper ( 4 in Fig. 4)
has been designed to combine offline and online RL training.
If the user specifies enabling bootstrapping (as shown in lines
4–9 Alg. 1), the offline mode will be turned on first. AWARE
will then use Kubernetes HPA [25] (which is a threshold-
based approach) for horizontal workload autoscaling, and use
Kubernetes VPA [15] (which adjusts resource limits based on
history profile) for vertical workload autoscaling. Note that
HPA and VPA can also be used as a fallback option for RL
when high-stakes applications want to keep the RL agent in
the offline mode during retraining, as discussed in §3.3.

In the offline mode, the RL bootstrapper intercepts the
request-response path between the agent and the RL API gate-
way and replaces the RL agent with the fallback controller
to react to the received states and generate actions at each
time step. The RL API gateway then takes the received action
for execution, and the resulting behavior is the same as when
workloads are managed by HPA and VPA. The RL agent sam-
ples trajectories from the trajectory database for offline policy
training. To overcome extrapolation errors whereby previ-
ously unseen state-action pairs are erroneously estimated, we
apply a state-conditioned generative model to combine with
the critic network for producing previously seen actions [14].
In the online training mode, the agent will then directly inter-
act with the RL environment through the API gateway.

4 Implementation
4.1 Kubernetes MPA
We propose our own design and implementation of multi-
dimensional Pod autoscaling because the current HPA and
VPA controllers are independent of each other and can lead
to a large number of tiny Pods [16]. Google MPA [10] is a
pre-GA beta version product that offers an integrated solution
for HPA and VPA, but it is not open-sourced and does not sup-
port custom recommenders. In AWARE, the MPA framework
combines the actions of vertical and horizontal autoscaling
but separates the actuation from the controlling algorithms.
As shown in Fig. 7, there are three controllers (i.e., a recom-
mender, an updater, and an admission controller) and an MPA
API (i.e., a CRD object [24]) that connects the autoscaling
recommendations to actuation.

The multidimensional scaling algorithm is implemented in
the recommender mostly by importing HPA and VPA libraries
to serve as the fallback option for RL-based approaches. The
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Figure 7: MPA design overview and integration with RL.

metrics required by the algorithm are collected from the Ku-
bernetes Metrics Server, including default metrics such as
container resource utilizations and custom metrics such as ap-
plication throughput or latency. The scaling decisions derived
from the recommender are stored in the MPA object as scal-
ing configurations. The updater and the admission controller
retrieve those updated configurations from the MPA object
and then actuate them as vertical and horizontal actions on the
application Deployments. The separation of action actuation
from scaling decision generation allows developers to replace
the default recommender with the alternative recommender,
i.e., the RL controller. The implementation is in Go and at the
stage of releasing to the Kubernetes upstream as well.

4.2 Integration with RL
The creation of MPA is through declarative YAML files.
To integrate MPA with RL agents, one needs to specify a
custom recommender to replace the default recommender
(HPA+VPA). After an MPA is initialized for the application
deployment, an MPA wrapper is created as a shim layer to
communicate with the RL agent through RPCs. We follow
the “agent-centric” pattern of request-response interaction
advocated by OpenAI Gym [44]. The exposed interfaces
include (a) init() (for initializing the RL environment),
(b) state = reset() (for resetting the environment at the
beginning of each RL episode), and (c) state, reward =
step(action) (for RL agent stepping). When the MPA wrap-
per receives an action through the RPC request, it first trans-
lates the action to vertical and horizontal scaling configura-
tions and writes to the MPA object. We deploy Prometheus [7],
the standard monitoring service in Kubernetes, to export de-
fault and custom metrics from the application Deployment.
The wrapper then queries the Prometheus service for real-time
metrics and translates to RL states and rewards. Finally, the
wrapper sends the metrics back to the agent through the RPC
response. The MPA wrapper is implemented in Python.

