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Abstract
The increasing complexity of System-on-Chip (SoC) designs and
the rise of third-party vendors in the semiconductor industry have
led to unprecedented security concerns. Traditional formal methods
struggle to address software-exploited hardware bugs, and exist-
ing solutions for hardware-software co-verification often fall short.
This paper presents Microscope, a novel framework for inferring
software instruction patterns that can trigger hardware vulnera-
bilities in SoC designs. Microscope enhances the Structural Causal
Model (SCM) with hardware features, creating a scalable Hardware
Structural Causal Model (HW-SCM). A domain-specific language
(DSL) in SMT-LIB represents the HW-SCM and predefined secu-
rity properties, with incremental SMT solving deducing possible
instructions. Microscope identifies causality to determine whether
a hardware threat could result from any software events, providing
a valuable resource for patching hardware bugs and generating
test input. Extensive experimentation demonstrates Microscope’s
capability to infer the causality of a wide range of vulnerabilities
and bugs located in SoC-level benchmarks.
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1 Introduction
System-on-chip (SoC) designers face unprecedented security con-
cerns due to the rise of third-party vendors in the semiconductor
industry [16]. As the complexity of SoC designs rises, securing a
computer system requires a thorough understanding of the full
software stack and the hardware architecture. SoC designers have
been overwhelmed with the workload of manually diagnosing se-
curity vulnerabilities. Moreover, software-exploited hardware bugs
present rigorous challenges to traditional formal methods. The
emergence of transient execution attacks [5] has propelled the
topic of software-hardware co-verification into the limelight. How-
ever, existing work falls short when it comes to bridging the gap
between hardware and software.

For example, Coppelia [21] generates software exploit for hard-
ware bug to help engineer contextualize the threat. This work mi-
grates hardware language to the software platform to address the
co-verification issue. Specifically, the hardware Register Transfer
Level (RT-level) design is firstly translated to C++ and then takes ad-
vantage of KLEE [3] for symbolic execution. Based on the security-
critical assertion. The violation input sequence can be found for
exploit generation. However, the software-level descriptions of
hardware cannot precisely represent the behavior of the original
RT-level code. This abstraction can pose a challenge to accurately
analyze the structures within the produced C++ code. Moreover,
micro-architectural design can be verified as an RT-level design
using open-source EDA tools such as Yosys [20], commercial EDA
tools like Cadence JasperGold [4], and Synopsys VC Formal [17].
However, these tools are not originally designed for hardware-
software co-verfication. While engineers can still use assertion-
based verification techniques to validate potential threats, doubts
remain about uncovering all interaction traces between software
and hardware.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In response to these challenges, this paper presents Microscope,
an innovative framework designed to infer potential software in-
struction patterns that expose hardware vulnerabilities. Specifically,
we enhance the Structural Causal Model (SCM) [9] with hardware
features such as timing stamps, resulting in a scalable Hardware
Structural Causal Model (HW-SCM). A domain-specific language
(DSL) in SMT-LIB is developed to represent this HW-SCM along
with predefined security properties. Subsequently, incremental SMT
solving is applied to deduce all possible instructions that satisfy
these properties. The effectiveness of Microscope is validated in
several RISC-V SoC benchmarks. The primary contributions of this
paper are as follows.

• The proposedMicroscope presents HW-SCM in a self-developed
DSL, which models a hardware-software system from the
hardware side. It effectively addresses scalability and effi-
ciency issues by eliminating the need to convert hardware
to software or low-level hardware description.

• Our approach identifies causality to determine whether a
hardware threat could result from any software events. If
such a relationship exists, the inferred instruction patterns
can serve as a valuable resource for both patching hardware
bugs and generating test input. Conversely, if no such rela-
tionship is found, the hardware vulnerability can be deemed
a non-critical security threat, allowing for the conservation
of resources.

• Through extensive experimentation, we demonstrate thatMi-
croscope is capable of inferring the causality of a wide range
of vulnerabilities and bugs found in SoC-level benchmarks.
In line with this, we have developed a corresponding EDA
tool that will be made publicly available upon the paper’s
acceptance.

