arXiv:2304.13830v1 [stat. ML] 26 Apr 2023

Adaptation to Misspecified Kernel Regularity in Kernelised Bandits

Yusha Liu
Carnegie Mellon University
yushal @cs.cmu.edu

Abstract

In continuum-armed bandit problems where the
underlying function resides in a reproducing ker-
nel Hilbert space (RKHS), namely, the kernelised
bandit problems, an important open problem re-
mains of how well learning algorithms can adapt
if the regularity of the associated kernel func-
tion is unknown. In this work, we study adaptiv-
ity to the regularity of translation-invariant ker-
nels, which is characterized by the decay rate of
the Fourier transformation of the kernel, in the
bandit setting. We derive an adaptivity lower
bound, proving that it is impossible to simultane-
ously achieve optimal cumulative regret in a pair
of RKHSs with different regularities. To verify
the tightness of this lower bound, we show that
an existing bandit model selection algorithm ap-
plied with minimax non-adaptive kernelised ban-
dit algorithms matches the lower bound in de-
pendence of 7', the total number of steps, ex-
cept for log factors. By filling in the regret
bounds for adaptivity between RKHSs, we con-
nect the statistical difficulty for adaptivity in
continuum-armed bandits in three fundamental
types of function spaces: RKHS, Sobolev space,
and Holder space.

1 Introduction

We consider the problem of continuum-armed bandit, a
sequential decision-making problem, where the goal of a
learning algorithm is the optimization of a black-box re-
ward function, by selecting query points and eliciting re-
wards from the underlying function sequentially. The per-
formance of algorithms is measured by the cumulative re-
gret, which is the sum of differences between the maxi-
mum of the underlying function and the reward incurred by
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the learning algorithm across all the time steps. Optimiz-
ing cumulative regret requires from the learning algorithms
a delicate exploration-exploitation tradeoff. The learn-
ing algorithm needs to simultaneously exploit high-reward
regions and explore uncertain regions. The exploration-
exploitation tradeoff is often dependent on complexity
of the function space to which the reward function be-
longs. In most theoretical analyses of cumulative regret
of algorithms, complexity of the function space is as-
sumed to be known. Many studies use this assumption
to design algorithms that achieve minimax optimal perfor-
mance when the function space is known, for example, for
linear functions (Dani et al., 2008; Abbasi-Yadkori et al.,
2011), functions residing in reproducing kernel Hilbert
spaces (RKHS) (Valko et al., 2013; Janz et al., 2020) or
drawn from Gaussian Processes (Srinivas et al., 2009;
Chowdhury and Gopalan, 2017), as well as neural net-
works functions (Zhou et al., 2020; Kassraie and Krause,
2021).

However, despite the theoretical convenience, it is not al-
ways realistic to assume access to the underlying function
space. For this reason, some recent works in continuum-
armed bandits have started to develop adaptive algorithms
for when the function space is misspecified (see Section 2
for a summary of related works). The best possible per-
formance of adaptive algorithms is equivalent to algo-
rithms that know the parameter. An algorithm that simul-
taneously achieves minimax cumulative regret rates with-
out access to the parameter is said to achieve minimax
adaptivity. While minimax adaptivity is possible under
the simple regret minimization setting, recent works have
proved that it is not always achievable for cumulative re-
gret minimzation (Locatelli and Carpentier, 2018), due to
the exploration-exploitation dilemma.

When the reward function resides in an RKHS induced
of some kernel function k, the problem also is referred
to as kernelised bandit. In this work, we focus on an
important and open problem in adaptivity in kernelised
bandits, precisely, adaptivity to unknown kernel regular-
ity. Recently, there has been a line of theoretical works
that study adaptivity under the kernelised bandit setting,
such as adaptivity to the length scale parameter and the
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RKHS norm (Berkenkamp et al., 2019) for a given ker-
nel, and adaptivity to e-misspecification, where the un-
derlying function is e-approximated by functions in an
RKHS (Bogunovic and Krause, 2021). To the best of
our knowledge, the work of Kassraie et al. (2022) is most
closely related to our setting. They consider the setting
where the underlying function lies in an RKHS but the ker-
nel is unknown. Kassraie et al. (2022) assume that the ker-
nel is a sparse combination of known base kernels and de-
sign algorithms with sublinear regret guarantees under this
assumption. A more detailed discussion of the prior works
on adaptivity in kernelised bandit is continued in Section 2.

Adaptivity of any algorithm with respect to the explicit reg-
ularity of the kernel function k, however, remains an un-
solved problem. We characterize the regularity of k us-
ing a general notion: the decay rate of the Fourier trans-
form of %k (Section 3). In contrast to, for example, adapt-
ing to the RKHS norm which measures the smoothness
of a function with respect to a fixed kernel, we adapt to
the regularity of kernels which controls the differentia-
bility of functions in the associated RKHSs. The kernel
regularity thus determines the statistical complexity of the
associated learning problem in a more fundamental way.
In estimation, optimization (including simple regret min-
imization) (Bull, 2011) and cumulative regret minimiza-
tion tasks (Srinivas et al., 2009; Kandasamy et al., 2019;
Janz et al., 2020), the kernel regularity affects the minimax
regret rate through exponential dependence on 7', as op-
posed to the RKHS norm which only affects the rate poly-
nomially. We focus on this fundamental problem of how
well bandit algorithms can adapt to the unknown kernel
regularity.

The contributions of this work are summarized as follows:

1. We derive the first lower bound on adaptivity to ker-
nel regularity, expressed in terms of the kernel Fourier
transformation decay rate, for kernelised bandit prob-
lems. This lower bound serves as an impossibility
result, that no algorithms can simultaneously achieve
minimax optimal performance in RKHSs with differ-
ent regularities.

2. For RKHSs of the Matérn family (Matern et al., 1960)
of kernels, we prove that CORRAL (Pacchiano et al.,
2020b), an existing model selection algorithm, applied
with (non-adaptive) minimax optimal kernelised ban-
dit algorithms, matches the adaptivity lower bound' in
the dependence on 7'. In contrast, another model se-
lection algorithm RBBE Pacchiano et al. (2020a) does
not match the lower bound.

3. By comparing the upper and lower bounds derived by
this work to existing adaptivity results, we draw con-
nections between the statistical difficulty of adaptivity

"Except for log factors.

in three types of function spaces: RKHSs, Sobolev
spaces, and Holder spaces.

A summary of our results amongst existing results can be
found in Table 1. Our main results (Section 4.2) are stated
for more general kernels but in Table 1 only results with
Matérn-v (Definition 4) kernels are shown as an exam-
ple, for clear comparisons. For adaptive results, the values
v and R are input parameters to the adaptive algorithms,
such that they achieve (non-adaptive) minimax regret rates
if the true parameter satisfies v = v (for Matérn RKHS)
or « = R (for Holder spaces). We use O to denote the
asymptotic regret rate of 7. O omits dependence on other
parameters such as the radius of the RKHS ball B (Sec-
tion 3), any constant factors, and log factors of 7" unless
otherwise specified.

Relationship with Neural Bandits. The kernelised ban-
dit formulation has implications for optimization of more
complex functions under the bandit setting as well, such
as neural network functions. The Neural Tangent Ker-
nel (NTK) literature (Jacot et al., 2018; Arora et al., 2019;
Leeetal., 2019; Bietti and Bach, 2020; Chen and Xu,
2020) argue that over-parameterized neural networks can
be approximated by functions in an RKHS of some com-
posite kernel named the Neural Tangent Kernel, given
that the network is sufficiently wide and the training is
lazy (Chizatet al., 2019). Recent advances in this field
establish interesting connections between the structure of
a neural network and the regularity of its corresponding
NTK. For example, Vakilietal. (2021a) consider wide
fully-connected neural networks with activation functions
with smoothness s. The show that the RKHS of the NTK
of such a network is norm equivalent to, or embedded in,
the RKHS of a Matérn-v kernel with v = s — 1. The
value of v dictates the differentiability of functions in the
RKHS. Hence, the neural network functions considered
in Vakili et al. (2021a) are approximated by functions in
the RKHS of a Matérn-v kernel.> These connections imply
that adaptivity to the kernel regularity in kernelised bandits
can potentially be extended to adaptivity to the structure of
neural networks (such as smoothness of the activation func-
tions considered in Vakili et al. (2021a)) in neural network
bandits.

The rest of the paper is structured as follows. In Section 2,
we discuss relevant prior works. In Section 3 we state the
problem formulation. In Section 4 we present the main re-
sult of this paper, a lower bound on adaptivity to kernel
regularity. In Secion 5 we discuss upper bounds of exist-
ing adaptive algorithms and whether they match the lower
bound. In Section 6 we connect adaptivity to kernel regu-
larity and adaptivity to Holder exponents. Finally, we dis-

2The result in Corollary 3 of Bietti and Bach (2020) can be
thought as a special case of when s = 1, since the activation
function considered is ReLLU.
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Table 1: Summary of Our Results and Comparison to Existing Results

Regret RKHS of Matern-v: Hy, ,(X) =

W'+ (X) | Holder Space: ()

Relationship: Hy, ,(X) = W" T2 (X) € B*=Y(X)

~ v+4d
Non-adaptive minimax O(T=+1)

6 (T%‘L)

Valko et al. (2013),Scarlett et al. (2017) Liu et al. (2021),Wang et al. (2018)

22

= TF20F

0] (T<1+2ﬂ><1+“>), forv < v
Adaptive | Upper bound | 5. Input to adaptive algorithm.
d=1 This work (Theorem 7)

~ I+2R+Ra

O (Tawmis ) fora < R
R: Input to adaptive algorithm.
Liu et al. (2021, Theorem 8)

~ 12420400 ~
Q| TG0 |, forv < v

This work (Corollary 5)

Lower bound

~ 1242Ra+Ra

Q (Tt | fora < R<1

Locatelli and Carpentier (2018, Theorem 3)

cuss the limitations and future directions of our work in
Section 7.

