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Abstract

We introduce a distributed policy gradient play algorithm with networked agents playing Markov
potential games. Agents have rewards at each stage of the game, that depend on the joint actions
of agents given a common dynamic state. Agents implement parameterized and differentiable poli-
cies to take actions against each other. Markov potential games assume the existence of potential
value functions. In a differentiable Markov potential game, partial gradients of a potential function
are equal to the local gradients with respect to the individual parameters. In this work, agents re-
ceive information on other agents’ parameters via a communication network in addition to rewards.
Agents then use stochastic gradients with respect to local estimates of joint policy parameters to
update their policy parameters. We show that agents’ joint policy converges to a first-order station-
ary point of Markov potential value function with any type of function approximation, state and
action spaces. Numerical experiments confirm the convergence result in the lake game, a Markov
potential game.

Keywords: Game theory, reinforcement learning, distributed algorithms

1. Introduction

Multiple agents learn and adapt their actions in dynamic states to optimize their utilities using multi-
agent reinforcement learning (MARL) algorithms without explicitly knowing the analytical struc-
ture of their rewards and dynamic state transitions (Zhang et al. (2021a)). Agents learn how to take
actions in networked MARL, using the information gathered through communication (Zhu et al.
(2022)). Many real-life applications such as autonomous driving (Shalev-Shwartz et al. (2016)),
electric vehicles (Qiu et al. (2022)), and power grids (Hu et al. (2022)) possess a competitive
multi-agent nature where agents obtain rewards and transition to next state as the result of joint
actions taken. Markov games represent the framework for the competitive (MARL) algorithms
where agents select their actions to gain more rewards while their rewards and state changes are
determined by joint actions taken (Littman (1994)). In this study, we address and propose a new
algorithm to solve Markov potential games as a subclass of Markov games. They admit a poten-
tial value function mirroring individual value function changes by one-sided policy updates against
fixed policies of other agents.

Our algorithm is built upon single-agent policy gradient algorithms (Williams (1992); Sutton
etal. (1999)). Agents iteratively play through episodes to estimate gradients given their parametrized
policies. They update their parameters with stochastic gradients of their value functions. We define
and introduce a novel version of policy gradient play where agents implement policy functions con-
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sidering other agents’ parameters. More specifically, agents assign parameters to others’ policies
in addition to state variables. Agents sample actions from their policies and observe their rewards
together with the next state during two different episodes with randomly generated horizon lengths.
They need to retrieve the parameters of all other agents, which may not be possible in reality. They
alternatively store their local estimates and update them with signals coming from their neighbors.
We prove that the joint policy of agents converges to a first-order stationary point of the poten-
tial function (Theorem 8). This result relies on the properties that the estimation procedure with
random horizons provides unbiased policy gradient estimates (Lemma 5), and local estimates on
others’ parameters converge to the correct values of others’ parameters (Lemma 6).

Early studies on policy gradient play in Markov potential games consider continuous state and
action spaces, assuming that rewards and state transition probabilities are known (Gonzdlez-Sdnchez
and Herndndez-Lerma (2013); Macua et al. (2018)). More recent works study direct or softmax pa-
rameterization of finite state and action problems. They design independent policy gradients among
agents with several variants of first-order methods such as projected and natural gradients in addi-
tion to the standard version of gradient ascent (Zhang et al. (2021b); Leonardos et al. (2021); Ding
et al. (2022); Mguni et al. (2021); Giannou et al. (2022); Chen et al. (2022); Fox et al. (2022); Mao
et al. (2022)). Our analysis generalizes the setting of these recent studies to continuous state and
action pairs given unknown rewards and state transition dynamics. Policies that incorporate other
agents’ policy parameters and local exchange information are additional features of the proposed
algorithm that distinguish it from existing MARL algorithms. Numerical experiments on the lake
game (a Markov potential game Dechert and O’Donnell (2006)) demonstrate the convergence of the
proposed networked policy gradient play.