2 Background
2.1 Structural Causal Model
A Structural Causal Model (SCM) is a mathematical framework
used to describe the causal relationships between variables in a
system [9]. Two set,𝑈 and 𝑉 , alongside a function set defined as

𝑓 = {𝑓𝑥 :𝑊𝑥 → 𝑥 |𝑥 ∈ 𝑉 }, (1)

where𝑊𝑥 = 𝑈 ∪ 𝑉 \ {𝑥}. 𝑉 is referred to as a set of endogenous
variables or variables within the SCM, and𝑈 is a set of exogenous
variables or variables external to the SCM. As such,𝑊𝑥 is the union
of all variables present in the design with the exception of 𝑥 . Ev-
ery endogenous variable is a descendant of a subset of exogenous
variables as defined by 𝑓𝑥 , and ∀𝑦 ∈𝑊𝑥 , 𝑦 is a cause of 𝑥 .
2.2 SMT Solving.
SatisfiabilityModulo Theories (SMT) solving is a powerful approach
for automated verification and constraint satisfaction in software
and hardware design, which supports a wide range of theories,
including quantifier-free bit-vector (QF-BV), linear integer arith-
metics (LIA), etc. Quantifier-Free Bit-Vector Logic (QF-BV) sup-
ports reasoning about fixed-size bit-vectors and their operations
without the use of quantifiers such as Bit-wise Logical Operations,
Arithmetic Operations, etc. In this paper we use a subset of QF-BV
Operations to encode the verilog into HW-SCM format.
3 Hardware Structural Causal Model

This section delineates the HW-SCM as a multi-layer graph
model that facilitates causality inference at the hardware-software
boundary. We initiate this discourse by elucidating the concept
of the HW-SCM and its correlation with the traditional SCM and
hardware design.
3.1 HW-SCM definition
HW-SCM extends the foundational concept of SCMs [9], applying
it to model software as a sequence of signals within the hardware
schematic. In this context, we assume that 𝑆𝑊𝑖 represents the set
of instructions or input signals in Clock 𝑖 , while 𝐻𝑊𝑖 represents
the set of hardware signals (excluding the inputs) in Clock 𝑖 (𝑖 ∈ N).
To characterize the HW-SCM, we define two sets of functions:

𝑓𝑐𝑜𝑚𝑏 = {𝑓𝑖 : 𝑋𝑖 → 𝑦𝑖 | 𝑦𝑖 ∈ 𝐻𝑊𝑖 }, (2)

𝑓𝑠𝑒𝑞 = {𝑓𝑖 : 𝑋𝑖−1 → 𝑦𝑖 | 𝑦𝑖 ∈ 𝐻𝑊𝑖 }, (3)

Here, 𝑋𝑖 ⊆ (𝑆𝑊𝑖 ∪ 𝐻𝑊𝑖 ) \ {𝑦𝑖 } represents a subset of signals,
excluding signal𝑦𝑖 , from the combined set of software and hardware
signals. The set 𝑓𝑐𝑜𝑚𝑏 encompasses all combinational connections
within the design, while 𝑓𝑠𝑒𝑞 encompasses all sequential logic such
that every cause of signal 𝑦𝑖 , denoted as 𝑥𝑖−1, belongs to the clock
cycle 𝑖 − 1.

Following the traditional SCM model, we consider instructions
and inputs to be exogenous variables as these are external stimulus
to the hardware, and signals internal to the hardware to be en-
dogenous variables since their state is a direct response to external
stimulus.
3.2 HW-SCM Graph Example
To illustrate the HW-SCM multi-layer graph model, we present an
example as shown in Figure 1. The Verilog code is provided in Figure
1a, with its netlist representation given in Figure 1b. In this example,
the output signal d depends on both signals e and c. The signal c
is an I/O port, while signal e is updated by inputs a and b at the
positive edge of the clock signal (clk). The graph representation
of SCM in Figure 1c illustrates the signal dependencies within
the design. However, since SCM is not specifically designed for
hardware, it may fall short in accurately modeling certain hardware
behaviors, such as timing behavior. For instance, SCM is not capable
of adequately addressing delay propagation in sequential circuits.

