Spatula: A Hardware Accelerator for Sparse Matrix Factorization

Axel Feldmann
MIT CSAIL
Cambridge, MA, USA
axelf@csail.mit.edu

ABSTRACT

Solving sparse systems of linear equations is a crucial component
in many science and engineering problems, like simulating physi-
cal systems. Sparse matrix factorization dominates a large class of
these solvers. Efficient factorization algorithms have two key prop-
erties that make them challenging for existing architectures: they
consist of small tasks that are structured and compute-intensive,
and sparsity induces long chains of data dependences among these
tasks. Data dependences make GPUs struggle, while CPUs and
prior sparse linear algebra accelerators also suffer from low com-
pute throughput.

We present Spatula, an architecture for accelerating sparse ma-
trix factorization algorithms. Spatula hardware combines systolic
processing elements that execute structured tasks at high through-
put with a flexible scheduler that handles challenging data depen-
dences. Spatula enables a novel scheduling algorithm that avoids
stalls and load imbalance while reducing data movement, achieving
high compute utilization. As a result, Spatula outperforms a GPU
running the state-of-the-art sparse Cholesky and LU factorization
implementations by gmean 47x across a wide range of matrices,
and by up to thousands of times on some challenging matrices.

CCS CONCEPTS

« Computer systems organization — Parallel architectures.

KEYWORDS

Hardware accelerators, sparse linear algebra, matrix factorization,
Cholesky, LU.

ACM Reference Format:

Axel Feldmann and Daniel Sanchez. 2023. Spatula: A Hardware Accelerator
for Sparse Matrix Factorization. In 56th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’23), October 28-November 01, 2023,
Toronto, ON, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3613424.3623783

1 INTRODUCTION

Solving sparse systems of linear equations, i.e., finding x such that
Ax = b when A is a sparse matrix and b is a vector, is a fundamental
problem in scientific computing [8, 22, 35, 36]. Solving sparse linear
equations is the dominant computation across many applications,
including simulating circuits [7, 18] and physical systems [32],

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

MICRO °23, October 28—November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3623783

Daniel Sanchez
MIT CSAIL
Cambridge, MA, USA
sanchez@csail.mit.edu

computational fluid dynamics [59], and optimization [5, 31]. As
a result, supercomputers spend a substantial fraction of time on
solvers [4, 42].

Matrix factorization (Section 2) is the dominant component of
direct solvers. Matrix factorization decomposes A into two matrices
with a particular structure that makes solving Ax = b easy (e.g.,
A = LU, where L is lower-triangular and U is upper-triangular).
When A is dense, matrix factorization algorithms are regular and
compute-intensive, and existing accelerators like GPUs achieve
high efficiency [27]. But A is often highly sparse, which causes poor
performance on GPUs and CPUs. For example, on a large circuit
matrix (FullChip) [16] that has 0.0003% nonzeros, the state-of-
the-art GPU factorization algorithm STRUMPACK [22] achieves
only 0.3 GFLOP/s on an NVIDIA V100 GPU—just 0.004% of its
peak floating-point throughput. STRUMPACK suffers this dismal
utilization despite using sophisticated algorithms and schedules
that seek to use GPUs as best as possible [1].

Sparsity in linear solvers is unavoidable, because it arises from
problem structure. For example, consider circuit simulation: a cir-
cuit may have millions of nodes, but each node is connected to only
a handful of other nodes. Therefore, many problem domains will al-
ways yield highly sparse matrices. This is different from applications
like deep learning, where sparsity is induced as an optimization
(e.g., by pruning) and can be shaped or controlled [64].

To tackle this challenge, we present a hardware accelerator for
sparse matrix factorization algorithms, including Cholesky and LU.
These algorithms have two key properties that thwart GPUs, CPUs,
and more specialized sparse accelerators [29, 45, 57, 68]:

First, sparse matrix factorization algorithms contain long chains
of dependences among tasks, which are hard to schedule. Since
GPUs lack fine-grained control over scheduling, they suffer from
inefficient schedules that cause load imbalance and force excessive
data movement. Prior sparse linear algebra accelerators are also
insufficient: most focus on specific kernels, such as sparse matrix-
sparse matrix multiplication (SpMSpM) [50, 68, 69], and even more
flexible ones like ExTensor [29] and Tensaurus [57] handle loop
nests that do not support these complex data dependences.

Second, sparse factorization is nonetheless dominated by struc-
tured compute operations on smaller matrices that can be effectively
accelerated at very high throughput using systolic arrays. No prior
architecture can handle this combination of sparse and structured
features: the vector datapaths and tensor cores of GPUs are a good
match for structured compute, but dependences cause terrible uti-
lization. By contrast, prior sparse linear algebra accelerators focus
on unstructured, memory-intensive problems [45, 67, 68] and lack
the compute throughput or design to handle structured operations.

To make these challenges concrete, Section 2 presents the neces-
sary background on sparse matrix factorization algorithms (Cholesky
and LU), and Section 3 details why current architectures handle

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

them poorly, including a performance characterization of these
algorithms on CPUs and GPUs.

Based on these insights, we present Spatula, a novel architecture
designed to accelerate sparse matrix factorization. Spatula hard-
ware (Section 4) combines the features needed by these algorithms:
its processing elements (PEs) are systolic arrays that implement the
primitive tasks in factorization workloads efficiently and at high
throughput; and a programmable scheduler orchestrates execution,
dispatching tasks to PEs and cheaply tracking frequent data de-
pendences among tasks. Spatula hardware features a cache-based
memory hierarchy that captures the irregular reuse in this work-
load and decoupled-execution mechanisms to fetch data ahead of
its use and avoid memory-induced stalls.

To leverage Spatula hardware, we present a novel scheduling
algorithm (Section 5) that efficiently schedules sparse matrix fac-
torizations with a wide variety of sparsity patterns. Different spar-
sity patterns result in fundamentally different computation graphs,
presenting different tradeoffs between parallelism and memory
footprint. Our approach leverages fine-grained task scheduling,
multi-level tiling, and memory-aware scheduling to achieve high
utilization while minimizing data movement.

We evaluate Spatula on both sparse Cholesky factorization and
sparse LU factorization using a combination of simulation and RTL
synthesis (Section 6, Section 7). Spatula outperforms state-of-the-
art matrix factorization algorithms on a V100 GPU by gmean 61x
on Cholesky and 36X on LU, across a diverse set of matrices from
many application domains including circuit simulation, structural
analysis, fluid dynamics, and convex optimization. Speedups over
a 32-core server CPU are gmean 213X on Cholesky 33x on LU.
The evaluated configuration of Spatula has an area of 108 mm?
and consumes 146 W on average when synthesized in 12-14 nm
technology, significantly less than the GPU and CPU baselines.

In summary, we make the following contributions:

(1) We identify the key features of sparse matrix factorization
and its inefficiencies on current architectures (Section 3).

(2) We propose the first hardware architecture that achieves
high performance on sparse matrix factorization (Section 4).

(3) We design a novel scheduling algorithm enabled by this
hardware that achieves high utilization (Section 5).

(4) We perform a detailed evaluation of our proposed architec-
ture, showing order-of-magnitude improvements in perfor-
mance and energy efficiency (Section 6, Section 7).

2 BACKGROUND

Solving systems of linear equations Ax = b is a key primitive in
many scientific computing applications [5, 7, 18, 31, 32, 59]. Solvers
can be direct, if they find x directly given A and b, or iterative, if
they start from an approximate x and iterate until finding an exact
solution. Efficient direct solvers rely on factoring matrix A, i.e.,
decomposing it into a set of matrices with a certain structure that
makes Ax = b easy to solve.

In this paper, we focus on Cholesky and LU factorization, the
most efficient and widely used techniques for square matrices [24]
(e.g., MATLAB adaptively chooses among these algorithms when
solving systems of linear equations [15]).

Axel Feldmann and Daniel Sanchez

M = lower triangle of A
for i in range(n):
M[i,i] = sqrt(M[i,i])
Factor ith col: M[i+1:,i] *= (1 / M[i,i])
for j in range(i+l,n):
M[j,i] *= (1 / M[i,i])
Outer prod update: M[i+1:,i+1:]-=
outer(M[i+1:,i],M[i+1:,1i])
for j in range(i+l,n):
for k in range(i+l,j+1):
M[j,k] -= M[j,i] * M[k,i]

H OV UT A WN =

—_ =

Listing 1: Cholesky factorization loop nest.

Cholesky factorization is simpler and more efficient than LU,
but it requires the A matrix to have a particular structure: it needs
to be symmetric (ie., A = AT), and positive-definite (i.e., for all
non-zero column vectors z, z/ Az must be positive). Cholesky finds
a lower-triangular matrix L such that A = LLT. This enables solving
Ax = b via two triangular solves: Ly = b — LT x = y. Triangular
matrices are simple to solve via substitution: when A is a dense
n X n matrix, triangular solves are O(n?), whereas factorization is
0O(n?) and dominates performance. Factorization also dominates
performance when the matrix is sparse.

LU factorization instead finds lower-triangular matrix L and
upper-triangular matrix U such that A = LU. Like Cholesky, this
enables solving Ax = b through triangular solves, but does not
require A to be symmetric positive-definite.

Real-world A matrices are often extremely sparse. These matri-
ces typically arise from discretizing equations, where each entry
represents an interaction between two variables. In circuit simula-
tions, each variable represents a circuit node [17], while for partial
differential equations on meshes, each variable represents a node on
the mesh [33, 58]. Each node has a small number of neighbors, irre-
spective of the overall system size. Consequently, matrices arising
from larger simulations become increasingly sparse.

Since Cholesky factorization is simpler, in this section we use
Cholesky to introduce the algorithmic techniques and optimizations
in sparse matrix factorization. Section 2.4 discusses the differences
between Cholesky and LU.

2.1 Basic Cholesky factorization

Listing 1 shows the code for a basic in-place implementation of
Cholesky. M is a lower-triangular matrix, initialized with the lower
triangle of A (because A is symmetric, only its lower triangle is
needed). Each outer loop iteration in Listing 1 modifies M and
produces a single column of the output L in-place; after execution,
M contains the output L.

Specifically, the it" outer loop iteration in Listing 1 consists of
two distinct activities. First, lines 2-5 overwrite the ith column of
M, producing its final value. Second, lines 9-11 update columns
Jj > i by computing the outer product of the ith column of M with
itself, and subtracting this outer product from the rest of the matrix.
Figure 1 shows these steps in detail for a sparse matrix.

