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Abstract— Process systems are characterized by nonlinearity,
uncertainty, large scales, and also the need of pursuing both
safety and economic optimality in operations. As a result they
are difficult to control effectively. Data-driven techniques such
as machine learning algorithms can provide complementary
tools and insights to classical model-based control by enhancing
the capability of modeling the dynamics of complex systems and
the maintenance of control performance. Moreover, by learning
the behavior of plants and controllers as black boxes, data-
driven techniques can enable a completely model-free control
paradigm. Hence, data-driven process control has the potential
to mitigate the challenges of state-of-the-art control technology
and yield generic, adaptive, and scalable strategies. This paper
aims at providing an overview and conceptual classification of
the main approaches in this emerging and promising field, and
identifying current limitations and future directions.

I. INTRODUCTION

The acquirement, processing, and analysis of “big data”
has become a prevalent topic in science and engineering,
also reviving the interest of using data-driven techniques
for automatic control [1], [2]. In this paper, we are in-
terested in the control of process systems, namely process
control. Examples of process systems include oil refineries,
chemical plants, pharmaceutical and fermentation processes,
and semiconductor manufacturing systems. The macroscopic
and phenomenological dynamics of process systems are
determined by the transport of mass, energy, and momentum
subject to restrictions imposed by thermodynamic laws [3].
Motivated by the growing capability of collecting datasets
of high volume and variety from the operations of process
systems, machine learning techniques have been extensively
adopted in the context of process data analytics [4], [5].

A. Model-based process control and its limitations

The strategy of controlling process systems based on
their dynamic models, i.e., model-based control, was largely
motivated by the growing availability of first-principles
models and the emergence of state-space control theory.
The exploration of applying optimal control to chemical
processes started in the 1960s [6]–[8] and culminated in the
extensive implementation of model predictive control (MPC)
technology since the 1980s [9], [10]. The corresponding
optimal control problems are formulated by taking some
economic costs and/or deviations of the predicted trajectories
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from reference ones as the objective function, and incorporat-
ing the dynamic model and operating limits as constraints.
These optimization problems are formulated and solved in
a repetitive manner based on real-time measurements and
estimations (typically using Kalman filters) of the plant states
[11].

The theoretical stability properties of MPC in different
formulations was established through extensive studies in
the 1990s [12]. Since then, many variants of MPC, e.g.,
nonlinear MPC [13], economic MPC [14], distributed MPC
[15], and fast MPC [16] have been developed based on the
underlying optimization theory. In parallel to MPC, several
other model-based strategies have been studied in the pro-
cess control community, especially robust control for linear
systems with uncertainty [17] and input-output linearizing
control for nonlinear dynamics [18], and the conceptual
relations between these strategies have been elucidated in
a number of studies [19], [20].

Model-based control strategies, however, may fall short
due to the complexity of process systems. Importantly, the
establishment of models that are both accurate and easy to
use for model-based control can be challenging. Since first-
principles models are often complex and thus difficult to de-
rive and reduce, practically, dynamic models can be obtained
through system identification based on intentional perturba-
tions of the process [21], which is often time-consuming
and requires extensive human interventions to guarantee the
model quality. The current system identification procedures
are often restricted to model structures that are mostly linear
and deterministic. While linear models are often claimed
to be satisfactory for processes operated in small regions
around steady states, their resulting control performance can
deteriorate when the operation modes vary significantly, in
which case nonlinear controllers must be deployed. Many
process systems related to pharmaceuticals, biomass conver-
sion, and fine chemicals can also have large disturbances
and/or strict product specifications, which require effective
handling of uncertainties with explicit characterization [22].
The intrinsic complexity of process dynamics, especially
nonlinearity and uncertainty, has motivated the adoption of
data-driven process control strategies.

B. Ideas and Classification of Data-Driven Process Control

The development of data-driven techniques for process
control is typically based on the assumption of “big data”
availability. Such big data are either collected and stored
from the history of process operations or generated by a
“digital twin” (i.e., a high-fidelity simulator that uses detailed
and accurate models based on the underlying physics and
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chemistry) [23]. If sufficient amount of informative data
have been obtained (more than what is enough to identify
a linear model), it is possible to apply state-of-the-art ma-
chine learning methods to obtain more accurate nonlinear
dynamic models and thereby design nonlinear model-based
controllers. Hence, the first level of data-driven process
control is data-driven dynamic modeling.

Controllers are used for operating processes. After a
controller is designed and launched for online operations, its
performance must be maintained through tasks in two dif-
ferent categories, which we refer to as controller calibration
and monitoring. In calibration, the discrepancy between the
behavior of the actual closed-loop system and the anticipated
behavior is accounted for as an effect of exogenous distur-
bances [24] or uncertain parameters [25], while the process
is assumed to be still under normal operating conditions.
Such discrepancies are quantitatively captured and used
for the correction of future control actions. In monitoring,
internal factors (e.g., plant-model mismatch, ill controller
tuning, and valve stiction) as well as external reasons (e.g.,
abnormal feed condition or equipment malfunctioning) for
controller performance deterioration, called faults, need to
be detected and diagnosed [26]. Preferably, the root cause
for the faults can be determined, so that instructions for
human intervention can be given in time. The calibration and
monitoring of controllers rely on the data collected in real
time during online operations. Instead of being “big data”
methods, data-driven performance maintenance demands
effective utilization of real-time online “small” data.

The aforementioned two types of data-driven process
control are still based on dynamic models (in the form
of differential equations describing the evolution of states).
Specifically, data are primarily used to build, calibrate, or
monitor the models. It can be argued though that models
are not essentially necessary for control; all that should be
needed is some control-relevant information, which can be
much simpler than a complete model. By directly learning
such information from offline and online data and thus
avoiding system identification, data-driven methods promise
a highly automated paradigm of future control technology
that is truly centered at data. This type of data-driven
process control, compared to the previous two, has been less
investigated so far. We use the terminology of Fliess et al.
[27] and call it model-free control.

The above different types of data-driven process control
strategies are conceptualized in Fig. 1. The rest of the paper
is organized as follows. In Section II, III, and IV, we give
a tutorial yet concise introduction to the main representative
approaches for the three categories of data-driven process
control that we classified above. Subsequently, we discuss
three crucial and fundamental future research directions in
Section V. Conclusions are given in Section VI.

II. DATA-DRIVEN DYNAMIC MODELING

We consider a process system governed by continuous-
time control-affine nonlinear dynamics:

ẋ(t) = f(x(t)) + g(x(t))u(t), y(t) = h(x(t)), (1)

Process
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Fig. 1. Routes of data-driven process control.
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Fig. 2. Wiener-Hammerstein model.

where the vector of states is denoted by x(t) ∈ X ⊆ Rn,
inputs by u(t) ∈ U ⊆ Rm, and outputs by y(t) ∈ Rp. The
functions f : X → Rn, g : U → Rm, and h : X → Rp
are smooth. The conditions for the nonlinear system (1)
to be controllable and observable can be found in [28,
Chapter 2], and we assume that these conditions are satisfied.
The functions f , g, and h are assumed to be difficult to
obtain through traditional system identification procedures
[21] or parameter estimation on first-principles models [29].
In the presence of such complexity, data-driven techniques
are needed to model the system.

It should remarked, however, that such nonlinear modeling
may not always be needed for the whole system, but can
be used for appending auxiliary nonlinear blocks after and
before linear system models in a Wiener-Hammerstein model
[30], [31]. That is, one can have u nonlinearly mapped onto
w ∈ Rm′ and v ∈ Rp′ nonlinearly mapped onto y, so that a
linear model exists between w and v:

ẋ(t) = Ax(t) +Bw(t), v(t) = Cx(t),

w(t) = φ(u(t)), y(t) = ψ(v(t)).
(2)

Such a concept is illustrated in Fig. 2.