Therefore, we develop the HW-SCM by introducing two function
sets: 𝑓𝑐𝑜𝑚𝑏 and 𝑓𝑠𝑒𝑞 to fit the hardware domain-specific modeling.
These function sets define different types of edges in the graph
model, mapping hardware signal connections to the multi-layer
structure depicted in Figure 1d. HW-SCM is represented as a multi-
layer graph, where 𝑓𝑐𝑜𝑚𝑏 represents the connections within a layer,
capturing the combinational dependencies, and 𝑓𝑠𝑒𝑞 represents the
connections across layers, capturing the sequential dependencies.
Hence, the hardware timing behavior can be identified through this
multi-layer graph representation. Each layer represents a hardware
state space within one clock cycle.

In Figure 1d, we present two layers: Clock i and Clock i-1. In
the Clock i layer, the output signal 𝑑𝑖 depends on the value of
signals 𝑐𝑖 and 𝑒𝑖 at the same clock cycle, Clock i. The signal 𝑒𝑖
in the Clock i layer is updated on the positive edge of the clock
signal (clk) based on the inputs 𝑎𝑖−1 and 𝑏𝑖−1 at the previous
clock cycle, Clock i-1. This means that the value of 𝑑𝑖 at Clock i
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module top (

input a, b, c,

input clk , rst ,

output d);

reg e;

assign d = e & c;

always @(posedge clk

or posedge rst)

if(rst) e <= 1'b0;

else e <= a + b;

endmodule

(a) Verilog example.
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(b) Circuit graph example.
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(c) Graph representation of SCM.
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(d) Graph of HW-SCM.

Figure 1: Graph based HW-SCM
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Figure 2: Working procedure of the proposed Microscope
framework

is determined by the inputs 𝑎𝑖−1 and 𝑏𝑖−1 at the previous clock
cycle, Clock i-1, as well as the input 𝑐𝑖 at the current clock cycle,
Clock i. The hardware system within two consecutive time slots
can be exemplified using this two-layer HW-SCM. By extending
the HW-SCM into an N-layer model, we can capture the multi-clock
cycle behavior of the hardware system within consecutive time
slots. Moreover, the sequences of instructions from the software
will be modeled as input signals with consecutive timestamps in
HW-SCM. This allows for a more comprehensive representation
and analysis of the hardware-software system’s functionality and
temporal dependencies.
4 Microscope
Microscope uses the HW-SCM as its infrastructure to enable au-
tomated hardware-software co-analysis. This section introduces
Microscope and elaborates on the details of its primary steps.
4.1 Microscope Overview
Figure 2 provides a diagram of the general operational procedure
of Microscope. The hardware RT-level designs are first translated
into HW-SCM. In this process, information-flow tracking (IFT) is
employed to traverse the abstract syntax tree (AST), which forms
the basis for generating a data-flow graph. HW-SCM is then con-
structed based on this data-flow graph. We have designed a DSL
specifically intended for representing the HW-SCM in SMT-LIB.
A heuristic approach is adopted to design/obtain assertions using
extant hardware databases like CWE [1] and Bugzilla [21] as refer-
ences. Simultaneously, it is necessary to determine the number of
layers to restrict the scale of the HW-SCM. This figure hinges on the
number of clock cycles the user intends to consider for the security

Counter circuit

SCM representation

module counter(
input wire clk, rst,
output reg [7:0] ctr);

always @posedge(clk)
if(rst) ctr <= 8'b0;
else ctr = ctr + 8'b1;

endmodule
counter.ctr#0 <->
If(1 == counter.rst#-1,
0,
counter.ctr#-1 + 1)

counter.ctr#-1 <->
If(1 == counter.rst#-2),
0,
counter.ctr#-2 + 1)

counter.ctr#-2 <->
...

(a) Multicycle sequential circuits.

ROM Implementation

SCM representation

module rom_table(
input wire [1:0] addr,
output wire [3:0] data);

reg [3:0] store [0:3];

initial
$readmemb("datatable.vhi",

store);
assign data = store[select];

endmodule
rom_table.data#0 <->
If(0 == rom_table.addr#0,
rom_table.store_index_0#0,
If(1 == rom_table.addr#0,
rom_table.store_index_1#0,
...

rom_table.store_index_0#0 <->
file_read_value_0

rom_table.store_index_1#0 <->
file_read_value_1

...