4.3 Meta-learning-based RL-serving
AWARE’s meta-learning-based RL agent management frame-
work is implemented in Python. Both the base-learner
(adopted from FIRM [47]) and the meta-learner are imple-
mented using PyTorch [13]. The meta-learner is essentially a
bidirectional two-layer RNN followed by two fully connected



layers with the ReLU activation function. We chose the tra-
jectory bundle size to be 20 for the fastest adaptation with
the fewest trajectories according to the sensitivity analysis.
Each RNN hidden layer consists of 256 neurons, and the fully
connected layers consist of 256 and 64 neurons. We chose
two layers and an embedding size of 64 because adding more
layers and hidden units does not increase performance in our
experiments; instead, it slows down training speed signifi-
cantly. We used the Adam optimizer for parameter updates.

RL trajectories are saved to InfluxDB [21], an open-source
time-series database that is built to handle metrics with time-
stamped data. Recent rewards, sampled RL trajectories for
offline base-learner training, and the inputs for embedding
generation are all pulled from the trajectory database by using
the InfluxDB Python client library.

AWARE provides a simple and declarative user interface
for RL pipeline developers, which is consistent with Kuber-
netes’ way of creating and managing objects in the cluster. To
specify the targets for the workloads, i.e., resource utilization
targets and the application SLO (if there is one), users only
need to provide a YAML file following the definition template.
Both application latency and throughput SLOs are currently
supported. In addition, users can also specify the thresholds
for RL rewards and whether or not to enable bootstrapping in
the YAML file, which constructs the profile used in Alg. 1.

5 Evaluation
Our experiments addressed the following research questions:
§5.2 Does AWARE provide fast model adaptation to new

workloads? What is the value of meta-learning?
§5.3 How does AWARE perform in online policy-serving

when workload updates or load changes occur?
§5.4 How does AWARE perform in the early stages of policy

training, compared to RL agents without bootstrapping?

5.1 Experimental Setup
We implemented an application generator capable of gener-
ating a large number of synthetic applications by combin-
ing the 16 selected representative production application seg-
ments [11] (discussed in §2.3 as well) based on random sam-
pling with replacement from the segment pool. Each segment
represents the smallest granularity of common workloads in
cloud datacenters. In addition, each segment has to be associ-
ated with its own inputs to simplify load generation (e.g., the
image manipulation workloads come with random images).
The generator also comes with setup and tear-down scripts for
all external services each segment uses (e.g., databases or mes-
saging queues). Overall, we generated 1000 unique applica-
tions, deployed them as Deployments in a Kubernetes cluster
of 11 two-socket physical nodes, and ran an RL-based mul-
tidimensional autoscaler with each application. Each server
consists of 56–192 CPU cores and RAM that vary from 500
GB to 1000 GB. Seven of the servers use Intel x86 Xeon E5
processors, and the remaining ones use IBM ppc64 Power8
and Power9 processors.
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Figure 8: RL agent retraining cost and performance compari-
son of AWARE, transfer learning (TL), and transfer learning
with augmented features (TL+).

While it would be impossible to cover all cloud workloads,
the selected production workload segments should enable the
generation of a large number of synthetic cloud workloads
with varying resource consumption profiles. In the future,
the number of implemented segments can easily be extended
if specific workload profiles are missing. We refer to the
open-source artifact for additional details on the generator im-
plementation. With the same datacenter workload traces [65]
discussed in §2.3 with respect to RL agent training and policy-
serving, we divided the 1000 generated application pool with
the 8:2 ratio. The 800 applications with varied workloads
are used to train the meta-learner, while the remaining 200
applications are used to evaluate the adaptability. The total
runtime is ∼60 days, and the meta-learner training time is
∼312 hours on an Intel(R) Xeon(R) E5-2695 processor.

The RL formulation and design (in the base-learner) are
adopted from FIRM [47] (as mentioned in §2.3). As an end-
to-end evaluation, Fig. 1 shows that, compared to AWARE,
the RL-based autoscaler FIRM by itself suffered from poor
performance during the initial training stage (i.e., Stage 1 ,
which demonstrates the benefit of AWARE’s bootstrapping
mechanism), online policy-serving performance degradation
(i.e., Stage 2 , which demonstrates the benefit of the online
retraining triggering mechanism), and slow adaptation with
non-trivial retraining (i.e., Stage 3 , which demonstrates the
benefit of meta-learning). We then present the evaluation
results related to each research question in §5.2–§5.4.