2 Related Work

Kernelised Bandit In kernelised bandit problems, the re-
ward function lies in a reproducing kernel Hilbert space
(RKHS). This problem has been studied by many previous
works, under the assumption that the kernel and other pa-
rameters (such as the upper bound on the function’s RKHS
norm) are known. Valkoetal. (2013) take a frequen-
tist approach and design a SuperKernelUCB algorithm,
based on applying the kernel trick to the (Sup)LinREL and
(Sup)LinUCB algorithms (Auer, 2002; Chu et al., 2011).
The same technique is later used in extension to neural net-
works by Kassraie and Krause (2021), who propose Sup-
NTKUCB which works with neural networks. SupKer-
nelUCB achieves O(/T~7) regret where 7 is the max-
imum information gain between 7" total observations and
the underlying function. For common kernels such as the
Matérn-v kernels, this regret is minimax optimal in its de-
pendence on T (except for log factors), by the lower bound
provided later in Scarlett et al. (2017). However, SupKer-
nelUCB relies on a batching technique that makes the al-
gorithm performs poorly in practice (Calandriello et al.,
2019; Janz et al., 2020). In the (parallel) Bayesian set-
ting (the Gaussian Process bandit problem), the underly-
ing function is assumed to be drawn from a GP. GP-UCB
algorithm (Srinivas et al., 2009; Chowdhury and Gopalan,
2017; Janz et al., 2020) achieves the same regret bound as
SupKernelUCB O(+/T~r) in the GP setting but becomes
suboptimal (sometimes with linear regret rate) in the RKHS
setting with a O (yp\/T) regret (Vakili et al., 2021b).

Adaptivity in Kernelised Bandit This problem we con-
sider falls under the scope of model misspecification
in bandit setting, which has been studied for linear
functions and Holder-smooth functions (Du et al., 2019;
Foster et al., 2019; Lattimore et al., 2020; Zhu and Nowak,
2021; Locatelli and Carpentier, 2018; Liu et al., 2021). For

Holder functions, in particular, Locatelli and Carpentier
(2018); Hadiji (2019) provide a lower bound indicating
that it is impossible to achieve minimax adaptivity to the
Holder exponent. In this work, we convey a similar mes-
sage with respect to the regularity of RKHS. For adap-
tivity in kernelised bandit problems, Berkenkamp et al.
(2019) propose an algorithm with sublinear regret for
when the lengthscale parameter (Definition 4) and up-
per bound on the RKHS norm (equation 4) are unknown.
Neiswanger and Ramdas (2021) develop robust confidence
sequence under the Bayesian framework to use in adaptive
methods for GP optimization when the prior mean and/or
covariance parameters are unknown. They conduct simula-
tions for optimization on functions drawn from GPs but do
not provide explicit regret analyses. Bogunovic and Krause
(2021) develop methods for e-misspecification, where the
underlying function can be arbitrarily non-smooth, but is
approximated by functions in a (known) RKHS with an e-
error in infinity norm. They prove a Q(eT") lower bound for
this setting and derived a matching upper bound. However,
note that between two function spaces, the approximation
error is a constant value and does not depend on 7'. Since a
constant € means an inevitable linear regret (2(eT")), the
e-misspecification setting (Bogunovic and Krause, 2021)
does not directly apply to adaptation to the kernel param-
eters. In the Meta-learning regime, Kassraie et al. (2022)
consider RKHS with unknown kernels that are sparse com-
binations of known base kernels and proves that a Meta-
learned kernel can yield sublinear regret. However, since
the kernel is Meta-learned, it relies on offline tasks as train-
ing data. We do not assume the availability of offline data
in the (fully online) bandit setting.

To summarize, prior works (to the best of our knowledge)
only consider parameters that influence the regret rate in
polynomial factors while our focus is on the regularity pa-
rameter which affects the rate in the exponent of 7'

General Model Selection for Bandit Another line of re-
cent works on model selection in bandit settings makes
less stringent assumptions on the underlying function.
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These works consider algorithms based on a “corralling”
mechanism, where a master algorithm ‘“corrals” several
base algorithms as arms and each base algorithm selects
actions with different principles. The base algorithms
usually assume different function spaces. Agarwal et al.
(2017); Pacchiano et al. (2020b) propose an algorithm
named CORRAL where the master algorithm is based
on online mirror descent. In certain cases, CORRAL
performs comparably to the best base algorithm running
standalone.’ Pacchiano et al. (2020a) propose the Regret
Bound Balancing and Elimination (RBBE) which uses a
(simpler) stochastic master algorithm and an additional
base-algorithm-elimination step. We refer readers to Sec-
tion 5 for details about these two methods and their perfor-
mance in our problem setting.

3 Problem Setting

Problem Formulation Consider the problem of zeroth-
order black-box optimization under bandit feedback. The
learner interacts with a stochastic environment in a sequen-
tial manner. This problem is also formulated as stochas-
tic continuum-armed bandit. At time step ¢ € {1,...,T},
the learner chooses an action z; from the compact domain
X = [0, 1]¢, and receives a reward y;. The reward is a noisy
observation of the underlying reward function f : X — R:

yr = f(@e) +me, (D

where the noise variable 7; follows a zero-mean sub-
Gaussian distribution (see Theorem 3). The optimization
objective is the cumulative (pseudo-)regret defined as fol-

lows.
T

Rp =Y f(z") = f(x), 2

t=1

where x* is the global maximizer of f, unknown to the
learner. Results in this paper are expressed in expected cu-
mulative (pseudo-)regret E[Ry], where the expectation is
taken over the randomness of {x; }¢—1. 7.

Kernelised Bandit We consider the setting where f is
square-integrable and resides in an RKHS Hj, of a sym-
metric, positive-definite kernel £ : RY x R — R. The
RKHS is unique given the kernel (Wainwright, 2019, The-
orem 12.11). We denote the RKHS of ¥ on domain X
as Hy(X). In this work, we restrict our attention to
translation-invariant kernels, precisely, kernels that sat-
isfy the following: k(z,2’) = k(xz — 2’), for some func-
tion k : R — R. For a translation-invariant kernel,
the regularity of functions in the RKHS is captured by
the Fourier transform of the kernel. Precisely, we have

3 Arora et al. (2021) also study the problem of corralling bandit
algorithms in the stochastic setting, but only finite-armed case is
considered.

the following definition when the domain is R?. Let
J(w) denote the Fourier transformation (Wendland, 2004;
Williams and Rasmussen, 2006) of a function g as Vw €
R

Hiy(RY) = {f € Lo(RT) NC(RY): 3)

B2

b = 2m) 2 [ E s < .
When the domain X is a subset of R?, # still captures
the regularity of Hj(X), via a norm equivalency result
that holds as long as X has a Lipschitz boundary. De-
tails can be found in Section 4.1, Lemma 1. We write
I1f 1% 2 l.fll24,(x) for simplicity. We apply the com-
mon assumption (Srinivas et al., 2009; Valko et al., 2013)
that the RKHS norm of f is upper bounded by a value
B,0 < B < o¢:

feMu(X,B):={f:feHr|flr<B}. &)

We refer to Hj (X, B) as a ball in the RKHS with ra-
dius B.

4 Main Result: Adaptivity Lower Bound

In this section, we present the main result, a lower bound
on adaptivity to the regularity of kernel (Theorem 3). The
regularity of a translation-invariant kernel is expressed as
the decay rate of its Fourier transformation (equation 9).
We next instantiate this idea with a norm equivalency re-
sult between an RKHS and a Sobolev space. The norm
equivalency result is dependent on the kernel Fourier de-
cay rate. The proof of Theorem 3, in turn, relies on this
norm equivalency as well.

4.1 Norm Equivalency Between RKHS and Sobolev
Space

Consider integer-order Sobolev space W™P(X) where
m, p are integers greater or equal to 1. We define the fol-
lowing notions for a multi-index vector @ = (a7 ...aq):

la|=01 4+ Fag,al = ol .agland 2% = 27" .. 2Pl
lo| . .
Let D(®) = am(’fw denote the multivariate mixed par-
R

tial weak derivative. The Sobolev space and corresponding
Sobolev norm (|| - || p,x) are defined as follows.

W™P(X) = {f € L,(X) : DIV f € L,(R),V]o] < m},

&)

=

flpi= | 3 [IDOs@paz) . ©

loo|<m
We refer to m as the order of the Sobolev
space. Furthermore, define the j-th order semi-

norm (Adams and Fournier, 2003, Definition 4.11)
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|-|,p,& with integer j < m, which is the sum of £, norm
of its j-th weak derivatives.

"=

g =3 / D@ f@pd | . @)

In correspondence to the RKHS ball (equation 4), we define
a Sobolev ball with radius L as the set of functions whose
m-th order seminorm are upper bounded by L.

WX, L) = {f € WP(X) : |flmpx <L} (8)

When p = 2, the Sobolev space is equivalent to the
RKHS of a translation-invariant kernel k. This connec-
tion plays an important role in the analysis. We consider
only Sobolev spaces with p = 2, and hence abbreviate
Wm(X) = W™2(X). The precise norm equivalency is
introduced in the following lemma.