A. Sparse identification

For simplicity, let us first consider autonomous systems

ẋ = f(x) (3)

where the states can be measured. We assume that the
function f can be expanded as a finite combination of
multiple candidate basis functions b1, b2, . . . , bK , e.g., when
f is a polynomial of degree d ∈ N and the basis functions
consist of monomials of degree not exceeding d. That is,

f(x) =
K∑
k=1

θkbk(x)

=

θ11 · · · θK1

...
. . .

...
θ1n · · · θKn


 b1(x)

...
bK(x)

 =: Θ>b(x)

(4)
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where θk ∈ Rn, k = 1, . . . ,K , i.e., Θ ∈ RK×n, and b : X →
RK . When observation pairs

(
x(s), ẋ(s)

)
, s = 1, . . . , S are

available (S is the number of data points), the parameters
θ can be obtained through linear regression. In [32], it was
proposed that such regression should promote the sparsity
of θ, since the governing equation should be simple, i.e.,
f should not involve too many terms. For this purpose, an
`1-penalty term is added for a LASSO formulation:

min
Θ

1

2
‖D −BΘ‖2 + λ‖Θ‖1. (5)

In the above formulation,

B =

b(x
(1))>

...
b(x(S))>

 , D =

ẋ
(1)>

...
ẋ(S)>

 , (6)

and ‖Θ‖1 =
∑K
k=1

∑n
i=1 |θki|; λ > 0 is the regularization

parameter.
The above approach based on basis expansion and sparse

regression was termed Sparse Identification of Nonlinear
Dynamics (SINDy) in [32]. Among the recent extensions,
[33] proposed similar treatment for NARX model structures
(for discrete-time systems), i.e.,

y(t) =
K∑
k=1

θkfk(y(t− 1), . . . , y(t− δy),

u(t− 1), . . . , u(t− δu)),

(7)

where δu, δy ∈ N. Such NARX models overcome the limita-
tion of state measurements, and useful heuristics to select the
input–output terms fk were discussed. [34] proposed to infer
parameters θ through moving horizon optimization, which
allows the use of online data.

B. Koopman operator theory

A different approach of identifying the governing equa-
tions of nonlinear dynamics is to find nonlinear transforma-
tions of the states whose dynamics is linear. Consider the
autonomous system (3). Suppose that the initial condition is
x(0) = ξ. Then after time t, the solution of (3) determines
the state x(t) dependent on ξ. We denote such a mapping
(i.e., the flow) as Tt : Rn → Rn, x(0) 7→ x(t). Let us then
consider any continuous complex vector-valued function of
states ϕ : X → CN , called observer function. The dynamics
of such observer functions, is then represented by an operator
defined on the function space, called the Koopman operator,

Kt : ϕ 7→ Ktϕ = ϕ ◦ Tt. (8)

In other words, for any observer function ϕ, Ktϕ(x(0)) =
ϕ(x(T )). This is illustrated in Fig. 3 with different choices
of observables ϕ1 and ϕ2. It is not hard to verify that Kt
is a linear operator on C(X,CN ) (the continuous function
space). In this way, the Koopman operator approach achieves
the linearization of the system by lifting it onto an infinite-
dimensional space.

It is desirable that the infinite-dimensional Koopman oper-
ator Kt can be approximated as a finite-dimensional one, i.e.,

x(0) Tt x(t)

ϕ2(x(0)) Kt ϕ2(x(t))

ϕ2 ϕ2

ϕ1(x(0)) Kt ϕ1(x(t))

ϕ1 ϕ1

Fig. 3. Koopman operator of observer functions.

a matrix. Such an approximation based on input and output
trajectory data is called dynamic mode decomposition (DMD)
when the observer function comprises of the direct outputs
y, or extended DMD, when nonlinear transformations of y
are allowed [35] and has been often used for the analysis
of fluid mechanical system [36]. Naturally, such a DMD
procedure for dimension reduction is related to the truncation
of data variations and can be realized through singular value
decomposition (e.g., [37]).

Kaiser et al. [38] noted that, to ensure that the finite-
dimensional approximation preserves the qualitative behav-
ior, the observer functions need to be rationally chosen.
Specifically, one needs to lift x by a ϕ : X → Cm whose
components span a subspace that is spanned by a number
of eigenfunctions of Kt. In this way, the truncation to a
finite dimension ensures the closure of the eigen-subspace
on which the dynamics is projected. An eigenfunction of Kt
refers to a function ω : X → C such that there is a λ ∈ C
satisfying

Ktω = ω ◦ Tt = eλtω, ∀t ∈ R. (9)

In the special case when the eigenvalue λ = 0, ω is said
to be a conservable. It was proposed in [38] that such
eigenfunctions can be approximately found through sparse
regression.

For non-autonomous systems (1) with the control term
g(x)u, it was assumed that if for j = 1, . . . ,m, each com-
ponent of (dϕ(x)/dx)gj(x) (gj denotes the j-th column of
g) can be expressed as an affine function of the components
of ϕ(x). Then with z = ϕ(x), the system is converted to a
bilinear form [39]:

ż = Az +
m∑
j=1

(pj +Qjz)uj (10)

for some pj ∈ RN and Qj ∈ RN×N , j = 1, . . . ,m.
Such simple forms of dynamics can be analyzed with well-
established theories such as optimal control [40].

C. Neural networks

In cases where the basis functions or the observers to
be used in Koopman operators are difficult to know a
priori, the nonlinearity in the model may need to be treated
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Fig. 4. A single neuron (perceptron) in the neural network.

totally as a black box function, which can be estimated by
universal approximators. A typical type of representation
is (multi-layer feedforward) neural networks. Denote the
(vector of) inputs and outputs of the neural network as i and
o, respectively, and the layer of hidden nodes as L ∈ N. As
illustrated in Fig. 4, for each layer l = 1, . . . , L, the hidden
states hl are defined on the hidden states of the previous
layer by an affine transformation fed into an element-wise
nonlinear function. That is,

hl = σ(Wlhl−1 + bl), (11)

in which Wl and bl are matrix and vector of compatible
dimensions, respectively, and the activation function σ is
typically chosen to be tanh(·) or the so-called rectified
linear unit (ReLU, defined as ReLU(x) = x if x ≥ 0 and
ReLU(x) = 0 otherwise). h0 = i, and hL = o.

Given input and output samples
(
i(s), o(s)

)
, s = 1, . . . , S,

the neural networks can be trained to minimize the cost J ,
defined as mean squared errors:

J =
1

S

S∑
s=1

‖o(s) − ĥ(s)
L ‖

2, (12)

with respect to the parameters θ = (θ0, . . . , θL), θl =
(Wl, bl). To seek a local minimum, a gradient descent
algorithm can be used. To evaluate the gradient of J with
respect to any bl (analogously for Wl), one only needs to
evaluate ∂ĥ(s)

L /∂bl. According to the definition,

∂ĥ
(s)
L

∂bl
=
dσ

dx
(WLĥ

(s)
L−1+bL)·

{
WL

∂ĥ
(s)
L−1

∂bl
, if l < L

I, if l = L.
(13)

As such, the partial derivatives can be recursively computed
by tracing back in the layers up to level l. This is called
back-propagation, which is enabled by built-in automatic
differentiation [41].

The introduction of neural network models in process
control dates back to the early 1990s along with the estab-
lishment of the theoretic guarantee that they are universal
approximators [42], [43]. In addition to being used as a
black-box approximator for static nonlinear functions [44],
recurrent neural networks (RNNs) can be used to encode
the dynamics [45]. Specifically, in a single-layer continuous-
time RNN [46], the evolution of each state xi is described

by

ẋi = −aixi +
n∑
j=1

(θijσ(xj) + bijuj) , i = 1, . . . , n (14)

where ai > 0, θij , bij ∈ R, and σ is the nonlinear activation
function as before. Motivated by the vast use of deep learning
techniques in artificial intelligence, different approaches for
multilayer RNN-based dynamic modeling using long short-
term memory (LSTM) architectures have been studied in the
recent process control literature [47]–[49].

