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Abstract— Decomposition is a fundamental principle of re-
solving complexity by scale, which is utilized in a variety of
decomposition-based algorithms for control and optimization.
In this paper, we aim to give a tutorial review of the following
aspects: (i) how to decompose a network representing a control
or optimization problem according to its latent block structure,
(ii) how decomposition is determined for distributed control,
and (iii) how optimization problems are solved under decompo-
sition. Directions for further developing decomposition methods
and decomposition-based control and optimization algorithms
are also discussed.

I. INTRODUCTION

Large-scale systems are ubiquitous in natural and en-
gineered systems, including but not limited to metabolic
networks [1], power grids [2], transportation networks [3],
and social networks [4]. Chemical processes, due to the
need of higher process efficiency and sustainability, are
also increasingly being mass- and energy-integrated and
intensified, resulting in process networks that are challenging
to control and optimize [5]. Besides the size of the systems,
the formulation of decision making problems as dynamic
programming [6] or multi-stage stochastic programming
problems [7] in prediction horizons leads to many-fold
increase in the problem size.

In the early studies of optimal control of process networks
(late 1970s), Morari, Arkun, and Stephanopoulos [8] noted
that

“Decomposition is the underlying, guiding princi-
ple, leading to the classification of the control ob-
jectives and the partitioning of the process for the
practical implementation of the control structures.”

They classified decompositions into a vertical “multilayer”
one and a horizontal “multiechelon” one.

• In the multilayer category, the objective of optimal
control is decomposed into self-organization (target
optimization), adaptation (disturbance rejection), opti-
mization (dynamic optimization), and regulation layers.
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The frequencies of executing these tasks are dispersed
into different time scales. This is a natural decom-
position entailed in the entire “planning – scheduling
– control – monitoring” decision making hierarchy
for process systems. For integrated decision making
across the hierarchy (e.g., the integrated scheduling and
control problems for processes with fast transitions),
this vertical decomposition is frequently used [9]–[11].

• In the multiechelon category, the plant’s flowsheet is
partitioned into multiple parts, each controlled by its
corresponding regulators and dynamically optimized by
its own solver routine. The optimizers are then coordi-
nated for the optimum of the monolithic system. Such
coordination typically makes use of the duality theory of
optimization problems, i.e., uses Lagrangian multipliers
as the leverage to iterate subsystem solutions.

For the coordination of multiple optimization solvers,
primal-dual algorithms including Benders decomposition and
Lagrangian decomposition were recognized as the most use-
ful approaches for decomposition-based solution of process
operation problems, especially those involving integer vari-
ables [12]. Studies in the electrical engineering community
in parallel, focusing on continuous optimization problems in
a setting of multi-agent decision making over communication
networks, proposed the use of decentralized gradient-based
approaches [13]–[15] and, more recently, algorithms based
on the alternating direction method of multipliers (ADMM)
[16]–[19].

The search for a high-quality decomposition for control
and optimization-based decision making, however, lacks a
common framework. This is first due to the different objec-
tives for decomposition in different problem settings, e.g.,
stability in control problems, optimality in mathematical
programming, and computational efficiency. Also, the de-
composition problem is of combinatorial complexity, which
makes it difficult to optimize. Especially for large-scale
systems, the decomposition approach must be systematic,
automated, and highly scalable. These requirements are hard
to meet in conjunction with other objectives such as stability
and optimality, due to the obscure relations between the
decomposition configuration and these additional objectives.

With these considerations, in this tutorial review, we focus
on the idea of representing the system or problem to decom-
pose as a network and analyzing its block structure. This
idea initially stemmed from our studies on distributed model
predictive control (MPC) for integrated chemical processes
[20] and sparse control for modular networks [21], [22],
and was subsequently extended to optimization problems
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in general [23]. The most significant advantages of this
framework lie in its expressiveness of capturing interaction
patterns of interest inside large networks and its effective-
ness of leveraging network science algorithms to partition
the system into statistically significant block structures. A
software package has been developed for generating such
decompositions automatically [24] and is being continually
updated. The network-based decomposition has also been
successfully applied to plantwide nonlinear MPC on an
industrial scale [25].

The remainder of this paper is organized as follows. In
Section II, we introduce the preliminaries on defining and
detecting block structures in networks. Then we discuss
in two following sections (Section III and Section IV)
the application of this principle to large-scale control and
optimization problems, respectively. Perspectives on ongoing
and future research directions are provided in Section V and
conclusions are made in Section VI.

II. BLOCK STRUCTURES IN NETWORKS

To determine a decomposition for large-scale control and
optimization problems in an automatic and systematic way,
one needs an efficient approach to handle the complex infor-
mation contained in the interactions underlying the system.
To this end, the perspective of network science is naturally
useful. Regarded as a subfield of physics, network science
studies the organization of large-scale networks by inves-
tigating its macroscopic and statistical topological features
and the dynamics associated with them [26]. In particular,
the pattern of interest to decomposing a network should be a
mesoscale one [27] – neither associated with a few individual
nodes or edges nor only exhibited over the entire network.
We should specifically focus on block structures, i.e., sub-
networks so that the interactions inside them and across them
have some regularities.

A. Stochastic Block Model

To provide a definition of the block structures, we in-
troduce the stochastic block model for networks. Let us
consider a network G = (V, E) where V = {1, 2, . . . , n} and
E ⊆ V×V stand for the set of nodes and edges, respectively.
Generally the topology can be captured by an adjacency
matrix A with order n = |V|. For simplicity we will assume
that this is an unweighted directed network, i.e., (i, j) ∈ E
does not necessarily imply that (j, i) ∈ E ; in such a case,
we may define Aij = 1 if there is an edge from node i to
node j. Nevertheless, the following framework is extensible
to weighted, undirected, or bipartite networks as well.

We view the network to be analyzed as the observed result
of a generation mechanism, which is called the stochastic
block model (SBM) [28], [29]. In SBM:

• The n nodes are assumed to have latent affiliations to a
number of blocks. We denote by bi = k (i ∈ {1, . . . , n},
k = 1, . . . , B, B being the total number of blocks) to
indicate that the node i belongs to the k-th block.

• When the edges are created, the nodes in different
blocks have different inclinations to connect, and such

inclinations depend on the nodes’ block affiliations. In
particular, it is assumed that the number of edges from
any node in block r to any node in block s is assumed
to be Poisson distributed, with a parameter ωrs.

Denoting the vector b = (b1, . . . , bn) and matrix ω = [ωrs] ∈
RB×B

>0 , and assuming that all the edges are independently
generated, we should have the probability of observing the
observed network A:

P (A|ω, b) =
n∏

i,j=1
i̸=j

ω
Aij

bibj

Aij !
e−ωbibj . (1)

We have excluded the terms for i = j since we assume that
there can be no self-edges.