Lemma 1. Wendland (2004, Corollary 10.48) Let k : R x
R? — R be a translation-invariant kernel function such
that k(-,-) = k(- — ) for k € L1(R?). Suppose Q € R?
is a domain with Lipschitz boundary. Suppose k has the
Jollowing polynomial decay rate of s, for s > d/2,s € N,

(14 wll3) ™ < k(w) < c2(1+ [lw]3) %,V € R,
©)

for some constants 0 < c¢1 < co. Then, the associated
RKHS H () is norm equivalent to the Sobolev space
W™ (Q) with m = s.

Having established the equivalency between RKHS and
Sobolev spaces, we further introduce some notions to quan-
tify the relationship between Sobolev seminorm (which is
the radius of Sobolev balls) and RKHS norm in the follow-
ing lemma.

Lemma 2. Suppose that m is a positive integer larger than
d/2. Let Q be a finite-width domain with Lipschitz bound-
ary. Let Wy"*(Q) denote the closure of C§°(Q) (set of
functions that have compact support in §) and, together
with their infinite order of partial derivatives, are contin-
uous) in W™P(Q) Adams and Fournier (2003). Then, the
m-th Sobolev seminorm of f can be bounded by its RKHS
norm with respect to a translation-invariant kernel k with
Fourier decay rate m. Precisely,

Q|f|m-,2 < Hf”?‘(k < 6|f|m,27 (10)

for some constants 0 < ¢ < ¢.
The constants ¢, ¢ are used globally in this work and appear

in the lower bound in Section 4.2. The proof of Lemma 2
can be found in Appendix A.1.

4.2 Lower Bound on Adaptivity to Kernel Regularity

Theorem 3 presents our lower bound for adapting between
a pair of RKHSs of different (kernel) regularities. An intu-
itive interpretation of the theorem is as follows. Consider
a nested pair of balls in two RKHSs. Suppose both kernels
satisfy the conditions in Lemma 1 but with different Fourier
decay rates: m; € Nand mo € Nsuchthat) < m; < ma.
If an algorithm that is oblivious to the true regularity value
somehow achieves a small (for example, minimax optimal)
regret on all functions inside the (smoother) RKHS ball
with parameter ms, this algorithm will suffer a price of
larger (suboptimal) regret on at least one function inside
the (rougher) RKSH ball with parameter m;. For the lower
bound analysis, we consider d = 1 and leave the extension
of the lower bound to d > 1 as a future direction (Sec-
tion 7).

Theorem 3. Consider the problem setting in Section 3 with
noises {n: }+=1..T that are %-subgaussian. Let R be a posi-
tive number, let my, ma be two positive integers that satisfy
mq < me. There exist two positive values By and Bs, such
that the following statement is true. Consider an algorithm
that achieves in the RKHS of a kernel k., with Fourier de-
cay rate mo the following regret upper bound.

sup E[Rr] < R.
FE€H b, (X,Ba2)

1)

Then, the regret of this algorithm in a (less smooth) RKHS
of another kernel k,,, with Fourier decay rate m; is lower
bounded by the following. Suppose that functions in the
function spaces have bounded Ly norm.*

sup E[Rr] > (12)
fEHkml (X,B1)

mq—1/2

! (Cln) <£>ﬁ o

32 c

Here, C(myq) denotes a constant that depends on my.

It is worth noting that, although the lower bound has a fac-
tor of T', the regret is not necessarily linear in 7', because R
also depends on 7" and in fact usually ranges from O(\/T )
to O(T) The full version of this theorem is presented as
Theorem 9 in Appendix A.2, where we state the full con-
straints on the radius values By and Bs. Since By and By
are only upper bounds on the RKHS norm and not the ker-
nel regularity that we focus on, we present only the concise
version here to show the adaptivity difficulty with respect
to regularity parameters m; and ms.

4.2.1 Proof Sketch

The proof of Theorem 3 consists of two key parts. The
first part is constructing the hypothesis functions, in which

*Functions in Sobolev spaces and RKHSs are square-
integrable.
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we borrow ideas from lower bounds in regression prob-
lems (Tsybakov, 2004). The second part is lower bound-
ing the cumulative regret, given the constructed hypothesis
functions, where we follow Hadiji (2019, Section 2.2). In-
tuitively, the second part shows that if any player achieves a
small regret on all the smoother functions, then it inevitably
incurs large regret on the rougher functions in the space, be-
cause of its disproportionally small amount of exploration.
The method in Hadiji (2019) is itself an improved version
of the adaptivity lower bound for Holder spaces proposed
in Locatelli and Carpentier (2018).

4.2.2 A Sobolev Version of the Lower Bound

It is convenient to construct functions with compact sup-
port and finite Sobolev semi-norms from an infinitely-
differentiable base function, such as the bump func-
tion (Tsybakov, 2004). On the other hand, directly con-
structing functions with finite RKHS norms (Scarlett et al.,
2017, Section III.A) involves inverse Fourier transforma-
tion of the bump function and thus leads to wavelet-
like functions with non-compact support. Therefore, it is
more natural for us to first consider functions in (integer-
order) Sobolev spaces as hypothesis functions, and then
use the norm equivalency result between Sobolev spaces
and RKHSs to prove the lower bound. More precisely, the
hypothesis functions constructed in the proof reside in a
Sobolev ball W™ (X, L), for some (integer) order m and
radius L. Via the norm equivalency (Lemma 2), those func-
tions also resides in a RKHS ball of a kernel with Fourier
decay rate m.

As a result, there is a Sobolev version of the adaptivity
lower bound. Informally, let m;, mo be two positive in-
tegers such that my > m;. If an algorithm achieves a Rre-
gret upper bound in the smoother Sobolev space W2 (X),
then its regret over functions in W™ (X) is lower bounded

by Q(f%_:,ﬂlllf}//2 T). We formally state the Sobolev ver-
sion of the adaptivity lower bound in Theorem 11 in Ap-
pendix B.1. The two lower bounds share the same proof
structure, connected via the norm equivalency in Lemma 1.

4.2.3 Impossibility Result for Matérn Kernels

For the Matérn-v family of kernels (Matern et al., 1960), an
implication of Theorem 3 is that no algorithm can achieve
minimax adaptivity between two RKHSs if they have dif-
ferent regularity. Therefore, we also refer to this lower
bound as an impossibility result for adaptivity to the kernel
regularity. We formally define Matérn-v family of kernels
in Definition 4.

Definition 4. The Matérn-v kernel and its Fourier transfor-

mation are defined as follows for dimension d.

kMatérn,V(xax/) (13)
_ 2 (Vv —llp Y2z =l
0D l v l ’

(14)

N 2v (i d

vt o (@) = e (g + wll3) "¢+, (15)

where ¢; = Qd”d/zrr((l:,;rl%z)(b)u, J,, is the modified Bessel

function of the second kind, [ is the length-scale, and v > 0
is the regularity parameter. In this work, we assume for
simplicity that the length-scale is set to o< v/2v.

The Fourier transformation of a Matérn kernel with regular-
ity parameter v decays with a rate of v + % (equation equa-
tion 15). Therefore, we can instantiate the impossibility
result for Matérn kernels. The result is presented in Corol-
lary 5. Precisely, for 0 < v; < vy, if an adaptive algorithm
achieves minimax regret rate on a Matérn RKHS with reg-
ularity 1, then it has a strictly suboptimal regret rate on the
RKHS with v.

Corollary 5. Suppose the problem is the same as defined
in Theorem 3. Let v1, vy be real numbers that satisfy 0 <
v < vy and vy + % € N, vy + % € N. There exist two
positive values By, Ba, such that the following statement is
true. Suppose an algorithm oblivious to the true regularity
parameter value achieves the following minimax optimal
regret > on My, ., (X, B2),

~ vo+1
sup E[RT] = O (T2—V22+1) ’ (16)
ferMmér/x,uz (X7B2)

then the regret of this algorithm on RKHS
Hisaim,,, (X5 B1) is lower bounded by the following.

</ vivat2updl
s E[Ry] =0 (Toeim ) (7)
ferMmém,Vl (X,B1)

The proof of Corollary 5 is an application of Theorem 3 and
can be found in Appendix B.2. The cumulative regret rate
in 17 is suboptimal compared to the minimax rate which
is O(Tﬂ%) (see Section 5.1 for non-adaptive minimax
rates). Therefore, Theorem 3 is an impossibility result for
adaptivity to kernel regularity with Matérn kernels.

S Upper Bounds of Adaptive Algorithms

We consider two adaptive algorithms particularly: COR-
RAL from Agarwal et al. (2017); Pacchiano et al. (2020b)
and Regret Bound Balancing and Elimination (RBBE)
from (Pacchiano et al., 2020a). The two algorithms (i) can

3Omitting the dependence on the upper bound on RKHS norm.
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be applied to the problem of adaptation to kernel regularity
and (ii) have explicit regret guarantees in this setting.

The adaptive algorithms, however, need base algorithms
that are non-adaptive minimax optimal. We first provide
an overview of such non-adaptive algorithms for kernelised
bandit in Section 5.1. Then, we derive adaptivity upper
bounds of CORRAL and RBBE in Section 5.2 and Sec-
tion 5.3 respectively. For concreteness, we only consider
RKHS of Matérn-v kernel (Definition 4) in this section. To
match the lower bound, we set d = 1. Comparison of the
upper bounds to the lower bound (Theorem 3), shows that
CORRAL (coupled with minimax optimal base algorithms)
can match the lower bound in dependence on 1" between
certain pairs of values for v.