This basic loop nest shows two key features of Cholesky. First,
data dependences are frequent: each iteration updates the remainder
of matrix M, so each output element incorporates contributions
from many inputs. Second, outer products dominate performance: if
the i column of M has nnz nonzeros, updating the column takes
O(nnz) operations, whereas outer-product updates take O(nnz?).

Spatula: A Hardware Accelerator for Sparse Matrix Factorization

of] Column 0 is completed

LT

2

3

4

5

6

7

8 8

9 | 9 |

10 | 10]
0123456 7 8910 012345678910

(@) (b)

Figure 1: Performing a single step of Cholesky factorization to a sparse matrix: (a) initial
matrix M; (b) result of executing lines 3-6 of Listing 1; (c) result of applying the first column’s
outer product update to the rest of the matrix (lines 8-10 of Listing 1).

2.2 Challenges of sparse factorization

Sparse linear algebra algorithms must use compressed formats that
leverage sparsity by representing only nonzero values. While they
are space-eflicient, compressed formats limit the operations that can
be efficiently performed [9, 60]. A key challenge in sparse matrix
factorization is using a compressed format that allows all necessary
operations.

Typical sparse matrix formats like compressed sparse row/col-
umn (CSR/CSC) work poorly in Listing 1. Consider using CSC,
which stores each column as a sorted list of nonzero coordinates
and their values. CSC makes sequential traversals of columns effi-
cient, so the updates to the it" column (lines 5-6) are efficient. But
the outer-product updates (lines 9-11) would be extremely difficult,
because they require updating individual values scattered through-
out the matrix structure. These updates would require expensive
searches in CSC, and often introduce new nonzeros, which would
require rewriting the CSC structure.

The new nonzeros introduced by outer-product updates are
known as fill-in. For example, in Figure 1c, (6,5) and (8, 5) become
nonzero. It is common for the final matrix L to have substantially
more nonzeros than A, e.g., 10-150X is typical in our experiments.
But since A is highly sparse (e.g., with a fraction 107> of nonzeros),
so is L, and storing M uncompressed would be very inefficient.

Prior work makes the key observation that outer-product updates
have substantial structure. Figure 3 shows that the outer product
of a sparse vector v with itself produces nonzeros at all points in
nonzeros(v) X nonzeros(v). This structure can be captured with a
format that we call Compressed Cartesian Square (CSQ),' shown in
Figure 3: a k X k CSQ consists of k2 values and only k coordinates,
which denote the row (and column) coordinates of the nonzeros.
When we compute the outer product of v with itself, the resulting
CSQ will be symmetric, so we only need to store its lower triangle.

Efficient sparse Cholesky implementations represent M using
multiple CSQ matrices, which are updated over time. Multiple ma-
trices are needed because different outer-product updates have
different sparsity patterns. Since nonzeros added by outer-product

!Prior work uses this format but does not give it a name. We give it a name for clarity.
The name comes from the fact that matrix’s nonzero coordinates are the Cartesian
square (i.e., the Cartesian product with itself) of the nonzero coordinates of v.

© O NV R WN B O

i
o

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Start Matrix

l

| Symbolic Factorization |v_

!

Numeric Factorization seldom
(Slow) ior
i i never

| Triangular Solve (fast) |

!

Update State (fast) |

012 3 4586 7 8 910

©

Figure 2: Example solver appli-
cation. Numeric factorization
dominates performance.

outer(v, v)
0123456 7 8910

v [T BT [[]

CSQ(outer(v, v))
0 4 5 8 10

® U~ O

10

nly store lower
triangle

W N O U A WN R O
© N U A WN R O

(o)
0
4
5
8

10

=
o
=
o

Figure 3: Outer products can be stored in compressed format.

updates dominate the initial nonzeros of A, this representation con-
sists almost entirely of nonzero values, leveraging sparsity. More-
over, the CSQ format enables efficient computation of outer prod-
ucts: since nonzeros are stored contiguously, this is equivalent to
computing the outer product of a small dense vector, and can be
performed efficiently with a vector processor or a systolic array.

2.3

The widely used multifrontal algorithm [19] organizes compu-
tation as a tree of operations on matrices in CSQ format. This
compressed format enables using dense linear algebra primitives,
and is used in many factorization packages such as MUMPS [2],
STRUMPACK [22], and UMFPACK [13].

Symbolic factorization: The multifrontal algorithm relies on a
preprocessing step called symbolic factorization that analyzes only
the matrix’s nonzero pattern and creates helper data structures. In
most applications, the nonzero pattern is static or changes very
infrequently. For example, when simulating a circuit, devices do not
gain new neighbors, and when simulating a car collision, most of
the mesh describing the car retains the same structure. As a result,
this step can be amortized across many numeric solves, making
its performance costs a secondary concern [14]. To illustrate the
bigger picture and where sparse matrix factorization fits within it,
Figure 2 shows the general structure of many applications that use
sparse matrix factorization.

Multifrontal sparse factorization

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

1 for sn in postorder(etree):

2 F = Fs[sn]

3 # gather updates from all children
4 for child in children(sn):

5 gather_updates(F, Us[child])

6

7 # factor the current supernode

8 for i in range(N[sn]):

9 F[i,i] = sqrt(F[i,i])

10 Fli+1:,1i] *= (1 / F[i,i])

11 F[i+1l:,i+1:] -= outer(F[i+1l:,i],
12 Fli+1l:,i])
13

14 # store the rest as an update to the parent
15 Us[sn] = F[N[sn]:,N[sn]:]

Listing 2: Multifrontal Cholesky pseudocode.

Numeric factorization: After preprocessing, the sparse factoriza-
tion is described as an elimination tree [56] of supernodes Fy., each
represented by a CSQ matrix. Figure 4 shows an elimination tree for
the matrix from Figure 1a. For a supernode Fy, the first Ny columns
of F will contain a subset of M’s columns that is determined by
symbolic factorization. For example, in Figure 4, the nonzeros from
columns M[:, 0] and M[:, 5] are stored in the first two columns of
Fy. F.’s remaining Uy columns are used to store the results of the
outer products of the first Nj. columns.

Concretely, in Figure 4, the outer product of M[:, 0] with itself
will produce nonzero values at (5, 6, 8) X (5, 6, 8). By construction,
these values can all be stored in Fy and represented efficiently using
the CSQ format. For each supernode in Figure 4’s elimination tree,
the first Ny columns are shaded and the remaining Uy columns are
left blank.

During the actual numeric factorization, the algorithm traverses
the tree from leaves-to-root, executing the pseudocode in Listing 2.
At each supernode Fy, the first step is gathering updates from child
CSQ matrices.? Updates need to be accumulated by coordinate. For
example, in Figure 4, when sn = Fg, Fy[6, 6] and F2[6,6] would
be added to Fy |6, 6], and Fy[8, 6] would be added into Fg[8, 6]. Im-
portantly, the same coordinate will almost always map to different
positions (i.e., actual memory locations) in the parent and child CSQ
matrices.

After all updates have been gathered, the algorithm runs N
outer-loop iterations of Cholesky factorization (Listing 1) on Fy.
This step produces the final output columns. For example, after
running two Cholesky outer-loop iterations on Fy, columns M[:, 0]
and M[:, 5] will be fully factored and will not be updated again.

The fact that the last Uy columns of any supernode Fi need to be
gathered into parent(Fi)’s CSQ imposes a data dependence. The al-
gorithm cannot begin factoring parent (F;) before Fy has been fully
factored. As long as data dependences are respected, supernodes
can be factored in parallel. Listing 2 performs a postorder traversal
of the elimination tree, which ensures that all children are factored
before their parents. This ordering is correct, but in Section 5, we
will refine this ordering to improve performance.

This algorithm is efficient because factoring each supernode,
which has cubic complexity, is efficient on CSQ matrices. Gather-
updates have low arithmetic intensity, but there is only a quadratic
number of updates, so factoring dominates.

ZPrior work sometimes calls this operation “extend add” [2, 39].

Axel Feldmann and Daniel Sanchez

10[] Fo
10

0
1 FG
2 |
6 7 F;
3 3 Fs
8 9
4 10
10 10
5 3 10
6 8 10 7 9 10
6
7 0
.
8 5 2
9 6 6
10 8] 26 4 9 17
012345678910 056 8 F, Fq Fy
Fo

Figure 4: Supernodal elimination tree for L. When Listing 2
runs on this tree, it performs 2 steps of factorization on Fy, 1
step of factorization on Fy, then adds Fy(6,6), Fy(8, 6), Fo(8,8),
and F (6, 6) into their respective entries in Fs before factoring
Fs. Colored supernode cells represent where columns are
factored. Note that each column is factored exactly once.

2.4 LU factorization

This section has focused on Cholesky factorization, but almost all
of the explanations apply to LU factorization too.

LU factorization is similar to Cholesky factorization, but is not
limited to symmetric positive-definite (SPD) matrices. Whereas
Cholesky factorization finds L such that A = LLT, LU factorization
finds a lower-triangular matrix L as well as an upper-triangular
matrix U such that A = LU. This allows LU factorization to work on
non-symmetric matrices, which also means A’s upper triangle needs
to be stored and computed on. LU factorization requires ~ 2X more
FLOPs than Cholesky factorization. To preserve numeric stability,
we use static pivoting as a preprocessing step [37]. Using static
pivoting, we are able to use a similar loop nest to Listing 1, but
change the loop bounds to materialize distinct values in the upper
triangle. This implementation of sparse LU shares the same types
of data dependences as sparse Cholesky.

3 SPARSE FACTORIZATION IS INEFFICIENT
ON PRIOR ARCHITECTURES

We now describe why existing architectures are ill-suited to sparse
factorization algorithms, motivating the need for a new accelerator.
Section 3.1 and Section 3.2 quantitatively analyze the performance
of state-of-the-art GPU and CPU implementations, showing that
despite extensive hardware-aware optimizations, utilization is often
dismal. Section 3.3 discusses other proposed accelerators, explaining
why they lack key ingredients to handle sparse factorization.

3.1 GPU implementations

Given their wide availability and high peak compute throughput,
GPUs have become the hardware of choice for accelerating lin-
ear algebra applications. There are many sparse matrix factoriza-
tion packages that leverage GPU acceleration; we will analyze
CHOLMOD (Cholesky) [54] and STRUMPACK (LU) [22], as we
found that they achieved the best performance across a wide range
of sparse matrices.