D. Gaussian processes

Consider the approximation of a multivariable scalar-
valued function y = φ(x) + ε(x), where ε is a white noise:

E[ε(x)] = 0, E[ε(x)ε(x′)] = σ2
ε δ(x− x′), (15)

in which δ(·) is the Dirac’s delta function. With a probabilis-
tic point of view, the function φ is considered as a stationary
Gaussian stochastic process [50]. That is, for any x, φ(x) is
a normally distributed random variable; its prior distribution
is given by φ(x) ∼ N (m(x), σ2

φ), and for any x 6= x′,

E [(φ(x)−m(x)) (φ(x′)−m(x′))] = k(x, x′), (16)

where m(x) = 0 without loss of generality, and k(x, x′) is
a kernel function, e.g.,

k(x, x′) = σ2
φ exp

[
−1

2
(x− x′)>R−1(x− x′)

]
, (17)

where R is a positive definite matrix.
Suppose that one has collected samples (x(s), y(s)) for

s = 1, . . . , S. Consider any x. The joint prior distribution of
the corresponding y and y(s) should be(
y, y(1), . . . , y(S)

)
∼ N

((
m(x),m(x(1)), . . . ,m(x(S))

)
,

k(x, x) k(x, x(1)) · · · k(x, x(S))
k(x(1), x) k(x(1), x(1)) · · · k(x(1), x(S))

...
...

. . .
...

k(x(S), x) k(x(S), x(1)) · · · k(x(S), x(S))

+ σ2
ε I

)
.

(18)
Let us denote x̄ = (x(1), . . . , x(S)), ȳ = (y(1), . . . , y(S)), and
Kxx = k(x, x), Kxx̄ = [k(x, x(1)), . . . , k(x, x(S))], Kx̄x =
K>xx̄, Kx̄x̄ alike, and m(x̄) = (m(x(1)), . . . ,m(x(S))), then[

y
ȳ

]
∼ N

([
m(x)
m(x̄)

]
,

[
Kxx + σ2

ε Kxx̄

Kx̄x Kx̄x̄ + σ2
ε I

])
. (19)

With the observation obtained, the Bayes’ rule generates a
posterior Gaussian distribution:

y|ȳ ∼ N
(
m(x) +Kxx̄

(
Kx̄x̄ + σ2

ε I
)−1

(ȳ −m(x̄)) ,

Kxx + σ2
ε −Kxx̄

(
Kx̄x̄ + σ2

ε I
)−1

Kx̄x

)
.

(20)

The advantage of using a Gaussian process to model
process dynamics is its stochastic nature, which allows the
quantification of uncertainty alongside with the regression.
Such uncertainties can be explicitly accounted for in the
design of process control strategies, such as stochastic
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Fig. 5. Directed graph representation of system topology.

model predictive control [51], [52]. A key issue in Gaussian
process-based MPC is to accurately capture the propagation
of uncertainties during the prediction horizon.

E. Identification of system topology

For the modeling of large-scale systems, it is important to
be aware that, instead of having a full model structure where
all the outputs are dependent on most of the inputs, the under-
lying physics should make the interaction patterns between
inputs and outputs sparse. The modeling should therefore
be performed on a specified sparse structure (topology).
When such a topology can not be completely determined
according to domain knowledge of process systems, it needs
to be identified from data. The problem is formulated as
follows. Consider a directed graph G = (V , E) where the
each node v ∈ V represents a process variable and there
exists a directed edge (v, w) ∈ E if variable v has a causal
effect on w. With given trajectories of a part of the variables
{v(·)|v ∈ V ′ ⊆ V}, we are interested in reconstructing the
topology of the graph, i.e., to find the set of hidden variables
V ′′ = V\V ′ and to reconstruct the edges E . An illustration is
given in Fig. 5. It should be expected that due to the existence
of recycle streams, the topology of process systems should
usually contain cycles.

Materassi and Salapaka [53] proposed that the locality
of Wiener filters can be utilized for the reconstruction of
unknown topology. They assumed that the (discrete-time,
linear) dynamics of each node j can be expressed as

xj(t) = ej(t) +
∑
i

Hji(z)xi(t) (21)

where the transfer function Hji is nonzero if there is an edge
from node i to j, and the additive disturbance signals ej ,
j = 1, . . . , n are mutually uncorrelated. No hidden node was
considered. Wiener filters {Wji(z)}i6=j refers to the solution
of the problem of finding transfer functions Wji(z) that are
analytical on the unit circle to filter xi, for all i 6= j, to
minimize the signal approximation error:

min
Wji

∥∥∥∥∥∥xj −
∑
i6=j

Wji(z)xi

∥∥∥∥∥∥
2

. (22)

The solution is guaranteed to be unique. It was proved [53,
Theorem 30] that Wji(z) 6= 0 if and only if i is a parent
node of j ((i, j) ∈ E), a child node of j ((j, i) ∈ E),

or a co-parent of j (i.e., i and j have a common child).
Moreover, if the Wiener filters are restricted to be strictly
causal, then by replacing xj with zxj in (22), it is guaranteed
that Wji 6= 0 implies that i is a parent node of j [53,
Theorem 35]. To prune the co-parent relations while avoiding
strict causality, Talukdar et al. [54] proposed to exploit the
phase information of Wji(z). In the presence of corrupted
measurements, the corruption of the above Wiener filter-
based topology identification procedure was studied [55].

When hidden nodes exist, under the assumption that the
directed graph is a directed tree (polytree), Sepehr and
Materassi [56] proposed a pairwise-finite distance algorithm
(PFDA) that infers all the rooted trees in the polytree
based on the cross-spectral density functions for all pairs
of observed variables. Using graph-theoretic operations, the
PFDA algorithm was extended in [57] to completely recover
the directed tree, provided that the conditional independence
between any two variables given any other variable (i.e., the
third-order statistics) can be obtained. The exact identifica-
tion of topology requires that each hidden node v in the latent
graph satisfy the following conditions:

1) v has at least 2 children;
2) if v has only one parent, then its parent is not hidden;
3) if v has no parent and only 2 children, then both its

children should have at least another parent.
Otherwise, the algorithm is capable of suggesting a simpler
graph and thus plays the role of “Occam’s razor”.

For more general cases where G contains both hidden
nodes and cycles, the recent work of Veedu et al. [58],
based on the decomposition of inverse power spectral density
matrix (IPSDM) into a sparse one and low-rank ones, dis-
tinguishes the parents, children, and co-parents of observed
and hidden nodes. For nonlinear systems, nonlinear regres-
sion methods [59] and nonparametric, information-theoretic
measures [60] can be used for topology construction.

III. DATA-DRIVEN PERFORMANCE MAINTENANCE

The data collected after the controller is launched for
online operations can help to maintain the controller perfor-
mance through various ways. In this section, we review four
major different roles that online data can play to this end,
namely to enable (i) modeling uncertainties including noise
and disturbances, (ii) estimating parameters for adaptive and
dual control, (iii) assessing performance, and (iv) analyzing
faults. These topics are discussed in the following four
subsections, respectively.

A. Noise and disturbance modeling

Consider a discrete-time linear system

x(t+ 1) = Ax(t) +Bu(t) +Bdd(t) +Gw(t)

y(t) = Cx(t) +Du(t) +Ddd(t) + v(t)
(23)

where d(t) ∈ Rq represents the vector of disturbances,
w(t) ∈ Rg and v(t) ∈ Rm are independent white noises
with covariance matrices Q and R, respectively. For control,
it is important to (i) handle the noises with a Kalman filter
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designed based on the values of Q and R and (ii) estimate
the disturbances d(t) at any time t.

Now consider the case without disturbances (d ≡ 0) and
the problem of estimating the unknown Q and R. Suppose
that the model is known, and that input and output data
{u(t), y(t)} along with the state estimates {x̂(t)} generated
along with a filter L:

x̂(t+ 1) = Ax̂(t) + L (y(t+ 1)−Ax̂(t)−Bu(t)) (24)

are available. The autocovariance least-squares (ALS)
method of Odelson et al. [61] considers the innovations
ν(t) = y(t) − Ax̂(t − 1) − Bu(t) and their autocovariance
matrices (which can be approximated by their sample esti-
mations):

Σk = E
[
ν(t)ν(t+ k)>

]
, k = 0, 1, . . . , N − 1 (25)

up to a maximum delay N − 1. Under suitable assumptions,
it was proved that the stacked autocovariance matrix

ΥN =

 Σ0 · · · ΣN−1

...
. . .