5.2 Fast Adaptation
To study adaptability to new workloads, we compared
AWARE with the existing transfer learning approach.
FIRM [47] leverages transfer learning to train an RL agent
for a new service based on previous RL experience gained
when training the RL agent for a known service. In the
transfer-learning-based approach (TL), the model parame-
ters (weights) are shared between the agents managing the
known workload and the new workload. We also compared
AWARE with a novel approach (TL+) based on transfer learn-
ing that includes additional spatial and temporal features in
the RL states, since the meta-learner in AWARE is trained
to output an embedding to represent the spatial and temporal
characteristics of the <application, environment> pair. We
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Figure 9: RL agent online policy-serving performance com-
parison of AWARE, no retraining, the rule-based method, and
the agent with the converged RL policy. In the comparison
of reward and CPU/memory utilization, the higher, the better,
while a lower number of SLO violations is better.

used the widely used ARIMA model [19] to generate the
predicted load for the next time step (i.e., temporal feature)
and recorded a table mapping from resource allocation to
performance (i.e., spatial feature). We performed A/B tests
in which the workload traces were the same, but the recom-
mender in MPA was replaced with TL, TL+, and AWARE,
which drove the horizontal and vertical scaling of the work-
load. We repeated the A/B test 100 times. In each test, we
randomly selected a workload from the pool and trained the
RL agent to convergence. We then randomly selected 10 other
different workloads from the pool for adaptivity evaluation.
We measured the retraining time, CPU cycles involved in re-
training, utilization deficit (compared to the converged RL
policy), and SLO violations.

Fig. 8 shows that AWARE adapted 5.5× and 4.6× faster
(saved 68–72% CPU cycles) than TL and TL+, respectively.
During the adaptation period, TL+ had 4.6× and 6.2× higher
CPU and memory utilization deficit compared to AWARE
while AWARE reduced SLO violations by 7.1×. TL+ encodes
additional spatial and temporal features, but each state is still
a stateless snapshot of the running workload. Additional fea-
tures (i.e., the table and the ARIMA output) greatly increase
the state space. Meta-learning, on the other hand, offers a sys-
tematic and automated way of learning how to differentiate
the workloads well and outputs a low-dimensional embedding
to be used by the base-learner.

5.3 Online Policy-serving
To evaluate the online policy-serving performance when fac-
ing workload updates and load changes (described in §2.3),
we compared AWARE with (a) a rule-based approach, (b) an
RL agent without continuous monitoring and retraining, and
(c) an RL agent with the converged policy. For the rule-based
approach with manual scaling, we measured the maximum
CPU utilization when the SLO was met, and set it as the
threshold for HPA. We used the default Auto mode [15] for
VPA. We performed the same style of A/B tests 100 times
and replaced the MPA recommender with the four approaches.
In each A/B test, we randomly selected a workload from the
pool, trained the RL agent to convergence, and injected a se-
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Figure 10: RL agent training performance comparison of
AWARE, no bootstrapping, the rule-based method, and the
agent with the converged RL policy. In the comparison of
reward and CPU/memory utilization, the higher, the better,
while a lower number of SLO violations is better.

ries of the seven random instability scenarios introduced in
§2.3. We then measured the average reward, CPU/memory
utilization, and the number of SLO violations during the time
until the agent managed by AWARE converged. Fig. 9 shows
that AWARE had 9.6% and 14.8% higher CPU and memory
utilization, and reduced SLO violations by 3.1× compared to
the RL agent without retraining (the second-best approach),
resulting in 8.6% higher per-episode reward. Compared to
the converged RL policy, AWARE had a 3.6% lower average
per-episode reward because we set the retraining threshold to
be 5, corresponding to a 2.6% reward degradation. Sensitivity
analysis showed that AWARE converged to the no-retraining
baseline as the threshold increased while a smaller than 5
threshold led to constant retraining with no policy serving.