As Karrer and Newman [30] pointed out, the SBM does
not account for the heterogeneity of degrees (total number
of edges) among individual nodes. In other words, if one
“extroverted” node has more edges incident to it than another
“introverted” node, then the former node should naturally
have more edges with other nodes in all blocks. Another
interpretation is that the degree should be considered as an
attribute of the node irrelevant to its block affiliation. As we
focus on directed networks, every node has an out-degree
and in-degree, denoted as

k+i =

n∑
j=1

Aij , k−i =

n∑
j=1

Aji. (2)

From this point of view, another group of parameters are
added, i.e., the expected out-degrees and in-degrees of nodes,
which we denote by θ = (θ+1 , θ

−
1 , . . . , θ

+
n , θ

−
n ). The Poisson

parameter for the edge distribution from node i to node j,
ωbibj , is correspondingly modified to θ+i θ

−
j ωbibj . That is,

P (A|ω, b) =
n∏

i,j=1
i̸=j

θ+i θ
−
j ω

Aij

bibj

Aij !
e−θ+

i θ−
j ωbibj . (3)

This is called the degree-corrected stochastic block model
(DC-SBM). Another extension of SBM that can capture
multiscale network structures is to assume that the network
is generated by a nested sequence of SBMs. Under this
assumption, one can compute the probability to observe the
network itself and the entire hierarchy [31].

From SBM to DC-SBM or nested SBM, we can use,
e.g., a maximum likelihood estimation [32] or a Bayesian
estimation scheme [33] to infer the values of ω and b from
the observed A, thus revealing the latent block structure of
the network. The advantage of the Bayesian approach lies
in its incorporation of a prior probability distribution, which
can regulate the complexity of the model and improve the
consistency [34], [35].

Fig. 1 illustrates two networks generated under the mech-
anism of stochastic block models, where the blocks of
nodes are labeled by different colors. The pattern shown
in Subfig. 1a is called a core-periphery structure [36]. The
core refers to the small fraction of nodes (in red) which are
internally strongly connected and concentrate the majority
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(a) A network with core-periphery structure.

(b) A network with communities.

Fig. 1: Networks generated by stochastic block models.

of connections in the network; the periphery refers to the
remaining part that makes up the most of the nodes but is
loosely connected. In Subfig. 1b, the nodes are affiliated to
multiple assortative groups, called communities [37]. Within
these communities the connections are dense, while the
interactions across the communities are much looser. Hybrid
core-periphery/community and any other arbitrary structure
can also be generated with SBM. In the following subsection,
we will discuss in more detail how to detect the latent
community structure within a network.

B. Community Detection

Community structure is a special type of latent block
structure. For community detection, the formulation may be
simplified from the general form (3). Let us assume that
the connection propensities ω are known, thus simplifying
the problem to inferring only the community affiliations
b. In particular, since communities are assortative, let us
say that the internal and external connections should have,
correspondingly, two homogeneous propensities ωin and ωout.
Following the proof of Newman [38], the maximum likeli-

hood estimation will lead to the following problem

max
b

Qγ(b) =
1

m

n∑
i=1

n∑
j=1

(
aij − γ

k+i k
−
j

m

)
δbibj , (4)

in which m is the total number of edges, and δ is the
Kronecker’s delta, i.e., δbibj = 1 if nodes i and j belong
to the same community and 0 otherwise. The Q function
of community assignments b = (b1, . . . , bn), which is to be
maximized, is called the modularity. It was initially proposed
by Newman and Girvan [39] (thus known as Newman-Girvan
modularity) and extended to bipartite [40] and directed [41]
networks.

Here the parameter γ is determined by ωin and ωout
according to the relation

γ =
ωin − ωout

lnωin − lnωout
. (5)

It can be viewed as a resolution parameter [42] as it tunes the
coarseness of the decomposition. When γ is extremely small,
the maximization of modularity (4), which is dominated by
the count of edges inside the communities, will naturally
attract nodes into a single community. On the other hand,
when γ is extremely large, the penalty term will dominate,
thus pushing the nodes away from each other and forming
communities of individual nodes. A particular case is γ = 1,
which conforms to the original form of Newman and Girvan.
In this case, the penalized term in parenthesis, k+i k

−
j /m

can be interpreted as the expected number of edges from
i to j when all the outgoing edges of i and incoming
edges j are randomly redistributed. In other words, Q1(b)
captures how much the network appears to be structured
more than randomized, if the nodes 1, . . . , n belong to the
bi-th community, respectively.

The maximization of modularity, apparently, is combina-
torial, and actually has been proved to be an NP-hard prob-
lem [43]. Practically well-performing and computationally
efficient heuristic approaches have been proposed to seek
approximations to its solution. An exhaustive overview of
the existing approaches was given in Fortunato and Hric
[44], including the ones not under the umbrella of stochastic
block model or modularity maximization. We would like to
highlight two algorithms.

1) Newman’s spectral algorithm [45] – All nodes start in a
single community. Large communities are recursively
divided into two (bisectioned) as long as the bisec-
tioning results in a modularity increase. To determine
the partition of, e.g., the entire network G, into two
subgraphs (denoted as G+ and G−), it can be shown
that the corresponding modularity change is

∆Q =
1

2

(
s⊤Cs− e⊤Ce

)
, (6)

where si = +1 if i ∈ G+ and −1 if i ∈ G−, e is
a vector of all ones, and C is the matrix of aij −
k+i k

−
j /m. A rough estimate is

s = sign (v1(C)) . (7)
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Here v1(·) refers to a nonzero eigenvector associated
with the largest eigenvalue.

2) Louvain algorithm by Blondel et al. [46] – All nodes
start as a singleton community. The nodes then attempt
to escape from their own communities and relocate to
their neighbors’ communities guided by the modularity
ascent. When the modularity reaches a stationary point,
the formed communities are aggregated into a single
node, and the edges are correspondingly aggregated
by summation. Thus a higher-level network is formed.
The aforementioned processes are repeated, until mod-
ularity can no longer increase.

Before network science was established as a field, cluster-
ing and partitioning algorithms were extensively discussed
in the literature of graph theory [47]. Although not endowed
with statistical interpretations, they can be complementary
to community detection. For example, the Kernighan-Lin
algorithm [48] addresses the problem of dividing a graph
into two subgraphs so as to minimize the total cost of
external connections. After the cut is initiated, pairs of
nodes from the two subgraphs are selected to maximize the
resulting incremental cost decrease, and then the adjustments
of subgraphs are carried out in a greedy manner. This can
be used as a routine to fine-tune the bisection determined by
the spectral algorithm.

III. DECOMPOSITION FOR DISTRIBUTED CONTROL

A. Decentralized Control and Decomposition

The query for a decomposition in control problems dates
back at least to the 1970s in the studies pertinent to the
stability analysis of decentralized control [49], [50]. Based on
the idea that in order to guarantee closed-loop stability, mutu-
ally impacting variables must be grouped together in decen-
tralized control, graph-theoretic approaches using strongly
connected components and block-triangular structures were
emphasized [51]. These methods are restrictive on system
structures and not suitable for highly integrated systems such
as chemical plants that are generally well connected as a
whole. In a different vein, in the process control domain,
works on interaction analysis focused on multi-loop control
configurations and aimed to develop interaction measures
to capture the relations between inputs and outputs, so
that input–output pairings are chosen in an optimal sense
[52]. For example, the classical relative gain array (RGA)
approach [53] considers the static gains between inputs and
outputs, Gij as the interaction measure, and then calculates
a matrix

RGA = G ◦ (G−1)⊤, (8)

where ◦ stands for element-wise multiplication, to assess the
quality of a diagonal pairing. Especially with the develop-
ment of robust control theory after the 1980s, interaction
analysis was combined with decentralized stability analysis
[54], [55].

