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Abstract

A colored de Bruijn graph (also called a set of k-mer sets), is a set of k-mers with every k-mer
assigned a set of colors. Colored de Bruijn graphs are used in a variety of applications, including
variant calling, genome assembly, and database search. However, their size has posed a scalability
challenge to algorithm developers and users. There have been numerous indexing data structures
proposed that allow to store the graph compactly while supporting fast query operations. However,
disk compression algorithms, which do not need to support queries on the compressed data and can
thus be more space-efficient, have received little attention. The dearth of specialized compression
tools has been a detriment to tool developers, tool users, and reproducibility efforts. In this paper, we
develop a new tool that compresses colored de Bruijn graphs to disk, building on previous ideas for
compression of k-mer sets and indexing colored de Bruijn graphs. We test our tool, called ESS-color,
on various datasets, including both sequencing data and whole genomes. ESS-color achieves better
compression than all evaluated tools and all datasets, with no other tool able to consistently achieve
less than 44% space overhead.
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1 Introduction

Modern methods for analyzing biological sequences often reduce the input dataset to a set of
short, fixed length strings called k-mers. When working with a collection of such datasets
E = (E0, . . . , E|E|−1), it is fruitful to represent them as one union set of k-mers and, for
each k-mer, the indices of the datasets to which it belongs. The set of indices of each k-mer
is referred to as its color class, and E is referred to as a colored de Bruijn graph [13]. A
colored de Bruijn graph (cdBG) is commonly used to represent a sequence database, such as
a collection of sequencing experiments or a collection of assembled genomes. For example, it
is used by tools for inferring phylogenies [29], quantification of RNA expression [23], and
studying the evolution of antimicrobial resistance [4].

As sequence database sizes grow to petabytes [22], the cost of storing or transferring the
data (e.g. on Amazon Web Services or in-house compute infrastructure) has underscored the
need for efficient disk compression algorithms. Such costs are often prohibitive for smaller
labs and, even for larger labs, limit the scale of data that can be analyzed. Large file sizes
also hamper tool development, which relies on iterative loading/copying/modifying data, and
reproducibility efforts, which require downloading and storing the data. For example, storing
the 31-mers from 450,000 microbial genomes in compressed form takes about 12 Tb [4].
Unfortunately, there has not been a lot of work to develop methods for disk compression of
colored de Bruijn graphs.

In contrast to disk compression, indexing cdBGs have received much attention [19]. A
slew of data structures have been developed, optimizing various metrics such as index size,
construction time, or query time (see the survey [19] and its follow up [18]). Indexing data
structures exploit the structure of cdBGs and use clever tricks to compress the color classes
of similar k-mers. But they also carry a space overhead to efficiently support queries; since
this is not needed for disk compression, indexing data structures are usually not competitive
with custom made cdBG compression methods.

The simplest option for compressing a cdBG is to compress each color (i.e. dataset)
independently, using a compression tool designed for a single set of k-mers (e.g. [25]). This
approach can work well when k-mers tend to not be shared among colors. However, most
cdBGs have a large overlap between the k-mers of various colors. In such cases, independently
compressing each color does not exploit the properties of cdBGs and, as we show in this
paper, results in subpar compression ratios. There exist two tools designed specifically for
disk compression of cdBGs. The first tool is unfortunately limited to only three k-mer
sizes [16]. The second tool, called GGCAT [7] is a space efficient indexing method that,
while not originally evaluated in this regard, turns out to also be a good disk compression
method when combined with a generic post-compression step.

In this paper, we design, implement, and evaluate an algorithm ESS-color for the disk
compression of cdBGs. We build upon the idea of spectrum-preserving string sets [26, 6, 5]
and the followup compression format for a k-mer set [25], called ESS. By constructing an
ESS of the union of k-mers in E, we represent the k-mer sequences themselves compactly.
We exploit the fact that consecutive k-mers in an ESS have similar color classes in order to
efficiently compress the color vectors of each k-mer.