...
Σ>N−1 · · · Σ0

 (26)

satisfies the linear equality

vec(ΥN ) = ΘQvec(Q) + ΘRvec(R), (27)

where vec(·) refers to the conversion of a matrix into a
vector column-major order1. By performing least squares
regression on (27), the noise covariance matrices Q and
R can be obtained from measured input and output data.
Such a regression can be weighted and regularized, subject
to positive semidefiniteness constraints on Q and R, and
is solvable through interior-point semidefinite programming
algorithms [62], [63].

The second problem is the description of the disturbance
dynamics. The primary motivation for disturbance model-
ing is to achieve offset-free control [64]–[66]. Muske and

1The matrices ΘQ and ΘR are calculated as follows. Denote by ⊗ the
Kronecker product operation, M ⊕ M := diag(M,M) for any square
matrix M , and hence ⊕Nk=1M = diag(M, . . . ,M) where M appears in
N diagonal blocks. Then denote Ā = A−ALC,

O =


C
CĀ

...
CĀN−1

 , Γ =


0 · · · 0 0
C · · · 0 0
...

. . .
...

...
CĀN−2 · · · C 0

 , (28)

and Ψ = −Γ
(
⊕Nk=1AL

)
. Denote by In the n-th order unit matrix, and

Jp,N ∈ {0, 1}(pN)2×p2 the matrix such that for any matrix M ,

vec
(
⊕Nk=1M

)
= Jp,Nvec(M). (29)

Then,

ΘQ =[(O ⊗O)(In2 − Ā⊗ Ā)−1 + (Γ⊗ Γ)Jn,N ](G⊗G)

ΘR =[(O ⊗O)(In2 − Ā⊗ Ā)−1 + (Γ⊗ Γ)Jn,N ](AL⊗AL)

+ [Ψ⊕Ψ + Im2N2 ]Jp,N .

(30)

Badgwell [67] gave a model structure that allows both state
disturbances and output disturbances as follows: x(t+ 1)
dx(t+ 1)
dy(t+ 1)

 =

A Bd 0
0 I 0
0 0 I

 x(t)
dx(t)
dy(t)

+

B0
0

u(t) +

w(t)
ξx(t)
ξy(t)


y(t) =

[
C 0 Dd

]
x(t) + v(t).

(31)
Viewing (x, dx, dy) as the augmented states and
(w, ξx, ξy, v) as the augmented noises, Kalman filters can
be correspondingly designed to handle both disturbances
and noises. Sun et al. [68] proposed that such disturbance
models can be identified from closed-loop data by

1) performing a nonparametric regression to identify a
high-order ARX model,

2) obtaining the extended observability and matrix Γ̄f
controllability matrix L̄p, and

3) fitting the state-space models into the above two ma-
trices.

The readers are referred to the literature of subspace identi-
fication for detailed explanations [69].

B. Adaptive and dual control
For system (1), consider the case where f , g and h may not

be known exactly; instead, there are some parameters θ ∈ Rq
that are uncertain and need to be determined during control.
To estimate θ, adaptation laws, i.e., governing equations
for the evolution of parameter estimates θ(t) need to be
designed. Most commonly, an instantaneous cost c(x(t), t)
or integrated cost function

∫ t
0
c(x(τ), θ(τ), τ)dτ is defined as

the objective, denoted as J(t), and the adaption of θ(t) aims
at decreasing J(t) in the direction of gradient descent [70].
A comprehensive summary of the development of adaptive
control methods since 1950s was given by the recent paper
of Annaswamy and Fradkov [71].

Adaptive control methods for nonlinear systems in the
form of (1), which is of special interest to process control
applications, has been extensively studied in the 1990s
[72], where input–output linearization was used and lin-
ear parameterization was typically assumed. For example,
Marino and Tomei [73] considered the case where using
a diffeomorphism T : Rn → Rn, x 7→ ζ = T (x), the
dynamics (for simplicity, single-input-single-output) can be
transformed into an output feedback canonical form:

ζ̇ = Aζ + b(θ)σ(y)u+ ψ0(y) +

q∑
j=1

ψj(y)θj

y = Cζ

(32)

where

A =

[
0 In−1

0 0

]
, C =

[
1 0 · · · 0

]
, (33)

σ : R → R, b, ψj : R → Rn, j = 0, 1, . . . ,m [73].
Kanellakopoulos et al. [74] assumed the conversion into a
parametric pure feedback form:

ζ̇i = ζi+1 + θ>γi(ζ1, . . . , ζi+1), i = 1, . . . , n− 1

ζ̇n = γ0(ζ) + θ>γn(ζ) +
[
β0(x) + θ>β(x)

]
u,

(34)
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in which γi, i = 0, 1, . . . , n, and β0, β are smooth functions,
and proposed a backstepping approach for adaptive control.
More general nonlinearly parameterized systems were dis-
cussed in [75]–[77].

In the MPC context, Fukushima et al. [78] proposed the
concept of adaptive MPC where the unknown parameter is
updated and used to adjust the gain matrix of the auxiliary
controller in the robust MPC, i.e., the controller inputs u is
decomposed into two terms:

u(t) = −K(θ)x(t) + ũ(t), (35)

where K(θ) is the adaptive auxiliary controller and ũ(t)
is to be computed through optimization. In the formula-
tions of Tanaskovic et al. [79], Lorenzen et al. [80], and
Zhang and Shi [81], the online measurements are used to
update the range of uncertain θ through falsification. The
estimation of parameters, in the presence of nonlinearity, can
be performed along with state observation through moving
horizon estimation (MHE) [82]. Tang and Daoutidis [83]
demonstrated that, when both the direct output measurements
and output derivatives are used for the parameter estimation
(called a Lie-Sobolev approach), the accuracy and control
performance can be improved, even with structural model
mismatch.

According to the philosophy of dual control by Feld’baum
[84], when there exist uncertainties in the dynamics, the
inputs u in the control should be responsible for both
(i) regulating the closed-loop system, and (ii) exploring
the dynamics by actively generating informative data, thus
reducing the uncertainties. Heirung et al. [85] encoded such
an idea in an MPC formulation. Specifically in dual MPC,
one considers a finite impulse response (FIR) model with
uncertain parameters θ ∈ Rq:

ϕ(t+ 1) = Aϕ(t) +Bu(t), y(t) = θ>ϕ(t) + v(t) (36)

in which the regressor ϕ(t) ∈ Rn plays the role of states.
The parameters are updated through recursive least squares
(Kalman filtering):

θ(t) = θ(t− 1) + P (t)ϕ(t)
[
y(t)− θ(t− 1)>ϕ(t)

]
(37)

where the regression matrix P (t) is updated according to

P (t+ 1) = P (t)− P (t)ϕ(t+ 1)·[
R+ ϕ(t+ 1)>P (t)ϕ(t+ 1)

]−1 · ϕ(t+ 1)>P (t).
(38)

Here R is the covariance matrix of white noise v. As such,
in the prediction horizon, the variance of predicted outputs
ŷ(t+ 1) can be found as

σ2
y(t+ 1) = ϕ(t+ 1)>P (t)ϕ(t+ 1) +R, (39)

and can be used to analytically reformulate the chance
constraints in a stochastic MPC formulation. Clearly, σ2

y

decreases with more excitement in ϕ(t), which on other
hand deteriorates the regulation/tracking performance. The
approach was extended from parametric uncertainties to
structural uncertainties, for which online data-based model
discrimination was used [86]. The readers are referred to the

survey of Mesbah [87] for other explicit and implicit schemes
for dual MPC control.