From a process design point-of-view, it is necessary to de-
cide on the selection of input and output variables, as well as
their pairing configuration, from the conceptual design stage.

Studies that bore the name of “plantwide control” provided
guidelines for such control structure selection [56]–[58]. For
example, in Seider et al. [59, Chap. 20], multiple steps in
sequence are suggested to determine the “subsystems”:

1) Determine the control structure of energy flows to
eliminate temperature runaway in reaction systems and
decouple material and energy aspects;

2) Control the feed and production rates to ensure the
overall material balance;

3) Control the variables closely related to quality, safety,
environmental, and operational constraints;

4) Control the recycle and inventories;
5) Control individual units.

Such guidelines, apparently, were developed with a heuristic
understanding of the process characteristics and relative
priority of control objectives, using a hybridization of unit
boundaries and mass/energy balance laws. Essentially, the
“control structure selection” in plantwide control targets a de-
centralized, single-input-single-output (SISO) control archi-
tecture that is suitable for proportional-integral-differential
(PID) controllers. Despite the rapid development of model
predictive control throughout the 1980s and 1990s, the
problem of performing a multi-echelon decomposition in
optimal control using subsystem regulators and optimizers
seemed to fade away.

B. Distributed MPC

The application of the decomposition principle in optimal
control formulations has returned as a popular research topic
after distributed MPC was proposed [60] and its stability
properties were discussed [61]. The optimal control problem
refers to the following dynamic optimization one, where the
cost associated with the future trajectory is to be minimized
under the discrete-time dynamical model and state or input
constraints:

J(xk) = min
x̂t,ût

k+N−1∑
t=k

ℓ(x̂t, ût) + ℓf(x̂k+N )

s.t. x̂t+1 = f(x̂t, ût), t = k, . . . , k +N − 1

ϕ(x̂t, ût) ≤ 0, t = k, . . . , k +N − 1

x̂k = xk.
(9)

In the distributed MPC setting, the inputs and states are
partitioned into n subsystems, i.e., x̂t = (x̂

[1]
t , . . . , x̂

[n]
t )

and ût = (û
[1]
t , . . . , û

[n]
t ). To solve the above problem

across multiple optimizers, sequential and parallel iterations
of control actions were proposed in the works of Christofides
and coworkers [62], [63] as well as Rawlings and coworkers
[64], [65]. The number of algorithms for distributed MPC
has rapidly expanded since the early 2010s [66].

With the rapid development of distributed optimization
(optimization algorithms based on operator splitting [67]) in
the recent years, we are motivated to consider distributed
MPC as a distributed optimization problem (instead of al-
lowing any algorithm that in principle does not guarantee
the optimum of the monolithic problem) [68]. For distributed
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optimization, the MPC problem (9) can be reformulated as
a n-block problem with linear equality constraints. Specifi-
cally, let f [i] be the components of the dynamical model f
corresponding to x[i], and s[i] be the vector of variables that
either (i) belong to the subsystem i and appear in f [j] for
some j ̸= i, or (ii) appear in f [i] but are not components
of x[i] or u[i], i.e., s[i] represents the shared variables of
subsystem i. Then we can rewrite

x̂
[i]
t+1 = f [i](x̂

[i]
t , û

[i]
t , ŝ

[i]
t ), i = 1, . . . , n. (10)

Since all s[i] should contain some components of x and u,
we can put all components of s[i], i = 1, . . . , n together as
a vector of shared variables ξ0, and write s[i] = Biξ0 for
properly defined matrices Bi. By stacking all x[i]

t , u[i]
t and

s
[i]
t as a vector ξi (standing for the variables to be solved by

the i-th solver) and assuming the separability of the stage
cost ℓ and terminal cost ℓf, we assert that the MPC problem
can be rewritten as

min
ξ0,ξ1,...,ξn

n∑
i=1

Ji(ξi)

s.t. Aiξi +Biξ0 = 0, i = 1, . . . , n

ξi ∈ Ξi, i = 1, . . . , n

(11)

for some matrices Ai and sets Ξi that represent the dynamical
model and control constraints, i = 1, . . . , n.

Such a linear equality constrained problem (11), if convex
(i.e., in a linear MPC setting), is amenable to ADMM algo-
rithms [69]. In the presence of nonconvex constraints (i.e.,
in nonlinear MPC), recent advances in distributed optimiza-
tion have provided modified ADMM algorithms [70]. Our
research has refined such modified ADMM and incorporated
acceleration schemes for improved computational efficiency
[71]. Furthermore, based on the reasoning of the closed-loop
stability guarantee of nonlinear MPC, we pointed out that
(11) may be terminated before converging to small enough
tolerances, yet still preserving the closed-loop stability [72].
This algorithm uses the concept of Lyapunov envelope, which
accounts for the effect of early termination on the closed-loop
performance by penalizing the violations to inter-subsystem
constraints, based on the assumption that all subsystems are
incrementally dissipative, so that the propagation of errors
will not devastate the descent of a robust upper bound of the
Lyapunov function.

Although distributed MPC algorithms have been exten-
sively studied, for a significant period after distributed MPC
was proposed, the decomposition of large-scale systems in
the sense of partitioning into several MPC subsystems, had
not been addressed. As stated in [73]:

“There is no general framework for computing
optimal decompositions for DMPC. ... Research
in this direction should go hand-in-hand with the
development of optimal communication strategies
between the distributed controllers.”

C. Network Representations for Decomposition
For a general framework of decomposing systems for

control, our research has proposed a versatile range of

(a) Directed graph.

(b) Input-output bipartite graph.

Fig. 2: Network representation for dynamical systems.

network representations of dynamical systems, which flex-
ibly capture the interactions among process variables under
different characterizations, so that the latent block structures
(communities) can be detected from the networks to gener-
ate subsystem configurations. These network representations
include

1) Directed graph (digraph), which captures the interac-
tions among manipulated inputs, states, and controlled
outputs [74]. That is, the set of nodes is V = U∪X∪Y ,
where the set of input nodes U = {u1, u2, . . . , um},
state nodes X = {x1, x2, . . . , xn}, and output nodes
Y = {y1, y2, . . . , yp}. The set of edges is such that
any edge is either from an input to a state, from a
state to another state, or from a state to any output,
i.e., E ⊆ (U ×X )∪ (X ×X )∪ (X ×Y). For the model

ẋ = f(x) + g(x)u, y = h(x), (12)

(i) if gij ̸= 0, then (uj , xi) ∈ E ; (ii) if ∂fi/∂xj ̸= 0,
then (xj , xi) ∈ E ; (iii) if ∂hi/∂xj ̸= 0, then (xj , yi) ∈
E . The directed graph can be weighted, e.g., by assign-
ing the values of |∂fi/∂xj |, |∂hi/∂xj |, and |∂hi/∂xj |
at a reference steady state to the (u, x), (x, x) and
(x, y) edges, respectively [75]. An alternative weight-
ing can be defined by first calculating the shortest

3117

Authorized licensed use limited to: University of Minnesota. Downloaded on September 27,2023 at 15:10:47 UTC from IEEE Xplore.  Restrictions apply. 



path length between every pair of nodes, on which
every edge is weighted inversely proportionally to the
above coefficients’ absolute values [76]. The weighted
directed graph was shown to result in better control
performance when there are large disparities among
the edge weights (e.g., when the system contains a
large recycle) [77].