(b) Resolution of 2D array index-
ing.

implicit

SCM representation

always @(posedge clk)
if(rst)
result <= 1'b0;

else if(control)
result <= 1'b1;

implicit.result#0 <->
If(implicit.rst#-1 == 1,
0,
If(implicit.control#-1 == 1,
1,
implicit.result#-1))

(c) Implicit else transformation.

2-1 multiplexer

SCM representation

module mux(
input [1:0] ins,
input select,
output mux_out);

assign mux_out = ins[select];

endmodule
mux.mux_out#0 <->
If(0 == mux.select#0,
Extract(0, 0, mux.ins#0),
Extract(1, 1, mux.ins#0))

(d) Dynamic indexing transforma-
tion.

Figure 3: Domain Specific Language

assessment. The HW-SCM model, assertions and the number of
model layers are represented utilizing the proposed DSL.

Microscope then performs causality inference using an SMT
Solver. This inference involves deriving solutions that begin with
the assertions at the bottom layer of the HW-SCM model. Solutions
consist of same-layer inputs as defined in Equation (2) and higher-
layer sequential inputs as defined in Equation (3). Consequently,
the inputs from each layer are accumulated and interpreted as
instructions patterns that can satisfy the assertion. This code pattern
is then documented and blocked in the SMT Solver. Microscope runs
this incremental solving process until all code patterns have been
inferred. Any returned code patterns can be utilized to generate
large-scale test patterns for the design to further explore potential
vulnerabilities, as well as to fix hardware bugs.
4.2 Domain-Specific Language for HW-SCM
In the process of converting Verilog source code into HW-SCM
SMT representation, several steps need to be followed. Firstly, all
variables and parameters present in the source code are identified
and treated as bit-vectors. Next, Verilog operators and bit-vector
manipulations are mapped to their corresponding counterparts
in QF-BV, ensuring the proper translation of operations. Lastly,
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control structures such as if-else statements and case statements
are transformed into SMT conditional expressions, allowing for
logical reasoning and analysis within the Microscope framework.
4.2.1 Modeling Sequential LogicEach signal is assigned a times-
tamp indicating the clock cycle during which its operation occurs.
In HW-SCM, the same hardware signal, when marked with dif-
ferent timestamp values, is treated as distinct symbols. This is
demonstrated with timestamps in Figure 3a. ctr register is updated
every clock cycle, depending on the state of the rst. The proposed
DSL applies timestamps by adding the #-n suffix to signals, where n

corresponds to a specific clock cycle.
4.2.2 Handling Dynamic Indexing OperationsHardware descrip-
tion languages generally support bit-selects and part-selects. A bit-
select operation occurs when an index from an array of wire or
reg is selected, while a part-select operation happens when multi-
ple consecutive indices are chosen. The proposed DSL introduces
an equivalent control structure wherein an If condition coupled
with statically indexed Extract constructs are used to obtain the
necessary indices from the array. This construct is extended for all
possible indexing values. An example is demonstrated through a
simple 2-1 line multiplexer that uses a bit-select operation to set
the output, is shown in Figure 3d.
4.2.3 Handling Implicit Control StructuresWhen encountering a
case statement or an if–else statement that does not specify default
behavior in a sequential block, the DSL assumes it to retain the
value from the previous clock cycle. As depicted in Figure 3c, an
implicit else statement is added to uphold consistency in modeling
the behavior of the circuit within its HW-SCM.
4.2.4 Handling 2D Array Selection and Initialization ConstructsThe
proposed DSL flattened the array into individual elements and used
a series of nested If statements to represent the indexing operation.
Initialization constructs, such as initial procedural blocks and ex-
ternally imported data, are parsed to basic assignment operations
in the proposed DSL. The example is showcased in Figure 3b, where
a ROM table is inferred and initialized with data from an external
file. The resulting conversion breaks down the store array into in-
dividual elements and assigned to the output based on the value
of addr. Moreover, individual entries are initialized by reading and
parsing the contents of the file specified by the $readmemb() function.
4.3 Assertion Development
Microscope utilizes both the HW-SCM (in DSL) and user-specified
security assertions (expressed as DSL assertions) to perform causal-
ity inference. Microscope users construct assertions using the CWE
database for guidance on classes of vulnerabilities that may ap-
ply to their design. This is standard practice in design verification
as illustrated in [4, 17, 18, 21]. Before constructing the HW-SCM,
users are required to specify the time window size, denoted as 𝑛,
which also reduces scalability issues. Based on the specification,
the Microscope will generate an HW-SCMmodel consisting of 𝑛 +1
layers for verification purposes. This implies that the given asser-
tion will be evaluated within a time span of 𝑛 + 1 consecutive clock
cycles. Each signal is replicated 𝑛 + 1 times with a extended nu-
merical index. For instance, if the original signal is named signal
the HW-SCM signals will be named signal#0 (current clock cycle),
signal#-1 (previous clock cycle) up to signal#-n (n clock cycles
ago) representing the signal value from historical state. Leveraging