Figure 5 (left) reports the performance of STRUMPACK when
running on an NVIDIA V100 GPU, which provides a peak double-

Spatula: A Hardware Accelerator for Sparse Matrix Factorization

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

STRUMPACK GPU STRUMPACK CPU CDF of FLOPs by SN size for atmosmodd GPU Dense LU Performance
1.0 1
N — 7000 F=m==m—m oo o]
7000 7000 GFLOP/s 1400 - 1500 GFLOP/s Max = 7000 GFLOP/s
i e ol CDF(4000) = 0.08 i
6000 1200 g05 6000
5000 A 5000 -
" 1000 4 g 0.0 T } : : : : "
a 4000 - =3 0 2000 4000 6000 8000 10000 12000 & 4000 -
9 < 8001~ o Supernode Size g
™ : < i
© 3000 A g 600 - 2 CDF of FLOPs by SN size for FullChip © 3000
— o 1.0
2000 - 0 400 - ® 2000 A
5 [}
R ~ w
1000 - n & m | 2001 © 5 051 1000
o m
RO Sy FE SN 00 0T ® P R P
A0_oel ¥ (PSS SR\ -0 1 T : : . T . N N O N o'
056\@\\,5’0 ge‘\@\\d\ 056\:,\\,96 ge(\@\\d\ 0 500 1000 1500 2000 2500 3000 SO AT 450 0 0
’b‘«\ ‘\\)d\’a“’ a'd(\ ‘(\\)‘(\ﬁ(\’ Supernode Size Matrix Size

Figure 5: Performance of STRUMPACK
(GFLOP/s, higher is better) on

and on four
representative sparse matrices.

precision floating-point throughput of 7000 GFLOP/s. Figure 5 re-
ports performance in GFLOP/s, showing how well the GPU is uti-
lized, on four representative matrices (our evaluation uses a larger
set; see Section 7.1 for methodology details).

Figure 5 shows a wide range of efficiencies across matrices:
while atmosmoddd achieves 26% of the GPU’s peak throughput,
human_gene1 achieves only 2.8%, and Ful1Chip achieves a dismal
0.004% of peak throughput—only 0.3 GFLOP/s!

This wide range of performance happens because GPUs are in-
efficient when factoring small CSQ matrices. As we have seen in
Section 2.3, sparse factorization mainly consists of outer-product
updates on supernodes that are much smaller than the full matrix,
and are stored compactly in CSQ format.

Different matrices have different nonzero patterns, which induce
different symbolic factorizations with a wide range of supernode
sizes. Figure 6 shows the cumulative distribution function (CDF) of
FLOPs across supernode sizes for the two matrices at the extremes
of efficiency: atmosmoddd (top) and FullChip (bottom). In each
graph, the x-axis is supernode size as the number of rows and
columns (e.g., 4000 denotes a 4000x4000 supernode), and the line
reports the fraction of total FLOPs (i.e., work) that happens on
supernodes of size < x. In atmosmoddd, 8% of the work happens on
supernodes of size < 4000, i.e., 92% of work happens on supernodes
of size > 4000. By contrast, in Ful1Chip, the largest supernode has
size 3047.

To a first order, we can approximate the work in each supernode
as the factorization of a dense matrix. Figure 7 shows the perfor-
mance of the V100 GPU on dense factorization as a function of
matrix size, in GFLOP/s. Performance flattens around size 20000,
and drops linearly below 10000, so small matrices suffer very low
throughput. This mostly explains the dismal performance of GPUs
on matrices like Ful1Chip: small supernodes hamper utilization.

While the above analysis is a good first-order approximation, it is
not the full story, because it assumes that each supernode is factored
in series. This would result in even worse SM utilization. Instead,
recent work uses batching [1, 22, 54]: grouping small supernodes
at the same depth in the elimination tree into a single kernel, as
shown in Figure 8.

Figure 6: CDFs of FLOPs by supernode size
for the two extreme matrices in Figure 5,
showing that matrices with lower utilization
have more FLOPs in smaller supernodes.

Figure 7: Performance of dense
LU factorization (without pivot-
ing) across matrix sizes on an

Batch 3

ul Batch 2

]
Batch 1 i i

11
1]
T
1T

1
11

Figure 8: Batching groups supernode factorizations.

The GPU implementations we compare against use batching to
improve utilization by exploiting parallelism across supernodes and
amortizing kernel launch overheads. However, batching is a crude
way to handle data dependences that misses many opportunities
for parallelism. Batching also causes load imbalance because it
groups supernodes of different sizes, as Figure 8 shows, causing poor
SM utilization. Finally, level-by-level traversal of the elimination
tree eliminates opportunities for data reuse, incurring additional
DRAM traffic. It would be more efficient for the parent supernode to
consume child updates immediately after they are produced, as we
will see in Section 5.2. As a result of these architectural limitations,
GPUs achieve poor utilization, as Figure 5 shows.

In summary, while GPUs have plentiful computational through-
put, they are ultimately limited by irregular shapes and data de-
pendences across supernodes, which destroy utilization. Spatula
solves this with a more flexible organization that (1) achieves much
higher performance on small matrices, and (2) gracefully handles
complex data dependences to unlock much more parallelism within
and across supernodes.

3.2 CPU implementations
Given the limited utilization of GPUs, it is important to consider
CPU implementations as well. Figure 5 (right) shows STRUMPACK’s

performance across the same set of sparse matrices when running
on a 32-core/64-thread AMD Zen2 CPU at 3.5 GHz. While the CPU

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Processing Element
PE Core

Global Scheduler + Control Core

[_Input2 |
PEO PE1 ... | PE30 PE31
I T I I :
5)
Crossbar g_ Systolic Array
I I I e I I I TaskSIots””
Cache .

Dest Tile

Main Memory (HBM) Input Tile FIFO

Figure 9: Spatula architecture overview.

implementation significantly outperforms the GPU on FullChip
and slightly outperforms it on human_genel, it still suffers from low
compute utilization. CPUs overcome some of the limitations of their
lower peak throughput with more flexible scheduling hardware,
but they still suffer dismal utilization on many difficult matrices.
Hybrid CPU-GPU: Prior work has also considered hybrid CPU-
GPU approaches [21, 40], However, the increasing gap in FLOP/s
between CPUs and GPUs combined with costly host-accelerator
communication has resulted in these approaches lagging behind
GPU-only techniques [54].

3.3 Other accelerators

ASIC accelerators for dense factorization: REVEL [65] and
TaskStream [10] are hardware accelerators that support Cholesky
factorization of small dense matrices. However, they do not support
the sparse case. The difficulty in sparse matrix factorization is
not primarily speeding up single-supernode kernels, but rather
efficiently handling differently sized supernodes without major load
imbalance. Additionally, data movement is not a significant concern
for a single small dense Cholesky, but becomes crucial when dealing
with a large tree of supernodes, where balancing parallelism and
data movement is key to achieving good performance.

FPGA accelerators for sparse factorization: Prior work has
proposed using FPGAs to accelerate sparse factorization. But the
limited arithmetic throughput of FPGAs makes them ill-suited to fac-
torization. Nechma et al. [46] and Kapre et al. [30] describe designs
with peak throughput of <10 GFLOP/s. Due to their low throughput,
they underperform state-of-the-art CPU implementations. Further-
more, these designs use the Gilbert-Peierls algorithm [23] which
does not efficiently scale to higher compute throughputs.

4 SPATULA ARCHITECTURE

Figure 9 shows an overview of Spatula’s hardware architecture.
Spatula combines several unique features that enable high-perfor-
mance sparse factorization. First, Spatula features processing ele-
ments (PEs) that achieve high performance on small matrices. Each
PE features a 16x16 systolic array that executes factorization tasks
at high throughput. Supernodes are processed in 16x16 tiles. This
design enables high performance when factoring small supernodes,
which as we have seen in Section 3, are common and performance-
critical. Second, Spatula features fine-grained hardware support for

Axel Feldmann and Daniel Sanchez

scheduling needed to handle frequent data dependences. Each PE is
double-buffered to hide latency, and a global scheduler dispatches
tasks across PEs. Third, Spatula has a memory hierarchy tailored to
the needs of factorization workloads: a banked on-chip cache cap-
tures irregular reuse of tiles, and high-bandwidth memory provides
adequate throughput.

4.1 Tiles are Spatula’s primitive datatype

The multifrontal algorithm (Section 2.3) runs sparse factorization
as a tree of computations on CSQ matrices. The CSQ format enables
processing sparse data using dense linear algebra kernels. These
dense kernels can be tiled, which enables handling CSQ matrices
of varying sizes with a fixed hardware tile size.
Spatula’s primitive datatype are

T X T dense tiles of double-precision
floating-point numbers. A CSQ ma- Cle—ooL

©

trix can be divided into tiles of a fixed]
size using position-based tiling [60], | Two ‘?nL
as shown in Figure 10. :

Tile size is an important parameter. | To | Ta | T
Larger tiles allow Spatula to achieve 2:
a particular throughput with fewer, o T | Ta
higher-throughput PEs, allowing for
a simpler on-chip network and amor-
tizing scheduling overheads. How-
ever, they increase the granularity
of computations, leading to possible
under-utilization.

Sweeping tile sizes, we find that T = 16 achieves the highest
performance across a wide range of matrices. Each tile’s values are
stored contiguously in memory, along with the coordinates of each
row and column.

Co €1 € C3 G4 C5 Cg C7 Cg Cg C10Cna

Figure 10: Dividing a su-
pernode CSQ into fixed-
size tiles.

4.2 Task-based programming model

Spatula uses a task-based programming model. Each task takes a
set of tiles as inputs and accumulates the results into a single output
tile. Spatula supports several types of tasks, all shown in Table 1.
Each tasks runs on one PE, and each PE can run tasks of any type.

The multifrontal algorithm (Section 2.3) is decomposed into a
collection of tasks. We now present this decomposition; Section 4.3,
which describes the implementation of PEs, gives more details on
the internal structure of each task.

Figure 11 illustrates how the code on lines 8-12, which factors a
supernode, is mapped into Spatula tasks. First, the top-left corner

Task Type Computation Input Types

dgemm D += gemm(hcat(A), A: l%st<T?le>
vcat(B)) B: list<Tile>

tsolve D = tri_solve(D, A) A: Tile

dchol D = dense_chol (D)

dlu D = dense_lu(D)

gather_updates for T in A: D += T A: list<Tile>

Table 1: Spatula task types. Note that D is always a Tile, and
it is both an input to the task and its sole output.