2) Input-output bipartite graph, where the nodes stand
for input and output variables (V = U ∪ Y) and every
edge links an input and an output (E ⊆ U × Y). Any
input ui is connected to an output yj if ui has an
effect on yj , and in order to characterize the intensity
of such an effect, edge weights can be assigned. In
[78], the weight for the (uj , yi) edge, wij , is defined
as the shortest path length from uj to yi on a weighted
directed graph, so as to account for both the rela-
tive degree (topological closeness) and the sensitivity
coefficients (response significance). In [79], the edge
weight matrix W = [wij ] is defined according to a
relative time-averaged gain array:

W = max
{
0, G(1/τ) ◦

(
G(1/τ)−1

)⊤}
, (13)

where G(s) is the transfer function matrix, and τ is a
time scale of interest. As such, W captures the short-
time interactions between inputs and outputs.

3) Variable-constraint graph, which is constructed di-
rectly based on the optimization formulation of the
optimal control problem at hand. In the variable-
constraint graph, every node stands for an optimization
variable or an algebraic constraint, and a variable node
is connected to a constraint node if this node is in-
volved in the constraint. In [80], this network represen-
tation was used to capture the MPC problem structure
and was found to result in outstanding performance
when it is used to decompose the optimization problem
directly (instead of on the process variables). Naturally,
variable-constraint graphs can serve as a basis for
decomposing optimization problems in general [24],
[81], which we discuss in the next section.

The directed and bipartite network representations for
dynamical systems are shown in Fig. 2. Based on these
representations, community detection can generate high-
quality decompositions that outperform intuitive or heuris-
tically determined ones, as shown in a series of studies by
Pourkargar et al. [77], [82]–[84], where the algorithm of [63]
was used for distributed MPC. In several other works that
proposed new algorithms of distributed MPC, e.g., layered
subsystems using hierarchical communication [85] and de-
composition in the Karush-Kuhn-Tucker (KKT) conditions
[86], directed graphs were adopted and community detection
was carried out to generate subsystems. Different network
representations can result in different performance metrics,
which, on the other hand, largely depend on how distributed
control is formulated and computed.

D. Community Detection and its Modifications

Without a deeper understanding of the fundamental rela-
tion between community structures and control, community
detection in a network representation of large-scale systems
seems at most a novel heuristic for decomposition. In fact,
since community structure is a typical block structure ex-
isting in many biological networks [37], it is natural to
hypothesize that the existence, or evolutionary emergence,
of communities, plays a beneficiary role in their control.
As pointed out in a number of studies [21], [22], [87],
[88], community structures in a modular network allow the
adoption of modular controllers, which largely promotes
feedback sparsity (i.e., reduces complexity) while preserving
the control performance. This justifies the use of community
detection as a systematic framework of large-scale system
decomposition.

In the above-mentioned works on control-oriented decom-
position, Newman’s spectral algorithm [45] and the Louvain
(fast unfolding) algorithm [46] were used for community
detection. The difference between the two algorithms lies
in the path to search for the partition. The former algorithm
recursively partitions a larger community into two smaller
ones, starting from the entire network as a single community
and terminated when further partition does not increase
modularity. In contrast, the latter algorithm is initiated from
singletons and recursively agglomerates smaller communities
into larger ones. Compared to the spectral method, the
Louvain algorithm is usually more efficient to find decom-
positions with a higher modularity value. We note that:

• In the context of distributed MPC, the subsystems are
usually at most one order of magnitude smaller than the
whole network but may contain hundreds of singletons,
i.e., a top-down approach follows a shorter path to the
solution.

• A bottom-up procedure as in Louvain algorithm starts
from small increase in modularity while larger increases
appear at later stages, i.e., the major steps are dependent
on less important steps.

• In the Louvain algorithm, it is hard to rule out the
generation of extremely small communities with very
little gain in modularity.

Due to the above reasons, it appears appropriate to consider
Newman’s spectral algorithm as a more suitable approach in
general for the purpose of decomposing control problems.

The network science algorithms, although highly efficient
and theoretically well established, may not always guarantee
meaningful and acceptable decomposition results. In an
industrial implementation in the process industry [25], we
proposed the following practical refinements of the spectral
algorithm:

• The groups of variables that should not be separated
are aggregated into single nodes before handled by
decomposition. These groups often arise as “artifacts”
of control engineering, e.g., (i) intermediate variables
created for a nonlinear transformation, (ii) setpoints
(SP), outputs (OP), and process variables (PV) inside
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the same PID loop secondary to the MPC system.
• The bisectioning is held back if the modularity increase

is not significant enough above a thresholding value.
This helps to prevent the generation of extremely small
communities.

• The internal connectedness of the communities are en-
sured by a depth-first search for connected components
and recombination of the connected components inside
communities.

• If the communities detected are imbalanced in size, the
small communities are each merged with a matched
larger community.

In addition, multiple modifications to the community de-
tection approach have been proposed in the literature, so
that the subsystems are not only meaningful from a network
topology point of view, but also possess certain control-
theoretic properties. In [89], the subsystems are adjusted
until controllability conditions are satisfied. Yin and Liu [90]
proposed to perform stabilizability and observability tests
during community detection. Masooleh et al. proposed to
use a multi-objective metaheuristic algorithm (whale opti-
mization) instead of modularity maximization [91], based on
which candidate decompositions can be ranked and selected
for observability during the community detection procedure
[92]. In Wang et al. [93], a mean gap metric is defined
to measure the change in the dynamical system caused by
decomposition, and is used as a check during community
detection.

IV. DECOMPOSITION SOLUTION APPROACHES FOR
OPTIMIZATION PROBLEMS

Most realistic optimization problems for decision making
in process systems, such as those encountered in model pre-
dictive control as well as supply chain management, process
operations and scheduling, and process design, are inherently
nonconvex (mixed integer) nonlinear programs. While the
optimization community has developed many impressive ad-
vances supporting deterministic global optimization of these
problems, including state-of-the-art off the self solvers such
as BARON [94], MAiNGO [95], ANTIGONE [96], DICOPT
[97], and others [98], these approaches are not always easily
scalable to problems of practical size due to the inherent
NP-hardness of nonconvex, mixed integer problems. In many
cases, utilizing a decomposition solution approach, whereby
smaller subproblems are solved iteratively and coordinated
to arrive at the solution to the original large optimization
problem, can be faster than applying an off-the-shelf solver
monolithically [99]–[102]. In this section, we provide a
brief tutorial review of three of the most commonly used
decomposition solution approaches for solving optimization
problems that are particularly well suited for exploiting
network structure in the underlying optimization problem.

The following subsections consist of various generally
written optimization formulations. To avoid confusion, we
provide the following preliminary definitions for notation
used consistently over the multiple subsections. The symbols
x, y, and z denote vectors of decision variables in the

optimization problem. Variables with a subscript, i.e. x1,
denote a scalar element of the corresponding vector. The
symbols f , g, and h, sometimes with subscripts, denote
arbitrary nonlinear functions of these decision variables.
These functions may be vector or scalar valued, depending
on the context: typically, functions in the objective will
be scalar valued, while constraint functions can be vector
valued functions of arbitrary size. Most other lowercase
symbols refer to vectors of known constant parameters, i.e.
the vector c might appear multiplied by x in an objective,
denoting some sort of cost. Upper case symbols typically
refer to matrices of known constant parameters. Definitions
of additional symbols (i.e. Greek letters) and exceptions to
these general guidelines will be explicitly noted when such
symbols appear in the text.