We evaluate ESS-color on a variety of datasets, including bacteria, fungi, human, and
including whole genome sequencing data, metagenome sequencing data, and whole assembled
genomes. ESS-color achieves better compression than all evaluated tools and on all datasets,
with all other tools using ≥ 44% more space on at least one of our datasets. On some datasets
the improvement over all other tools is quite large, e.g. for a gut metagenome, all the other
tools use at ≥ 27% more space than ESS-color. Compressing each color independently uses
between 1.2x and 6.9x more space than ESS-color. The absolute compression ratio is more
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than 26x on datasets of assembled genomes and between 1.4x and 8.7x on datasets from
sequencing experiments. The software is available at http://github.com/medvedevgroup/
ESSColor.

2 Preliminaries

In this section we give some important definitions. Please refer to Figure 1 for examples of
the introduced concepts.

Strings

A string of length k is called a k-mer. We assume k-mers are over the DNA alphabet. A
string x is canonical if it is the lexicographically smaller of x and its reverse complement.
Let K be a set of k-mers. A spectrum-preserving string set (SPSS) of K is a set of strings
S such that each string s ∈ S is at least k characters long, every k-mer that appears in S

appears exactly once, and the set of k-mers that appear in S is K [26, 6, 5]. For example,
if K = {ACG, CGT, CGA}, then {ACGT, CGA} would an SPSS of K. Note that K can
have multiple spectrum-preserving string sets. There are several efficient tools for computing
an SPSS so as to minimize the total number of characters [15, 7]. In this paper, we rely on
the implementation in [25]. Each string in the resulting SPSS is referred to as a simplitig.

Compression of a k-mer set

ESS is a disk-compression format to store a set of k-mers K. It was introduced in [25] as
the output of a compression tool, which, in this paper, we will refer to as ESS-basic. The
technical details of the format and of the tool are irrelevant for this paper and can be viewed
as black boxes. An ESS representation cannot be queried efficiently but can be decompressed
into an SPSS of K. This output gives an ordering of the k-mers of K, and therefore the
ESS compression of K induces an ordering on K. Note that because the decompression
algorithm is deterministic, by storing an ESS representation, we are implicitly storing an
SPSS representation as well.

Colored k-mer sets

Let C > 0 be an integer indicating the number of colors. Let E = {E0, . . . , EC−1} be a set
of C k-mer sets, also referred to as a colored de Bruijn graph. Let E be the set of all k-mers
in E, i.e. E = {x | ∃i s. t. x ∈ Ei}. The (color) class of a k-mer x ∈ E is the set of indices i

such that x ∈ Ei. The color vector of x is a binary vector of length C where position i is 1
iff x ∈ Ei.

Non-compressed representation of cdBGs

Assume you have an ordering of E, e.g. the one given by an ESS of E. A color matrix of E

is a file with row i containing the color vector of the ith k-mer. Storing an ESS of E together
with a color matrix of E is a lossless representation of E.

3 Methods

In this section, we describe our algorithm ESS-color for the compression of cdBGs. Let
E = {E0, . . . , EC−1} be a colored dBG over C colors. Recall that E is the set of all k-mers
in E. Let M denote the number of distinct color classes in E.
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Figure 1 An example illustrating the various definitions in Section 2 and the first step of
our compression method (Section 3.1). The input to the compression algorithm is a colored
de Bruin Graph. The top panel shows an example with three colors (i.e. C = 3), k = 5,
and a colored cdBG of E = {E0, E1, E2}. Here, E0 = {T CAAA, CAAAA, AAAAT },
E1 = {T CAAA, CAAAA, AAAAT, AAAT T, CAAAG, AAAT C, AAT CG}, and E2 =
{T CAAA, CAAAA, AAAAT, AAAT T, CAAAG}. The color class is shown next to each k-
mer, e.g. the color class of T CAAA is {0, 1, 2}. There are three distinct color classes, i.e. M = 3.
These are {0, 1, 2}, {1, 2}, and {1}. The lower left panel shows the union ESS, i.e. the ESS
representation of the set E = {T CAAA, CAAAA, AAAAT, AAAT T, CAAAG, AAAT C, AAT CG}.
This union ESS can be decomposed into an SPSS of E, shown in the figure. The third column
in bottom panel shows the color matrix, with k-mers in the order of the SPSS. To obtain the
final compressed representation the color matrix is compressed using the algorithm we describe
in Section 3.2.