Spatula: A Hardware Accelerator for Sparse Matrix Factorization

FTooe

Too =
chol(Tee)

CRND UV S W RO
©RNDU S WN RO

completed
completed

FTo11
Ty -=
gemm
(T105 T10)

B
==}

01234567 8091011 01234567891011

e
/O

FT11
T =
chol(Ty)

Ta =
tsolve
(T21,T11)

(T30, T10)

FTis,

Ta =
tsolve
(T32,T22)

gemm
(Tar0:15
Tage:1])

FToss

Ta3 -=

gemm
(Ts0,31,32

T30,31,32)
=4

Tao T Ty

EBooNounswneoO

T30 T31 T32 TZB
012345678091011

Figure 11: Data-dependence graph of tasks needed to per-
form 9 outer-loop iterations of factorization on a tiled CSQ
supernode.

tile is factored using a (dense Cholesky) task. This task’s
output tile, FTygo, is then consumed by a set of (triangular
solve) tasks that process the leftmost column of tiles. These tasks’
outputs, FTy19, FTp20, and FTp30, are then consumed by a set of
tasks that process the second column of tiles. Once the
tasks in the second column complete, tasks FT111, FT121, and
FTi3;1 are able to execute, and the algorithm continues like this.
Note that tasks in the third column take inputs from both
the first and second columns. For example, Toz,’s input Ty[.1] is
produced by FTj21. These deep chains are due to the dependences
discussed in Section 2: each task computes and accumulates
all the outer-product updates for its tile.
Finally, the last task type, gather_updates, is used to gather
updates across supernodes (lines 4-5 of Listing 2).

4.3 Processing elements

As shown in Figure 9, Spatula has 32 processing elements (PEs).
Each PE features a systolic array that can execute all types of tasks.
Systolic arrays are ideally suited to dgemm, the most common task
type. The key design choice is whether to have homogeneous
PEs that can handle all tasks, or heterogeneous PEs specialized
to each task. We opt for a homogeneous approach for two rea-
sons. First, the mix of different task types varies across matrices. For
example, Serena has 99.4% of its FLOPs in dgemm tasks, whereas
G3_Circuit hasjust 85% of its FLOPs in dgemm tasks. Second, other
types of tasks can also benefit from systolic arrays, and these tasks
are often in the critical path (e.g. dchol in Figure 11), so running
them quickly helps overall performance.

Prior work has already proposed different systolic arrays for
each task [6, 34]; we adapt and combine these ideas to produce a
single systolic array that can handle all. This design adds < 5% area
overhead vs. an array that can only run dgemm. Below, we explain
how we build up the array task by task.

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Task Slot 0 Dest Tile

Foas

Input Tile FIFO

T2 [Ta1 | Tao EE(Core)
| Input 2 |
Task Slot 1 Dest Tile

FT, Task Descriptor E

Input Tile FIFO
Systolic Array
[8] - csonve([B]. [E] Fr,

Figure 12: A snapshot of a PE’s state. FTy33 is drawn from Fig-
ure 11, and FTy is a task from a different supernode.
and links are part of the basic systolic array, and
diagonal links are added to support dchol and dlu.

Basic systolic array for dgemm: dgemm multiplies n pairs of input
tiles, interpreted as matrices A and B of sizes T X nT and nT X T,
and accumulates the result into a T X T tile D. Figure 12 (top) shows
task FTos3 from Figure 11 as an example.

We start with a standard systolic array, shown in Figure 12, which

consists of a grid of T X T FMAC units with pipelined horizontal
and vertical connections. The destination tile D is first loaded into
the systolic array. Then, a column of A and row of B are fed to the
array each cycle, and the array computes and accumulates partial
products following an output-stationary (inner-product) dataflow.
Finally, the output tile D is read out row by row. The array is double-
buffered (detailed later) to hide startup latencies, so its throughput
is one dgemm per nT cycles.
Handling dense factorization (dchol/d1u) tasks: Tasks corre-
sponding to top-left tiles, such as FTygo in Figure 11, are small dense
Cholesky factorizations (dchol), and require additional hardware
support to execute on a systolic array.

We augment the systolic array to implement dchol using Brent
et al’s algorithm [6]. We extend the ALU at one of the corners of the
array to support a division and square-root operation, as Figure 12
shows. We also add diagonal links between ALUs, and augment
the PE’s finite state machine (FSM) to support a different dataflow:
input tile D is streamed into the array row by row (as in dgemm), but
values cycle through the array so that all elements in the diagonal
pass through the inverse-square-root ALU. Outputs are streamed
into the PE’s accumulator, then written back to the cache.

Systolic dense Cholesky factorization tasks are latency-bound,

each having a critical path of T inverse-square root operations.
These tasks under-utilize the array’s FMAC units, but they are
uncommon, as each supernode has a linear number of these tasks,
vs. a cubic amount of dgemm tasks. d1u tasks also leverage the same
hardware modifications.
Handling triangular solve (tsolve) tasks: tsolve tasks need
a much smaller set of extensions to implement Kung et al’s algo-
rithm [34]. Values of the read-only A input are streamed downwards
through the array, while values in each row of the read-write D
input are cycled through a row of ALUs. These tasks do not re-
quire any additional ALU hardware or links between ALUs over
the above extensions, just additional control FSM logic to enable
this dataflow.

MICRO ’23, October 28—November 01, 2023, Toronto, ON, Canada

oL :
18 i K\\ / /1 Aix

5 D
29 38[Dy1

37 25 29 31
38 Do [Dy | Dy

17 25 37

29 Cy

17 18 24[25 29 31[37 38 43
4

-

29 31 37
38| Dyo

17 18 24

]37 A v L

25
A\:H 24 17 37
37 - % 29 38
0 31725 37
29)

4
o 37 _‘ 38
38 By, |By,] 5 7 °l21s 17y) / a3
43] : 1’/ 31 38 43

1 2|4 17 18[24 25 29[31 38 43

(@ (b)

Figure 13: Given the elimination tree with tiled CSQ su-
pernodes shown in (a), (b) illustrates the the many-to-many
gather_update dependence structure.

Handling gather-update tasks: gather_update tasks use the
PE just for addition. These tasks are responsible for adding values
with matching coordinates from a tile of a child’s CSQ matrix into
a tile of the parent’s CSQ matrix. Figure 13a shows a detailed exam-
ple, where updates (the unshaded region of the CSQ matrix) from
matrices A, B, and C need to be accumulated into to D. However, at
a tile level, the coordinates of each tile do not match. As shown in
Figure 13a, tile D21 requires updates from tiles B3 2, B3 3, C2.2, and
Ay,1. Coordinates on both axes in each tile are guaranteed to be
strictly increasing, allowing addition to be implemented by shifting
input rows into the correct position.

Task and data orchestration: To achieve full PE utilization, PEs
employ two different latency-hiding mechanisms. First, as shown
in Figure 9, each PE has multiple task slots (four in our implementa-
tion) to decouple data accesses from execution. Each slot can hold a
different task, and the scheduler dispatches tasks to PE slots. When
a task arrives at a slot, the PE starts loading the task’s input tiles
while the PE is executing a task in another slot. This lets the PE
hide the latency of memory accesses (from cache hits or misses).

Second, the systolic array double-buffered: each array element
has two sets of input and accumulator registers. While one task is
executing, the PE can load the next task’s operands into the array’s
accumulator registers. This lets the PE hide any startup latency
when moving from one task to the next.

Tasks become runnable when all of their input operand loads are
completed and data is available. If none of the PE’s slots contains a
runnable task, the PE stalls. As the PE executes a task, it will draw
inputs from the input tile FIFO associated with the current task.
Upon finishing a task, the PE writes the updated destination tile
back to Spatula’s cache.

4.4 Hardware scheduler

Efficiently executing sparse matrix factorizations requires dynamic
scheduling hardware. There are two sources of parallelism: fine-
grained intra-supernode parallelism, where independent tasks from
a single supernode can run in parallel, and coarser-grained inter-
supernode parallelism, where tasks from independent supernodes
can run in parallel.

Axel Feldmann and Daniel Sanchez

Due to the wide range of su- Inter MlInter + intra
pernode sizes, achieving good uti- mintra

lization requires exploiting both 16000 4 ===========~-
intra- and inter-supernode par- 16384 GFLOP/s
allelism. Figure 14 shows this 14000 1
by comparing Spatula’s perfor- 12000 -
mance on several matrices under 210000 1
three scheduling policies. o

. . T 8000 -
dispatches each supernode to a dif- &
ferent PE, exploiting only inter- 6000 1
supernode parallelism. By exploit- 4000
ing coarse-grain parallelism, 2000 1

is very simple to implement

and needs minimal I'lardv&.fare sup- T e‘J\’Q o /\,\(&\&
port. Unfortunately, it achieves ter- 6(;\\\"‘* /\oo“‘o‘(\ss L
rible utilization. Recall from Fig-
ure 6 that most matrices have
large supernodes with ample intra-
supernode parallelism. Binding a
single supernode to each PE results in running these large supern-
odes serially and bottlenecking performance. For example, when
factoring the root supernode, there are no other available supern-
odes, so only one PE would be utilized.

By contrast, runs one supernode at a time across all PEs,
exploiting only intra-supernode parallelism. requires a hard-
ware scheduler, as with 32 PEs, it must dispatch a task every few
cycles, and must negotiate complex inter-task dependences.
works well when large supernodes dominate, e.g., in Emilia_923,

-

Figure 14: Comparing
scheduler designs.

but works poorly when small supernodes are frequent. For instance,
suffers from 4.0% compute utilization in G3_circuit, as its
small supernodes cannot use all the PEs. This is the same reason
why GPU implementations use batching (Section 3).
is Spatula’s scheduling policy, which exploits both
intra- and inter-supernode parallelism. This policy first exploits
fine-grain parallelism within a single supernode to keep data foot-
print low, but overlaps multiple small supernodes when more par-
allelism is necessary. Figure 14 shows that achieves
high utilization.

We now discuss the hardware support that enables Spatula’s
scheduling policy; Section 5 presents the policy itself.

Figure 15 shows Spatula’s scheduler, which follows a two-level
design: a supernode scheduler feeds ready supernodes to a task
scheduler, which produces the fine-grained tasks of each supernode
and dispatches them to PEs.