A. Graph Representation of Optimization Problems

As we will see in this section, decomposition solution
methods for solving optimization problems have been devel-
oped and in use for over 60 years. Traditionally, identifying if
a particular problem was well suited for decomposition was
reliant on the intuition of an optimization expert. However,
recent advances in network theory, such as the methods
discussed in section II, enable a systematic approach for
identifying exploitable structure within an optimization prob-
lem of interest. To enable the use of network theory, a
graph representation of the optimization problem is required.
Recent work has demonstrated that optimization problems
can naturally be represented as graphs, enabling easy visu-
alization and structure detection of the problem [24], [103].

While one can build any number of graphs or hypergraphs
corresponding to a problem, for the purposes of identifying
structure amenable to decomposition, the variable-constraint
graph is a good starting point. In this graph, a bipartite set
of nodes corresponding to decision variables and constraints,
respectively, in the optimization problem is constructed. A
variable node is linked with an edge to a constraint node
if and only if the variable appears within the respective
constraint function. Letting f(x) be the vector of constraint
functions of decision variables x and Â be the adjacency
matrix of the variable-constraint graph, the following math-
ematical expression ensures this relationship:

Âij =

{
0, ∂fi

∂xj
= 0

1, otherwise
(14)

Note that for problems with integer variables, the partial
derivative resulting from the continuous relaxation is used.
The variable-constraint graph is useful for initial visualiza-
tion of the problem structure, but it alone is not the best
suited for identifying structure in the optimization problem
suitable for a decomposition solution algorithm. For this,
the unipartite variable or constraint graphs should be used.
These are obtained from simple right or left projections
of the variable-constraint graph. Letting X̂ and F̂ be the
adjacency matrices of the variable and constraint graphs,
respectively, these are obtained from Â using X̂ = ÂT Â and
F̂ = ÂÂT . Using this definition, the constraint graph is one
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Minimize 𝑥1 + 𝑥3
2 + 𝑥4

s.t. 𝑓1: 𝑥1 + 𝑥2 ≤ 0
𝑓2: 𝑥1 − 3𝑥2 ≤ 0
𝑓3: 𝑥2 + 𝑥3 + 4𝑥4

2 = 0
𝑓4: 𝑥3 + 𝑥4 ≤ 0
𝑓5: 𝑥3

2 + 𝑥4
2 − 10 = 0
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Fig. 3: Example generation of variable-constraint, constraint,
and variable graphs from a simple optimization problem.

where nodes correspond to constraints and weighted edges
correspond to the number of variables a pair of constraints
share. Analogously, the variable graph is one where nodes
correspond to variables and weighted edges correspond to the
number of constraints that a pair of variables jointly appear
in. A simple example of variable-constraint, constraint, and
variable graphs are shown in Fig. 3. As we will see in the
following subsections, community or core-periphery struc-
ture in the variable or constraint graphs directly corresponds
with structure amenable for exploitation by three of the most
well known decomposition solution algorithms.

B. Column Generation

Perhaps one of the earliest applications of decomposition
to optimization problems is the classic 1960 paper of Dantzig
and Wolfe [104]. This work proposed a met that makes use of
the observation that many large scale linear programs (LPs)
of practical interest can be formulated in a way such that the
optimal solution was inherently sparse; that is, even though
the number of variables in a problem could be very large,
the number of variables with nonzero values in the optimal
solution is typically significantly smaller. This observation
motivated an iterative approach whereby a “restricted master
problem” (RMP) is solved which only allows varying a
subset of variables from the original problem to vary from
zero. Based on the results of the RMP, a subproblem is then
solved to determine, which, if any, variables not considered
in the RMP could potentially improve the objective value.
These variables are then added to the RMP, and the process
repeats. Since in the linear programming literature, variables
correspond to columns in the constraint matrix and are
sometimes called columns, this approach is often referred
to as “column generation.”

To observe how the column generation algorithm is typi-
cally applied, consider the following linear program:

min
x,y,z

cTx x+ cTy y + cTz z (15a)

s.t. Axx+Ayy ≤ b (15b)
Dyy +Dzz ≤ e (15c)

In column generation, constraints (15b) are typically referred
to as complicating constraints that, if removed, would render
the problem significantly easier to solve, usually due to prob-
lem structure. Moreover, the number of variables y appearing
in both sets of constraints can be very large. Nonetheless, for
fully bounded linear programs (i.e., those where no variable
may feasibly take a value of ±∞), y can be represented as
a convex combination of all vertices of a simplex defined by
the problem’s constraints. Moreover, the number of vertices
to consider will be finite (although potentially very large).
Let the set of these points be Y , the set K = {1, ..., |Y|}, yk
refer to a point in Y , and fk be the “column cost” of yk, such
that fk = minz{cTy yk + cTz z : Dyyk +Dzz ≤ e}. Then, the
following “master problem” is equivalent to problem (15):

min
x,λ

cTx x+
∑
k∈K

fkλk (16a)

s.t. cTx x+ cTy

(∑
k∈K

ykλk

)
(16b)∑

k∈K

λk = 1 (16c)

0 ≤ λk ≤ 1 ∀ k ∈ K (16d)

For most problems of practical interest, the cardinality of K
is much too large for the master problem (16) to be helpful in
solving the problem. However, in almost all practical cases,
all but a very small number of λ variables will be zero in
the optimal solution. As such, a restricted master problem
is formulated by considering only a subset of points on the
y-simplex, Ŷ ⊂ Y , sometimes referred to as the “basis set.”

Since the RMP is a restriction of the original problem,
the objective value of its solution is an upper bound on the
original problem’s objective value. To refine this bound, new
columns must be generated that have potential for improving
the solution. To do this, dual variables π, corresponding
to constraints (16b), and µ, corresponding to constraint
(16c), from the RMP solution are passed to the following
“subproblem”:

min
y,z

(cTy − πTAy)y + cTz z − µ (17a)

s.t. Dyy +Dzz ≤ e (17b)

When solving this problem, the objective value is often
referred to as the “reduced cost”, as it represents the best
possible improvement in the current upper bound by includ-
ing the new column y∗, the y solution to the subproblem. If
the reduced cost is negative, y∗ is added to the basis set and
the column generation algorithm repeats with a new solution
of the RMP. If the reduced cost is nonnegative, then no new
columns can improve the incumbent solution, and the column
generation algorithm is converged to the optimal solution.

A critical characteristic for using this approach that we
have overlooked so far is that the subproblem (17) should
be significantly easier to solve than the original, mono-
lithic problem (15). This requirement is nontrivial, and is
most commonly satisfied with a subproblem that displays
“decomposable structure”; that is, it can be broken into
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Fig. 4: Example of a constraint graph from a dynamic
facility location problem well suited for solving via column
generation [105]. Note the core-periphery structure, such
that when the core nodes (red) are removed, the peripheral
communities are completely disconnected.

multiple small optimization problems that, when solved
independently, give the exact solution to the original larger
optimization problem. When column generation is applied
to a subproblem with decomposable structure, the approach
is often referred to as the “Dantzig-Wolfe decomposition.”
Connecting this to the graph structure of the original op-
timization problem, we note that problems with any core-
periphery structure in the constraint graph are candidates for
solution via column generation. The best candidates are those
that, when the core nodes are removed, have disconnected
communities (Fig. 4), as this indicates that the subproblem
(corresponding to the periphery) will have decomposable
structure.