5.4 Bootstrapping
To study how much bootstrapping helps reduce the cost of
early-stage RL training, we compared AWARE with (a) the
rule-based approach (same as in Fig. 9), (b) an RL agent with-
out bootstrapping, and (c) an RL agent with the converged
policy. Since the per-episode reward achieved by the rule-
based autoscaler is around 130 (translated from the measured
utilization and performance), we set the bootstrapping thresh-
old in AWARE to 130. In the sensitivity analysis, we observed
that a higher threshold led to endless bootstrapping driven
by the rule-based autoscaler (since the measured reward is
always lower than the threshold), while the lower the thresh-
old, the more performance degradation AWARE had during
its early-stage training. A threshold of 0 basically converges
to the learning curve without AWARE bootstrapping (i.e.,
no offline learning). We performed A/B tests 100 times and
replaced the MPA recommender with the four approaches.
In each A/B test, we randomly selected a workload from
the pool and trained the RL agent to convergence (with or
without bootstrapping). We then measured the average re-
ward, CPU utilization, memory utilization, and the number of
SLO violations during the time until the RL agent converged.
Fig. 10 shows that AWARE had 47.5% and 39.2% higher CPU
and memory utilization, respectively, and reduced SLO viola-



tions by a factor of 16.9× compared to the RL agent without
bootstrapping (the second-best approach), resulting in 47.3%
higher average per-episode reward before convergence.

6 Related Work
RL Training and Model-serving Frameworks. Ray [41] is
an open-source distributed execution framework that facili-
tates RL model training and serving by making it easy to scale
an RL application and schedule distributed runs to efficiently
use all resources (i.e., CPU, memory, or GPU) available in a
cluster. Amazon SageMaker [1] uses the Ray RLlib library
that builds on the Ray framework to train RL policies. Sage-
Maker also provides cloud services that help build and deploy
ML models (e.g., data processing and model evaluation). RL-
zoo [9] is an RL library that aims to make the development of
RL agents efficient by providing high-level yet flexible APIs
for prototyping RL agents. RLzoo also allows users to import
a wide range of RL agents and easily compare their perfor-
mance. Park [33] provides 12 representative RL environments
in the field of systems and networking (e.g., job scheduling)
for developing and evaluating RL algorithms. Genet [60] is
an RL training framework for learning better network adapta-
tion policies. Genet leverages curriculum learning [42], which
aims to sequence tasks to achieve the best performance on a
specific final task instead of quickly adapting to a new task
within a small number of gradient descent steps.
RL in Production. Panzer et al. [45] provide a survey of
existing RL applications in production system domains, in-
cluding resource scheduling. They summarize the implemen-
tation challenges and generalizability of simulation-trained
RL models. SOL [58] is an extensible framework for develop-
ing ML/RL-based controllers for tasks such as core frequency
scaling. SOL is complementary to AWARE, which can further
guarantee that the RL agent operates safely under various re-
alistic issues, including bad data and external interference like
resource unavailability. SIMPPO [36, 48] provides a scalable
framework based on the mean-field theory that enables multi-
ple RL agents to coexist in a shared multi-tenant environment.
Autopilot [50] is a workload autoscaler used at Google that
leverages multi-armed bandits (i.e., the simplest version of
RL) to choose a variant of the sliding window algorithms
that historically would have resulted in the best performance
for each job. In its essence, it is still a heuristic mechanism
and has been shown [59] to suffer from poor system stability
because of inaccurate estimation of horizontal concurrency;
it can also result in a large number of tiny Pods [16] due to
the independence between horizontal and vertical scaling.