ESS-color can accept input in one of two formats. First, it can accept each Ei stored in
the KFF file format [10]. Alternatively, we can take as input a collection of FASTA files,
each one assigned one of C colors, and an abundance parameter a. Ei is then implicitly
defined as the set of all canonical k-mers that appear at least a times in the FASTA files of
color i. We obtain Ei by running KMC [17] on the FASTA files of color i.

3.1 Building a color matrix of E and compressing E

In this step, we first compress E using ESS-basic [25] and then build the color matrix of E,
ordered by the ESS order. Specifically, we first compress the nucleotide sequences themselves,
i.e. we run ESS-basic [25] on all the input files jointly. We refer to this as the union ESS.
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We then decompress this file to obtain an SPSS of E, denoted by S. From S, we build an
SSHash dictionary [24] that allows us to map each k-mer in E to its rank in S. We then
build on top of the KMC API to read in the binary files representing E0, . . . , EC−1 and
output a color matrix ordered by the SSHash dictionary. At the end of this stage, we have
the union ESS, which is retained in the final compression output, and we have S and the
color matrix, which are used in later stages but not retained in the final compression output.

3.2 Compression of the color matrix
Given an SPSS S of E and a color matrix of E over the order induced by S, we now generate
a compressed representation of the matrix. Our representation consists of a global class table
and, for every simplitig of S, a few bits of metadata, a local class table and one bitvector
m. The local class table is optional, as we describe below. Figure 2 gives a schematic
representation. We now explain each of these in detail.

Global class table: For most applications, the number of distinct color vectors M is signi-
ficantly smaller than 2C . Hence, the color matrix representation, which uses C bits per
k-mer, is very inefficient. Instead, we use Huffman coding to assign a global ID to each
class, so as to minimize the number of bits that will be used to store these IDs later (this
is similar to what was done in [3]). To do this, we scan the color matrix to determine all
the distinct classes and the number of k-mers that have each class. We then use Huffman
coding to assign a global ID to each distinct class, so that more frequent global IDs tend
to use less bits. This table is then stored in two forms: one that is compressed to disk,
and the other that is stored in memory to be used during the compression algorithm.

We store the table on disk using three files: a color encoding ∆, a boundary bitvector b,
and a text file. First, we sort the color classes in increasing numerical order, interpreting
each color vector as a C-bit integer. For ∆, we write a concatenation of the M color
vectors to disk, with the first color vector being written using C bits and the following
colors being encoded as a difference with their predecessor. Specifically, if hi is the
Hamming distance between the ith and the (i − 1)st color vectors, then we use hi⌈log C⌉
bits to encode the indices where the ith color vector is different from the (i − 1)st color
vector. We also store a boundary bitvector b which is the same length as ∆ and contains
a “1” whenever ∆ starts a new color class. Finally, we store the frequencies of the color
classes in a text file. These three files are then sufficient to reconstruct the global IDs
during decompression. 1

Simultaneously, we need to be able to map a color vector to an ID during the compression
process. To do this, we create a minimal perfect hash function h (CHM [8]) that maps
from each distinct color vector to an integer between 0 and M − 1. We then maintain
an array A of size M , where for each color vector c, A(h(c)) holds the global ID of color
vector c.

After the global class table is created, we process the simplitigs of S one at time. For
each simplitig, we dynamically set two parameters: a boolean variable UseLocalID, and an
integer 0 ≤ maxDif ≤ 2. We postpone the discussion on how these are set until the end of
the section. The values of maxDif and UseLocalID are stored using 3 bits of metadata per
simplitig. If UseLocalID is set, we create a local class table:

1 For readers familiar with Mantis-MST [2], we also tried their approach for storing our global table.
Surprisingly, we found that our approach outperformed their more sophisticated approach, at least in
our datasets. Though the Mantis-MST approach resulted in a smaller ∆ vector, the overhead of storing
the tree parent vector outweighed this gain.

WABI 2023
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Local class table: In the case that the frequencies of color classes are evenly distributed,
we need approximately log M bits to represent the global class ID of each k-mer. We
observe that sometimes a class is used at multiple locations of a simplitig, in which case
using log M bits for each occurrence can be wasteful. Let ℓ be the number of distinct
classes appearing in a simplitig. To save space on class IDs, we create a separate local
class table, which maps from ℓ integers, called local class IDs, to their respective global
IDs. Then, the encoding of k-mer classes for this simplitig can use local class IDs, which
take only log ℓ space. The local class table is written to disk, with log M bits encoding ℓ

followed by ℓ consecutive global class IDs together.