While originally developed for linear programs (LPs), the
concept of column generation has been extended to work for
more challenging classifications of problems. In particular,
column generation can be quite powerful for solving integer
programs (IPs) and mixed integer linear programs (MILPs),
as first demonstrated by the work of Desrosiers et al. [106].
In this approach, the continuous relaxation of the original
problem is solved via column generation. If the solution is
non-integral in any integer variables, a branch-and-bound
scheme is applied which generates additional constraints
to the RMP to promote integrality of integer variables.
Then, each branching node in the branch-and-bound tree
is initialized with feasible columns in the basis set of its
parent node and solved using column generation. The pro-
cess repeats, using standard branch-and-bound principles for
navigating the branching tree and pruning nodes. A IP/MILP
solution approach combining branch-and-bound with column
generation is referred to as “branch-and-price.” Branch-and-
price has been widely used to much success for many
problems in the operations research community, including
vehicle routing [107], [108], facility location [105], [109],
and capacity planning problems [110], [111]. For a more
complete review of the method, we refer the reader to [112].

Perhaps more relevant to chemical process systems, it has
also recently been shown that branch-and-price can be quite
useful for solving certain mixed integer nonlinear programs

(MINLPs) [113], known to be among the most difficult
class of problems to solve and occurring naturally for many
optimal process design and process operations problems. For
these problems, it has been shown that when the complicating
constraints (15b) are all linear and the complicating variables
y are all integer variables, branch-and-price can solve the
MINLP to global optimality assuming a global MINLP
optimizer is used for solving the subproblem(s). This stands
out compared to most decomposition solution approaches,
which when applied to MINLPs give no guarantees that
the optimality gap will be closed. This approach has been
demonstrated to be quite powerful when applied to design,
planning, and scheduling problems considering many time
periods and/or many uncertain scenarios, as the subproblem
typically can be decomposed in time or by scenario.

C. Benders Decomposition

The second major type of decomposition also dates to
the early 1960’s and comes from the pioneering work of
J.F. Benders [114]. The eponymous Benders decomposition
utilizes an approach that will seem analogous to the column
generation algorithm presented in the prior subsection, but
instead of only considering a subset of variables in a master
problem, we consider only a subset of constraints in the mas-
ter problem, iteratively generating new “rows”, or “Benders
cuts” as the decomposition solution algorithm progresses.
This work was originally applied to “mixed variables” pro-
gramming problems, as in the following example:

min
x,y

cTx+ f(y) (18a)

s.t. Ax+ g(y) ≤ b (18b)
x ≥ 0 (18c)
y ∈ Z (18d)

In this problem, y variables are considered to be the com-
plicating variables such that, when these variables are fixed,
the problem becomes significantly easier to solve. In this
formulation, it is clear that when y is fixed at ȳ, the problem
becomes an LP in x. For LPs, which display strong duality,
an equivalent formulation is:

max
λ

(b− g(ȳ))Tλ+ f(ȳ) (19a)

s.t. ATλ ≤ c (19b)
λ ≥ 0, (19c)

where λ are the dual variables of constraints (18b). The above
problem is often referred to as the subproblem. The feasible
space of the subproblem is defined by a finite set of extreme
points ū ∈ P , i.e. vertices of the feasible region, and extreme
rays ũ ∈ R, i.e. linearly independent directions in which the
feasible region is unbounded. Duality theory states that these
extreme points and rays can be used to define the following
master problem equivalent to the original problem (18):

min
y,z

z (20a)

s.t. 0 ≥ (b− g(y))T ũ ∀ ũ ∈ R (20b)
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Constraint graph
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xi xj

Variable graph
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Fig. 5: Block structure in the variable and constraint graph
that can be used for Benders decomposition. (a) The nodes in
red belong in one block and the nodes in blue in the second
block and the variables in red color are the complicating
variables. (b) The variables in red belong in the one block
and are assigned in the master problem whereas the nodes in
blue and the associated edges are assigned in the subproblem.

z − f(y) ≥ (b− g(y))T ū ∀ ū ∈ P (20c)

Analogous to column generation, the total number of con-
straints to consider scales poorly with the dimensionality of
the original problem and is typically too large for the master
problem to be of any utility, since the computation of all the
cuts is equivalent to solving the original problem. As such,
it is reasonable to start by solving a relaxed master problem
with no or only a small number of constraints (20b) and
(20c). Next, the values of the y variables in the solution of
the master problem are set as ȳ in the subproblem, which is
then solved.

For given ȳ the subproblem is either unbounded, i.e., the
objective diverges to an infinite value, or feasible. In the
first case, an extreme ray which proves that the solution
is unbounded ũ is taken from the subproblem and used to
generate a new constraint of the form (20b) in the relaxed
master problem. Constraints of this nature are often referred
to as “feasibility cuts,” since the unbounded nature of the
subproblem implies that ȳ is not a feasible solution to the
original problem. In the second case, the subproblem returns
a feasible finite solution ū, which is used to generate a new
constraint of the form (20c) in the relaxed master problem.
Constraints of this nature are often referred to as “optimality
cuts”; together with the feasibility cuts they inform the
master problem about the effect of the complicating variables
on the subproblem and guide the algorithm towards the
optimal solution.

Because the relaxed master problem is inherently a relax-
ation of the original problem, its solution provides a lower
bound of the true optimum. Similarly, since the subproblem
is an equivalent formulation of the original problem with
y variables fixed, it is a restriction of the original problem
whose objective value corresponds to an upper bound of
the optimum. As such, the Benders decomposition iterates

Fig. 6: Inferred core-periphery structure of the variable graph
of the synthes3 benchmark problem which can be used as the
basis for Generalized Benders Decomposition. The red nodes
in the periphery are the binary variables which are assigned
in the master problem whereas the yellow nodes in the core
are the continuous variables assigned in the subproblem.

between solving the relaxed master problem and generating
new cuts from the subproblem until both converge on the
same objective value.

Given the iterative and sequential solution of the master
problem and the subproblem, Benders decomposition ex-
ploits the underlying hierarchical structure of an optimization
problem. This hierarchy is usually manifested as a core-
periphery, core-community or multi-core community struc-
ture in the graph representation of an optimization problem.
An important class of problems where these structures arise
is enterprise-wide optimization problems which consider si-
multaneously decisions across scales, i.e., planning, schedul-
ing, and control. For such problems, the inference of the
parameters of a nested stochastic block model can reveal
the structure of the problem across multiple temporal and
spatial scales. The estimated structure can be further used as
the basis for the application of Benders and nested Benders
decomposition architectures [81], [115], [116]. In such cases,
one can exploit the hierarchical structure of the variable or
constraint graph. Specifically, in the variable graph, the block
of nodes that contain the integer variables can be assigned in
the master problem and the other nodes are assigned in the
subproblems as presented in Fig. 5 (b) and 6. In the constraint
graph, the set of nodes that have edges that capture integer
variables are assigned in the master problem and the other
nodes and edges are assigned in the subproblem (see Fig. 5
(a)).