2. Markov Potential Games

Agents defined by the set N/ := {1,..., N} play a Markov game (Shapley (1953)), and each agent
1 € N takes an action a; € A; at a common state s € S. The joint action profile is formed by
individual actions, a = (ay,as,--- ,ayn) € AV := X ;ens Ai- Note that the sets of actions and
states are not necessarily finite. The joint actions and the state generate a conditional probability
transition to a next state, Pg, , = P(s"|s’, a), whereas initial state s is also distributed with p : S —

[0, 1]. Each agent obtains a reward r;; : S x AY — R as the result of the joint actions and the state
(s¢,a;) € S x AN at time t € N. Rewards are accumulated over an infinite horizon by the discount
rate v € (0, 1). A Markov game is formally defined by the tuple I' := (N, AN, S, {ri }ien, P, 7, p)-

Each agent takes an action sampled from a policy function 7; : S x m—; — A(A;) given a
state and other agents’ policies m_;. A(.) defines any probability distribution over the given set, and
—i := N\{i} denotes the set of all agents except agent i. The rewards r;; at each time step ¢ € N,
induced by the joint policy II = X ., m;, constitute individual value functions ViH :S—>R,asa
discounted sum of rewards over infinite horizon starting from each state,

ee}
Vil(s) = E(s,a)NP[Z Yiria(se, ar)|so = S], (1)
=0

where the sequence of states and actions generated by the joint policy is distributed with P !.
Similarly, the Q-function of agent i, Q; : S x AN — R is defined as a discounted sum of rewards

1. We remove the distribution notation from the expectations in the rest of the paper for simplicity, unless necessary.
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starting given each state s € S, and joint action a € A" sampled from the joint policy II as below,

0

Q?(s,a) = E[Z Vtrz‘,t(st,atﬂso = S,a09 = a]. 2)

t=0

Potential games are an important class of games with a potential function expressing the change
in individual utilities based on unilateral action changes when other agents’ actions are fixed (Mon-
derer and Shapley (1996)). Markov potential games hold the same property in the setting of Markov
games, and have a potential value function capturing value function changes of agents when a uni-
lateral change in policies occurs.

Definition 1 (Markov Potential Games) A game ' is a Markov potential game, if there exist a
ry € R and a potential value function V'(s) : I1 x S — R that is equal to the discounted sum of

the rewards v € R, i.e., VI(s) = ]E[Zf;o Yiry(se, ar)|so = s], such that for all i € N

Vﬁ(s) — ‘/Z-H(S) = Vﬁ(s) — VH(S) forall se S, 3)

)

where I1 and 11 are two joint policies differing only in the policy of agenti € N, i.e., Il = (73, T—5)
and 11 = (m;, m_;).

We suppose that agents use parametrized joint policies by unconstrained and continuous vari-
ables 0 = (6;,0_;) € RM where individual policy parameters §; € R are such that it holds

Sien Ki = M. )
wi(0h,0-) = V" (s) = B, | Y 4'ria(st a)lso = s )
t=0

where Il is the joint policy parametrized by the parameters § = (6;,6_;) € RM. Differentiable
Markov potential games are equivalently defined as follows.

Definition 2 (Differentiable Markov Potential Games) A game I' is a Markov potential game
with differentiable individual value functions ;, if there exists a potential value function v : RM —
R such the following holds,

Vzul(él, 9_1) = VZU(QZ, 9_1) for allf e ]RM (5)

where V;(.) = % denotes the partial derivative of a given function with respect to the agent i's

7
parameters 0;.

Differentiable Markov potential games are the natural extensions of the standard definition of po-
tential games (Monderer and Shapley (1996)) with discrete actions.

3. Policy Gradient Play with Networked Agents

Each agent ¢’s policy 7; g(a;|s) is conditionally independent given the state and joint policy param-
eters 0 = (0;,6_;),
My(a € AN|s) = | [ mio(ai € Aigls) (6)
1eN
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where .Aév = X,en Aig and A; 4 are countable measurable subsets over the joint and individual
set of actions respectively such that probability distributions can be defined, i.e, A; = Uzo=1 Aig.
Each agent aims to maximize its value function as the cumulative reward in the long term given the
joint actions and state transition dynamics.

The gradient of agent ¢’s value function is defined in terms of the Q-function and sum of log-
policies—see Section 7 for proof.

Lemma 3 Given the parameterized value functions u; : RM — R, the gradient of each value
Sfunction u; with respect to agent i’s parameters 0; is equal to,

1
viui(eiaafi):mE[Q?G(saa) > Vilogm g(ans)]. (M
neN

For this aim, agents are assumed to use their gradient information iteratively against each other,
named policy gradient play. Each agent computes stochastic gradients to update its policy parame-
ters, R

Oip = 0i1—1 + o Viui(0s1—1,0—i1-1), (8)

where o is a common step size (for the sake of simplicity), and @iui(éi,t_l, 6_;+—1) is the stochas-
tic gradient computed based on estimated rewards collected on a roll-out horizon (episode).