Supernode scheduler: The supernode scheduler determines the
coarse-grain schedule by controlling the processing order of su-
pernodes. This unit requires limited throughput, producing at most
one supernode per 100 cycles (and often much less). Thus, for flex-
ibility, we implement this unit using a RISC-V control core. The
core feeds the task scheduler through a queue of ready supernodes,
and consumes supernode completion notifications from the task
scheduler.

Task scheduler: The task scheduler determines the fine-grain
schedule of computation. This scheduler is implemented using dedi-
cated hardware, because it requires high throughput (producing one
task every 3 to 20 cycles) and it must handle tight data dependencies
with low latency.

Spatula: A Hardware Accelerator for Sparse Matrix Factorization

Supernode Scheduler

Completed SNs Ready SNs 1 Generator
_>m]]. | Config Registers

Task Dispatcher

E-’ 1 l SN descriptors Loop Nest FSM
=]

o

o Gen 0 Gen 1 Gen 15 Next Instr
%]

[Scoreboard
K

b

._

l T l TCompIetion signal 1 T
: |

i T Task descriptorsi T i T l I
PEO PE30 PE31

Figure 15: Spatula scheduler design, with 16 generators.

The task scheduler is built around a set of generator units (16 in
our implementation). A generator is a simple, configurable FSM that
produces all the tasks to process one supernode. Each generator is
first configured with the information of the supernode, including
its location in memory and dimensions. Then, the generator emits
a sequence of tasks that process the supernode. Once the generator
finishes producing tasks for its current supernode, it can be reused
for a different supernode. A task dispatcher consumes this sequence
of tasks and dispatches them to PEs, filling their task slots greedily.

Each generator releases a task to the dispatcher only when the
task is ready, i.e., when all its inputs have been computed. To this
end, each generator keeps a completion scoreboard that tracks which
inputs are available. Due to the structure of the computation, this
information is easy to track, requiring k logzk-bit entries for a k X k-
tile supernode (this encodes the last available column tile for each
row tile). Because we use multi-level tiling (Section 5), k is limited
to 80, and this scoreboard takes about 500 bits of state, with simple
wakeup logic similar to that of a scalar scoreboarded core [61].

4.5 Memory hierarchy

In our design, we opt for a cache instead of scratchpad memory.
As discussed in Section 4.4, the scheduler dynamically interleaves
tasks from different supernodes depending on the readiness of their
inputs. The resulting access pattern cannot be known at compile-
time, requiring the use of a cache.

We use an LRU cache with large cache lines. As dense 16 X 16
tiles are our primitive datatype, we can utilize large tile-sized cache
lines (2KB in our implementation). We have relatively few PEs
and relatively large data transfers, so a full crossbar is practical.
Every cycle, we have 32 PEs, each of which consumes 32 double-
words of data per cycle, resulting in a total of 8 TB/s bandwidth
needed to feed our PEs when they are all active. This network
configuration consumes relatively little area and energy, as we will
see in Section 7. Our scheduler issues memory accesses ahead of
time, when a task group is first scheduled onto a PE, achieving a
high degree of decoupling and limiting memory stalls.

5 SCHEDULING

Section 4.4 showed that exploiting intra- and inter-supernode paral-
lelism is necessary, and presented the scheduling hardware needed
to do so. We now present our scheduling algorithm, showing how
we negotiate parallelism and footprint to achieve high utilization. To

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

reduce data footprint, our general strategy is to exploit finer-grain
parallelism first. Section 5.1 describes how Spatula schedules within
a supernode, and Section 5.2 describes how Spatula dynamically
overlaps supernodes when intra-node parallelism is insufficient.

5.1 Intra-supernode scheduling

Effectively scheduling a single supernode is important. Though
Figure 14 shows that running a single supernode at a time is insuffi-
cient, exploiting available intra-supernode parallelism lets Spatula
achieve the same degree of parallelism with fewer concurrent su-
pernodes, reducing cache footprint.

Breadth-first task order: Intra-supernode schedules are imple-
mented in hardware by the generator FSMs described in Section 4.4.
For simplicity, generators produce tasks in a fixed order, and dis-
patch tasks in this order to PEs (i.e., out-of-order completion is
possible, but not out-of-order dispatch).

Due to frequent dependences, different task orders produce
vastly different performance. However, we observe that due to
the structure of the computation, a breadth-first task order produces
a nearly optimal schedule. This is simply a loop nest that corre-
sponds to a breath-first traversal of the task dependence graph
shown in Figure 11.

Simpler orders, like following a fixed-dimension order, fail to ex-
ploit the available parallelism and are multiple times slower on small
supernodes with frequent dependences. Conversely, we explored
an aggressive dataflow scheduler that issues tasks out-of-order, and
found negligible overall performance gains overall, and less than
10% in all cases. Thus, we opt for this simple breadth-first order.
Multi-level tiling: Some matrices have supernodes whose size
vastly exceeds on-chip storage. For instance, atmosmodd’s largest
supernode (Figure 6) is 12709x12709, over 1 GB!

Handling these large supernodes efficiently requires additional
levels of tiling. In Section 4, we saw factorization is amenable to
tiling, and Spatula uses small T X T tiles (16X16 in our implemen-
tation) as its main primitive. This structure is fractal, and admits
further tiling. We introduce level-2 supertiles of configurable size,
SxS small tiles each. S is configurable, and simply adds loop nest lev-
els to the generator FSM, which produces tasks to compute outputs
supertile by supertile.

We size each supertile to fit on-chip. For example, with § = 70,
each supertile is 10 MB, with fits within Spatula’s 16 MB cache.
Most reuse happens within a supertile, allowing us to adopt the
breadth-first task order without incurring additional data move-
ment. Generators also process supertiles in breadth-first order, but
this is to simplify logic: we have evaluated other supertile orders
and performance is insensitive to ordering.

5.2 Inter-supernode scheduling

As discussed in Section 4.4, achieving high compute utilization
requires running multiple supernodes concurrently. However, ex-
ploiting inter-supernode parallelism too aggressively risks blowing
up the algorithm’s cache footprint.

Spatula’s general-purpose scheduling core enables flexibility
when designing supernode ordering algorithms. To balance paral-
lelism with memory footprint, Spatula opts for an algorithm that is
based on a post-order traversal of the tree. A post-order traversal

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Area (mm?)

PEs: 32, 16X16 double-buffered systolic PEs, 1 GHz 435

Scheduler: 16-generator and RISC-V control core 0.05

Cache: 16 MB, 32 banks, 16-way, 2 KB lines, LRU, 17.6
write-allocate, up to 256 concurrent misses

NoC: 5 32%x32 (4 TB/s) crossbars 16.7

Main memory: 2 HBM2E PHYs (1 TB/s) 29.8

Total 107.7

Table 2: Configuration and area of Spatula as evaluated.

minimizes footprint by visiting a parent supernode immediately
after all its children.

However, Spatula’s algorithm allows dynamic reordering to un-
lock inter-supernode parallelism. Specifically, code running on the
scheduling core maintains a min-heap of ready supernodes keyed
by their position in the post-order traversal. Whenever a new su-
pernode is needed, the scheduler core yields the supernode at the
root of the min-heap.

To minimize footprint, Spatula’s task dispatcher follows a biased
order: it tries to fill PEs with tasks from the generators with older
supernodes, and uses more recent ones only when older supernodes
have no ready tasks.

This policy automatically balances parallelism and footprint:
when processing a large supernode, internal parallelism is plentiful,
and the whole system focuses on that supernode, processed in cache-
fitting supertiles. Other generators may have younger supernodes,
but their tasks are not issued because the large supernode fills all
PEs. Conversely, when processing many small supernodes with
limited internal parallelism, the dispatcher overlaps the execution of
these supernodes to keep high utilization. But this is fine footprint-
wise, as each supernode is much smaller than the on-chip cache.

6 IMPLEMENTATION

We implement Spatula’s components in RTL and synthesize it us-
ing Synopsys Design Compiler on commercial 12/14nm technology
processes. We target a 1 GHz frequency. We assume 512 GB/s band-
width per PHY, similar to the NVIDIA A100 GPU, which has 2.4 TB/s
with 6 HBM2E PHYs [48]. We rely on prior work to estimate the
PHY’s area [11] and power [20].

Table 2 shows Spatula’s configuration and its area breakdown
by component. Spatula’s design is balanced between computation
and communication, with functional units taking up 43.5 mm? out
of the total 108 mm? of area.

7 EVALUATION
7.1 Experimental methodology

Evaluated systems: We compare Spatula with two baselines: an
NVIDIA V100 GPU, and an AMD Ryzen Threadripper PRO 3975WX
CPU. Note these systems have higher area and TDP than Spatula at
similar or more advanced nodes (specifically, the V100 is 815 mm?
in TSMC 12nm) [47].

Simulation: We evaluate Spatula using a cycle-level simulator. Our
simulator is based on a simulator for accelerators that has been used
in prior work, including Gamma [68] and ISOSceles [67], but with
customized timing models for PEs, scheduler, and memory system.

Axel Feldmann and Daniel Sanchez

The simulator is cycle-driven [41]: every hardware component is
modeled as an object; every cycle, each object is ticked and its
activity is simulated appropriately.

Spatula’s simulator uses synthesis-derived detailed timing mod-
els for PEs, scheduler, caches, on-chip network, and main memory.
Caches are banked, pipelined, and implement lookups with serial
tag and data accesses, and we model bank access latency and con-
tention. Banks are shared across PEs. The NoC connecting PEs and
cache banks is modeled using bit-sliced crossbars as described by
Passas et al. [51]. We model HBM2E’s structure using Micron’s spec-
ifications [43]. Each cache bank issues accesses to a single HBM2E
channel. Because each cache line is 2KB, the size of the row buffer,
memory accesses achieve high utilization.

As an optimization, PEs are simulated at a task granularity, but
we do not model the cycle-by-cycle execution of each task (e.g., the
timing of each individual ALU). Since tasks are executed systolically,
once started, each task incurs a fixed latency that depends solely on
tile size parameters encoded in the task descriptor. This enables us
to fully simulate large matrices instead of depending on sampling-
based approaches. We model all dynamic timings of PEs, e.g., each
task does not start until all its operands have been fetched.

Finally, we check functional correctness against the baselines,
and we compute power by combining activity factors from simula-
tions with synthesis results.