While originally developed for problems of the form
(18), Benders decomposition was later extended to work for
problems with nonlinear subproblems. This approach, first
developed in the work of Geoffrion in the 1970’s [117], has
been given the name “generalized Benders decomposition”.
For brevity, we will not relist the full formulations for this
case; however, the algorithm follows the same approach.
Namely, a subproblem with complicating variables is solved,
and its dual solution is used to generate new feasibility and
optimality cuts which are added in the master problem. For
the cases where the subproblem is convex, it can be shown
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that the generalized Benders decomposition will converge
on the globally optimal solution. However, in the nonconvex
case, there are no guarantees that the solution obtained will
be even locally optimal [118], [119].

Numerous theoretical and technical advances in (general-
ized) Benders decomposition have been focused on accelera-
tion and further generalization of the method, considering ap-
proaches for alternative master problem formulations [120],
[121], advanced cut generation and management [122]–
[124], integer variables in the subproblem [125], [126], mul-
ticut implementation [127], [128], nonconvex subproblems
[129], or uncertain parameters in the subproblem [130]. For
problems which need to be solved repeatedly with different
values of problem parameters, such as those encountered
in process operations and control, it is possible and often
beneficial to apply machine learning tools to learn a set
of cut constraints for initializing the master problem [131]
or approximating the solution of the subproblem [132].
For a more complete review of the method, we refer the
reader to [133]. Benders decomposition has been applied
widely across the process systems literature, with particular
application to problems of a multi-scale nature, such as those
combining scheduling with process control [9], [115], [116],
[134], supply chain planning [135], and process design [136].

D. Lagrangian Decomposition

A third decomposition solution approach is referred to as
the Lagrangian decomposition. This approach was developed
a bit later than the first two, but has been much more widely
applied in decision making problems for chemical process
systems, including in the process control community. This
approach has its roots in the classical Lagrangian relaxation,
an approach which converts a constrained optimization prob-
lem to an unconstrained problem via the introduction of
“Lagrange multipliers,” which are also referred to as “dual
variables.” Pioneering work by Guignard and Kim [137]
demonstrated that this idea can be particularly useful for
problems with complicating constraints. As an example of
such a problem, consider the following nonlinear program
(NLP):

min
x,y

f1(x) + f2(y) (21a)

s.t. g1(x) ≤ 0 (21b)
g2(y) ≤ 0 (21c)
h1(x) + h2(y) ≤ 0 (21d)

In this problem, constraints (21d) are referred to as com-
plicating constraints, as if they were removed from the
problem, it would have purely decomposable structure with 2
independent subproblems. In the Lagrangian decomposition,
the complicating constraints are not removed, but instead
“dualized”, or placed in the objective, by applying the
Lagrangian relaxation:

min
x,y

f1(x) + λTh1(x) + f2(y) + λTh2(y) (22a)

s.t. g1(x) ≤ 0 (22b)

g2(y) ≤ 0 (22c)

Clearly, this problem has a decomposable structure: two
independent optimization problems can be generated which
determine the optimal values of x and y, respectively. More-
over, when λ is chosen to be nonnegative, problem (22) is
a relaxation of problem (21), which means that its solution
will give an objective value that is a lower bound on the
original problem objective. For an optimization problem that
satisfies all of the conditions for strong duality, one can
always iterate to a value of λ that gives a solution that is
feasible to the original problem, thus closing the optimality
gap and guaranteeing a globally optimal solution. However,
in the general case, the Lagrangian decomposition is only
a heuristic approach that only gives a lower bound on the
solution. Depending on the problem, using this approach to
find a good feasible solution may be tricky.

The Lagrangian decomposition is particularly powerful as
it can be used not only for problems with complicating
constraints, but also for those with complicating variables,
through a very straightforward reformulation of the problem.
Consider, for example, the following NLP with complicating
variables y that, if removed or fixed, would result in a
problem with decomposable structure:

min
x,y,z

f1(x, y) + f2(y, z) (23a)

s.t. g(x, y) ≤ 0 (23b)
h(y, z) ≤ 0 (23c)

This problem can be reformulated to one with complicating
constraints by introducing an additional set of “copy vari-
ables”, ȳ:

min
x,y,ȳ,z

f1(x, y) + f2(ȳ, z) (24a)

s.t. g(x, y) ≤ 0 (24b)
h(ȳ, z) ≤ 0 (24c)
y = ȳ (24d)

When formulated in this way, constraints (24d) act as compli-
cating constraints and are treated as such in the Lagrangian
decomposition. As such, good candidate problems for La-
grangian decomposition are those with community structure
in either the variable or the constraint graph (Fig 7), as
removal of the edges connecting communities by relaxation
leads to independent subproblems. Since each community
in this graph will correspond to a Lagrangian subproblem,
finding a highly modular community structure ensures a
statistically minimal number of complicating constraints (if
using the variable graph) or complicating variables (if using
the constraint graph), which should result in faster conver-
gence of the decomposition algorithm.

Critical to the convergence of Lagrangian decomposition
algorithm is the update of the dual variables λ. The optimal
value of λ is the one that satisfies the dual problem defined
by (22), maxλ≥0 (infx,y∈D (22a)), where D is the set of
solutions for x and y that satisfy (22b) and (22c). Typically,
a steepest descent algorithm is applied for dual updates, such
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Fig. 7: Example of a constraint graph of a coordinated
network scheduling problem well suited for solving via (aug-
mented) Lagrangian decomposition due to its community
structure [138]. Similar community structure in the variable
graph also provides a structure which can be exploited by
Lagrangian decomposition.

that the dual variable at iteration k+1 is defined by the value
of the dual variables and primal solution at iteration k:

λ(k+1) = max(0, λ(k) + δk(h1(x
(k)) + h2(y

(k))) (25)

where δk is a positive, user defined step size that can
change (usually, decreasing) with iteration k. This approach
makes intuitive sense: when h1 + h2 > 0, the constraint
is being violated and a higher Lagrangian “penalty” should
be applied, when h1 + h2 < 0 but λ > 0, complicating
constraints are satisfied but it may be possible to achieve a
better feasible solution, and when h1+h2 = 0 or h1+h2 < 0
and λ = 0, the Karush-Kuhn-Tucker (KKT) conditions have
been satisfied, indicating a feasible stationary point has been
obtained and the algorithm has converged.