As per the gradient definition (8), the individual policies 7; and their stochastic gradients A2
depend on joint policy parameters § = (6;,0_;). However, other agents’ parameters §_; may not be
available to agent . In this setting, agent ¢ keeps an estimate of other agents’ policy parameters with
the information received from its neighbors N; := {j : (¢,j) € £} in the communication network
G = (N,E&). Agent i updates its local estimate on agent j’s parameters 9;t with the the weights

i

wj, = 0 that agent 4 gives agent I’s estimate on agent j’s parameters,
"y .
o= 2 Wb ©
leN; U{i}

We assume that the communication network and the weights satisfy the following properties,

Assumption 1 The network G is strongly connected with weights satisfying a) w;« = vforv>0
only if l € N; U {i}, otherwise wjl =0, b) wgz =1, andc) 3, Ut} w;.’l = 1foralli,j.

We implement the estimation of the gradient V;u; in (8) by the adaptation of the random hori-
zon sampling method as outlined in (Zhang et al. (2020)). Agents play together during two episodes
whose lengths are randomly sampled from geometric distributions where the Q-values (); and gra-
dient of log-policy V; log mg, are estimated. The sequential actions and states create a bias for the
estimation of gradients in deterministic episode lengths for discounted rewards over infinite hori-
zons. The episode lengths 77 and 73 are generated from a geometric distribution Geom(1 — ~%9)
such that (T = 7) = (1 — 4%?)4%5*7 for k € {1,2} in order to obtain unbiased estimates (see
Lemma 5). The random horizons at each time step require coordination among agents compared to
the episodes with constant lengths. This issue can be solved via preset random seeds to ensure that
agents use the same samples over time. The steps of the networked policy gradient play with the
episodes and updates are provided in Algorithm 1.
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Algorithm 1 Networked Policy Gradient

1: Input: Local estimates éii,O and G = (N, &), initial state sy and initial policy Il o, and
discount factor ~.

2: fort=1,2,--- do

3:  Draw T; ~ Geom(1 — v

4: Each agent sample actions a; o ~ 7, 5 (-]50)

5: forr=1,2--- 71 do

6: Each agent ¢ reaches state s, ~ P27

7

8

9

0-5) and reset sq, for all i € \V..

Each agent ¢ samples and takes aciiT(,)ilTs,lai’TH ~ 6 (|sr+1)
end for
. Each agent i computes V; log 7w, g(a7; +1]|57;41) forall i € N.
10:  Draw T3 ~ Geom(1 —~°5) and set Q; = 0, forall i € .
11: forr=1,2,---,75do

12: Each agent receives rewards r; -7; forall i € V.

13: Each agent collects rewards Q; = Q; + 7"/ 2r; ri7; forie N.

14: Each agent i reaches state s 7541 ~ P57 . 5 -

15: Each agent ¢+ samples and takes actions a; 47, +1 ~ 6, (|sr+7)
16:  end for

17:  Each agent ¢ computes Qz = Qz + 77/21"1,71 +Ty+1 forie N
18:  Each agent ¢ computes stochastic gradients by replacing (); with ¢); and computing
V;logm, ¢ at the joint state-action pair (a7;+1,57;+1) for the corresponding terms in (7).

19:  Each agent 7 updates parameters (8) with §_; ;1 replaced by GA,M,L
20:  Each agent ¢ updates local estimates é;t using (9).
21: end for

4. Convergence of Networked Policy Gradient Play in Markov Potential Games
We state the assumption on the gradient step size.
Assumption 2 The step size o satisfies oo = O(1/t).

This assumption is standard for the analysis of stochastic gradient algorithms. It assures the square
summable but not summable step-sizes. We also have the following assumptions on rewards and
policies.

Assumption 3 The absolute value of rewards for any agent i at any state and joint action (s,a) €
S x AN is bounded, |r; (s, a)| < R and where R > 0.

Assumption 4 The gradient of log-policy of agent i € N, V;logm; g exists and its norm is
bounded, ||V ;log 7TZ‘79|| < B forany 0, state s € S and action a; € A;, where B > 0. Furthermore,
it is Lipschitz continuous, i.e., ||V;logm; g, — Vilogmg,|| < L||0F — 0%|| for any 0;,05 € RM,
where L > 0.