C. Control performance assessment

Automatically monitoring the performance of controllers
in operations and diagnosing the reasons of performance
degradation, based on the measured data of the process,
is critical to the healthiness of industrial process control
systems [26], [88]. First and foremost, this requires a quan-
titative measure to assess the controller’s performance. A
classical measure, given by Harris, is the ratio between the
output variance of the minimum-variance controller (MVC)
as a benchmark and the actual controller [89]. However,
such benchmarking approaches require the availability of a
hypothetical “ideal” controller.

For a data-based assessment, Yu and Qin [90] defined the
covariance performance index as

I =
det cov(yII)

det cov(yI)
, (40)

where yI refers to the benchmark dataset, yII is the monitored
data, and cov stands for the sample covariance matrix. It is
easy to verify that I is equal to the product of the eigenvalues
of M = [cov(yI)]

−1cov(yII) and is invariant to the scaling
of individual components. In addition to an overall measure
of control performance, the eigenspace decomposition of the
matrix M reveals the contributions from different orthog-
onal directions in Rm. Subsequently, in order to identify
the responsible control loops and variables, the individual
contributions (or the cosine values of the angles between the
control loops and subspaces of M ) can be computed [91].
Specifically, let

M = PLP> =

m∑
i=1

lipip
>
i , (41)

in which pi ∈ Rm, and λi be the asymptotic limit of the
eigenvalue li as the number of samples approaches infinity.
Statistical analysis [92] determines a confidence interval for
λi with confidence (1− δ) according to2

1− ζδ/2βi ≤ li/λi ≤ 1 + ζδ/2βi. (44)

The assessment is then performed by testing the statistical
significance of the comparison of λi to 1 according to the
confidence region of λi specified by (44).

2Here, ζδ/2 ∈ R is the point the cumulative density function of the
standard normal distribution is evaluated 1 − δ/2. Let s2

I(i)
and σ2

I(i)
be

the sample covariance and population variance of zIi = piyI, respectively,
and s2

II(i)
and σ2

II(i)
analogously. Denote the auto-correlation coefficients

of zIi and zIIi at lag k as ρk
I(i)

and ρk
II(i)

, respectively, and let

fI(i) = 1 + 2

nI∑
k=1

(
1−

k

m

)(
ρkI(i)

)2
, (42)

where nI is the number of samples for yI; fII(i) is defined alike. Then, βi
is calculated as

γi =
√

2

(
fI(i)

nI − 1
+

fII(i)

nII − 1

)1/2

, (43)

for all i = 1, . . . ,m.
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For model-based controllers, checking the model quality
through plant-model mismatch detection is deemed to be a
more practical approach for control performance assessment
[26]. Such a task can be performed by imposing open-loop
exogenous input signals at the expense of perturbing the
process from the equilibrium [93], [94]. To detect mismatch
from closed-loop data, it is often assumed that a nominal
disturbance model is known a priori, so that the controller
performance can be benchmarked. Sun et al. [95] defined
the model quality index as the ratio between averaged
squares of model residuals (under an MVC benchmark)
and the disturbance innovations of the monitored system.
Other closed-loop approaches can be found in [96], [97].
In particular, Badwe et al. [98] proposed a method based
on partial correlation analysis that is capable of locating
the mismatch on single-input-single-output components of
the model. Specifically, the method requires the availability
of setpoint signals r(t) ∈ Rm that are uncorrelated with
disturbances and uses the following steps.
• Correlate u with r and remove the uncorrelated part to

obtain û = Sur(z)r.
• Decorrelate each ûj , j = 1, . . . ,m with the rest of the

components ui, i 6= j to obtain εui .
• Decorrelate the j-th component of the error signal e =
y −G(z)u (G is the nominal model) with ui, i 6= j to
obtain εej .

• Test the correlation between εui and εej . If the correla-
tion is significant, then there is mismatch in Gji(z).

D. Fault detection and diagnosis

Discovering and analyzing faults in an early and accurate
manner is of critical importance for the safety and maximal
time of normal operations [99]. Since models for faults are
often not available or reliable, fault detection and diagnosis
typically uses data-driven methods [100]. The essence of
fault diagnosis boils down to classification problems in statis-
tics or machine learning, i.e., that of characterizing the dis-
tribution of fault-free data only (one-class classification, also
known as anomaly/novelty detection), that of distinguishing
faulty data with fault-free data, and that of classifying the
measured data into one of multiple categories of faults.
As a result, a plethora of statistical and machine learning-
based methods have been developed (see [101]–[103] for
reviews). A recent trend is the application of deep learning,
which provides a useful toolbox that can handle nonlinearity,
non-Gaussian distributions, temporal correlativity, multiscale
characteristics, and mixture of labeled and unlabeled data
[104]–[108].

We simply review two basic approaches here, namely
principal component analysis (PCA) and partial least squares
(PLS), to present the fundamental ideas underlying the vast
literature on fault detection and diagnosis. Suppose that we
have S measured data samples x(s) ∈ Rn, s = 1, . . . , S and
want to characterize the distribution of the population. PCA
assumes that the distribution is zero-mean and Gaussian,
and first carries out the dimension reduction. Specifically,
let X = [x(1), . . . , x(S)]> ∈ RS×n, by singular value

decomposition, one obtains

X = UΣV > =
n∑
k=1

σiuiv
>
i , (45)

where U = [u1, . . . , uS ] ∈ RS×S , V = [vn, . . . , vn] ∈ Rn×n
are orthogonal matrices, and σ1 ≥ σ2 ≥ . . . . By truncating
the terms with negligible singular values, one approximates
X with the first np � n terms that capture a major portion
of data variation:

X ≈ TV >, (46)

in which T = [(t(1))>; . . . ; (t(S))>] := [σ1u1, . . . , σnp
unp

]
is the matrix of score vectors, i.e., V >x(s) = t(s), s =
1, . . . , S. In this way, each sample of dimension n is reduced
to np. The sample covariance of {t(s)}Ss=1 is thus Σt =

1
S−1diag(σ2

1 , . . . , σ
2
np

). Given any new data x, by calculating
t = V >x and subsequent statistics, one can then decide
with a confidence level whether x is a faulty data. In PLS,
it is further assumed that quality labels y(s) ∈ Rp are
available along with the measurements x(s). Decompositions
are sought for X and Y , respectively:

X = TV >X + EX , Y = TV >Y + EY , (47)

so that the quality of any test data can be predicted.
Although statistical and machine learning approaches are

useful for fault classification, it is desirable to understand the
path of fault propagation and thus infer the root cause of the
detected faults. The concept of transfer entropy proposed in
Bauer et al. [109] quantifies the causality from one variable
(x) to another (y) by the amount of information of future y
contained in the past x. Consider discrete-time measurements
x(t) and y(t). Denote by x̄(t) = (x(t), x(t − 1), . . . , x(t −
δx)) and ȳ(t) = (y(t), y(t − 1), . . . , y(t − δy)) as the
history of x and y at time t. One can define the conditional
probability according to the Bayes’ rule:

p(y(t+ h)|x̄(t), ȳ(t)) =
p(x̄(t), ȳ(t)), y(t+ h)

p(x̄(t), ȳ(t))
, (48)

denoted as p(yh|x̄, ȳ) (considering (t) as a sampling action).
Thus the information transferred from the history of x to the
y after a delay of h is

τ(y|x) =

∫
Rδx+δy+1

p(x̄, ȳ, yh) ln
p(yh|x̄, ȳ)

p(yh|ȳ)
dx̄dȳdyh (49)

Then, the causality measure is defined as

τx→y = τ(y|x)− τ(x|y), (50)

and the statistical significance of its evaluation based on sam-
ples can be tested against non-causal simulations. Different
measures for variable causality were proposed in Yu and
Rashid [110], where a dynamic Bayesian network (DBN) is
used to capture the underlying interaction topology among
variables. The approach was extended in [111], where kernel
density estimation (KDE) is used to ease the computation
of probability density functions. To discover such a DBN
topology from data, the tools from structure learning can
be used to optimize the graph structure with respect to a
Bayesian information criterion (BIC) [112].
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IV. DATA-DRIVEN MODEL-FREE CONTROL

In model-free control, we assume that the process dy-
namics is entirely a black box and we are not interested
in recovering a dynamic model. To obtain a controller with
satisfactory performance in this setting, different ideas have
been proposed.