7 Discussion and Future Challenges
Extension to Other System Domains. AWARE is a general
and extensible framework that can be applied to other systems
management tasks (e.g., congestion control or job scheduling).
To apply it to a new domain, one needs to (a) replace the
RL environment by implementing the provided environment
wrapper interface; and (b) provide a default non-RL-based

agent for the RL bootstrapper. We leave the study of the
performance in other system domains to the future.
Out-of-distribution Workloads. AWARE provides the op-
portunity to quickly customize the model to specific work-
loads. However, out-of-distribution <application, environ-
ment> pairs still require training because meta-learning as-
sumes that all pairs, including the unseen cases, are inherently
within the learned distribution [20] (e.g., in terms of service
request arrival patterns or sensitivity to resource allocation).
Given the diversity of workloads in the cloud datacenter (used
in the training dataset), the meta-learner and the shared base-
learner can be continuously trained, and out-of-distribution
cases are covered eventually. Meanwhile, with offline RL
training, users can still benefit from the heuristics-based so-
lution used as the fallback option. One limitation of our ex-
periment was that the generated applications might not have
covered all possible cloud workloads. However, application
segments can easily be extended in the synthetic application
generator if specific workload profiles are missing (§5.1).
On-policy RL Algorithms. When RL agents are being boot-
strapped at the initial stage, off-policy RL agents (such as
DDPG [29, 47] and DQN [59, 62]) can be trained directly
using the collected RL trajectories. However, on-policy RL
agents (such as PPO [48]) require trajectories generated from
their own policy. One potential way to train on-policy RL
agents offline would be to build a simulator based on the
collected trajectories, which would essentially map resource
allocation to workload performance and system metrics. A
balanced experience replay scheme [27] could potentially be
applied for locating near-on-policy samples from the simula-
tor constructed based on the offline dataset. Instead of drawing
trajectories from the trajectory database (as in §3.4), the RL
base-learner can interact with the simulator for bootstrapping.

8 Conclusion
This paper explored the challenges of applying RL in work-
load autoscaling in production cloud platforms. We presented
a general and extensible framework for deploying and man-
aging RL agents in production systems. To demonstrate the
framework, we implemented AWARE for automating RL-
based workload autoscaling in Kubernetes and experimentally
showed (a) the benefits of leveraging meta-learning for fast
model adaptation, and (b) how the design of AWARE ensures
the stable and robust online performance of RL models.
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Availability
We provide an open-source implementation of AWARE at
https://gitlab.engr.illinois.edu/DEPEND/aware.
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and Ravishankar K. Iyer. SIMPPO: A scalable and
incremental online learning framework for serverless re-
source management. In Proceedings of the 13th Sympo-
sium on Cloud Computing (SoCC 2022), pages 306–322,
New York, NY, USA, 2022. Association for Computing
Machinery.

[49] Fabiana Rossi, Matteo Nardelli, and Valeria Cardellini.
Horizontal and vertical scaling of container-based appli-
cations using reinforcement learning. In Proceedings of
the 12th International Conference on Cloud Computing
(CLOUD 2019), pages 329–338, 2019.

[50] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,
Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-
mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, and John Wilkes. Autopilot: Workload
autoscaling at Google. In Proceedings of the 15th
European Conference on Computer Systems (EuroSys
2020), New York, NY, USA, 2020. Association for
Computing Machinery. https://doi.org/10.1145/
3342195.3387524.

[51] Adam Santoro, Sergey Bartunov, Matthew Botvinick,
Daan Wierstra, and Timothy Lillicrap. Meta-learning
with memory-augmented neural networks. In Proceed-
ings of the 33rd International Conference on Interna-
tional Conference on Machine Learning (ICML 2015),
pages 1842–1850. JMLR.org, 2016.

[52] Mike Schuster and Kuldip K Paliwal. Bidirectional
recurrent neural networks. IEEE Transactions on Signal
Processing, 45(11):2673–2681, 1997.

[53] Akshitha Sriraman and Abhishek Dhanotia. Accelerom-
eter: Understanding acceleration opportunities for data
center overheads at hyperscale. In Proceedings of the
25th International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS 2020), pages 733–750, New York, NY, USA,
2020. Association for Computing Machinery.

[54] Ion Stoica and Scott Shenker. From cloud computing
to sky computing. In The 18th Workshop on Hot Top-
ics in Operating Systems (HotOS 2021), pages 26–32,
New York, NY, USA, 2021. Association for Computing
Machinery.