The bitvector m is constructed by scanning the simplitig from left to right and, for each
k-mer x, deciding how to encode it, and appending that encoding to m. Intuitively, the
encodings follow three basic possibilities. The first possibility is to just append m with the
k-mer’s class ID. Second, we observed in practice that simplitigs often contain runs of k-mers
with identical classes, in which case we can append m with the length of the run, rather
than writing out each class IDs (such runs are similar to the monotigs of [20]). Finally, we
often observe that a k-mer has a color vector with a small Hamming distance (i.e. 1 or 2) to
that of the previous k-mer. In this case, we append m with the indices in the color vector
that are different. Since there are three types of encoding, we will also need to prepend
each encoding with two bits denoting the type of encoding. Formally, for each k-mer in a
simplitig, we choose one of four options:

Skip: This option is invoked if x is not the first or last k-mer in its simplitig and has the
same class as the preceding and succeeding k-mer. In this option, nothing is appended
to m.

Small class difference: Let h be the Hamming distance between the color vector of x and
the color vector of the preceding k-mer in the simplitig. This option is invoked when
0 < h ≤ maxDif . First, we append m with “10” to indicate that the following encoding
will encode a class difference. If maxDif = 2, then we append m with a “1” to indicate
that h = 2 or a “0” to indicate that h = 1. If maxDif = 1, then we do not append
this extra bit, since it is implicit. Then, we append m with h log C bits which list the
colors that are different. Note that setting maxDif = 0 effectively disables this type of
encoding.

End of run: This option is invoked if x has the same class as the preceding k-mer and either
has a different class than the succeeding k-mer or is the last k-mer in the simplitig. First,
we indicate that the following encoding will encode a run length by appending m with
“11” if maxDif > 0 and “1” if maxDif = 0. This difference is due to the fact that if
maxDif = 0, then there are only two types of encodings and so we can just use one bit
for the type.

Let runLen be the number of consecutive k-mers that preceded x (not including x)
and have the same class. We encode runLen by separating it into a quotient q and
remainder r (with respect to a global parameter runDivisor), and then encoding the
quotient q in unary and the remainder r in binary. Formally, let q = ⌊ runLen

runDivisor ⌋
and r = runLen mod runDivisor. We append to m q “1”s followed by a “0”. Then,
we append to m the binary encoding of r, using log runDivisor bits. For example, if
runDivisor = 16 and runLen = 21, then q = 1 and r = 5, and m is appended with
100101. Observe that a smaller value of runDivisor results in more bits used to encode
long runs (i.e. q is larger) while a larger value of runDivisor uses more bits to encode
short runs (i.e. log runDivisor is larger). We found that a default value of 16 works best
in our experiments.
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Figure 2 Example of how we compress the color matrix (Section 3.2). The top panel shows
the compression of a simplitig ACTTTGGA and the bottom panel shows the compression of a
simplitig AAAATTAC. Other simplitigs exist but are not shown. In this example, C = 6, k = 4, and
runDivisor = 4. The figure is divided into three columns. The first column shows the information
that the algorithm has about each k-mer (i.e. its color vector and corresponding global ID). The
second column shows the metadata which holds the values of maxDif and useLocalId for the
corresponding simplitig. The third column shows the m vector. Within the m vector, the type of
encoding is shown in gray colored boxes and other values are shown in white boxes. The colors of
the values inside the white boxes correspond to the color used for the corresponding k-mers’ color
vector in the first column of the figure. Note that in the bottom simplitig, a local table is used. In
particular, there are two distinct color vectors in this simplitig, with global ID 0011 assigned to local
ID 0 and global ID 000 assigned to local ID 1.

Store the class ID: This option is invoked when none of the criteria for the other options are
satisfied. In this case, we append m with “0” to indicate the type of encoding, followed
by the class ID of x. If UseLocalID is set, we use the local class ID, otherwise we use
the global class ID.

After finishing with all simplitigs, we compress the global class table, local class tables, and
m using RRR [27] and write them to disk.