A. Training of model-free controllers

A natural idea of making controllers free from models
is to replace model-based controllers with model-free ones,
which essentially requires to use machine learning techniques
to approximate a given function κ (the original model-based
control law) with a new black-box data-based κ̂ that does not
contain any model information. This idea has been discussed
in the context of explicit MPC, which stemmed from the
multi-parametric programming approach of Bemporad et al.
[113]. Specifically, for linear MPC, since the dependence
of optimal control actions, as the solution to a quadratic
programming problem, on the states should be a piecewise
affine mapping, the repetitive optimization steps in MPC can
be avoided with an a priori state space partitioning and an
explicit look-up table. For nonlinear systems, such steps can
be carried out approximately [114].

However, the exact conversion of implicit MPC laws into
piecewise explicit mappings is computationally challenging
and highly non-scalable. Parisini and Zoppoli [115] first
proposed to approximate the MPC law as a neural network
and proved closed-loop stability under this neural network
controller on the basis of universal approximation property
of neural networks. Chen et al. [116] proposed to train such
networks in two phases that respectively decrease (i) primal
infeasibility (i.e., the violation of operational constraints) and
(ii) duality gap, which is related to the Karush-Kuhn-Tucker
(KKT) conditions as a criterion of closeness to optimality.
Recently, Kumar et al. [117] adopted a purposeful choice of
the neural network architecture, which takes into setpoints
(xsp, usp) as inputs and uses structured parameterization:

h0 = (x, xsp, usp, xsp, xsp, usp) ,

hl = σ

([
Wl 0
0 Wl

]
hl−1 +

[
bl
bl

])
, l = 1, . . . , L

u = usp +
[
WL+1 −WL+1

]
hL.

(51)

In this way, the neural network controller κ̂ guarantees that

κ̂(xsp|xsp, usp) = xsp. (52)

Also, the scalability improvement was enabled by generating
only data that capture typical operation scenarios. The au-
thors trained an industrial-scale MPC with n = 252, m = 32,
and a prediction horizon of 140. The resulting explicit neural
network controller computes 3 to 5 orders of magnitude
faster, with performance loss < 1%.

Apart from making a model-free controller imitate a
model-based controller, another idea of training controllers,
which has been studied for linear systems, is to directly
optimize the controller parameters with respect to the desired
closed-loop response and the input and output data. For

K(s|θ)e+

−
r

u
G(s) y

M(s)

Fig. 6. Setup of IFT and VRFT.

example, in virtual reference feedback tuning (VRFT) [118],
as illustrated in Fig. 6, one considers the tuning of controller
K(s|θ) so that the desired closed-loop transfer function from
the reference signals r to outputs y is close to M(s). Given
the input and output trajectories u(·) and y(·) on time interval
[0, T ], the virtual reference r̂(·) is first calculated such that
y = M(s)r̂, based on which the error e = r̂ − y can be
obtained. Then θ is given by

min
θ

J(θ) =
1

2T

∫ T

0

‖L(s)u(t)− L(s)K(s|θ)e(t)‖2 dt,
(53)

where L(s) is a suitably chosen pre-filter. Apparently, the
above problem does not explicitly involve the unknown
dynamic model G(s).

Prior to VRFT, the iterative feedback tuning (IFT) ap-
proach was proposed by Hjalmarsson et al. [119]. In IFT, the
controller parameters θ are iteratively updated and the input
and output trajectories are re-collected under the updated
controller tuning. Denote by u(t|θ) and y(t|θ) the input and
output data, and ỹ(t|θ) = M(s)r(t) − y(t|θ) the deviation
of actual output signals away from the desired ones. Based
on the definition of a minimization problem

min
θ

J(θ) =
1

2T

∫ T

0

‖ỹ(t|θ)‖2 dt, (54)

the update of θ can be carried out through a gradient descent
algorithm (i.e., θ ← θ − α∇J(θ)). The gradient J(θ) relies
on the evaluation of ∂y(t|θ)/∂θ, for which Hjalmarsson
[120] designed a two-step experiment to derive a model-
free unbiased estimation (i.e., the update algorithm is in fact
stochastic gradient descent).

B. Learning of plant behaviors

In the case that we do not have a model-based controller
at hand to train the model-free controller, it is still possible
to design a controller without a complete dynamic model.
The dissipativity learning control (DLC) framework was
proposed in the previous research of the authors of this paper
[121]–[123]. DLC consists of two major steps, namely the
learning of the system’s dissipativity properties and optimal
controller synthesis. Dissipativity refers to the property that
there exists a positive definite storage function V (x) and
an input- and output-dependent supply rate function s(u, y)
such that the dissipative inequality

V̇ (x) ≤ s(u, y) (55)
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Fig. 7. Inference of the dissipativity set.

always holds. As proven by Hill and Moylan [124], the above
condition can also be alternatively expressed as such that for
any trajectory of any length T starting from the origin,∫ T

0

s (u(t), y(t)) dt ≥ 0. (56)

By analyzing the underlying thermodynamic laws, it was
known that dissipativity is a common and anticipated prop-
erty of process systems [125]–[127]. However, it is cum-
bersome and often challenging to obtain the dissipativity
through such purely physical analysis for nonlinear systems
in general.

Let us consider the supply rate function as a quadratic
form of inputs and outputs

s =
[
y> u>

] [Myy Myu

Muy Muu

] [
y
u

]
(57)

so that function s can be parameterized by a symmetric
matrix M . Substituting the above parameterization into (56),
we have

trace(MΓ) := trace

(
M

∫ T

0

[
y
u

] [
y> u>

]
dt

)
≥ 0.

(58)
In the above formulation, the positive semidefinite matrix Γ
is calculated based on the trajectory. We call the range of
Γ for all the possible trajectories of the system as the dual
dissipativity set (denoted as S), and the range of valid M
matrices as the dissipativity set (denoted as M). Since both
M ∈M and Γ ∈ S are symmetric, the trace of their product
can be seen as an inner product, i.e., trace(MΓ) =: 〈M,Γ〉.
Hence, the dissipativity set M is the dual cone of the dual
dissipativity set:

M = S∗ = {M |〈M,Γ〉 ≥ 0, ∀Γ ∈ S} . (59)

Given trajectory samples (u(s)(t), y(s)(t)), t ∈ [0, T (s)],
s = 1, . . . , S, the corresponding dual dissipativity parameters
Γ(s), s = 1, . . . , S can be calculated. Based on this dataset,
the dissipativity set S is inferred through the following steps,
as illustrated by Fig. 7.

• Since S is unbounded, scale Γ(s) so that their traces are
equal to 1;

• Use principal component analysis (PCA) [123] or in-
dependent component analysis (ICA) [122] (ICA) to
obtain an ellipsoidal or polyhedral range (Ŝ1), respec-
tively, of the samples, so that an estimation of S is
Ŝ = {cΓ|c > 0,Γ ∈ Ŝ1}, the cone of Ŝ1;

• Characterize the dual cone of Ŝ , denoted as M̂, which
is an estimation of M. When Ŝ1 is an ellipsoid or a
polyhedron, Ŝ is a second-order cone or a polyhedral
cone, respectively.

Based on the inference of M, the controller synthesis step
seeks a controller u = Ky so that for the closed-loop system,
the resulting supply rate function

s(Ky, y) = y>
[
I K>

] [Myy Myu

Muy Muu

] [
I
K

]
y (60)

is a negative semidefinite quadratic form.
If the dynamics is considered to have exogenous distur-

bances d in addition to control inputs u, whose trajectories
can also be measured, then the parameterization M has
blocks associated with d as well. The controller synthesis can
seek a controller K (within some a priori specified range K)
that minimizes the squared L2-gain, β, from d to (u, y). Such
an L2-gain can be guaranteed if the following inequality is
satisfied:

s(u, y, d) ≤ β‖d‖2 − ‖u‖2 − ‖y‖2. (61)

The minimization of β thus reduces to the following semidef-
inite programming (SDP) problem:

min
β,K,M

β

s.t.