Selected configuration: Spatula’s default configuration uses the
parameters in Table 2. We determined this configuration by sweep-
ing the number of PEs, cache banks, HBM PHYs, and primitive tile
size. We select a Pareto-optimal configuration with reasonable area
and power. We use RTL synthesis to find the area and power of com-
ponents other than main memory; we use prior work to estimate
HBMZ2E power [20, 52] and PHY area [12, 52]. Section 7.3 evaluates
larger and smaller Spatula designs, showing good scalability.
Factorization algorithms: We compare against state-of-the-art
implementations of sparse Cholesky and sparse LU.

For sparse LU, we compare against STRUMPACK [22], a widely

used sparse LU package optimized for both CPUs and GPUs. For
sparse Cholesky, we compare against CHOLMOD [8]. CHOLMOD
is widely used and is the standard sparse Cholesky implementa-
tion used in Matlab. We compare against the most recent versions
(STRUMPACK 6.3 and CHOLMOD 7), except for CHOLMOD on
GPU, where we use version 4.6.0-beta, which incorporates batching
[54] and outperforms more recent versions. These packages use
MKL on the CPU, and cuBLAS and cuSolver on the GPU.
Input matrices: We select a representative set of matrices from
SuiteSparse [16]. We select symmetric positive-definite matrices for
Cholesky, and leave the others for LU. For both Cholesky and LU, we
select the 20 relevant matrices with the longest GPU execution time.
Hardware acceleration is most needed for matrices that are time-
consuming to factor. We find that among these top matrices, some
have extremely similar structures, such as Long_Coup_dt® and
Long_Coup_dt6. Additionally, some matrices are reduced versions
of others, such as bone®10 and bone®10_M. To achieve a more
diverse set, we select only one matrix from each of these groups.

The resulting matrix sets have diverse structures and display a
wide range of utilizations in CPU and GPU baselines. Our methodol-
ogy produced a set of matrices that contains almost all the matrices
evaluated by our baselines [22, 54].

Spatula: A Hardware Accelerator for Sparse Matrix Factorization

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Matrix Spatula vs. vs. Matrix Spatula vs. vs.

TFLOP/s GPU CPU TFLOP/s GPU CPU e ol T e
Serena 145 124 468 cagel3 144 114 177 Cholesky mmmtsolve W gather_updates
Geo_1438 140 144 607 Long Coup0 141 94 183 , 100
Emilia_923 13.9 152 614 nlpkktso 137 82 165 Y75
Fault_639 138 183 670 Ge87H76 135 69 190 9
Hook 1498 135 204 1412 atmosmodd 134 77 176 ¢ 050
nd24k 132 144 576 Transport 128 105 175 £ g5
audikw_1 3.2 259 908 language 124 189 255 @2 000
PFlow_742 129 2004 939 ML_Geer 1.6 216 236 S L
bone010 127 315 1291 appu 1.2 382 364 fﬁ’j}"ﬁ’fﬁ\ ;’\7 é".’é":,‘?o@q ﬁff\g’g’\fﬁg
StocF-1465 126 964 1814 dielFilterV3real 112 329 25. ST SESES S EESEEIL
Flan_1565 121 292 1550 CoupCons3D 111 264 29.1 vt T 5 < T ®
consph 10.6 239.2 179.0 kkt_power 11.0 29.7 24.0 LU
boneS10 98 121.0 6641 ASIC_ 680k 106 2949 456 1.00
apache2 9.6 1563 837.6 torso3 10.3 29.1 404 Y075
offshore 9.5 147.8 710.6 ohne2 9.9 30.5 321 9
inline_1 92 1210 4640 F1 96 328 334 050
bmwecra_1 8.9 120.2 3999 human_genel 8.7 37.8 315 '% 0.25
BenElechil 83 2427 6284 FullChip 65 22030 1645 £
af_0_k101 81 1695 6516 TSOPFb23g3 49 1058 303 000 S S e Sl e S S S S n A a 8o s
G3_circuit 53 2061 2273 rajat3l 48 992 458 SS § 5‘ ‘§° gcz" 640\9“' E g,«“' & Qg‘ﬁ’ RSN S@*‘ g @\&
gmean 11.0 613 212.7 gmean 10.4 36.2 32.5 }Ql N 00’,5,@0 LFS goobé'glv"} §’§/ ‘;O‘i‘/

& N

Table 3: Spatula performance on
sparse Cholesky and speedups

over GPU and CPU. GPU and CPU.

7.2 Performance

Table 3 and Table 4 compare Spatula’s performance to the CPU and
GPU baselines. Speedups are measured in terms of end-to-end exe-
cution time, and Spatula’s performance is given in TFLOP/s, which
also conveys overall utilization (Spatula has a peak throughput of
16.384 TFLOP/s).

Overall, Spatula achieves large speedups: on Cholesky, it is
gmean 61.3X/213.7X faster than the GPU/CPU; on LU, it is gmean
36.2x/32.5% faster. Spatula’s gmean speedups over Cholesky and
LU are 47.1x over the GPU and 83.1x over the CPU. Spatula’s
large speedups stem from its uniformly high utilization, gmean
10.7 TFLOP/s, 65% of peak throughput.

Performance for Spatula and the baselines depends on matrix
structure. In matrices dominated by large supernodes, such as
atmosmodd, all systems achieve high utilization, and Spatula’s
speedups over the GPU and CPU are more muted (e.g., 7.7X over
the GPU on atmosmodd). But in matrices with a more diverse mix
of supernodes, GPUs and CPUs falter, whereas Spatula still achieves
good utilization. This causes large speedups. For example, Spatula
is 22,000x faster than the GPU and 1,600 faster than the CPU on
FullChip, because Spatula achieves 6.5 TFLOP/s on this matrix
while the baselines have terrible utilization (Section 3).

7.3 Architectural analysis

Utilization: Spatula achieves high PE utilization across matrices.
Figure 16 shows a breakdown of activity in PEs, showing the cycles
that they spend on tasks of each type and stalled (due to limited
parallelism or memory access stalls). Stalls are rare (typically 5-15%

Table 4: Spatula performance on
sparse LU and speedups over

Figure 16: Spatula cycle breakdown.

of cycles), showing that Spatula’s latency-hiding mechanisms and
memory-aware scheduling are effective. As discussed in Section 4.3,
most cycles are spent in dgemm tasks, where Spatula achieves full
utilization of ALUs. gather_update tasks are the second most-
common type, and the other types are rare overall, but can consume
significant cycles in some matrices (like G3_circuit or rajat31).
Data movement: Figure 17 reports Spatula’s main-memory traffic
per matrix. The left of each bar shows the total data transferred
(bottom) and average memory bandwidth (top); each bar is broken
down by type of traffic. Loads are broken down into three categories:
compulsory loads needed to read inputs, noncompulsory loads
initiated by gather_update tasks, and noncompulsory loads
initiated by other task types. Store traffic is split between writing
results back to main memory and spilling intermediates.

Figure 17 shows that Spatula achieves high bandwidth utilization:
the average is 40% of the maximum 1 TB/s, with remarkably little
deviation across matrices (27% to 87%) given their diversity. This
is because Spatula’s memory-aware scheduling achieves similar
operational intensity across matrices.

Figure 17 also shows that Spatula avoids needless data movement.

This can be seen from the ratio of non-compulsory loads to store
spills, which is close to 1:1 across all matrices. This means that
each spilled value is read back only once most of the time, avoiding
thrashing.
Power consumption: Figure 18 shows a breakdown of Spatula’s
power consumption. On almost all matrices, more than half of
total power (including main memory) goes to PEs, showing that
thanks to Spatula’s memory-aware scheduling, these algorithms
are compute-bound.

MICRO ’23, October 28—November 01, 2023, Toronto, ON, Canada

EComp Loads ENoncomp Factor MStore Result
Cholesky ENoncomp Gather HStore Spill
§ 1007 oy of 2f @ <) <) 2 <) <) 2) 2] 2
g‘ o o o o o o o o o om o om o
0.75 ON OF O O OF OF OfF OF O O OF OF O
2] <N ol 0l © Ol ol bl ol Al Al Rl O ¥
Y — - m n n m [~ o m n (=)} (<)) -
[} mE m mE m < < m < < < m m m
o 0.50 1 it B B i RS B B B B B B B B
2 ol ko] K] G} @
1 0.25 1 of Ml R ~ o O o o oo of o o
g HEEEE HEEEEEEEE
SEFETF ST FSS
SN ster N O F IS A S AR A
9 2! & ISR S L ITLELISTIFS ©
‘0@°/’$1§E§‘/ §@o °’17Q°'\°$g/°°7/
C5 LCe TL © S g 0
LU
b 1.00 q g 4
=4 o o o
@ 0751 2 @ Q
kS b b i
2 0.50 1 = 2
=]
£ 0.25
o
F000 ISR o & > S >)
PSS SSLEPSSSETISTE S
FEFFFESETIF$GES §858F
G TR I oL @’ SO s L 7Q 7 €
SURSI G SV NG g LES s &
& ,§ NI AR 7 L 0’51
~ Y
§ ¢ e R
Figure 17: Spatula data movement.
CDF of Concurrent SNs for Chol
1.0 1 —
o
0.5 A
© f af 0 k101
G3_circuit
0.0 T T T T T T
0.0 2.5 5.0 7.5 10.0 125 15.0
Number of Concurrent SNs executing
CDF of Concurrent SNs for LU
1.0
fa
o 05 '\ FullChip
rajat31
0.0 + T T T T T T
0.0 2.5 5.0 7.5 10.0 125 15.0

Number of Concurrent SNs executing

Figure 19: CDFs of concurrently executing supernodes.

Scheduling: Figure 19 shows CDFs for the distributions of concur-
rently executing supernodes for Cholesky (top) and LU (bottom).
Each line reports results for a single matrix, and each point shows
the fraction of time (y-axis) that Spatula spends executing at most
the given number of supernodes (x-axis) concurrently.

Figure 19 shows two important points. First, different matrices
need different levels of concurrency, requiring a flexible scheduler.
Second, for many matrices, a lot of the time is spent processing
a single large supernode. This is because unlike GPU implemen-
tations, Spatula can factor small supernodes at high throughput,
removing them as bottlenecks.

Scalability: We explore the design space of Spatula implementa-
tions by sweeping the number of PEs, the primitive tile size, the
number of HBM PHYs, and the cache size.