Setting the parameters UseLocalID and maxDif involves trade-offs that are difficult to
quantify in advance. For example, the cost of having to store the local class table may exceed
the benefits of using less bits to encode class IDs for a simplitig where every present class ID
is contained within a single run. Similarly, when d is too large, then writing the positions of
the color differences to m can take more space then just writing the class ID. Moreover, there
is a benefit of setting d = 0, since it enables to save one bit per run by using “1” instead of
“11” for the “end of run” encoding. All bitvectors are additionally compressed with RRR,
making it difficult to determine in advance which parameters result in the least space. We
therefore try all possibilities of maxDif ∈ {0, 1, 2} and UseLocalID ∈ {True, False}, and,
for each combination, compute the encoding. We then use the encoding that takes less space
and disregard the rest. Though this step can likely be optimized, we found that the time
taken to try all possibilities was not a large factor in the overall compression time.

The decompression algorithm for the m vector is straightforward since our color matrix
compression scheme is designed to be unambiguously decompressed. Simultaneously, we
decompress E with ESS-decompress. The result is an SPSS S of E and a color matrix of

WABI 2023
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Table 1 Dataset characteristics. C is the number of colors and M is the number color classes.

Source type C M n. k-mers ×106

(% single color)
n. simplitigs ×106

k = 23 k = 31 k = 23 k = 31
E. coli assemblies 100 542,545 27 (30%) 31 (31%) 0.5 0.5
E. coli assemblies 10 826 13 (38%) 14 (41%) 0.2 0.2
Fungi assemblies 20 13,227 394 (93%) 409 (93%) 1.8 1.7
Gut metagenome reads 9 511 2,236 (67%) 2,477 (70%) 76 95
Human RNA-seq reads 19 9,654 120 (71%) 103 (75%) 7.2 10

E in the order of S. If the output is to be processed downstream in a streaming manner,
our decompression algorithm can trivially stream out k-mer sequence and color vectors, one
k-mer at a time.

4 Results

4.1 Evaluated tools and datasets
As far as we are aware, there are two other tools designed for compressing colored de Bruijn
graphs: KS [16] and GGCAT [7]. We refer to the first tool as KS after the authors’ last
names [16]. KS is limited to support only three k values (15, 19, and 23), so we compare
against it for k = 23 but also evaluate ESS-color on a more practical k value of k = 31. For
GGCAT, we additionally compressed its Fasta output file with MFC and its binary color
table with gzip to maximize its compression ratio. We also compare ESS-color against the
naive approach of compressing each color independently using the algorithm of [25], which
we refer to as ESS-basic.

Table 1 shows the datasets we use for evaluation and their properties. We chose five
datasets so as to cover a broad range of input types. Three of the datasets are from
assembled genomes, one is from RNA-seq reads, and one is from metagenome reads. We
used all k-mers from the three assemblies datasets and all k-mers that appear at least twice
from the two read datasets. The datasets cover various species, from Bacteria to Fungi to
Human. Concretely, we have 1) 100 arbitrarily selected E.coli strains from GenBank, 2) an
arbitrary subset of 10 of those, 3) 20 arbitrarily selected fungi sequences from RefSeq, 4) gut
microbiome read sets from nine individuals sequenced in [21], and 5) 19 paired-end, human,
bulk RNA-seq short-read experiments previously used in [2]. All accession numbers are listed
in https://github.com/medvedevgroup/ESSColor/wiki/Experiments.

Finally, all experiments were run on a server with an Intel(R) Xeon(R) CPU E5-2683 v4
@ 2.10GHz processor with 64 cores and 512 GB of memory. We ran all tools in unrestricted
memory mode. We used 8 threads for all tools and their components, whenever they
supported multi-threading.

4.2 Comparison against other disk compression tools
Table 2 shows the bits per k-mer achieved by ESS-color compared with KS, GGCAT
ESS-basic, and a p7zip compression of the original fasta file. ESS-color achieves better
compression than all evaluated tools and on all datasets. No other tool was able to consist-
ently achieve less than 44% space overhead compared to ESS-color. On some datasets the
improvement over all other tools is quite large, e.g. for Gut (k = 23), all the other tools use
at least 27% more space than ESS-color.

https://github.com/medvedevgroup/ESSColor/wiki/Experiments
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Table 2 Compression results, in bits per k-mer. ESS-color is our new tool. ESS-basic is the
non-integrative approach of compressing every color separately. KS is tool from [16], and a hyphen
indicates that it does not support k > 23. fa.p7zip is the p7zip compression of the original data. We
show bits per k-mer, which is the total compressed size divided by the number of distinct k-mer in
the input (i.e. |E|). Compression ratios can be inferred by comparing to the fa.p7zip column.