[
I K> 0
0 0 I

]+

I 0 0
0 I 0
0 0 −βI

 I 0
K 0
0 I

 � 0,

M ∈ M̂, K ∈ K, β ≥ 0.
(62)

For linear systems, the learning of system behavior is more
direct. According to Willems’ fundamental lemma [128], the
system behavior can be completely described by a single
persistently exciting trajectory. We will discuss this further
in Subsection V-C. Examples of such fundamental lemma-
based model-free control include the “data-enabled predictive
control” (DeePC) algorithm, where the model is replaced
with a data-based expression in the optimal control problem
[129]. An earlier idea, first proposed by Favoreel et al.
[130], is to agglomerate the subspace identification, Kalman
filter design, and linear quadratic regulator (LQR) design
steps together so that the model is not explicitly involved
in control. The idea was extended to predictive control by
Kadali et al., called subspace predictive control [131].

C. Approximate dynamic programming and reinforcement
learning

The above two types of model-free control methods use
machine learning techniques either on the plant side or on
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the controller side. It is possible to learn on both sides
simultaneously. Consider the optimal (state-feedback) control
problem of system (1). At any state x ∈ X , we look for a
corresponding control input trajectory û(t) ∈ U , t ∈ [0,+∞)
that gives the minimum cost-to-go (with a discount rate
ρ ≥ 0):

min
û(·)

V =

∫ ∞
0

e−ρtc (x̂(t), û(t)) dt

s.t. ˙̂x(t) = f(x̂(t), û(t)), t ∈ [0,+∞)

û(t) ∈ U, t ∈ [0,+∞)

x̂(0) = x.

(63)

The initial value of the optimized input trajectory, û(0), as
well as the optimal cost, are dependent on the initial state x;
these two functions, are called the optimal policy (denoted
by u∗(x)) and the optimal value (denoted by V ∗(x)), re-
spectively. They should satisfy the Hamilton-Jacobi-Bellman
(HJB) equations:

u∗(x) = arg min
u

[
∇V ∗(x)> (f(x) + g(x)u) + c(x, u)

]
,

ρV ∗(x) = ∇V ∗(x)> (f(x) + g(x)u∗(x)) + c(x, u∗(x)).
(64)

These partial differential equations generally do not permit
analytical solutions and the numerical solution is difficult to
scale up for high-dimensional systems [132]. Only when the
state space is discrete (called a Markov decision process,
or MDP, when the dynamics is stochastic), the Bellman
equations become finite-dimensional and can be solved
through dynamic programming. Yet, the discretization of
the state space suffers from the “curse of dimensionality”
(i.e., the number of grid points grows exponentially with the
dimension).

To accommodate continuous state spaces and unknown
dynamics, the idea of approximate dynamic programming
(ADP) is to adopt function approximators and use samples
of x and u to approximately solve the HJB equations [133].
Q-learning [134] is a typical approach to this end. The Q
function, dependent on x and u, is defined as the infinimum
of the remaining cost if the current states and inputs are x
and u, respectively: 3

Q(x, u) = inf

∫ ∞
0

e−ρtc(x̂(t), û(t))dt

s.t. x̂(0) = x, û(0) = u

û(·) is Lipschitz continuous.

(65)

The Q should function should satisfy the following equations
along the optimal control trajectory, for any h > 0:

Q(x(0), u(0)) =

∫ h

0

e−ρtc(x(t), u(t))dt+Q(x(h), u(h)).

(66)
To learn the Q function in a parameterized form, e.g., a
neural network, Q(x, u|θQ), one can iteratively optimize the

3In fact, the discrete-time form is more frequently seen in the literature.
Here we use the continuous-time form [135] for consistency with system
(1).

System x

Q(x, u|θQ)

c

u(x|θu)

u

error

Fig. 8. Actor-critic architecture for reinforcement learning.

control policy (with respect to Q), simulate the trajectories,
update the left-hand side in (66) with the right-hand side of
(66) under previous Q, and then improve the fit of θ. With
Q function learned, the optimal policy and value functions
can be recovered as

u∗(x) = arg min
u
Q(x, u), V ∗(x) = min

u
Q(x, u). (67)

For input-affine dynamics (which is often the case for
process systems), (1), it may be possible to directly approx-
imate u∗ and V ∗. Luo et al. [136] proved that given any
trajectory (u(t), x(t)), t ∈ [t1, t2], u∗ and V ∗ should satisfy
the following equation:

V ∗(x(t1))− V ∗(x(t2)) + ρ

∫ t2

t1

V ∗(x)dt =∫ t2

t1

[
c (x, u∗(x)) +

∂c

∂u

∣∣∣∣
(x,u∗(x))

(u− u∗(x))

]
dt.

(68)

Hence, the authors proposed to approximate u∗ and V ∗ as
neural networks (i.e., with an actor-critic architecture) and
iteratively train them to fit the above equations with trajectory
data. This idea was extended in Tang and Daoutidis [137] for
the cases where the control inputs have bound constraints.

In the above-mentioned Q-learning, the estimation of
Q(x, u) is “off-policy”, i.e., the update is based on a value
of u(h) that can be fully optimized. In the context of
reinforcement learning (RL), the learning of the functions of
interest can be performed in an “on-policy” manner, where
the control policy and value functions can update themselves
according to real-time, online data when the policy yet
in exploration is actually executed. [138]. A representative
approach for online RL is the “state-action-reward-state-
action” (SARSA) algorithm [139] using an actor-critic neural
network architecture, as illustrated in Fig. 8.

Having been successfully applied to a wide range of
artificial intelligence and operations research problems [140],
ADP and RL provide motivating approaches for model-
free process control [141]. Yet, there are some common
limitations that we should note.
• ADP and RL are based on optimal control theory and

seek the solution of the HJB equations. The iterations in
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the learning procedures are guaranteed to converge only
if the function approximators are capable of capturing
the true functions of interest. When the function is
mismatched, the suboptimality of the resulting control
performance can be difficult to characterize.

• For safety-critical process control, operational con-
straints must be imposed on the inputs and states.
Recent research on safe RL has considered two different
types of approaches – primal and primal-dual ones – to
incorporate deterministic or chance constraints into RL
and studied the corresponding complexity. The readers
are referred to [142], [143] and the references therein
for the pertinent works.

• The state measurements are involved. However, most
of the states of process systems are usually not measur-
able, and for systems governed by partial differential
equations (i.e., distributed parameter systems), the state
space is infinite-dimensional. Since ADP and RL are not
input–output approaches, the accompanying problem of
designing a state observer with noise filtering will arise.

• The online implementation of RL relies on persistent
perturbations of the process from the operating steady
states. While it is known that such moves are necessary
and that RL should have a tradeoff between “explo-
ration” and “exploitation” [138], the optimal utilization
of combined offline and online data (with respect to
the process economics, the frequency of controller re-
tuning, and the model degradation) needs to be better
understood.

V. FUTURE DIRECTIONS

In the above three sections, we have introduced data-driven
process control methods of three corresponding categories.
Through the discussions in this section, we hope to suggest
some important directions for future research in this field.

A. Scalability

Many process systems (e.g., refineries) are large-scale
and high-dimensional, consisting of multiple interconnected
process units or unit groups, and hence data-driven control
algorithms must be scalable and structured. In other words,
it is desirable to design such methods on the basis of the
constituent subsystems of the process, so that

1) the complexities of learning and the resulting control
do not grow drastically when the system dimension
increases (i.e., the “curse of dimensionality” can be
avoided),

2) the learning and control algorithms can be designed
individually for the subsystems, with different tunings
or different type of algorithms, to accommodate their
heterogeneous dynamic characteristics, and

3) the malfunctioning, entrance or exit of subsystems can
be tolerated.