these annotations, we are able to convert SystemVerilog Assertions
(SVA) or Property Specification Language (PSL) into our Domain-
Specific Language (DSL) assertions, thereby effectively covering
both combinational and sequential assertions.

The SMT solver returns either a SAT or UNSAT result based
on the given assertions and HW-SCM. Note: the instruction in-
put signal is also replicated 𝑛 + 1 times for recording historical
inputs, which are endogenous variables in the HW-SCM. Therefore,
if the solver returns SAT, it means that the given DSL assertion and
HW-SCM model allow for a valid stimulus to the system. In other
words, there exists a value assignment to the software instructions
(causality reason) that can trigger the root of hardware security
threats (causality result). Following this, Microscope will employ
incremental solving to identify all malicious instruction sequences
that could activate the hardware vulnerability.
5 Experimental Results
5.1 Experiment Settings
A series of System-on-Chip (SoC) level evaluations with two distinct
Instruction Set Architecture (ISA) SoCs - RISC-V and OpenRISC are
performed in this work. Specifically, we selected the DarkRISCV[6],
RISC-V mini[19], and OpenRISC 1200[15] processors as the test
bench. The vulnerabilities we used for testing are derived from the
work[2] and the commit history from OR1200. The results of these
experiments are summarized in Table 2. Our testing environment
consisted of a machine running Ubuntu 20.04, equipped with an
i9-12900K processor and 32GB of memory. Z3 [7] is applied as the
SMT solver in this experiment.
5.2 Threat Model and Heuristic Assertions

Development
Our framework serves as a valuable tool for verification engineers
in finding causality between RT-level vulnerabilities within RT-level
designs and software-level instructions. It offers a static method that
validates the presence of these vulnerabilities by inferring their in-
put patterns. These input patterns can consist of either compiled or
assembled instructions for a processor in the SoC. The experiment
demonstrates the Microscope by encompassing three CWE vulner-
abilities and five types of design flaws extracted from the OR1200
commit history. In Table 1, we provide a comprehensive overview of
these vulnerabilities, including the associated suspicious code pat-
terns within the design that expose them, accompanied by concise
descriptions for clarity.

Specifically, CWE-1262 represents an improper access control
vulnerability related to a register interface, CWE-1234 relates to
hardware internal or debug modes that allow for overriding locks,
CWE-1245 pertains to the presence of improper finite state ma-
chines in hardware logic. Additionally, Bugzilla #51 and Bugzilla
#76 highlight flaws in the ALU design, Bugzilla #90 demonstrates
incorrect exception handling, and Bugzilla #88 and Bugzilla #97 ex-
emplify incorrect implementations of instructions. The developed
vulnerability assertions used in Microscope are listed in the last
column of Table 2 and explained in the following paragraphs.
5.2.1 Bugzilla #51, #76Two design flaws were identified in the ALU
module of OR1200 when performing unsigned comparisons. The
problem originates from the incorrect configuration of the a_lt_b
flag, leading to erroneous computation outcomes. To identify the
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Threat Vulnerability Description Verilog code Example

CWE-1262 [8],
Mail#00007(OR1200) [21]

Improper Access Control for Register Inter-
face. The value of the register is not protected, and
security-related hardware data could be tampered
with through the register interface. Specifically, the
write operation targeting the register interface is not
adequately validated.

if (write_en)

regfiles[sensitive_index] <= write_data;