These assumptions are standard to show that (stochastic) gradients are bounded and Lipschitz con-
tinuous.
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Lemma 4 (Lipschitz-Continuity of Networked Policy Gradient) Suppose Assumptions 3-4 hold.
The policy gradient of any agent i € N, Vu;(0;,0_;) is Lipschitz continuous with some constant
L >0, i.e., forany6!,6? e R¢

1771
I Vius(67,6%) — Viui(67,62,)]| < L||6* — 67, (10)
where the value of the Lipschitz constant L is defined as,

1 (1+7)
L:=NR L .
((1 BT U ps
The proof relies on the exchange of the order of summations and integrals by the Fubini Theorem,
and the Lipschitz continuity follows after using the Taylor expansion.

an

Lemma S (Unbiased and Bounded Stochastic Gradient of Agents) The stochastic gradient @iui(ﬁi, 0_;)
to estimate the policy gradient in (7) is unbiased and its norm is bounded for all : € N and for any

0e RM, ie. E(@Zuz(ﬁz, 0_1)) = VzuZ(GZ, (9_1‘) and ||@Z’U/2(91,9_1)H < 5\ where 5\ > 0.

The result follows from Zhang et al. (2020) by the fact that the rewards are collected with special
discount rates y™/2. This assures that agents have unbiased estimates of their Q-values. Using two
independent identically sampled random horizon lengths 77 and 7> (steps 13 and 17 in Algorithm
1), it can be shown that the term »; _.  V;log 7, ¢(a,|s) is unbiasedly estimated, thus giving the
unbiased stochastic gradients. Moreover, the estimates Ql of Q;-functions for any i € N as the
rewards collected with the discount rate v™/2 over a random horizon is still bounded by the fact
772 € (0,1) given v € (0,1) for 7 € N and Assumption 3. Again by Assumption 4, the gradi-
ent of log gradient is also bounded, which certifies the boundedness of stochastic gradients. This
lemma assures that agents update their parameters with the correct gradient direction in expectation.

Together with Lemma 4, this leads to the exploitation of standard gradient ascent analysis.

Lemma 6 (Consensus on Parameters) Suppose Assumptions 1-3 hold. If éj'o = 0jo is satisfied
for any pair of agents (i,7) € N x N\{i}, then local copies é;t converges to 8; with the rate
O(logt/t), i.e. HG;t —0;4+|| = O(log t/t).

The proof is provided in Section 7. The result follows by showing that change in parameters is
bounded given bounded stochastic gradients (Lemma 5). When the step size is such that oy =
O(1/t), the change in parameters is slowed down while agents’ estimates about others’ policy pa-
rameters continue to be updated according to (9) given weights that form a row stochastic weights.

Lemma 7 The potential function v : RM — R of the Markov game has the following relation
between any consecutive time steps t and t + 1 during Algorithm 1,

E7i . 75 [u(041)10:] — u(6y) = | |[Vu(8y)|[> — O(log t/t), (12)

where B , 1, ,[.|0¢] is the expectation over the variables Ty 4, Tz that are the lenghts of random
horizons generated at time step t, given the parameters 0; at time t.

Proof By Taylor Expansion and Lemma 4, we obtain,
1
w(Bps1) — w(0y) = (041 — 0,)" Vo,u(y) — o Lll+1 — 0l 1°, (13)

1 R
> o;9(0:)T Vo, u(6y) — §Lat2)\2 (14)
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where g(6;) = [@1u1(91,t, é_l,t), e ,@NuN(GN,t, é_Nﬂf)] is the vector of stochastic policy gra-
dient of each agent ¢ € N with respect to 6;; against the local copies 6_;;. By Lemma 5 and
Definition 2, it holds, E[Ve, ,ui(0;¢,0—i:)] = Vo, wi(0i1,0—it) = Vo, ,u(0ix,0—i 1),

E7i 7. [w(0i11)|0:] — u(0:) = oztE(g(@t))TVQtu(Ht) - %Lafﬁ (15)
> Vo, u(0:)" Vo,u(6;) — %La?ﬁ (16)
> ol Vo, u(B)|? — acOflog /1) — sLa?R>  (17)
> || Vg,u(6:)|[” — O(logt/t?). (18)

where Vgtu(ét) = [Viu(0:4, é—l,t), o, Vvu(On g, HA,NJC)]. Then by Lemmas 4-6, it follows
that ||Vu(6;¢,0—i+) — Viu(bis,0—i¢)|| = O(logt/t). Hence, it also holds, ||u(6;) — Vg, u(6;)|| =
O(logt/t). Thus, the result follows by the fact that o, = O(1/t) and Lemma 5. [

We use the obtained lower bound on the potential change in expectation to show convergence of the
gradients.