In model-based control, such distributed control strategies
can be designed by synthesizing a feedback law where (i)
the feedback channels from the outputs to the inputs are
restricted or regularized into the subsystem blocks [144], or

(ii) the input–output responses are constrained to be localized
[145]. Alternatively in the setting of MPC, distributed opti-
mization algorithms (primal-dual algorithms based on opera-
tor splitting) [146] can be utilized to coordinate the solutions
of the coupled receding horizon optimization problems of
subsystems, with guaranteed convergence to the monolithic
optima [147], [148]. Such principles will be useful for
designing large-scale distributed data-driven controllers as
well.

Also, the machine learning techniques applied on the
basis of subsystems, which may be called as distributed
learning, needs to be examined compared to the performance
of monolithic centralized learning. For example, suppose
that by learning the dissipativity of n interacting subsystems
with inputs ui, states xi, and outputs yi (i = 1, . . . , n),
where some outputs are inputs to other subsystems), we have
obtained supply rate functions si such that there exist storage
functions Vi satisfying

V̇i(xi) ≤ si(ui, yi). (69)

Then we can easily construct a storage function for the entire
system V (x) =

∑
i αiVi(xi) and a corresponding supply rate

function s(u, y) =
∑
i αisi(ui, yi) (where α1, . . . , αn > 0

can be arbitrarily chosen), so that

V̇ (x) ≤ s(u, y). (70)

However, the tightness of this directly implied inequality
(although intuitive and frequently used, e.g., in [127], [149])
is unwarranted, and the resulting controller performance may
be conservative. Therefore, it is desirable to coordinate the
subsystem learners towards an optimal learning result for the
monolithic system.

In order to determine a decomposition such that the coor-
dination effort is minimal, it is desirable that the couplings
between the resulting subsystems are weak compared to
the interactions inside the subsystems, i.e., the interaction
pattern in the system exhibits modularity with respect to
the subsystems [150]. In the authors’ previous research, the
concept and tools of community detection in network science
have been adopted to specify the subsystem allocations of
inputs, states, and outputs [151], [152], and the advantages of
such decompositions have been demonstrated in distributed
MPC [153]. In the context of data-driven control (especially
in the model-free setting), the effect of decompositions on the
control and computational performance measures should be
investigated along with the studies of distributed data-driven
control for large-scale systems.

B. Physical interpretability

A concern often raised from the practitioners’ stance is
whether the information learned through data-driven tech-
niques is in accordance with some physical ground truth.
Indeed, it can be argued that physical interpretability may not
always be necessary for data-driven techniques to work with
desirable performance and that engineers’ empirical dicta-
tions may be unreliable and error-prone. However, due to the
criticality of safety in process systems, the implementation
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of novel control technology tends to be difficult, and the ca-
pability of incorporating physical structures or constraints in
data-driven techniques will be useful to facilitate acceptance.

Such requirements are typically met by adopting one or
multiple among the following approaches.

1) Manual choice of features, namely the terms that
contribute to the a priori physical laws governing
the process dynamics in the dynamic modeling step.
For example, chemical reaction kinetics is usually
dependent on temperature according to the Arrhenius’
law (r ∝ e−E/RT , where r is the rate of an elementary
reaction, E is the activation energy, R is the ideal
gas constant, and T is temperature). To apply Koop-
man operators to chemical reactors, [154] incorporated
exp(−1/x) (where the state x is a scaled temperature)
as a component of the observer function. For polyno-
mial systems, it is intuitive that such observers should
contain polynomial components (e.g., [35]).

2) Additional constraints on the ranges of the parameters
learned from data. For example, in the dissipativity
learning framework [122], it is physically required
that for the supply rate function s(u, y), when y →
0, s(u, 0) ≥ 0 must hold for any u, since the
stabilized system must reach its minimum storage.
Hence, when s is represented by a quadratic form
s(u, y) = [u>, y>]M [u; y], the corresponding block
Muu must be a positive semidefinite matrix. Because
it is practically unrealistic to have infinitesimal trajec-
tories around the origin, this physical constraint may
not be reflected by the learning result, and therefore
needs to be imposed a posteriori.

3) Identification or learning in function forms whose
structures are already partly fixed according to simpli-
fied physical models, i.e., in (pretended) gray boxes.
Such simple models exist for typical building blocks of
process units, e.g., reaction rate laws approximated as
those for elementary reactions and phase equilibrium
equations approximated as those for ideal mixtures.
This has been extensively used in the context of MPC
combined with parameter estimation schemes (e.g.,
[155], [156]).

4) Regularization to promote sparsity, as an “Occam’s
razor” to enforce the simplicity of physical laws. This
was mentioned in Section II.

The choice of specific approaches to incorporate physical
first principles, however, is dependent on the corresponding
data-driven techniques used and usually lacks comparison
and clear guidelines. It is suggested that for the development
of data-driven process control strategies, different extents
of blending physical constraints or structures into learning
should be allowed, so that it can be practical to optimize
such blending through testing on actual processes or high-
fidelity simulators.

C. Data-information relation

Key to the system identification in model-based control
and learning of control-relevant information in model-free

control is the conditions under which the trajectory samples
“encode” the dynamics. Hence, the development of data-
driven process control methods can not avoid answering
the questions of “how much data are needed” and “what
properties the data should have”. This requires fundamental
understanding of the relation between data and information,
which is so far established mainly for linear systems, where
a condition is given by the so-called fundamental lemma of
Willems et al. [128].

Specifically, suppose that we have a single input and out-
put trajectory (u(t), y(t)), t = 0, 1, . . . , N −1 for a discrete,
time-invariant linear system. The input signal (which is m-
dimensional) is called persistently exciting of order r if the
Hankel matrix

Hr(u) :=


u(0) u(1) · · · u(N − r)
u(1) u(2) · · · u(N − r + 1)

...
...

. . .
...

u(r − 1) u(r) · · · u(N − 1)

 (71)

is of rank mr. It was proved in [128] that for any other
L ∈ N, under the assumption that the trajectory (u(t), y(t))
is persistently exciting of order r = n+L, any hypothetical
trajectory (ū(t), ȳ(t)), t = 0, 1, . . . , L − 1 of length L is a
possible trajectory of the system if there exists α ∈ RN−L+1

such that [
HL(u)
HL(y)

]
α =

[
ū
ȳ

]
. (72)

In this way, all trajectories of the system, although not ob-
served, can be parameterized with the available persistently
exciting trajectory, and hence it is possible to learn the
system’s properties, e.g., dissipativity and integral quadratic
constraints (IQCs), based on the data [157]. The strategies
to optimize the trajectory to sample for effectively learning
of such properties were also discussed in [158]. It is also
natural to perform linear controller synthesis based on this
parameterization [159].

For nonlinear systems, it should be anticipated that
Willems’ parameterization of trajectories (72) will no longer
be achievable. Discussions about the fundamental data-
information relation are scarce. Markovsky [160] proposed to
embed generalized forms of bilinear systems into linear ones
in order to apply the fundamental lemma. In the context of
Koopman operators, Arbabi and Mezić [37] used ergodicity
as an underlying condition to prove the asymptotic conver-
gence of dynamic mode decomposition to the true Koopman
operator within the minimal invariant set as the dimension
of observer approaches infinity. However, the condition of
ergodicity is restrictive and difficult to verify. It seems fair
to claim that so far, the requirements on data for data-driven
control of nonlinear systems remain an open question.

VI. CONCLUSIONS

In this paper, we have discussed the motivations for
data-driven process control and gave an overview of the
representative, pertinent approaches. These approaches are
classified into three categories – data-driven dynamic mod-
eling, performance maintenance, and model-free control –
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according to the different roles and contributions of data-
driven techniques in control. Three major issues – scaling
up to high-dimensional systems, incorporating physical in-
terpretation into learning, and characterizing the fundamental
relations between data and control-relevant information – are
identified as the most imperative aspects for defining future
directions. We believe that the field of data-driven process
control is still at an incipient stage of development and needs
to be further explored before the research in this field can
be turned into practically implemented technology.
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