5.1 Overview: Non-adaptive Minimax Algorithms

We discuss the theoretical performance of algorithms de-
veloped for kernelised bandits in Section 5.1.1. We show
that a recent algorithm that is designed for continuum-
armed bandit in Holder spaces (Liu et al., 2021) is also op-
timal over functions in RKHS of Matérn kernels in Sec-
tion 5.1.2.

5.1.1 SupKernelUCB and GP-UCB for RKHS

Recall that the lower bound (in terms of 7') on cumu-
lative regret for kernelised bandit with Matérn-v kernels
Enatém, v 1S Q(T%), as proved by Scarlett et al. (2017).
There are mainly two types of algorithms applicable for
the kernelised bandit problem: (i) GP-UCB (Srinivas et al.,
2009) and its variants (Chowdhury and Gopalan, 2017;
Janz et al., 2020), and (ii) KernelUCB and its Sup-
variant Valko et al. (2013). The GP-UCB-style algorithms
display a non-trivial empirical advantage over the imprac-
tical SupKernelUCB. That being said, GP-UCB is subop-
timal theoretical upper bounds for certain types of kernels
under the RKHS assumption, including for Matérn-v ker-
nels. In the RKHS of a Matérn kernel kvia¢m,, GP-UCB

~ v+ 3
achieves a regret of O(T'%71).5. On the other hand, Sup-
KernelUCB matches the lower bound with a regret rate of

O(T#%1).
5.1.2 UCB-Meta for Holder Space

Apart from the kernelised bandit algorithms discussed
above, Liuetal. (2021) propose an algorithm for
continuum-armed bandits in Holder space with exponent
a > 1 with regret upper bound that matches existing lower

SThe suboptimality of GP-UCB is discussed more extensively
in Vakili et al. (2021b)

"The analysis of SupKernelUCB was originally for finite-
armed setting, but Cai and Scarlett (2021, Appendix A.4) state
that it can be extended to the continuum-armed setting where
X = [0,1]%, suffering only a O(d log(T")) term in the regret.

bounds (Wang et al., 2018; Singh, 2021) except log factors.
This algorithm is named UCB-Meta. We show in Theo-
rem 6 that UCB-Meta is naturally minimax optimal in de-
pendence on T over the RKHS of certain kernels.

Theorem 6. Consider the kernelised bandit problem where
f € Miyun, (X, B), where v > 0 and v + 3 € N. Then,
UCB-Meta achieves the following regret upper bound,

s E[Re] =0 (T#%),  as)
ferMmém,u(X7B)

where O omits dependence on radius of the RKHS ball B,
constant factors depending on v, and log factors of T

The regret rate shown in Theorem 6 is derived from the
result that My, (X) is embedded in a Holder space
Y*(X) with « = v. The proof can be found in Ap-
pendix B.3. Singh (2021) have shown a similar argument
while focusing mainly on the connection between Besov
and Holder spaces.

5.2 CORRAL as Adaptive Algorithm

The original CORRAL algorithm for model selection in
the bandit setting is first proposed by Agarwal et al. (2017).
The original CORRAL requires that modifications be made
to each base algorithm for them to satisfy a stability condi-
tion (Definition 3 in Agarwal et al. (2017)). These mod-
ifications, however, have to be made on a case-by-case
basis. Therefore, we use the smoothed version of COR-
RAL which is proposed by Pacchiano et al. (2020b). The
smoothed CORRAL puts a smoothing operation between
the master algorithm and base algorithms and thus does
not require modifications be made to the base algorithms.
Smoothed CORRAL operates only with stochastic environ-
ments, which is satisfied by our assumptions (Section 3).
For simplicity, we refer to the smoothed version of COR-
RAL as CORRAL. CORRAL uses an adversarial online
mirror descent algorithm as the master algorithm.

Recall that a non-adaptive minimax kernelised bandit algo-
rithm achieves O(T%) regret (Section 5.1), if instanti-
ated with the correct parameter v. By plugging in the regret
of base kernelised bandit algorithms in the general result in
Theorem 5.3 in Pacchiano et al. (2020b), we derive a adap-
tive upper bound for CORRAL in Theorem 7. CORRAL
achieves sublinear 6(T") regret on all possible values of v*
(See Theorem 7). Oppositely, a non-adaptive algorithm in-
stantiated with parameter value © does not have sublinear
regret guarantees if the true parameter v* < ©, because
the underlying function space My, .. 18 not contained in
algorithm’s hypothesis space. In Theorem 7, 7 € w is a pa-
rameter that is specified by the user and can be interpreted
as the parameter that specifies the space on which the algo-
rithm is configured to achieve minimax regret.

Theorem 7. Consider the kernelised bandit problem where
[ € Hipn (X, B*), v* + 1+ € Nandv*, B* unknown to
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the learner. Let w = {(v1, B1), (v2, B2), ..., (vam, Bum)}
be a list of candidate input value pairs such that u
specifies a nested set of RKHS: Hpy,,,, (X,B1) C
Hbsasim vy (X5 B2) C oo i, (X, Bar). Suppose that
(v*,B*) € u. Let A = {A;,i € [M]} be a set of (non-
adaptive) minimax optimal kernelised bandit algorithms
with anytime regret guarantees, each instantiated with the
regularity and radius (v;, B;) € u. The regret from run-
ning CORRAL with input total time steps T' and learning

rate n = O(T_llr—;f') applied with base algorithms from A
is as follows.?

~ 140 12420400*
sup E[Rr]=0 (Tmax(lwﬂ’(1+2ﬂ)(1+u*>)> )
ferMmém,u*

(19)

The proof of Theorem 7 can be found in Appendix B.4.
This result indicates that CORRAL achieves (i) minimax

. ~ B2 W . .
optimal rate O (T T+zv* ) in terms of T, if the underlying
. o . WARES A
kernel regularity v* = 7; (ii) suboptimal rate O (T 1+2ﬂ) if
~ 14+204ov*
v* > U and (iii) suboptimal rate O (T @F290+%) ) when
v* < v. Let V], v; satisfying vi < v3 be two possible

values of the true regularity that both satisfy the assump-
tions in Theorem 7. Suppose vi < U < vox. By Theo-

_ 12 204 0]
rem 7, CORRAL achieves regret O (T (+22)(1+v1) ) if the

. WSt AN
true parameter is v; and O (1'1+27 | if the true parameter

is v5. By Theorem 3, the lower bound over the rougher
142040v]

RKHS with v is Q (T““W””T) ) The lower bound is
matched by the upper bound in the exponent of T'.

In conclusion, CORRAL matches the adaptivity lower
bound in the dependence on 1" except log factors, be-
tween any pair of regularity values (v],v3), such that
vi >o,vi+ 3 eNandvj < v,15 + 5 €N

Finally, note that in this subsection, the assumption is that
the true parameter(s) are contained in the candidate set u.
Hence, Theorem 7 reflects the cost of adaptation (model
selection), which is the difficulty of selecting the best base
learner out of all candidates. If, however, the true param-
eter is not contained in u, then adaptive algorithms will
incur another type of cost, namely the cost of “discretiza-
tion”. This cost is generated from the difference between
the true parameter and the closest value in u. Using an
exponential (Pacchiano et al., 2020b) or linear (Liu et al.,
2021) grid for w can usually incur a small cost of “dis-
cretization”.

80 omits dependence on radius of the RKHS ball B, constant
factors depending on v, and log factors of T'.

5.3 RBBE as Adaptive Algorithm

The regret bound balancing and elimination (RBBE) algo-
rithm proposed in Pacchiano et al. (2020a) achieves near-
optimal regret in several adaptivity problems with linear
function spaces. RBBE can be thought of as using a
stochastic master algorithm that selects the base algorithm
with the smallest candidate cumulative regret at each time.
Therefore, it enjoys advantages such as gap-dependent re-
gret bounds and high probability regret bounds. Unlike
CORRAL, it does not need a user-specified parameter to
control the space over which the algorithm will achieve
minimax optimal regret on. Instead, the algorithm achieves

simultaneously on all possible values of v* the regret up-
~ 144v*420*2
per bound of O(T+w*+a*2). 1If we plug this upper

bound in Theorem 3 for v* = v, then a lower bound of
(vi+1)2+2vfvs?

Q(T @3*+D7¢i+1 ) is incurred for when v* = v}, given
that 0 < v; < v3. The upper bound of RBBE is larger than
the lower bound in the exponent of 7'. A more detailed de-
scription of the RBBE algorithm and a formal statement of
its adaptivity upper bound can be found in Appendix A.3
and Theorem 10 therein.

To summarize, although both CORRAL and RBBE as
adaptive algorithms can achieve sublinear regret simultane-
ously on different kernel regularity, CORRAL has a better
theoretical adaptivity in this problem. While RBBE fails
to match the lower bound, CORRAL achieves the adaptiv-
ity lower bound for certain pairs of v values for Matérn-v
kernels. °

6 Connection with Adaptivity to Holder
Exponents

The adaptivity lower bound in Theorem 3 specifies the dif-
ficulty of adapting between two RKHSs of kernels with
polynomial Fourier decay rate m; and mg, where 0 <
my1 < ma,m; € N,my € N. Recall that R is the regret
upper bound on the smoother RKHS with parameter m..
The lower bound on the RKHS specified by m; depends

~ . omqp—1/2
inversely on R through an Q(T - R~ EERvE ) dependence.