Theorem 8 Let {0,},>1 be the sequence of policy parameters generated by Algorithm 1. Then,
the policy parameters {0},>1 converge to a first-order stationary point of the potential function in
expectation,

Lim E(][Vo,u(6,)[*) = 0. (19)

Proof is omitted. The proof is mainly based on the fact that the limit sum over the product of
step sizes and norm of gradients over iterations is finite implying that the gradients goes to zero,
since the infinite sum of step sizes are divergent by Assumption 2. This result suggests that agents
converge to a Nash equilibrium (NE), i.e., optimal behavior, for convex potential value functions.
For non-convex potential value functions, a stationary point is not necessarily a NE, indicating that
a stationary point is an approximate NE.

5. Numerical Experiments

We use the Lake game as an example of Markov potential games (Dechert and O’Donnell (2006))?.
Each agent ¢ € N decides on its usage of phosphorus rate a;+ € [0,1] in a dynamic state of
phosphorus level s; € Rt around a lake, with the given dynamics,

s
se=bse1+ D i, (20)
Sp-1 7t ieN

where b and c are positive constants. The reward of each agent ¢ increases with the logarithmic rate
of phosphorous usage and observes a quadratic rate of decrease in the phosphorus level,

rig = log(da;s + 1) — s, (21)

where d > 0 and, we bound the rewards in the range of [—4,4] to satisfy Assumption 3. We
experiment with N = 5 agents, and game parameters b = 0.45, ¢ = 2, and d = 10*. Agents use

2. The code is available at Aydin (2022).
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Figure 1: Networked policy gradient in lake game. (Left) Average norm of gradi-

ents of agents %Zz‘e}\/Hviui(eiaé—i)H (Right) Average estimation error
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truncated normal distribution Normal(y; g, <I) where £ is identity covariance matrix scaled with
x = 0.1 and p; is the parametrized mean of the policy distribution given as,

. . 1
fi,p = sigmoid (0; ss + 9i7_i(m Z (0is)). (22)
JEN\{i}

In (22), there are two policy parameters, i.e., K; = 2. 0; s € R is the parameter multiplying
the state and 0; _; € R multiplies the average state parameter of other agents. We note that the
sigmoid function maps the unconstrained parameters # € R to the range of the actions [0, 1]. We
also utilize the unbiased estimation technique for the gradient of truncated policy distributions as
outlined in (Fujita and Maeda (2018)). Agents communicate over a ring network given weights on
local beliefs wZ ; = 0.30, and remaining weights on information received from neighbors equally
distributed, i.e., w;'.’l = 0.70/|V;| for all j € N;.

Fig. 1 (Left) indicates the average of individual gradients over 50 runs with random initialization
converge closely to a stationary point of the value functions. Fig. 1 (Right) shows that the local
beliefs on other agents’ parameters converge to the true parameter values. The two observations
confirm the result that the joint policies in policy gradient play converge to a stationary point.

6. Conclusion

We formulate a new class of networked policies where agents play against each other by updating
their parameters with gradient information. Our algorithm has novel features in which individual
policies are conditioned on others’ parameters in addition to the state variables, and parameters
are shared over a communication network. We prove that local beliefs on others converge to true
values. The algorithm is based on random roll-out horizons which provide unbiased policy gradient
estimates. We stated the convergence of the algorithm to a stationary point. We verify our results
with numerical experiments.
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7. Appendix
7.1. Proof of Lemma 3
We define the agents’ gradients by Policy Gradient Theorem Sutton et al. (1999),

Viui(0;,0_;) = f QH"(S a)dH"Vﬂrg(a\ ) dads, (23)
seS

where d'¢ = ZOO,O 'ytpngt is the discounted sum of density functions pg, ,, of the transition
probabilities Pg, ., from the initial state s to the state s given the joint action a at ¢ steps ahead,
and similarly 7y (a| ) is defined as the density function of the joint policy IIy. Then, we use the
log-likelihood trick by dividing and multiplying the gradient of V;my(al|s) by the density 7y (a|s),