Axel Feldmann and Daniel Sanchez

Cholesky

— 150

=

5100

g

S so0

Ry o & SHHL S &
ER PRI FIINSESITNLESIIESSS
Y NIRYV NI FFT IO ' SSE
>N et N R T ONNSIIOCSSSITYS
() DY TN g O & o ~Z (o)
TS FESES CSHESE E Sy
CELCE LK S8
LU

~ 150

=

= 100

[

g

S so0
0 3 o SO FQ & &
FEELSTSSELETSTSICESE T
FOFLLFESEFIFSCES S5&R
"/\Qwob’(l’es Qlfo /@ Q/‘L«/'*
SURSNCIFSPSNG I LES s 4
§ S TSEY s 9
~ i Y S &

S <

Figure 18: Spatula power breakdown.

Figure 20 shows the per- Design Space Exploration

formance of each design (y- 100 [Faree d

axis) as a function of area (x- Em"t_flr o ®
. 5 . ® Possible o

axis). Spatula’s design scales T%, 80|e selected :'..

gracefully to bothlargerand g °

smaller configurations, with & 607 oo °

linear performance along 5 401 .e.:t' ¢

the Pareto frontier. g ..

Comparison across GPU 20{®°° °

generations: We have com-

pared with the V100 GPU 100 200 300 400

because it is built on the Area (mm?)

same technology we synthe-
size Spatula on, but more re-
cent GPUs exist.

Table 5 shows the gmean performance of STRUMPACK on the
NVIDIA V100, A100, and H100 GPUs, and their utilization as per-
centage of peak throughput (7/19.5/51 FP64 TFLOP/s, respectively).
Newer GPUs improve throughput but utilization is low across the
board: the A100 improves V100’s utilization, reaching 4.8% (likely
due to its larger cache and FP64 tensor cores); meanwhile, the H100
barely outperforms the A100 and suffers the lowest utilization, 2.0%.

These results show that the latest GPUs still suffer from poor
utilization, and Spatula still outperforms them by a wide margin.
Moreover, if built on newer technologies, Spatula can also be scaled
to provide higher throughputs. For example, Spatula as configured
achieves a 11X speedup over the A100 (just on LU), but the A100 has
2.6X more transistors than the V100. As Figure 20 shows, Spatula
scales effectively with area.

Figure 20: Scalability

V100 PCle A100 PCIe H100 PCle
gmean GFLOP/s 272 962 1024
gmean util % 3.9% 4.8% 2.0%

Table 5: Performance of STRUMPACK on other GPUs.

Spatula: A Hardware Accelerator for Sparse Matrix Factorization

8 ADDITIONAL RELATED WORK

Section 3 described prior work that seeks to accelerate matrix factor-
ization. In this section, we discuss sparse linear algebra accelerators
designed for other workloads.

Accelerators for memory-intensive sparse kernels: Many ac-
celerators target specific vector, matrix, or tensor products, such
as sparse matrix-sparse matrix multiplication (SpMSpM) or sparse-
matrix vector multiplication (SpMV) [3, 38, 45, 49, 50, 53, 55, 66, 68,
69]. These computations differ greatly from matrix factorization:
they have low arithmetic intensity, and require significant work
to traverse and manipulate (e.g., intersect or merge) sparse data.
These accelerators focus on these aspects, which are not problems
for sparse factorization.

Sparse systolic arrays: Some accelerators extend systolic arrays
to perform sparse matrix multiplication [28, 63]. The systems are
orthogonal to Spatula’s PEs, which mulitiply dense matrices, but
extend systolic arrays to other kernels.

Sparse-dense accelerators: ExTensor [29] and Tensaurus [57] are
programmable accelerators that support a wide range of tensor
products, including kernels with one sparse and one dense input.
These operations often have higher compute intensity, but tensor
products lack the challenging data dependences that arise in sparse
matrix factorization. These accelerators are not designed to handle
these dependences and have a substantially different structure from
Spatula.

CPU-CGRA systems: Systems like Tartan [44], DySER [25], BE-
RET [26], and C-Cores [62] integrate spatial reconfigurable ar-
rays into general-purpose cores. In principle, some of these ar-
rays could be configured to execute Spatula tasks. However, the
general-purpose core adds large area costs and limits task dispatch
throughput. In Section 3.2 and Figure 5, we show that existing CPU
implementations already have low utilization. Giving CPUs DySER-
style execution units would not fix the dispatch problems, leaving
these extremely underutilized.

9 CONCLUSION

Sparse matrix factorization dominates performance in many scien-
tific computing applications. Existing architectures are ill-equipped
to handle the challenging data dependences and load imbalance in-
duced by different sparse matrix structures. We have presented Spat-
ula, an architecture designed to accelerate sparse LU and Cholesky
factorization, achieving gmean 47x speedup over state-of-the-art
GPU implementations. By working across the hardware-software
interface, Spatula’s efficiency gains make a large class of numeric
algorithms practical.

Spatula relies on several novel techniques that are applicable
beyond our specific implementation. Spatula avoids the parallelism,
load imbalance, and data movement bottlenecks of GPUs by (1) us-
ing short tasks that process small tiles as the basic unit of work;
(2) adopting flexible scheduling hardware that handles data depen-
dences and dispatches these short tasks at high throughput; and
(3) leveraging a novel scheduling algorithm that balances paral-
lelism and memory footprint. GPUs or other domain-specific accel-
erators could also adopt these techniques to achieve high through-
put on sparse factorization as well as on applications with similar
features.

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

ACKNOWLEDGMENTS

We thank Yifan Yang, Quan Nguyen, Victor Ying, Hyun Ryong Lee,
Nithya Attaluri, Shabnam Sheikha, Fares Elsabbagh, Alex Krastev,
Joel Emer, our anonymous reviewers, and our anonymous shepherd
for their feedback on the paper. We would also like to thank Theo
Diamandis, Shiv Sundram, and Peter Feldmann for their help in
understanding factorization algorithms and motivating the work
as well as Mark Hamilton for his help with benchmarking. This
research was funded in part by the National Science Foundation
under grant CCF-2217099, and by a Wistron research grant.

REFERENCES

[1] Ahmad Abdelfattah, Pieter Ghysels, Wajih Boukaram, Stanimire Tomov, Xi-
aoye Sherry Li, and Jack Dongarra. 2022. Addressing irregular patterns of matrix
computations on GPUs and their impact on applications powered by sparse
direct solvers. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC).

Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. 2001.

MUMPS: a general purpose distributed memory sparse solver. In Applied Parallel

Computing.

Bahar Asgari, Ramyad Hadidi, Tushar Krishna, Hyesoon Kim, and Sudhakar

Yalamanchili. 2020. Alrescha: A lightweight reconfigurable sparse-computation

accelerator. In Proceedings of the 26th IEEE international symposium on High

Performance Computer Architecture (HPCA-26).

[4] David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex Woo,
and Maurice Yarrow. 1995. The NAS parallel benchmarks 2.0. Technical Report
NAS-95-020. NASA Ames Research Center.

[5] Shane Barratt and Stephen Boyd. 2022. Covariance prediction via convex opti-
mization. Optimization and Engineering (2022).

[6] Richard P Brent and Franklin T Luk. 1982. Computing the Cholesky factorization
using a systolic architecture. Technical Report 82-521. Cornell University.

[7] Xiaoming Chen, Yu Wang, and Huazhong Yang. 2013. NICSLU: An adaptive sparse
matrix solver for parallel circuit simulation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (IEEE TCAD) 32, 2 (2013).

[8] Yanging Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajaman-
ickam. 2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factoriza-
tion and update/downdate. ACM Transactions on Mathematical Software (TOMS)
35, 3 (2008).

[9] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format abstrac-

tion for sparse tensor algebra compilers. Proceedings of the ACM on Programming

Languages 2, OOPSLA (2018).

Vidushi Dadu and Tony Nowatzki. 2022. TaskStream: Accelerating task-parallel

workloads by recovering program structure. In Proceedings of the 27th inter-

national conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-XXVII).

Sal Dasgupta, Teja Singh, Ashish Jain, Samuel Naffziger, Deepesh John, Chetan

Bisht, and Pradeep Jayaraman. 2020. Radeon RX 5700 Series: The AMD 7nm

Energy-Efficient High-Performance GPUs. In Proceedings of the IEEE International

Solid-State Circuits Conference (ISSCC).

Sal Dasgupta, Teja Singh, Ashish Jain, Samuel Naffziger, Deepesh John, Chetan

Bisht, and Pradeep Jayaraman. 2020. Radeon RX 5700 Series: The AMD 7nm

Energy-Efficient High-Performance GPUs. In Proceedings of the IEEE International

Solid-State Circuits Conference (ISSCC).

Timothy A Davis. 2004. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern

multifrontal method. ACM Transactions on Mathematical Software (TOMS) 30, 2

(2004).

[14] Timothy A Davis. 2006. Direct methods for sparse linear systems. SIAM.

[15] Timothy A Davis. 2013. Algorithm 930: FACTORIZE: An object-oriented linear
system solver for MATLAB. ACM Transactions on Mathematical Software (TOMS)
39, 4 (2013).

[16] Timothy A Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011).

[17] Timothy A Davis and E Palamadai Natarajan. 2011. Sparse matrix methods for
circuit simulation problems. In Scientific Computing in Electrical Engineering
(SCEE 2010).

[18] Timothy A Davis and Ekanathan Palamadai Natarajan. 2010. Algorithm 907:
KLU, a direct sparse solver for circuit simulation problems. ACM Transactions on
Mathematical Software (TOMS) 37, 3 (2010).

[19] Iain S Duff and John K Reid. 1983. The multifrontal solution of indefinite sparse
symmetric linear. ACM Transactions on Mathematical Software (TOMS) 9, 3 (1983).

[20] Wei Ge, Mengnan Zhao, Cheng Wu, and Jun He. 2011. The Design and Implemen-
tation of DDR PHY Static Low-Power Optimization Strategies. In Communication
Systems and Information Technology.

[2

B3

[10

[11

=
)

(13

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

[21] Thomas George, Vaibhav Saxena, Anshul Gupta, Amik Singh, and Anamitra R
Choudhury. 2011. Multifrontal factorization of sparse SPD matrices on GPUs. In
Proceedings of the IEEE International Parallel & Distributed Processing Symposium
(IPDPS).

[22] Pieter Ghysels and Ryan Synk. 2022. High performance sparse multifrontal
solvers on modern GPUs. Parallel Comput. (2022).