Shifting the perspective from RKHS to Holder
spaces, the adaptivity difficulty has been studied
by Locatelli and Carpentier (2018); Hadiji (2019), for
a subset of values for the Holder exponent .. Precisely,
Theorem 3 in Locatelli and Carpentier (2018) provides

an Q(T - R_%) dependence as the lower bound, for
adapting between two Holder spaces with exponents
aq, o satisfying o < ag < 1.1 Here, R is the upper
regret bound on the smoother Holder space ¥2(X’). We

°It is our conjecture that the stochastic master used by RBBE
(as opposed to the adversarial one in CORRAL) limits its model
selection ability in certain cases.

1%Proving the adaptivity rate for when the exponents are larger
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know by Lemma 1 that an RKHS #y,, (X) with kernel
Fourier decay rate m; is norm equivalent to Sobolev space
W™ (X). Coupled with the Sobolev embedding theorem
for integer-order Sobolev spaces (Adams and Fournier,
2003, Theorem 5.4), it is straightforward to see that
Hk,,, (X) C %(X), where v = my — § (Appendix B.3).

Note that we have the following equivalence between the

lower bounds if oy = mq1 — %

my—1/2

TR ™77 o TR™ a0, (20)

Therefore, for continuum-armed bandit problems, the sta-
tistical difficulty of adapting to kernel regularity of RKHS
is the same as adapting to Holder exponents, if the Holder
exponents represent the smallest Holder spaces that the
RKHSs embed in.

7 Discussion

We discuss several future directions, stemming from the
current limitations of our work. Our current theoretical re-
sults are for the domain with d = 1,!! so it is of interest to
extend the current results to d > 1. Instead of partitioning
the domain X = [0, 1] into M sub-intervals, one needs to
partition the hypercube [0, 1]¢ into M sub-cubes and con-
struct the hypothesis functions with appropriate Fourier de-
cay correspondingly. Such an extension is possible akin
to Scarlett et al. (2017).

Another direction is to derive adaptivity upper bounds
in terms of Fourier decay as well and verify the tight-
ness of the lower bound in more cases than Matérn
kernels.  Since we currently investigate translation-
invariant kernels, a more long-term direction is the in-
vestigation of adaptivity to rotation-invariant kernels, to
connect to NTKs which are usually rotation-invariant
dot-product kernels (Bietti and Bach, 2020; Chen and Xu,
2020; Vakili et al., 2021a). Finally, this study is of theoret-
ical nature, so it remains an open problem to empirically
study adaptivity to kernel regularity, based on the insights
provided by our lower and upper bounds.
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A AUXILIARY

A.1 Proof of Norm Equivalency Between RKHS Norm and Sobolev Seminorm

Proof of Lemma 2. 1t is shown by Wendland (2004, Theorem 10.12, Corollary 10.48) that: if a translation-invariant kernel
k with Fourier decay rate s (Lemma 1), then the associated RKHS 7, defined on a Lipschitz domain €2 is norm equivalent
to the Sobolev space Wm:S’Q(Q). The norm equivalency indicates that there exist two constants ¢, ¢z, 0 < ¢1 < cg, such
that for f € 7 (£2), the following statement holds.

cillfllm.2.x < [ fll < c2ll fllm.2.x- 2D

Now, we examine conditions under which the norm equivalency can be extended between the seminorm (equation 7)
of Sobolev spaces and the RKHS norm. As in Lemma 2, let W;"?(X’) denote the closure of C§°(X) in W™P(X).12
Adams and Fournier (2003, 6.26) give the following result: if X has finite width, then for f € Wén P the seminorm |~|m7p
is equivalent to the standard norm || - ||, . The one-dimensional interval domain X we consider trivially satisfies the
Lipschitz boundary condition, hence we have the following result.

Lemma 8. If a function lies in Wy"'* (X)) where X = [0, 1], then there exists a constant K < 0o, such that

|'|m,p,X < H ’ Hm,p,/’\’ < K|'|m,p,?(' (22)

Combining Lemma 8 with the norm equivalency in equation 21, we recover the inequalities in Lemma 2.

clflme,x < |flla, < Kealflm2,x. (23)

A.2 The Full Statement of Theorem 3

We present the full version of Theorem 3, which fully states the constraints on the radius B and By in Theorem 3. The
proof is deferred to Appendix B.1.

Theorem 9. Consider the bandit problem setting (Section 3) with noises {n:}1=1.. that are %-subgaussian. Further

assume that the Lo norm of functions f we consider is upper bounded by finite value vy < oo: ||f|l2 < vo. Let R be
a positive number, let ma > my > 0 be two positive integers, and let By, By be two positive variables that satisfy the
following conditions.

3m1+% L~ mg—my 'L
¢max 3 C(my) ™ 2R~ K(my,ma, v, X)c ™2 By

<B; < Cl(mI,m2)_(m1+%)é(—ml+%)3;nl+%le_% (24)
where C(mq) and C'(m1, ma) are constants whose exact forms are defined in equation 58 and equation 64 in the proof.
K(mq, ma, 0, X) is a constant depending on my, ma, the domain and ~0.13

Consider any algorithm that achieves in RKHS ball Hy,,, , (X, B2) the following regret upper bound, where the kernel ky,,
has Fourier decay rate ms. ~
sup  E[Rr] <R, (25)
JE€H b, (X,B2)

then, the regret of this algorithm in a (less smooth) RKHS ball induced by another kernel k,,, with Fourier decay rate m;
is lower bounded by the following.

mq—1/2

1
1 O mi1+1/2 B mi+1/2 . m3—1/2
sup E[RT]Z—( (ml)) 1 <—1> U RTmEAT (26)
J €My, (X.B1) 8\ 32 ¢

Here, we borrow the definitions from Adams and Fournier (2003).
BThe exact value of K (m2, 7o, X) is deferred to the proof of Theorem 4.14 in Adams and Fournier (2003).
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A.3 Adaptivity Upper Bound of RBBE

At each round, RBBE (Pacchiano et al., 2020a) first performs an elimination step to remove misspecified base algorithms,
then selects a base algorithm among the remaining ones. The elimination step tests whether each base algorithm is well-
specified, that is, whether each base algorithm’s hypothesis space contains the underlying function. If a base algorithm
fails the test, then it is eliminated. In the selection step, the master algorithm simply chooses the base algorithm with the
smallest presumed cumulative pseudo-regret. Therefore, RBBE can be thought of as using a stochastic master algorithm
(remarked in Pacchiano et al. (2020a) as well), instead of using an adversarial one as CORRAL (Agarwal et al., 2017;
Pacchiano et al., 2020b) does.

The general regret of RBBE is stated in terms of the play ratio, which is the ratio between the number of times a base algo-
rithm is played and the number of times that the best base algorithm is played. To instantiate the play ratio, Pacchiano et al.
(2020b) considers only the setting where the regret rates of all base algorithms (if well-specified) have the same exponents
on T. That is, the regret rates are 7° with a fixed 3 € (0, 1] across all base algorithms. However, this setting does not align
with our setting where, for base algorithm ¢ with input value v;, the exponent of 7" in its (well-specified) regret bound is
21:;5;11. Hence, we make changes to the proof in Pacchiano et al. (2020b) to apply it to our problem setting. The result of
RBBE is stated in Theorem 10 and the proof is deferred to Appendix B.5.

Theorem 10. Suppose that the problem setting, the set of candidate values u and the set of base algorithms A are the
same as defined in Theorem 7. The regret of RBBE applied with base algorithms in A is as follows, with high probability
1-4.

~ 144v*420*2
sup Ry = O(T+a7+a?), 27
ferMmém,V*

B PROOFS OF RESULTS

B.1 Proof of Theorem 9

As explained in Section 4.2.1, the proof of Theorem 9 arises from the proof of a parallel Sobolev version of the adaptivity
lower bound. We formally state the Sobolev version of adaptivity lower bound below.

Theorem 11. Consider the bandit problem setting (Section 3) with noises {n }1—1..r that are %-subgaussian. Further

assume that the Lo norms of functions f we consider are upper bounded by the finite value vy < oo: || fll2 < vo. ' Let R
be a positive number, let mo > my > 0 be two positive integers, and let Ly, Lo be two positive variables that satisfy the
following conditions:

3mits L -
max § — C(m1)"™ 2R~ K (m1, ma, 70, X)La™2 28)
<L < O/(ml,mg)_(mﬁ%)L;ﬂl‘*‘%le—%

where C(my), C'(my, ma) are constants whose exact forms are defined in equation 58 and equation 64 respectively.
K(m1,ma,v0, X) is a constant depending on m1, ma, the domain and ~yo, the upper bound on the Ly norm of functions
in the Sobolev ball."> Consider an algorithm that achieves in the Sobolev ball W™2 (X, Ly) a regret upper bound of R.

sup  E[Ry] <R, (29)
fewm2:2(Xx,Ly)

then, the regret of this algorithm in the less-smooth Sobolev ball W™ (X, L1) is lower bounded by the following.

mp—1/2
1/C R I S 2V
sup E[RT] > = ( (ml)) 1 lel}rl/Z R mi+1/2 T. (30)
fGWml(X-,Ll) 8 32

In the next part, we present the proof of Theorem 11, which also leads to Theorem 9. The values B;, By in Theorem 3
should be set as follows.