Viui(0;,0_; J QH9 (s,a)dmy(als )ﬂT(a(‘a\)) da ds (24)
seS als
il B Q?9(s,a)dn97rg(a|s)vi log mg(als) da ds. (25)
seS

We divide the integral by (1 —+) to have a proper expectation satisfying the properties of probability
measures,and the policy gradients become by the definition of networked policies (6),

= lus Qi (s,a)d"n% (als) Z V;log 7 (an|s) dads (26)
fss neN
1
= (1 — ) IE‘(s a)~73[QH S a Z Vi logﬂ-n G(Qn‘ )] 27
v neN

7.2. Proof of Lemma 6

Firstly, we are going to provide the update of local copies as a recursion in relation with the values
at the previous step. Let 6 ;(m) and éj7t+1(m) € RY be m!" index of agent j’s policy at time * and
the local copies of m'" index of agent j’s policy at time step ¢ + 1. W;je RN*N is communication
weight matrix created by the values W;(i,l) = wél. Note that by Assumption 1, W} is a row
stochastic matrix. Then, recursion can be written as follows,

0;041(m) = Wi(0;¢(m) + (0j441(m) — 0;4(m))e;), (28)

where e; is the canonical vector of j* base in RY. Subtracting the vector 6;;.1(m)1, where
1 € RY is the vector in RY whose all values are 1, from both sides of (28), we obtain,

Oj0+1(m) — 0j141(m)1 = Wi (B;4(m) + (0j141(m) — 054(m))e; — 0;441(m)1), (29)

The term 6,11 can go inside the matrix multiplication, since W is a row-stochastic matrix. By
letting y; = 6 +(m) — 6;,, we rearrange the equation (29) as,

Yer1 = Wilye + (0041(m) — 05.0(m))ej — (0j1+1(m) — 0;:(m))1). (30)
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Next, we are going to derive an upper bound for the term &; = (0;;41(m) — 6;:(m))(e; — 1), by
Lemma 5,

1(054+1(m) — 051 (m))(e; — )| <|[((0j,¢+1(m) — 0..(m))[|([le;]] + [|1]]) (31
<at|‘v]muj(9]t79—]7)|’(H6JH+||1||) (32)
<04tHVJ m; (05, t’e—J I[NV + 1), (33)

where @gi tymu(ﬁi.t, é—i,t) is the stochastic gradient of agent j° value function with respect to the
parameter value at the index m. Since stochastic gradient of any agent is bounded by Lemma 5, and
the step size oy = O(1/t) by Assumption 2, it holds,

0t = |[(0j6+1(m) — 0 (m))(e; — 1)[| = O(1/2). (34)
Now we rewrite (30) as follows,
t
Yerr = Wylye +01) = D W o + Wiy (35)
¢=0

As it holds ééo = 6,0, then y; = 0. Hence, the norm ||y, 1| can be expressed as follows,

t t
1 1
yesal] = || Z W]'G || < Z ||WjC+ Se—cll- (36)
¢=0 ¢=0
Since W; is row stochastic matrix, it holds lim;_, th = 16]T. Then, define the matrix V_Vj =
W; — lef. It holds lim;_,, W; = 0 and W;1 = 0. If the equation (36) is written with the relation
Wj =W; — 16?, then we obtain the following,

t
[yl < 5 0¥ + 1ef) Mg |l (37)
¢=0
Since, we have W;1 = 0, e;fer =0, and (IeJT)C = lef) for any ¢ > 1 by the definition of given
matrices, we rewrite the upper bound in (37),

¢
17C+1 T
el < X WSl + 111(1e]) ol (38)
¢=0
By definition, see that d,(j) = 0, for any ¢, which gives e?&t = 0. Moreover, the spectral radius A
of W is strictly less than 1, A < 1. Hence, we have,
¢

[yl < 20 X 1Bl (39)
(=0
By Chebychev’s sum inequality, it holds,
t
llyra]] < 67°9 D7 ACH, (40)
¢=0

where ;" = (1/t) Y¢_q ||0i—||- By using the fact &7 = (1/t) Ye_q ||8i—cll = (1/t) Xe_o(F2) =
O(logt/t) and hence, we have ||y;41|| = O(logt/t). Thus, it assures E(||9j7t 8;.| = O(log / )

and the proof is completed.

10
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