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INTRODUCTION
Image-based computer modeling is playing an increasing

role in understanding the mechanisms of cardiac disease and
personalized care.1 Broadly, this paradigm uses medical imag-
ing (CT or MR) to construct an anatomically accurate computer
model of the heart in order to mathematically model physiological
processes and probe functional information. Reconstructing an
accurate, personalized computer model of the heart is challeng-
ing because of imaging artifacts, limited resolution and difficultly
differentiating between cardiac and surrounding tissues.

Segmentation is the process of identifying structures of in-
terest in an image. Machine learning has been utilized to auto-
mate segmentation of cardiac structures from CT or MR images.2
However, segmentation often generates artifacts that are unfit for
simulation-based modeling. Recently, we have developed al-
ternative template based deep-learning methods that are able to
generate simulation-ready computer models of cardiac structures
automatically from cardiac images.3 However, these are mostly
surface models of the blood pool boundaries since only these
boundaries can be discerned from clinical imaging. Developing
models wherein tissue thickness is assigned to all cardiac struc-
tures has remained challenging since most tissues are too thin to
be accurately discerned.

We present here a deep learning method to produce whole-
heart meshes with tissue thickness from clinical image data. We
employ a template-based method to ensure accurate, simulation
compatible models. Briefly, we use deep learning to deform a
template mesh using a combination of linear-transformations and
diffeomorphic flow deformations.4 We present a novel physics-
informed loss term that penalizes vanishing volumes thereby pre-
venting self-penetrations in thin walled structures. The model
can be trained on data containing no thickness information and
subsequently evaluated on a template with thickness. We demon-
strate that this approach is able to successfully deform this new
template in a realistic manner without interpenetration. The pre-
dictions of our model can be readily used to generate full 3D
tetrahedral meshes.

METHODS
Dataset information. We used the multi-modality whole

heart segmentation challenge (MMWHS)2 dataset. We split the

dataset into 16 CT and 16 MR samples for training and used the
remaining 4 CT and 4 MR samples for validation. We augmented
the training dataset by introducing small perturbations including
random scaling, translation, rotation, shear and local b-spline
deformations to produce a final dataset size of 1920 samples.

Neural network architecture. We observed a large differ-
ence in scale and position across the data-set. This can be at-
tributed to the different field-of-view in the image samples along
with inter-patient variations. Hence, our framework consists of
two modules (1) a 3D convolutional neural network (CNN) that
performs a linear transformation on the template, and (2) a 3D
Unet that learns to deform the template by integrating mesh ver-
tices along a diffeomorphic flow vector field. The linear transfor-
mation is effective at scaling and positioning the template, and the
flow deformation captures the finer details. For memory reasons
the modules are trained separately. We use a weighted sum of the
2-way chamfer distance and geometrical regularizations such as
normal consistency, mesh edge loss, and laplace loss as objective.
We introduce a novel physics-informed loss term that penalizes
vanishing volumes. A reference volume 𝑉0 at time 𝑡0 evolves to
a volume 𝑉1 at time 𝑡1 in a flow vector field 𝑓 as,

𝑉0
𝑉1
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(︃
−
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div( 𝑓 ) dt
)︃

(1)

If a finite initial volume 𝑉0 collapses to an infinitesimal volume
𝑉1 after deformation, equation 1 evaluates to a very large value.
We incorporate this term into the objective function to discourage
collapsing volumes. The divergence of the flow field is computed
using a central finite difference scheme. Fig. 1 shows a schematic
of our network architecture.

RESULTS
Dice scores. We use 4 CT and 4 MR samples from the

MMWHS training data for validation. The predicted final meshes
are converted to segmentations. We compute the dice score be-
tween predicted and ground truth segmentations which is pre-
sented in Table 1. The predictions of our model for a typical
validation sample are shown in Fig. 2.

Self-intersections. We measured self-intersections using
PyMesh. The predicted final meshes contained zero self-
intersections within cardiac structures. For the predictions to
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Figure 1: 1283 input image processed by 3D CNN to produce 4 ×

163 encoding. Linear network predicts 3 scale, 3 translate, and 3
rotate parameters from encoding to transform the template mesh.
Transformed vertices embedded in an occupancy map and passed
with image as input to 3D Unet which generates 3D flow vector field.
Vertices are integrated along flow field to produce final prediction.

Table 1: Median and minimum dice scores on validation data for
the converged model.

Cardiac
structure

CT MR
Median Min Median Min

Myo 0.83 0.78 0.80 0.72
LA 0.91 0.87 0.83 0.75
LV 0.91 0.82 0.94 0.88
RA 0.89 0.86 0.84 0.76
RV 0.90 0.85 0.89 0.85
Ao 0.94 0.86 0.83 0.70
PA 0.73 0.63 0.70 0.10

be intersection-free it is important that the initial template is also
intersection-free.

Patient-specific myocardium. An advantage of our frame-
work is that once the network is trained, different templates can
be used without re-training. For example, Fig. 3(a) shows a my-
ocardium template that was produced by fusing the myocardium
mesh with parts of the left atria and aorta and adding thickness to
these openings. It is important that these regions have thickness
because (a) they are used for solid modeling in FSI simulations
(b) we apply boundary conditions on these surfaces. Note that
this template contains about 47k triangular faces which is signif-
icantly more than the template used for training. Fig. 3(b) shows
a patient-specific prediction for a model trained without the loss
term eq. 1. This model collapses the thickness of the mitral and
aortic tissue into an unphysical thin surface. It is not possible to
generate a 3D volumetric mesh from such a surface mesh. The
worst case predicted mesh contained 234 self-intersecting faces.
Fig. 3(c) shows a patient-specific prediction for a model trained
with the loss term eq. 1. This model preserves the thickness of
the mitral and aortic openings. The worst case predicted mesh
contained 8 self-intersecting faces which is a 97% improvement.
The remaining self-intersections can be readily eliminated by run-
ning a constrained smoothing algorithm. Subsequently, we were
able to generate full 3D tetrahedral meshes from these surface

meshes.

(a) (b) (c)

Figure 2: Predictions of the model for a typical validation sample.
Red surface is the ground truth and black wireframe is the template.
(a) Undeformed initial template (b) after linear transformation (c)
after flow deformation. The final average dice score was 0.86 for
this sample.
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Figure 3: (a) Initial myocardium template with added thickness for
mitral and aortic openings (b) prediction of model trained without
divergence loss collapses thin walls resulting in self-intersections
(c) prediction of model with divergence loss preserves thickness.

DISCUSSION
We have developed an automated deep learning method for

generating patient-specific meshes of the human heart directly
from biomedical images. These meshes are anatomically accurate
and physically realistic. We presented a novel physics-informed
loss term that penalizes collapsing volumes. This enables us to
represent cardiac structures with tissue thickness even when this
information is missing in the image data. Our predictions are
almost entirely free of self-intersections, and the few that remain
can be fixed by simple smoothing procedures. Our model pre-
dictions can be used to generate full 3D tetrahedral meshes with
tissue thickness. We hope to soon present results of our model
trained on a larger training dataset, provide detailed comparisons
of our results against prior state of the art, and utilization of this
method to applications of cardiac physiology simulation.
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