By =cL1,Bs; =cLo, (31)

4By our assumption on the underlying function f in equation 5, we know that it has bounded £ norm.
>The exact value of K (m2, o, X) is deferred to the proof of Theorem 4.14 in Adams and Fournier (2003).
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where ¢ is the global constant in Lemma 2.

Proof. Consider the Sobolev version of the theorem (Theorem 11). Recall that the adaptivity is between balls in two differ-
ent spaces, the “rougher” space W™ (X, L1) and the “smoother” space W"2(X, Ly). First, we consider the constraints
between L; and Lo such that W™2(X, Ly) C W™ (X, Ly). In other words, f € W™2(X, Ly) should be sufficient
condition for f € W™ (X, Ly). Theorem 4.14 in Adams and Fournier (2003) and references therein give the following
interpolation upper bound between orders of smoothness for a function f € W™ (X),

mg—mq

| Fliso < K(may X) (| flms) ™ [1flls ™2 (32)

where K (g, X) is a constant depending only on mg and the domain X. If f € W™2(X, Ls), then by definition (equa-
tion 8) we know that | f|,,, < Lo. Using equation 32, we have that:

mo—mq

| flmy2 < K (ma, X)o7 ||l 7 (33)

To ensure that the two Sobolev balls are nested, L; should be larger than the right-hand side of the above inequality. The
L5 norm of f is upper bounded by || f||2 < 7o. Plugging it in equation 33 incurs an lower bound for L;:

mo—mq mq

Ll ZK(mtha’yf)uX)LQ% :K(m27X)70 m2 L2m_2'

Having established W™2 (X, Ly) C W™ (X, Ly), we start with the formal proof of the adaptivity lower bound.

Function Construction Part I. This part is adapted from the regression lower bounds in Tsybakov (2004, Section 2.6).
Let M be a positive integer parameter, which is the number of hypothesis functions we need. The value of M remains to
be determined later in the proof. In the following, we shall assume M > 2 and eventually prove that this assumption holds.
Further, define bandwidth h = Q—}M Let A > 0 be a parameter that represents the maximum of the M hypothesis functions
in W™:2( X, L1). The value of A remains to be determined later in the proof same as M.

Partition the 1-dimensional domain X = [0, 1] into M + 1 bins: Hy__ s, such that Us—g. 3 Hs = X. Define the bins and
their middle points Zg .. as as follows.

3

s—1 s s—1
Ho=|2"2 | ,=2"2 fors=1...M
[2M’2M]’I om0 P

1 _ 3
H(): |:§,1:| , Lo = Z
We use the bump function as a base function, then we shift the base function to construct the hypothesis functions. The
bump function is defined as follows. It has compact support on (—1,1). Function K(-) is infinitely differentiable with
continuous derivatives (Tsybakov, 2004, (2.34)).

-1
5 (|2 < 1). 34)

Ko(z) = exp(m

Next, define M + 1 functions as follows, each one has support inside one of the M + 1 bins.

fS:ahml‘%K(x_hjs), s=1...M, (35)
fo=alm bR, (36
where
K(u) = Ko(bu), (37
K (u) = Ko(bu). (38)

a,b,a, b are non-negative parameters to be defined later. We require that b > 2 and b > 4h, so that the support of every
function f is inside H,, Vs < M. Lemma 13 ensures that the requirements on b, b hold, by posing constraints between A
and M.

We introduce the following lemma to specify requirements on the variables a, b, a, b, with respect to A and Ly, Ls. This is
to make sure that values of a, b, a, b guarantee that f; € W™ (X, L1), V1 < s < M and f, € W™2(X, Lo).
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Lemma 12. Let K to denote the maximum value of K(-), a constant less than 1. Let I,,, , I,,, denote the Lo norms of the
2 2
m1, mo-th order derivatives of K(-), respectively. That is, I, = fil [Kéml)(u)} du and I,,,, = fil [KémZ)(u)} du.

Then, if A is the maximum of fs in W™ (X, Ly), forall s = 1... M and A /2 is the maximum of fo in W™2>%(X, Ly),
the function parameters a, b, a, b satisfy the following:

AQRM)™ 3 |K;
A(2M)™"3 2K}

a

o
Il

< LK > Tt

A2(2M )21,

< AL3K;? > T
A2(2M)2m2=1],,. ’

o
IN

SH
IN

(39)
(40)

(41)

(42)

Proof of Lemma 12. The constraints on a, @ follows trivially from the requirement that f = Afors =1... M, f§ =

A/2, and pluggingin h = 1/2M.

The constraints on b, b are to ensure that

||fs(m1)H2 <Ly, s=1...
17572 o < Ly

M

We first consider requirement for |\f§m1)|\2 <Ly, s=1...M.Fors>1,

LFEm13

1 2
= /0 [f(ml) (w)} dx
om

:/01 [ahml—éaxml (K(x_hxs)ﬂzdx
e [ (s o)
= a2h2m11/01 [(%)legm” <%(x—i:s)>]2dx

- b(1-z,
u:%(:xfxs) a2h71b2m1 /}L( )
b

3 (715)

1 2
= g%pPm—t / {Kéml)(u)} du = a2b2m171[m1.
1

{Kéml)(u)} ’ %du

The second to last step follows because the bump function Ky has compact support on (—1,1) and the upper and lower

limits of the integral satisfy:

—~
—
|
I
w
S—
>
~
|
|
»
|
S—
V
—

oo
n
Kl
w
S—
I
|
S
—
Vo)
|
|
N—
IN
|
—

Therefore, for || f{™"||2 < L2 to hold, we need a2b*™~11,, < L2. This leads to

1
L2 2my —1
b< L
N (CLQIml)

LG\
(o)

(43)

(44)
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Similarly, for s = 0, we have the following.

1782113

1
:/ [f("”)(x)rd:v

0

! ~ 1 mo—1 amz ~ T —Xo ?
:/O [ah ST (K( - ))} dx
/1a2h2m2—1 o K(i’(m_%)) Qdfc
/o Oxm2 0 h

1/3\™ b ’

:~2h2m2—1/0 l(%) Kém2)(%(x—xo))] dz

= g2p?m=—1 /1 {Kém”(u)} du

—1

— d2b2m271]m2 .

Note that in the third last equation, the integral upper and lower limit satisfy:

b, 3 3D
a-9>1, —2 <,
AT
For the above ||f5(m2) |2 to be less or equal to L2, we need:
o (LB N\TET (L ABRK)? \ T )
=\ @1, ~ \A2(2n)2me17,,

O

Combining Lemma 12 with what we required of the function parameters: b > 2 and b > 4h, we then need the following
requirements for the parameter A. Intuitively, the following lemma says that the functions cannot be too “wavy”, so that
they stay within the corresponding balls in Sobolev spaces.

Lemma 13. Forb > 2,b > 4h 1o hold, A needs to satisfy the following constraints with respect to M and the smoothness
constants L+, Lo.

ALy < &g

=~ 22m171Mm1—%\/m7

K*
AJLy < 0

- 22m272\/E'

Proof of Lemma 13. First, consider function fs when s > 1. Using the conclusions in Lemma 12 we need the following,

(46)

(47)

L(K5)?

> b2m171 > 22m171.
A2(2M)2m 1], = =

What directly follows is the constraint on A:

At o LA

= Qdmi—2\2mi-1], (48)
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Similarly, for fy, we need

L3(K5)?
A2(2M)2ma 1],

>b27TL2 1 > (4h)277l2 1 22m2 1M1 2m2

This leads to second constraint on A:
oo DBUKG)?

O

Function Construction Part II. We have defined fj ... fas in Part I, and identified the constraints between the floating
parameters M and A, with respect to given parameters m1, mso, L1, L2 and known constants K§, I, , I, In this second
part, we define M + 1 bandit problems by defining their reward functions ¢, s = 0... M in the following way:

¢o = fo, (50)
¢s:fs+f07 V1§5§M (51)

It is obvious that the reward functions satisfy the following conditions. The conditions below are the Sobolev version. They
are necessary for the latter half of this proof. Similar conditions were required in Locatelli and Carpentier (2018); Hadiji
(2019), see below for details.

1. The function ¢ has peak value A/2 and functions ¢, 1 < s < M all have peak value A.
2. The function ¢9 € W™2:2(X, Ly) and functions ¢5 € W™2(X, L1),1 < s < M.

3. Fors > 1, ¢s(x) = ¢o(z) forz ¢ Hy. Also, ¢% — pgs(x) > % when x ¢ H,. Here ¢% = max,cx ¢s(x).

RKHS Version of the Proof. We have now defined M + 1 hypothesis functions in two balls in two different Sobolev
spaces. By (i)the norm equivalency between Sobolev seminorm (Lemma 2) and the RKHS norm; and (ii) the relationships
between Bi, L; and By, Ly in equation 31, the reward functions also satisfy the following conditions. The conditions
below are the RKHS version.

1. The function ¢ has peak value A/2 and functions ¢, 1 < s < M all have peak value A.
2. ¢o € Hi,,, (X, B2), ¢s € Hp,, (X, B1),for1 < s < M.