CWE-1234[11] Hardware Internal or Debug Modes Allow Over-
ride of Locks. A trusted lock bit, when enabled, can
block the write operation to a set of registers or ad-
dress regions. However, debug mode can bypass the
lock mode and modify the locked device configura-
tion, i.e., an external debug signal can override the
original lock signal.

input debug;

/* ... */

if (en || debug)

peripheral_register <= data;

CWE-1245[12] Improper Finite State Machines (FSMs) in Hard-
ware Logic.A specific input signal or signal sequence
may cause the finite state machine (FSM) in the hard-
ware logic to enter an undefined state, potentially
resulting in a denial of service attack or privilege es-
calation.

case (opcode)

7'b0000011: /* incomplete load */

7'b1101111: /* ... */

7'b0010111: /* ... */

default: /* ... */

endcase

Bugzilla #51,
Bugzilla #76 [21]

Comparison wrong for unsigned inequality with
different MSB. ALU module yeild incorrect result
for unsigned comparation .

assign a_lt_b = comp_op [3] ?

((a[width -1] & !b[width -1]) | (!a[width -1]

& !b[width -1] & result_sum[width -1])

|(a[width -1] & b[width -1]

& result_sum[width -1])): result_sum[width -1];

Bugzilla #90[21] EPCR on range exception is incorrect. Exception
program counter register doesn’t reset to the address
of jump instruction before the instruction that caused
exception.

else if (except_trig [13:3] == 11'b1 ) begin
except_type <= `OR1200_EXCEPT_RANGE;
epcr <= ex_dslot ?

wb_pc : delayed1_ex_dslot ?

id_pc : delayed2_ex_dslot ?

id_pc : id_pc;

dsx <= ex_dslot; end

Bugzilla #88[21] l.extw instructions behave incorrectly No need to
explicitly apply an extend operation when using the
l.extw instruction.

case (alu_op)

5'b0_1101:

result = extended;

Bugzilla #97[21] Ignore an exception that it should handle. When
encountering an unsupported instruction, the control
unit should recognize this condition and handle it
appropriately, typically by generating an exception
or interrupt.

case (id_insn [31:26])

6'b101110:

except_illegal <= 1'b0;

Table 1: Vulnerabilities description and code example

trigger pattern, the assertion specifies the erroneous behaviorwhere
the operand a is greater than b while the a_lt_b flag is still set.
Microscope traces back the input signal icpu_dat_i#i(32 bit in-
struction) to identify the root cause.
5.2.2 Bugzilla #90 In the OR1200 processor, when handling a range
exception, the exception program counter register (epcr) is reset to
the jump instruction that was executed prior to the exception. The
specific program counter value to be used for the reset is stored in
either dl_pc, id_pc, or ex_pc, depending on the delay slot where
the exception-causing instruction is located. We track the trigger

pattern where the epcr is incorrectly set during an exception oc-
curring in the second delay slot,
5.2.3 Bugzilla #88When the value of alu_op is set to 13 (EXTW),
the ALU output is incorrectly updated due to the assignment of
the wrong operand. We track the trigger pattern that leads to these
incorrect updates of the ALU output.
5.2.4 Bugzilla #97OR1200 will not throw an exception when l.ror
is not implemented. For specified ISA, we trackwhether onemissing
instruction can raise the exception.
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Benchmark Vulnerability Language Cell Number Layers Time Inference DSL Property

DarkRISC-V CWE-1262 Verilog 8,890 3 1.73 s ✓ reg_wb_addr#0 == 0

RISCV-mini CWE-1262 CHISEL 17,108 3 8.16 s ✓ reg_rf_wen#0 == 1

DarkRISC-V CWE-1234 Verilog 8,828 3 2.94 s ✓ (io_dmem_wen#0 || debug#0) ==1

RISCV-mini CWE-1234 CHISEL 17,000 3 24.38 s ✓

DarkRISC-V CWE-1245 Verilog 8,971 3 1.45 s ✓ req_valid#0== 1

RISCV-mini CWE-1245 CHISEL 16,927 3 11.36 s ✓

OR1200 Bugzilla #51 Verilog 20,668 6 23.91 s ✓ a_lt_b#0==1,comp_op#0[3]==0, a#0>b#0