[23] John R Gilbert and Tim Peierls. 1988. Sparse partial pivoting in time proportional
to arithmetic operations. SIAM F. Sci. Statist. Comput. 9, 5 (1988).

[24] Gene H Golub and Charles F Van Loan. 2013. Matrix computations. JHU press.

[25] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. 2011.
Dynamically specialized datapaths for energy efficient computing. In Proceed-
ings of the 17th IEEE international symposium on High Performance Computer
Architecture (HPCA-17).

[26] Shantanu Gupta, Shuguang Feng, Amin Ansari, Scott Mahlke, and David August.
2011. Bundled execution of recurring traces for energy-efficient general purpose
processing. In Proceedings of the 44th annual IEEE/ACM international symposium
on Microarchitecture (MICRO-44).

[27] Azzam Haidar, Ahmad Abdelfatah, Stanimire Tomov, and Jack Dongarra. 2017.
High-performance Cholesky factorization for GPU-only execution. In Proceedings
of the General Purpose GPUs (GPGPU-10).

[28] XinHe, Subhankar Pal, Aporva Amarnath, Siying Feng, Dong-Hyeon Park, Austin
Rovinski, Haojie Ye, Yuhan Chen, Ronald Dreslinski, and Trevor Mudge. 2020.
Sparse-TPU: Adapting systolic arrays for sparse matrices. In Proceedings of the
34th ACM International Conference on Supercomputing (ICS).

[29] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. 2019. ExTen-
sor: An accelerator for sparse tensor algebra. In Proceedings of the 52nd annual
IEEE/ACM international symposium on Microarchitecture (MICRO-52).

[30] Nachiket Kapre and André DeHon. 2009. Parallelizing sparse matrix solve for
SPICE circuit simulation using FPGAs. In Proceedings of the International Confer-
ence on Field-Programmable Technology (FPT).

[31] Kshitij Khare, Sang-Yun Oh, Syed Rahman, and Bala Rajaratnam. 2019. A scal-

able sparse Cholesky based approach for learning high-dimensional covariance
matrices in ordered data. Machine Learning 108, 12 (2019).

[32] Seid Koric and Anshul Gupta. 2016. Sparse matrix factorization in the implicit
finite element method on petascale architecture. Computer Methods in Applied
Mechanics and Engineering (2016).

[33] Seid Koric, Qiyue Lu, and Erman Guleryuz. 2014. Evaluation of massively par-
allel linear sparse solvers on unstructured finite element meshes. Computers &
Structures (2014).

[34] Hsiang Tsung Kung and Charles E Leiserson. 1979. Systolic arrays (for VLSI). In
Sparse Matrix Proceedings.

[35] Jean-Yves L’Excellent. 2012. Multifrontal methods: parallelism, memory usage and
numerical aspects. Ph.D. Dissertation. Ecole Normale Supérieure de Lyon.

[36] Xiaoye S Li. 2005. An overview of SuperLU: Algorithms, implementation, and
user interface. ACM Transactions on Mathematical Software (TOMS) 31, 3 (2005).

[37] Xiaoye S Li and James Demmel. 1999. A Scalable Sparse Direct Solver Using
Static Pivoting.. In Proceedings of the Ninth SIAM Conference on Parallel Processing
for Scientific Computing (PPSC).

[38] Zhiyao Li, Jiaxiang Li, Taijie Chen, Dimin Niu, Hongzhong Zheng, Yuan Xie, and
Mingyu Gao. 2023. Spada: Accelerating Sparse Matrix Multiplication with Adap-
tive Dataflow. In Proceedings of the 28th international conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXVIII).

[39] Joseph WH Liu. 1992. The multifrontal method for sparse matrix solution: Theory

and practice. SIAM Rev. (1992).

Robert F Lucas, Gene Wagenbreth, John J Tran, and Dan M Davis. 2012. Multi-

frontal sparse matrix factorization on graphics processing units. Technical Report

ISI-TR-677. USC Information Sciences Institute.

[41] Carl J. Mauer, Mark D. Hill, and David A. Wood. 2002. Full-system timing-first
simulation. In Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems.

[42] Paul Messina. 2017. The Exascale Computing Project. Computing in Science &
Engineering (2017).

[43] Micron. 2018. High Bandwidth Memory with ECC. https://media-
www.micron.com/-/media/client/global/documents/products/data-
sheet/dram/hbm2e/8gb_and_16gb_hbm2e_dram.pdf.

[44] Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkataramani,

Seth C. Goldstein, and Mihai Budiu. 2006. Tartan: Evaluating Spatial Computation

for Whole Program Execution. In Proceedings of the 12th international conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-XII).

Francisco Muifioz-Martinez, Raveesh Garg, Michael Pellauer, José L Abellan,

Manuel E Acacio, and Tushar Krishna. 2023. Flexagon: A Multi-Dataflow Sparse-

Sparse Matrix Multiplication Accelerator for Efficient DNN Processing. In Proceed-

ings of the 28th international conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-XXVIII).

[46] Tarek Nechma and Mark Zwolinski. 2014. Parallel sparse matrix solution for
circuit simulation on FPGAs. IEEE Trans. Comput. (2014).

[40

[45

Axel Feldmann and Daniel Sanchez

NVIDIA. 2017. NVIDIA Tesla V100 GPU Architecture. https://images.nvidia.
com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.
NVIDIA. 2020. NVIDIA DGX Station A100 System Architecture.
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia- dgx-
station-a100-system-architecture-white-paper.pdf.

Subhankar Pal, Aporva Amarnath, Siying Feng, Michael O’Boyle, Ronald Dres-
linski, and Christophe Dubach. 2021. SparseAdapt: Runtime control for sparse
linear algebra on a reconfigurable accelerator. In Proceedings of the 54th annual
IEEE/ACM international symposium on Microarchitecture (MICRO-54).
Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying
Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge, and
Ronald Dreslinski. 2018. OuterSPACE: An outer product based sparse matrix
multiplication accelerator. In Proceedings of the 24th IEEE international symposium
on High Performance Computer Architecture (HPCA-24).

Giorgos Passas, Manolis Katevenis, and Dionisios Pnevmatikatos. 2012. Crossbar
NoCs are scalable beyond 100 nodes. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (IEEE TCAD) (2012).

Rambus Inc. 2020. White paper: HBM2E and GDDR6: Memory Solutions for AL
Gengyu Rao, Jingji Chen, Jason Yik, and Xuehai Qian. 2022. SparseCore: Stream
ISA and processor specialization for sparse computation. In Proceedings of the
27th international conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XXVII).

Steven C Rennich, Darko Stosic, and Timothy A Davis. 2016. Accelerating sparse
Cholesky factorization on GPUs. Parallel Comput. (2016).

Fazle Sadi, Joe Sweeney, Tze Meng Low, James C Hoe, Larry Pileggi, and Franz
Franchetti. 2019. Efficient SpMV operation for large and highly sparse matrices
using scalable multi-way merge parallelization. In Proceedings of the 52nd annual
IEEE/ACM international symposium on Microarchitecture (MICRO-52).

Robert Schreiber. 1982. A new implementation of sparse Gaussian elimination.
ACM Transactions on Mathematical Software (TOMS) 8, 3 (1982).

Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi,
and Zhiru Zhang. 2020. Tensaurus: A versatile accelerator for mixed sparse-dense
tensor computations. In Proceedings of the 26th IEEE international symposium on
High Performance Computer Architecture (HPCA-26).

Matthew L Staten, Steven] Owen, Suzanne M Shontz, Andrew G Salinger, and
Todd S Coffey. 2012. A comparison of mesh morphing methods for 3D shape
optimization. In Proceedings of the 20th International Meshing Roundtable.

Yuzhi Sun, Z] Wang, and Yen Liu. 2007. Efficient implicit non-linear LU-SGS ap-
proach for viscous flow computation using high-order spectral difference method.
In Proceedings of the 18th AIAA Computational Fluid Dynamics Conference.
Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2020. Efficient
processing of deep neural networks. Synthesis Lectures on Computer Architecture
(2020).

James E Thornton. 1964. Parallel operation in the Control Data 6600. In Proceed-
ings of the October 27-29, 1964, Fall Joint Computer Conference, Part II: Very High
Speed Computer Systems.

Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. 2010.
Conservation Cores: Reducing the Energy of Mature Computations. In Proceed-
ings of the 15th international conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XV).

Yang Wang, Chen Zhang, Zhiqiang Xie, Cong Guo, Yunxin Liu, and Jingwen Leng.
2021. Dual-side sparse tensor core. In Proceedings of the 48th annual International
Symposium on Computer Architecture (ISCA-48).

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. Advances in neural information
processing systems (NeurIPS) (2016).

Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony Nowatzki.
2020. A hybrid systolic-dataflow architecture for inductive matrix algorithms.
In Proceedings of the 26th IEEE international symposium on High Performance
Computer Architecture (HPCA-26).

Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu,
and Yuan Xie. 2021. SpaceA: Sparse matrix vector multiplication on processing-
in-memory accelerator. In Proceedings of the 27th IEEE international symposium
on High Performance Computer Architecture (HPCA-27).

Yifan Yang, Joel S Emer, and Daniel Sanchez. 2023. ISOSceles: Accelerating Sparse
CNN s through Inter-Layer Pipelining. In Proceedings of the 29th IEEE international
symposium on High Performance Computer Architecture (HPCA-29).

Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. 2021. Gamma:
Leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication.
In Proceedings of the 26th international conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XXVI).

Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020. SpArch:
Efficient architecture for sparse matrix multiplication. In Proceedings of the 26th
IEEE international symposium on High Performance Computer Architecture (HPCA-
26).

	Abstract
	1 Introduction
	2 Background
	2.1 Basic Cholesky factorization
	2.2 Challenges of sparse factorization
	2.3 Multifrontal sparse factorization
	2.4 LU factorization

	3 Sparse Factorization is Inefficient on Prior Architectures
	3.1 GPU implementations
	3.2 CPU implementations
	3.3 Other accelerators

	4 Spatula Architecture
	4.1 Tiles are Spatula's primitive datatype
	4.2 Task-based programming model
	4.3 Processing elements
	4.4 Hardware scheduler
	4.5 Memory hierarchy

	5 Scheduling
	5.1 Intra-supernode scheduling
	5.2 Inter-supernode scheduling

	6 Implementation
	7 Evaluation
	7.1 Experimental methodology
	7.2 Performance
	7.3 Architectural analysis

	8 Additional Related Work
	9 Conclusion
	Acknowledgments
	References