3. Vs > 1, ¢5(x) = ¢o(z) whenz ¢ H,. Also, ¢ — ¢(z) > & whenz ¢ H,.

Lower Bounding Cumulative Regret (Proof Sketch). This part shows the cumulative regret of an algorithm on functions
¢1 ... ¢ is lower bounded by a rate that depends reversely on R, if this algorithm has a regret upper bound of R on
reward function ¢g. The proof in the following directly follows from Hadiji (2019) and relies on Pinsker’s inequality. We
write down a proof sketch here for completeness, readers interested in the full version can refer to Hadiji (2019, Section
F). We use their notations in this part unless otherwise specified. Those include Ny _(T') which is the number of times
an algorithm selects an action in bin H; ]P’Z() which is the probability distribution of trajectory {x:, y¢ }+=1.. 7, when the
reward function in the bandit setting is defined by ¢, for 0 < s < M. Similarly, E,[-] is the expectation with respect to
probability Pg.

By definitions of the reward functions, when the underlying function is ¢, for some s > 1, the cumulative regret is lower
bounded by

A
Ry > E(T —E4 [Ny (T)]) (52)

For s = 0, the regret is lower bounded by

A M
Rro> 7 > Eo[Nn,, (T)]. (53)

s'=1
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Pinsker’s inequality is used to establish a relationship between the two lower bounds defined above. The equation 54 is a

core step of the proof.
1 1 1
TIES [Nu, (T)] - TEO[NHS (T)] <4/ EDKL(PgaPz)' (54)

Calculation of KL distance Dxy,(+, ) relies on condition 3 of ¢ . as, as well as the assumption that the noise is 1/4-
subgaussian. The result is that the KL distance is bounded by the following.

Dy (P§,PY) = 2B [Ny, (T)] A% (55)

With the above, a key intermediate result is reiterated below.

M
1 T 1 A Rry
N Rr > A (1- = - [ 20
MsleT’_2 ( M M ) (56)

Recall that our Theorem 11 assumes that SUD feyym2.2 (X, Lo) Ry < R, and since ¢g € sz’z()(, L), it follows directly
that R o < R. Therefore, the above inequality becomes

M
1 T 1 A-Rro
— > - — = -
;:1: Rr. > 5A (1 \/ )

Y
|
>

In the last inequality, M > 2 is used. This assumption is not violated, as shown later.

Choosing the Appropriate value for A. Following the above lower bound, we need to choose a value for A that (i) does
not violate any of the requirements (Lemma 13) and (ii) maximizes/tightens the lower bound. To do so, the value of A
should satisfy:

1. % < 1, where 1 is a constant less than  (chosen in an arbitrary manner).

2. AJL, < % Note that this condition satisfies only half of the requirements in Lemma 13. We later
22m1—1]\4m1*517%1
show that the other condition in Lemma 13 is also satisfied with the selected A.

When maximizing A, we first set A/L; ~ (Kq) +— to achieve the optimal trade-off between M and A. That is,
PRUCEE VR
we set '
1
LK} m1-$
M= |[—=10 , (57)
92mi-172 A

since M needs to be an integer. By simplifying the constant term:

A K;
Clm) = (——"—), (58)
22m171[7%1
we get a simpler expression of M:
2
M= {com) L7 ATflJ . (59)

~ _2 _ p
IfAR/ (C(m1 )Lf’"llA—%fl) < o5, the condition \/ 22 < 1 would be satisfied, using the fact that £ < |z|,Vz > 2.
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- 2
Shuffling some terms, the requirement AR/ (C’(ml)Lfml1 AT > < % becomes:

1 2 —2 1
A S ﬁc(ml)L27n171 Az2mi-1 B

AT < C(;’;I)levn%}}—l
Clm) \ it m-d
mi mity + — 1
A<<—> LR
- 32
To maximize A, we thereby choose
mi-} "
ﬁ— 2
a= (S0 e R e (60)
This leads to the final lower bound:
1M
37 2 Frs
s=1
NE AR TA
-2 2 M | — 8
m - mq—1/2
_ % (C(;;Ll)> 1 TLm1+1/2R m1+1§2_ (61)

Verify Assumptions. Last but not least, we have to make sure that the assumptions made throughout the proof are satisfied,
by our choice of A in equation 60 and M in equation 59.

1. M > 2. By the definition of M in equation 59, we need to ensure that C(m ) L2m1 ! A2m712*1 > 2+ 1 = 3. Further,
plugging in equation 60, this becomes the following requirement of L;:

gmi+y L~
Lz —5 C(my) ™% 2R~ (62)
2. AJLy < % This is the second requirement in Lemma 13 that has not yet been verified to hold. For this
ma

condition to hold, the following constraint on Lo should be met.

my—1/2

Ly > Cl(ml,mQ)L{nﬁl/zR mit1/2 (63)

where,

my—1/2
o [(C(my)\ ™72 /I,
/ — 22m2 2 2 4
C'(my, ma) <—32 —F,S (64)

is a constant (independent of T") that depends on m, ms. In other words, to make sure that the requirements in
Lemma 13 are met, we need in the assumptions the following constraint.

Ly < C'(ma,ma)~ D LR R (65)

We have proved Theorem 11 (Sobolev version).

The constraints on B; and By in Theorem 3 are derived from the constraints on L, L in Theorem 11 and setting By, Bo
as instructed in equation 31. Then the proof of Theorem 3 is also completed. O
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B.2 Proof of Corollary 5

When d = 1, Matérn kernel with regularity parameter v has Fourier decay rate of v + % (Definition 4). The algorithm

considered in Corollary 5 thus satisfies the regret upper bound on an RKHS induced by a kernel with decay rate mo = vy —|—%
which is R = O(TM;TZ%) Let m; be an integcler larger than my. Applying Theorem 3, the lower bound on RKHS of a
kernel with Fourier decay rate m is Q(R_%;g T). For simplicity, we omit the dependence on B (and constant factors)
and focus only on the dependence on T'. Plugging in the rate of R, the lower bound then becomes QT mmz?:”b% s ;é;n L

Set mqy = v + % as the Fourier decay rate of Amaem,., in Corollary 5. Then, we get the lower bound by substituting

1 1 . . vivo+2vgo+1
mg = vg + 5 and m; = vy + 3, which is Q(T T FDERFD ),

B.3 Proof of Theorem 6

UCB-Meta (Liu et al., 2021) achieves minimax regret rate in dependence on 1" (except log factors) in Holder spaces
with Holder exponent « > 1. For 0 < a < 1, it reduces to the minimax optimal continuum-armed bandit algorithm
from Auer et al. (2007). For simplicity, we consider UCB-Meta as the general algorithm for continuum-armed bandits in
Holder spaces. To prove that it is also minimax optimal over RKHS of certain Matérn kernels, we establish the following
embedding of RKHS of Matérn kernels to Holder spaces, via (i) norm equivalency between RKHS of a Matérn-v kernel
and Sobolev space with order m and (ii) Sobolev embedding theorem that specifies the embedding of Sobolev space with
order m to Holder space with exponent a.. Note that Singh (2021) have shown that the minimax bandit algorithm over a
Besov or Sobolev space is the same as one that is minimax over the smallest Holder space that the Besov or Sobolev space
embeds onto, although not explicitly for RKHS. For completeness, we still include the following proof. We first state the
Sobolev embedding theorem (Adams and Fournier, 2003, Theorem 5.4).

Theorem 14 (Sobolev embedding theorem (Adams and Fournier, 2003)). Let m be a non-negative integer. Suppose that
the dimension d < p-mand o« = m — %. Let ) be a finite domain with Lipschitz boundary. Then, the Sobolev space
WP (Q) is embedded onto Holder space with exponent o:

WmP(Q) € B(9). (66)

For our problem setting, we set p = 2 and d = 1. The domain X = [0, 1] satisfies the Lipschitz boundary condition.
Therefore, W™ (X) C ¥*(X) where « = m — % Combining Sobolev embedding theorem with the norm equivalency
between Sobolev space and RKHS (Lemma 1), we have the following result.

Corollary 15. Suppose that ks : R* x R* — R is a positive-definite translation-invariant kernel, whose Fourier transfor-
mation decays polynomially with rate s, s > d/2,s € N. Then, the RKHS Hy, (X) is embedded onto Holder space ¥ (X)
with exponent o = s — %:

Hy, (X) C 2575 (X). (67)

The above relationship is also studied in the earlier work of Shekhar and Javidi (2020, Appendix B.1). Note that Matérn
kernels with regularity parameter v have a Fourier decay rate of s = v + %. Hence, Hpyn, (X) C E¥(X), for a = v.
Therefore, since UCB-Meta achieves on X% (X) the regret rate of O(T%) (Liu et al., 2021, Equation (19)), it achieves
the same rate O(T%) on the subset H ., (X). Here, we omit the dependence on B, the RKHS norm bound. A
function f € Hpy, (X', B) also has a finite Holder norm | f||ga=». The norm || f||s~, by definition, poses an upper
bound on L (using the notation from Liu et al. (2021, Definition 1), the Holder-continuity coefficient of the [-th order
derivative of f, where [ is the largest integer strictly less than .. By Theorem 4 from Liu et al. (2021), we can see that L
affects the regret only through a multiplicative term and not through the exponents of 7'. Therefore, we omit the dependence
on B and write the regret rate of UCB-Meta as O~(T2VT++11 ).

B.4 Proof of Theorem 7

Recall that Theorem 5.3 in Pacchiano et al. (2020b) provides general regret bounds for CORRAL. The proof of our Theo-
rem 7 is an adaptation to the proof of Theorem 5.3 in Pacchiano et al. (2020b). We use the same notations as Pacchiano et al.
(2020b) unless otherwise specified. M is the number of base algorithms (also aligning with the statement in Theorem 7). §
is the probability of failure. U : R x [0, 1] — R™ is the cumulative regret function (for a base algorithm), such that U (¢, 6)
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is the high-probability and anytime regret bound of a base algorithm. p is the maximum of reciprocals of the probability
that the base algorithm is chosen by the master algorithm over all time steps. 7 is the learning rate of the master algorithm
whose value is determined later in the proof.