Dataset k = 23 k = 31

fa.p7zip ESS-color KS GGCAT ESS-basic fa.p7zip ESS-color KS GGCAT ESS-basic

Ecoli100 37 5.2 17.3 6.4 35.0 33 4.4 – 5.5 30.3
Ecoli10 8 2.9 5.3 3.3 7.3 7 2.6 – 3.0 6.6
Fungi20 2.4 2.2 2.5 2.3 2.3 2.3 2.2 – 2.3 2.5
Gut9 60 3.7 5.7 4.9 4.7 54 3.4 – 4.9 4.4
HumRNA19 112 5.6 8.8 7.1 10.4 131 8.9 – 10.5 12.1

The compression ratio of ESS-color relative to the original Fa.p7zip files varies (Table 2).
For the read datasets, it is more than 15x, since high-coverage FASTA files are by their
nature very redundant. For the assemblies datasets, the ratio is between 1x and 7x. We
found that a good predictor of compressibility of assemblies is the percentage of k-mers that
have exactly one color (Table 1). At one extreme, 93% of Fungi20 k-mers have exactly one
color, and ESS-color achieves little improvement over fa.p7zip. At the other extreme, only
30% of Ecoli100 k-mers have exactly one color, and the compression ratio is relatively high
at 7.1x (for k = 23). This trend makes intuitive sense since single-color k-mers do not benefit
from ESS-color’s multi-color compression algorithm.

KS is not as effective as ESS-color on our datasets, using between 1.4x and 3.3x more
space than ESS-color (Table 2). We note that even though KS is also designed to exploit
the fact that k-mers are shared across colors, it makes a different design trade-off compared
to ESS-color. Specifically, it does not allow simplitigs to extend beyond a single color class
(resulting in more space needed to store k-mers), but, in exchange, it is more efficient in
storing color information.

GGCAT is generally the closest competitor against ESS-color, using between 14 and 44%
more space on the non-Fungi datasets (note that for Fungi all tools did well). Like ESS-color,
it builds a kind of global class table, constructs an SPSS of the k-mers, and annotates each
run of single-class k-mers with their class ID. Unlike ESS-color, however, it does not use
ESS, does not encode small class differences, and does not use local class tables.

As expected, ESS-basic is not as effective as ESS-color, using up to 6.9x more space
than ESS-color (Table 2). These results are not surprising since ESS-basic does not exploit
the redundancy created by shared k-mers across samples. For the assemblies datasets, the
compression improvement of ESS-color over ESS-basic closely tracks that of ESS-color over
the original fa.p7zip. For the sequencing datasets, ESS-basic uses between 1.3 and 1.9 more
space than ESS-color.

Tables 3 and 4 show the run time and memory usage of compression, respectively. Here,
ESS-color is outperformed by other tools. In particular, if optimal compression space is not
needed, then GGCAT becomes a good alternative to ESS-color. Note that the decompression
time (Table 5) is an order of magnitude smaller compared to the compression times.

WABI 2023



17:10 Compression Algorithm for Colored de Bruijn Graphs

Table 3 Time (min) used by the various compression algorithms. For the Gut9 ESS-color run
with k = 23 (marked with *), we used an unoptimized implementation of the color matrix generation
step, since SSHash was not working as expected. For GGCAT on Gut9 with k = 23 (denoted by
**), the original run crashed because of exceeding the number of open files allowed by the operating
system. We therefore re-ran GGCAT using our simplitigs as a starting point, which allowed the
run to complete. However, the time shown here does not include the time we used to construct the
simplitigs.

k = 23 k = 31
Dataset ESS-color KS GGCAT ESS-basic ESS-color GGCAT ESS-basic
Ecoli100 14.8 11.6 0.7 6.3 20.7 0.7 27
Ecoli10 2.6 7.0 0.3 0.9 2.6 0.3 2
Fungi20 59.1 7.0 3.3 7.3 76 3.3 25
Gut9 1101* 148.5 37.8** 234 611.6 92.2 341
HumRNA19 31.9 10.5 21.2 31 60.1 15.0 39