OR1200 Bugzilla #76 Verilog 20,714 6 24.03 s ✓

OR1200 Bugzilla #88 Verilog 20,901 6 23.80 s ✓ result#0==extended#0, alu_op#0==13

OR1200 Bugzilla #90 Verilog 20,743 6 18.44 s ✓
except_trig # -1[13:3] == 1,

ex_dslot#-1 == 0,

delayed1_ex_dslot #-1 == 1,

epcr#0 == id_pc#0

OR1200 Bugzilla #97 Verilog 20,945 6 18.42 s ✓
id_insn [31:26]# -1== 46, ex_freeze #-1==0,

id_freeze #-1==0, ex_flushpipe #-1==0,

except_illegal #0==0

Table 2: Experiment Result

5.2.5 CWE-1234We implement CWE-1234 by altering the con-
trol signal of the AES256 peripheral register. The malicious code
snippet can be found in the last column of Table 1. The periph-
eral register value can be updated when the signal io_dmem_wen
is set or debug mode is turned on. The trigger condition is either
io_dmem_wen == 1 or debug == 1. We build the HW-SCM based on the
constraint (io_dmem_wen#0 || debug#0) ==1. and restrict the time win-
dow to 3 in order to backtrack the input pattern that can trigger
this assertion.
5.2.6 CWE-1262Zero Register is considered a read-only register
and cannot be written to in a processor. However, the vulnerability
CWE-1262(Mail#00007(OR1200)) applies write permission to the
Zero Register, altering its intended behavior. Referring to the Table
1, we build the constraint reg_wb_addr#0 == 0 && reg_rf_wen#0 == 1 to
backtrack the input pattern
5.2.7 CWE-1245An undefined state opcode=7'0000011 is intention-
ally inserted in the processor decoder as shown in Table 1. Micro-
scope utilizes the constraint req_valid#0 == 1'b1 to track the opcode
pattern that enable the signal.
5.3 Results and Analysis
CWE and Bugzilla vulnerabilities described in Table 1 are utilized
to design security assertions in SoC-level benchmarks. We use
Microscope to infer instruction patterns in three SoC platforms –
RISCV-mini, DarkRISC-V, and OR1200. Microscope support various
hardware languages, including Verilog and Chisel. The scalability
of the benchmarks is evaluated based on the number of CMOS gates
(NAND/NOR) in the column of Cell Number. Layers represents
the number of clock cycles considered in the verification to resolve
the assertion. Time of Microscope measures the total running time,
including both HW-SCM building and Z3 solving.

5.3.1 Causality Inference in OR1200Taking Bugzilla #51 and Bugzilla
#76 as examples, one of the inference results are shown in Listing
1. It reveals four instructions from SoC instruction memory in-
put icpu_dat_i that can trigger the vulnerability assertion. These
instructions can incorrectly set the a_lt_b flag.
1 icpu_dat_i:
2 l.sfgtu rA,rB // 11100100010...
3 //or
4 l.sfgeu rA,rB // 11100100011...
5 //or
6 l.sfltu rA,rB // 11100100100...
7 //or
8 l.sfleu rA,rB // 11100100101...

Listing 1: The Result Input Pattern about Bugzilla 51 from
HW-SCM.

5.3.2 Causality Inference in DarkRISC-V and RISCV-miniFor CWE-
1234, our findings indicate that any opcode pattern can trigger this
bug, meaning there are no restrictions on the input instruction.
This aligns with our expectation as the signal debug can override
the io_dmem_wen signal, allowing the user to access the register
interface regardless of the input instruction. To confirm our findings,
we constructed another HW-SCM model that only relied on the
property io_dmem_wen#0 == 1. Typically, the signal io_dmem_wen is
used to monitor write access to storage devices in RISC-V cores. Our
HW-SCM further revealed that only an opcode equal to 0100011
can set the signal io_dmem_wen, which is the STORE opcode as
expected.
6 Related Work
A comparison between Microscope and its related works is elab-
orated to highlight the advantages and novelty of the proposed
method in this section.
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Approach (Avg)Time Replayable Traces generated

Coppelia [21] 252 s yes ≥ 1
JasperGold [4] 0.10 s no 1
Microscope 21.72 s yes ≥ 1