In Section 5.1.1, we discussed briefly SupKernelUCB (Valko et al., 2013) versus GP-UCB Srinivas et al. (2009). Despite
the convenient implementation and good empirical performance of GP-UCB, SupKernelUCB matches the non-adaptive
lower bound in the dependence on T except log factors under the RKHS assumption and thus is minimax optimal while
GP-UCB is not. UCB-Meta (Liu et al., 2021) as shown in Theorem 6 is also minimax optimal in the dependence on T’
except log factors for the Matérn RKHS setting. For this subsection, however, we use SupKernelUCB as base algorithms,
since the regret bound of SupKernelUCB has an explicit dependence on B, while for UCB-Meta the dependence on B
would rely on an implicit constant (see proof of Theorem 6 in Appendix B.3). We set d = 1 as specified in Section 5.

Given B and v of a Matérn-v kernel, the regret bound of SupKernelUCB is O~(B%T %) in the RKHS of the Matérn
kernel (Valko et al., 2013, Theorem 1). Note that the original SupKernelUCB (i) is for finite action set and (ii) takes 7'
as input and therefore does not have any time regret guarantees. As mentioned in Section 5.1.1, Cai and Scarlett (2021)
argue that the aforementioned problem (i) could be extended to the continuum-armed setting by a discretization argu-
ment with an extra O(d(log(T'))) term in the regret. The problem (ii) can be theoretically circumvented by the doubling
procedure (Auer et al., 1995). Doubling converts an algorithm with (cumulative) regret bound for fixed 7' to one with
anytime regret bound, suffering only up to constant factors in the regret. ' Therefore, for theoretical interest, we treat

SupKernelUCB as the minimax optimal base algorithm with anytime regret upper bound O(B irve ), VT.

We acknowledge that this is for theoretical convenience only and it remains an important open problem (Vakili et al.,
2021b) to improve the regret bound of the practical GP-UCB algorithm under RKHS assumptions.

We plug in U(T,d) = (B2T2v+1) for the base algorithms for CORRAL. Following the proof of Pacchiano et al.
(2020b, Theorem 5.3), we have the following. Note that this upper bound holds with respect to any base algorithm
with anytime high probability regret U(t,d). Therefore, we plug in the regret of the best base algorithm, which is

U(t,8) = O(B* 3y ) because v*, B* belong in the set of candidate values u.

Ry < O(%(T) +Tn)—E {W;(T) — pU(T/p,5)log(T )} +5T+8\/MTlog(41;M)

< OCL 4 Ty 48T 4+ VIT) B |O(L = p/BT 4% )

set =4 ~ ~ L* U*
ot oy 4 VAIT) — E {0(3 — \/B*Tw*flpm)}
1 1

vl

Maximizing the above equation over p results in p o nv*+1 B* T, If we plug this value for p in the above equation,
then the regret is bounded by:

u+1

+Tn+VMT)— O(nu*+1B* *+1T nu*+1B*2V*+2T)

Ry = O(

SRS

< O(7 + T+ VMT + 71 B* 52 T)

For the problem of adapting to kernel regularity (represented by v* when the kernel is a Matérn kernel), since CORRAL

: . ~ _ o+l .
does not have access to v* (and B*), we choose 1 with respect to the user-specified parameter v: n = T~ 27+1. Plugging
this choice of 7 back in the above equation, we have:

~ o1 20 +1 ov* 42041
Ry < O(MT?z2+1 4+ B* 22 T oD +D) ),
Absorbing the dependence on M and B in O, we then have the regret rate in equation 19.
B.5 Proof of Theorem 10

The proof follows from the general form of regret upper bound of RBBE (Theorem 5.1 from Pacchiano et al. (2020a)). The
regret bound in Theorem 5.1 in Pacchiano et al. (2020a) is expressed with the “play ratio” . — (( tl)), where B denotes

'%The doubling procedure is also used in other works that use CORRAL to adapt to unknown parameters of the function space, for
example Liu et al. (2021) which studied adaptivity to the Holder exponent.
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the set of misspecified base algorithms, ¢; denotes the last round before base algorithm ¢ is eliminated, and n;(t) denotes
the number of times ¢ is selected until time step ¢ < T'. In the following part, we use Lemma A.3 in Pacchiano et al.
(2020a) to calculate the play ratio, then plug it in Theorem 5.1 of Pacchiano et al. (2020a) to get the final regret bound.
For reasons why the more straightforward result (Theorem 5.4 in Pacchiano et al. (2020a)) is not used, see the end of this
subsection for an explanation.

In the following, each base algorithm ¢ has the following candidate pseudo regret bound (equation (7) in Pacchiano et al.
(2020a)):
R;(t) < CO T, (68)

where C' > 1 is some term independent of 7" or ¢, and #; > 1 is some parameter dependent on <. For minimax optimal
kernelised bandit algorithms instantiated with v; (parameter of the Matérn kernel), 5; = Q’ﬁ;‘fi. We write down the general
regret bound of RBBE here for completeness (Theorem 5.1 (Pacchiano et al., 2020a)). Below, * denotes any well-specified
learner, that is, a leaner whose actual (pseudo) regret Reg, is upper bounded by its candidate (which means if well-specified)

regret bound R;(T).

Mn(T)
6 )

M ni(ti)
Rr < Z Ro(na(t:) + > R (na(t:)) +2M +2¢ > \/ni(ti) In(

n(t:) ieB
+ QCZ ”i(t?) \/ni(ti) ln(%m)

We refer to the five terms in the above summation above as #1 ... #5.

The terms #1 + #3 can be bounded the same way as in the proof of Theorem 5.4 in Pacchiano et al. (2020a):

M
> Ru(nu(ti)) + 2M < MR.(T) + 2M < O(M0.T%).
i=1

The term #4 is bounded also following the proof in Pacchiano et al. (2020a):

202 \/ni(ti) ln(%@)) < 20\/|B| In %(T) an‘(fz‘)

ieB i€B

< 2¢¢/|B|T'In %(T)

Bounding the term #1 and #05, however, needs changes to the proof of Theorem 5.4 (Pacchiano et al., 2020a), since the
play ratio is involved. Lemma A.3 in Pacchiano et al. (2020a) states that for two base learners ¢, j,

milt) mx{<z‘;—)_ (s (1)) ,2}- (©)

3

i(t)
Therefore, the play ratio between a misspecified base learner ¢ and a well-specified leaner * can be bounded by:

m@)§2+<25)%n4wﬂ

Bx
<24 4C,Byn, (t)7
< 24 4CyBun, (1)L,

The first inequality above is simply plugging j = * (representing a well-specified learner), and using that max{x,y} <
x + y. For the second inequality, recall that the minimax optimal SupKernelUCB algorithm has a regret rate (if the kernel
parameter v and RKHS norm bound B are known) of O(v/By7T) = O(v/BT 3ota ). The O notation hides polynomial
terms that are dependent on log(T"), d. Therefore, the parameter 6; in equation 68 that depends on the index of the base
algorithm i is §; oc +/B;. Given the assumption that §; > 1, 99—’; < C1v/B, for some constant C;. Since 3; > %,
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(29 ) g < 4C45 B, for some constant C'5. Also in the last two inequalities, we used 5; > 5 that is, every base algorithm

used in Theorem 10 have at least O( 5) regret. Therefore, we have the following bound on the sum of play ratio:

n;(t) (26.-1)
< 2|B| + 4C5 B, |B|(n.(t 70
> 2 < 2Bl aCoB.IBl.0) 70

< 2|B| + 4CyB,|B|T =Y = 2|B|(1 4+ 20, B, T?%~1) (71)

We can plug equation equation 71 to bound #¥5 as follows.

ng(t;) \/ Mln n;(t;) M In(T)
2c n;(t;) In ) < 2¢ () In ———=
> [ e oD <o 5 2400 5 i L0
n;(t) M In(T)
<2c Z TlIn
ZGB (t 0
< 20\/2|B|(1 +2Cy B, T(28+=1)T'In %(T)

= O(|B|*B.2T")
Similarly, the upper bound of term #2 relies on equation 71 as well.

Xm0 <O G

i€B

(1—84)
< 00, (2[B|(1+2C,B, T 1)) TP
0(9* |B|(1_'B*)B*1_B*T(QB*_I)(l_IB*)'FB*)

O(6.|B|1 =7 B,1 -7 020

Now that the asymptotic rates of the five terms are derived, we can see that term #2 dominates in the dependence of 1" and
#5 dominates dependence on |B|, B, and hence, the regret of RBBE can be bounded as follows.

Ry < O(6,|B|2 B, 2 T48-+202-1) (72)
21/ +4u +1

= O(0,|B|2B.2T @07 ) (73)
- 21/ +4v* 41

= O(0,M*B,*T Grin? ) (74)

Finally, the reason for not using the straightforward results in Theorem 5.4 of Pacchiano et al. (2020a) is as follows. In
adaptation to the kernel regularity parameter v, the candidate regret bounds of base algorithms do not have the same
exponent of 7'. The candidate regret bounds having the same rates of 7" is a requirement for the more straightforward
results, hence, those results are not directly applicable to our setting.
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