Table 4 Maximum memory (Gb) used by the various compression algorithms. The (*) and (**)
annotations are the same as in Table 3.

k = 23 k = 31
Dataset ESS-color KS GGCAT ESS-basic ESS-color GGCAT ESS-basic
Ecoli100 1.2 0.9 1.5 1.2 1.1 1.4 1
Ecoli10 0.6 3.2 0.8 1.1 0.6 0.8 1
Fungi20 5.4 3.2 4.8 5.9 4.3 3.9 6
Gut9 174.6* 50.6 87.2** 33.2 121 78.2 119
HumRNA19 26.8 6.0 8.8 9.1 12.1 10.2 7

Table 5 Time and memory for decompression of ESS-color, for k = 31.

Dataset Memory (GB) Time (min)
Ecoli100 0.5 2
Ecoli10 0.5 1
Fungi20 0.5 13
Gut9 8.5 90
HumRNA19 1.0 5

Table 6 Breakdown of the space usage (in percentage of total space) of the components of
ESS-color, for k = 31. Note that all components except union ESS are shown after compression
with RRR.

Dataset union ESS m global table
(∆ and b)

global table
(frequencies)

local tables

Ecoli100 51 23 23 2 1
Ecoli10 81 18 <0.1 <0.1 0.5
Fungi20 95 5 <0.1 <0.1 0.1
Gut9 77 22 <0.1 <0.1 1
HumRNA19 73 26 <0.1 <0.1 0.8
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Table 7 The percentage of simplitigs (k = 31) that fall into the six compression modes, i.e.
combinations of UseLocalID and maxDif .

Dataset
UseLocalID = False UseLocalID = True

maxDif
= 0

maxDif
= 1

maxDif
= 2

maxDif
= 0

maxDif
= 1

maxDif
= 2

Ecoli100 75 20 5 <0.1 <0.1 <0.1
Ecoli10 82 16 2 <0.1 <0.1 <0.1
Fungi20 99 1 0.2 <0.1 <0.1 <0.1
Gut9 80 19 2 0.2 <0.1 <0.1
HumRNA19 91 9 0.1 0.1 <0.1 <0.1

Table 8 Compression results in bits per k-mer (k = 31) of indexing approaches, compared to
ESS-color.

Dataset ESS-color RowDiff-ESS RowDiff+ Rainbow-MST
Ecoli100 4.4 14.6 8.0 34.2
Ecoli10 2.6 7.8 6.3 19.3
Fungi20 2.2 3.6 4.3 9.5
Gut9 3.4 11.2 40.6 15.6
HumRNA19 8.9 37.9 112.6 19.1

4.3 Inside the space usage of ESS-color
ESS-color’s compressed representation includes several components, with the major ones
being the union ESS, the m vector, the global table, and the local tables. Table 6 shows that
the majority of space used by ESS-color is taken by the union ESS. Except for Ecoli100, the
rest of the space is taken up almost exclusively by m. For Ecoli100, which has the largest
number of colors, the global table takes 23% of the total space.

Recall that ESS-color chooses one of six different compression modes for each simplitig,
i.e. UseLocalId ∈ {0, 1} and maxDif ∈ {0, 1, 2}. In order to access the relative contribution
of the various compression techniques, we count the frequency with which each mode occurs
(Table 7). First, we observe that the idea of a local table was rarely helpful on our data.
Local tables are only beneficial when a single color class appears in more than one run in a
simplitig, which apparently was rare. Second, the majority of simplitigs use maxDif = 0.
This mode is optimal when the simplitig has just one color class. There is also a more
complicated trade-off since setting maxDif > 0 adds one extra bit for each run encoding,
which may outweigh the benefits of encoding some k-mers with a class difference. Third, the
Gut dataset demonstrates the benefit of encoding class differences, especially compared to
GGCAT. It is the dataset with the highest percentage of simplitigs using maxDif > 0 (21%)
and, simultaneously, it is also the dataset where GGCAT uses the most space relative to
ESS-color (44%).