[55] Ilya Sutskever, James Martens, and Geoffrey E. Hin-
ton. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference
on Machine Learning (ICML 2011), 2011. https:
//icml.cc/2011/papers/524_icmlpaper.pdf.

https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW
https://proceedings.neurips.cc/paper/2000
https://proceedings.neurips.cc/paper/2000
https://jmlr.org/papers/volume21/20-212/20-212.pdf
https://jmlr.org/papers/volume21/20-212/20-212.pdf
https://www.gymlibrary.dev/
https://www.gymlibrary.dev/
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/3342195.3387524
https://icml.cc/2011/papers/524_icmlpaper.pdf
https://icml.cc/2011/papers/524_icmlpaper.pdf


[56] Chen Tessler, Yuval Shpigelman, Gal Dalal, Amit Man-
delbaum, Doron Haritan Kazakov, Benjamin Fuhrer, Gal
Chechik, and Shie Mannor. Reinforcement learning
for datacenter congestion control. Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI 2022),
36(11):12615–12621, Jun. 2022.

[57] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word
representations: A simple and general method for semi-
supervised learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics (ACL 2010), pages 384–394, USA, 2010. Associa-
tion for Computational Linguistics.

[58] Yawen Wang, Daniel Crankshaw, Neeraja J. Yadwadkar,
Daniel Berger, Christos Kozyrakis, and Ricardo Bian-
chini. SOL: Safe on-node learning in cloud platforms. In
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2022), pages 622–634,
New York, NY, USA, 2022. Association for Computing
Machinery.

[59] Ziliang Wang, Shiyi Zhu, Jianguo Li, Wei Jiang, K. K.
Ramakrishnan, Yangfei Zheng, Meng Yan, Xiaohong
Zhang, and Alex X. Liu. DeepScaling: Microservices
autoscaling for stable CPU utilization in large scale
cloud systems. In Proceedings of the 13th Symposium on
Cloud Computing (SoCC 2022), pages 16–30, New York,
NY, USA, 2022. Association for Computing Machinery.

[60] Zhengxu Xia, Yajie Zhou, Francis Y. Yan, and Junchen
Jiang. Genet: Automatic curriculum generation for
learning adaptation in networking. In Proceedings of
the ACM SIGCOMM 2022 Conference, pages 397–413,
New York, NY, USA, 2022. Association for Computing
Machinery.

[61] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: A randomized ex-
periment in video streaming. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 2020), pages 495–511, 2020.

[62] Zhe Yang, Phuong Nguyen, Haiming Jin, and Klara
Nahrstedt. MIRAS: Model-based reinforcement learn-
ing for microservice resource allocation over scientific
workflows. In IEEE 39th International Conference on
Distributed Computing Systems (ICDCS 2019), pages
122–132, Washington, DC, USA, 2019. IEEE Computer
Society.

[63] Hanfei Yu, Athirai A. Irissappane, Hao Wang, and Wes J.
Lloyd. FaaSRank: Learning to schedule functions in
serverless platforms. In Proceedings of the 2nd IEEE
International Conference on Autonomic Computing and

Self-Organizing Systems (ACSOS 2021), pages 31–40,
Washington, DC, USA, 2021. IEEE Computer Society.

[64] Kuo Zhang, Peijian Wang, Ning Gu, and Thu D. Nguyen.
GreenDRL: Managing green datacenters using deep re-
inforcement learning. In Proceedings of the 13th Sympo-
sium on Cloud Computing (SoCC 2022), pages 445–460,
New York, NY, USA, 2022. Association for Computing
Machinery.

[65] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and cheaper serverless
computing on harvested resources. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP 2021), pages 724–739, New York, NY,
USA, 2021. Association for Computing Machinery.


	Introduction
	Background & Characterization
	Reinforcement Learning
	Workload Autoscaling with RL
	Characterization of RL in Production

	AWARE Design
	Overview
	Meta-learner
	Incremental Retraining
	Bootstrapping

	Implementation
	Kubernetes MPA
	Integration with RL
	Meta-learning-based RL-serving

	Evaluation
	Experimental Setup
	Fast Adaptation
	Online Policy-serving
	Bootstrapping

	Related Work
	Discussion and Future Challenges
	Conclusion