Table 3: Comparison with existing work on or1200 testbench

6.1 Comparison with Existing Works
We present a comparison of our work with the commercial tool,
JasperGold FPV [4], and the publicly available Coppelia [21], as de-
picted in Table 3. “Average Time” is calculated based on six Bugzilla
test cases. “Replayable” refers to whether the generated traces can
be restarted from the hardware reset state, which decides if consec-
utive instructions can be obtained. “Traces Generated” denotes the
number of triggered traces produced given a certain assertion. The
detailed definitions of “Replayable” and “Traces Generated” can also
be found at [21]. Since Coppelia doesn’t release detailed configura-
tion for every test case, we use the best average time cost claims
from the original paper. The JasperGold time cost is calculated by
using JasperGold FPV run cover property counterexample genera-
tion time. With optimizations applied, Coppelia requires minutes
to generate the exploit, whereas our method accomplishes in less
than a minute. The improvement can be attributed to the fact that
Microscope eliminates the need to convert Verilog designs into C++
representations,i.e., the constructed HW-SCM is directly built on
the original design with precise timing information. Additionally,
Coppelia cannot directly apply sequential assertions for generating
software exploits. If the user wants to specify expected behavior
over multiple clock cycles, they would have to manually insert
extra flip-flops into the design and log the signal value from the
previous clock cycles. Microscope can directly annotate signals
from different layers of the HW-SCM to describe the sequential
assertion since our model adds different timestamps for each signal.

In the domain of hardware-software boundary causal inference,
there currently exists no dedicated commercial tool. However, some
applications offer partial support for this functionality, albeit with
a significant manual workload. Cadence JasperGold FPV, a cor-
nerstone of the JasperGold Apps framework, can generate a coun-
terexample for a user-defined assertion. Notably, JasperGold can
utilize the cover property to infer input patterns and responds more
swiftly than other tools. Nevertheless, a limitation is that only one
counterexample is provided in each verification pass. To address all
potential software-exploited bugs, a verification engineer must re-
peatedly execute the checking procedure until no counter traces are
reported. This iterative process is both tedious and time-consuming.
Furthermore, when the same baseline constraint is input into both
JasperGold FPV and Microscope, there are instances where the ex-
ploits generated by JasperGold are not replayable. Specifically, the
generated counterexample trace might commence from an inter-
mediate state rather than the initial reset state. This is particularly
evident for vulnerabilities activated by state transitions, i.e., those
requiring a specific continuous input sequence to trigger the pay-
load.

6.2 Relationship between Information Flow
Tracking and Microscope

IFT-based approaches have been well developed to detect bugs in
purely hardware RTL design [10]. When applied to the analysis of a
hardware system, IFT aims to protect confidentiality and integrity
by detecting sneaky paths of sensitive information leakage and
modification. Causality inference is the process where causes are
inferred from data. In the security area, it determines whether a
security event is causally dependent on a preceding trigger event.
The relationship between IFT and causality inference in terms of
analyzing cyber attacks is first presented in [13] and elaborated in
[14].

While IFT helps identify where a security breach may have oc-
curred by monitoring data’s movement, causality inference can
provide the "how" and "why"—how the breach happened and why
it occurred in that particular way. We, therefore, consider IFT as a
fundamental infrastructure upon which we base our causality anal-
ysis. Specifically, IFT helps generate data-flow graph in Microscope.
In this procedure, IFT identifies which signals are related to each
other. This can potentially allow the SMT solver to more effectively
partition the problem or apply heuristics, which could improve
efficiency. However, it’s important to note that even without using
IFT as the infrastructure, the HW-SCM can still be obtained by
directly parsing from RT-level (i.e., Verilog) codes. The trade-off,
however, is that the time cost of SMT solving will be increased.
7 Conclusion and Future Work
This paper introduces the HW-SCM to apply the causality infer-
ence to RT-level hardware and software security co-verification.
The proposed Microscope framework is developed to heuristically
identify bug structures, and then automatically infer the potential
malicious input instruction sequences that can trigger these bugs.
Microscope is thoroughly validated using SoC-level platforms. In
the future, we plan to collect open-source SoC platforms and insert
CWE bugs so that more experiments can be carried out.
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