4.4 Comparison to indexing data structures
There exist numerous indexing data structures for cdBGs [19]. Indexing data structures are
similar to disk compression but additionally support efficient membership and color queries.
We expect this overhead to make them non-competitive with respect to disk compression
schemes. To verify this, we compared the space taken by ESS-color against three indexing
approaches. We note that since these approaches are designed for indexing, they do not
implement decompression and are thus not viable for disk compression in their current state.
We also note that GGCAT also supports indexing, but, since it is trivial to decompress, we
included it in the main analysis of Section 4.2.
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The first two approaches are ones that are shown in [9, 14] to be the most space efficient.
These are RowDiff+, which is the latest version [14] of RowDiff [9], and Rainbow-MST [9],
which is a space-improved version of Mantis-MST [2]. As a trivial improvement, we further
compress these indices using gzip. The third approach we compare to is a natural hybrid of
ESS-color and the RowDiff indexing algorithm for cdBGs [9]. We refer to this as RowDiff-ESS
and describe it in detail in the Appendix. We do not compare against other indices such as
REINDEER [20], Bifrost [12], Themisto [1], or Mantis-MST [2], because they are less space
efficient than RowDiff+, and we do not compare against Sequence Bloom Tree approaches
(e.g. [11, 28]) because they are lossy.

Table 8 shows the results. As expected, the compression ratios of these indexing tools are
not competitive against ESS-color. Even the most space efficient indexing approach for each
dataset takes 60% more space than ESS-color. We do note that GGCAT, which was shown
in Table 2, is an exception, since it implements both efficient indexing and disk compression.

5 Conclusion

Colored de Bruijn graphs are a popular way to represent sequence databases. In spite of
their ever-growing sizes, there have not been many specialized tools for compressing them to
disk. In this paper, we present a novel disk compression algorithm tailormade for cdBGs that
achieves superior space compression compared to all other tools on the evaluated datasets.

Our algorithm is a novel combination of ideas borrowed from previous work on disk
compression of k-mer sets and indexing of cdBGs. We use a spectrum-preserving string set
(SPSS) as a basis for both compressing the nucleotide sequences and for ordering the rows in
the color matrix. By using the SPSS ordering, we can avoid the costly storage of an indexed
de Bruijn graph (e.g. BOSS in [9, 14] or a counting quotient filter in [2]). We also exploit
the fact that consecutive k-mers in an SPSS likely have the same or similar color class. A
major component of our approach is that we select a different compression scheme for each
simplitig, depending on what gives the best compression on that simplitig.

The most important practical direction for future work is to improve the running time
of our algorithm. The generation of the union ESS is done by ESS-basic. ESS-basic can
be sped up by extending the latest SPSS generation tools [15, 7] to also compute an ESS.
We could even build on top of GGCAT, taking advantage of their efficient implementation
(unfortunately, GGCAT was only released once our project was near completion). Another
bottleneck is the color matrix generation step, which could be parallelized or even avoided
by using color lists.

A theoretical future direction is to derive bounds on the bits used by the compression
scheme. Unfortunately, we do not see an easy way to do this, since the choice of encoding
depends on the order of the k-mers in the SPSS and on the decomposition of the k-mers into
simplitigs. It is unclear to us how to capture these properties as a function of the input data.

Finally, we could further improve the compression algorithm by modifying the SPSS
generated by the ESS-basic algorithm. Currently, the choice of how to select from multiple
simplitig extensions is made arbitrarily. Instead, the choice could be made to use the
extension that has the most similar color class. Such a modification to the SPSS construction
algorithm would likely be computationally non-trivial, since it would require accessing the
color information.
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A Appendix

Here we describe RowDiff-ESS, the hybrid of ESS-color and the RowDiff indexing algorithm
for cdBGs [9]. Though the approach turned out to not be comptetive against ESS-color, we
describe it here for completeness. The RowDiff index is composed of two parts: BOSS, which
is an index of E, and a compressed color matrix whose labels are implicitly given by BOSS.
Because of its structural similarity to our approach, we can swap out BOSS (which supports
queries and is therefore not space efficient for disk compression) with an ESS of E. We
then feed the k-mer ordering implied by the ESS to the RowDiff color matrix compression
algorithm. The space used by this scheme is the ESS space plus the space of the RowDiff’s
color matrix, compressed with gzip.
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