Unfortunately, Lagrangian decomposition sometimes dis-
plays relatively slow convergence. An alternative approach
that can often accelerate solutions is to augment the La-
grangian relaxation with a quadratic penalty term, which
ideally will more quickly drive the algorithm towards a feasi-
ble solution [139]. This approach, known as the “augmented
Lagrangian decomposition”, is particularly well suited when
subproblems are coupled with equality constraints, such as
in (26). In this case, the relaxed problem would be:

min
x,y,ȳ,z

f1(x, y) + f2(ȳ, z) + λT (y − ȳ) + ρ∥y − ȳ∥22
(26a)

s.t. g(x, y) ≤ 0 (26b)
h(ȳ, z) ≤ 0 (26c)

Where ρ is a user-defined quadratic penalty coefficient for the
dualized equality constraint. A popular approach to solving
this problem is the ADMM, adapted from the method of
multipliers developed in the late 60’s [140] and popularized
more recently by the work of Stephen Boyd [16]. This
approach iteratively solves the independent subproblems and
follows them with a dual update based on the quadratic
penalty coefficient ρ as follows: first, one of the subproblems
is solved based on the current value of the dual variables λ,

and primal variables from the previous iteration:

min
x,y

f1(x, y) + (λ(k))T y +
ρ

2
∥y − ȳ(k−1)∥22 (27a)

s.t. g(x, y) ≤ 0 (27b)

From this first subproblem solve, current iteration values of
y, y(k), are obtained, which are used to solve a subsequent
subproblem:

min
ȳ,z

f2(ȳ, z)− (λ(k))T ȳ +
ρ

2
∥ȳ − y(k)∥22 (28a)

s.t. h(ȳ, z) ≤ 0 (28b)

Once all subproblems have been solved in the iteration, dual
variables are updated in a manner similar to the steepest
decent approach given in (29), but using the parameter ρ as
the step size:

λ(k+1) = λ(k) + ρ(y(k) − ȳ(k)) (29)

Various extensions to ADMM have been proposed which
aim to accelerate convergence or guarantee optimality for
a broader class of problems. One such approach is the
ELLADA method [71], which makes use of approximate,
rather than exact, subproblem updates [141], the Anderson
acceleration [142], [143], and a multi-layer algorithm with
auxiliary slack variables [70].

Augmented Lagrangian decomposition strategies are par-
ticularly well suited for solving distributed, multi-agent op-
timization problems that result from, for example, systems
with multiple decision making entities that seek to cooperate
but are self-interested, physically separated, or limited in
their ability to share information [138], [144]. In these
types of applications, it is often not possible to choose how
the original monolithic problem is decomposed based on
its structure; instead, subproblem structure is enforced by
the inherent physical separation of the distributed decision
making entities. These methods have found extensive use in
the distributed MPC literature, with applications in chemical
process systems [72], [145], power systems [146], [147],
energy management in buildings [148], and autonomous
vehicles [149], [150].

V. PERSPECTIVES FOR FUTURE WORK

The following subsections highlight some open questions
and directions for future research in structured approaches
to control and optimization.

A. Performance Considerations

While there is evidence that the existence and detection
of block structures, e.g., communities, is strongly correlated
with control or optimization performance, the detection of
structures, e.g., by maximizing a modularity index, is not
directly driven by a performance measure. On the other hand,
strictly optimizing the decomposition with respect to the re-
sulting performance is computationally intractable, although
some expensive meta-heuristics such as genetic algorithms
may be applied [151]. Depending on the specific application,
it may be a plausible approach to first correlate the subsys-
tems’ features with the corresponding performance, perhaps
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making use of recent advances in machine learning, and then
decompose according to empirical correlations.

For example, we may consider the decomposition of
a continuous-variable optimization problem (e.g., for La-
grangian decomposition algorithm) that needs to be optimal
with respect to computational time. Assuming that (i) the
single-iteration computational time for solving the i-th sub-
problem with ni variables and mi constraints is proportional
to nα

i m
β
i (for some α, β > 0), (ii) the computation in

all the subsystems are perfectly parallelized, so that the
single-iteration total computational time is proportional to
maxi n

α
i m

β
i , and (iii) the number of iterations needed for

the coordination is proportional to (
∑

i,j nij)
γ , where nij

is the number of overlapping variables between subsystems
i and j and γ > 0, then we may decompose the system
according to

max
(
max

i
nα
i m

β
i

)∑
i,j

nij

γ

(30)

instead of a modularity index. Yet, the above formulation
may be too simplistic to capture all the factors that may
affect computational time. It is therefore an important issue
to extract the relevant features and develop an appropriate
performance correlation.

B. Constrained Structure Detection

It is often the case that the decomposition needs to satisfy
some constraints on its configuration. A typical case is
the decomposition of mixed-integer nonlinear programming
problems for Benders’ algorithm, where (i) all the integer
variables (as the “complicating” variables) and nonconvex
constraints should be preferably contained in the master
problem, (ii) the sub-problem should contain only continuous
variables and convex constraints, thus forming a convex
programming problem, whose size should be must larger
than the master problem. Similarly, for nonlinear branch-
and-price, global convergence is only guaranteed when all
complicating variables are integer variables and the master
problem contains only linear constraints. As another exam-
ple, for large problems with a small number of nonlinear
constraints, it may be desirable to generate a nonlinear
subproblem that is as small as possible to speed up solution
times. Finally, domain knowledge, human instruction, or a
physical separation between system components may inform
the decomposition. For example, stochastic and dynamic
programming problems should have repetitive patterns that
reflect the same system under different uncertain parameter
values or at discretized time instants in a horizon, while in
distributed control, it may be acceptable to require that the
same type of units be treated in a homogeneous way in the
decomposition. In all of these cases, it can be beneficial to
embed constraints to the community detection or stochastic
block-modeling algorithms to restrict the detected structure
to one that meets some physical or computational require-
ments.

Essentially, constrained structure detection becomes a
combinatorial optimization problem under constraints, e.g.,
the maximization of modularity under linear inequalities on
the allocation vector:

max Q(g)

s.t. Ag ≤ b
(31)

As the unconstrained version can be amenable to efficient
routines such as hierarchical agglomeration or division, we
envision that the constrained problem can be converted to an
unconstrained problem with a dualization approach, e.g., by
defining the augmented Lagrangian

Q̄(g) = Q(g) + λ⊤(Ag − b) +
ρ

2
∥Ag − b∥2, (32)

and adjusting the values of λ ≥ 0 and ρ > 0 respectively.
Alternatively, one could consider the constraints as compli-
cating, as when they are removed, the problem becomes
significantly easier to solve. When viewed through this
lens, a column generation approach could be applied on
the structure detection algorithm itself, whereby the column
generating subproblem is simply an unconstrained structure
detection problem (with added dual terms in the objective
to calculate reduced cost), while the master problem picks
among the generated columns (different partitions of the
network, in this case), calculating a dual cost for satisfying
any constraints.

C. Hybrid and Nested Decomposition Structures

The decomposition methods described above exploit ei-
ther the hierarchical or the distributed structure of an opti-
mization problem. However, another approach is to exploit
both structures simultaneously. Cross decomposition [152]
is an algorithm which implements simultaneously Benders
decomposition and Lagrangian relaxation for the solution
of a mixed integer optimization problem. Conceptually, this
algorithm can be applied in cases where an optimization
problem has structure both in the constraint and variable
graph. Alternatively, such a approach could be beneficial
for a core-periphery structure similar to that in Fig. 4, but
where the periphery forms weakly connected but not fully
disconnected communities.

In addition to cross decompositions, one could envision
various nested decomposition strategies that exploit multiple
levels of hierarchical structure in the underlying network.
For example, consider an optimization problem that, at the
problem-wide level, has a community structure, but once the
communities are separated into their own subproblems, they
may each have additional community or core-periphery struc-
ture that could be further exploited. Here, one could envision
an outer-level Lagrangian decomposition, with Lagrangian
subproblems solved by, for example, column generation or
a further Lagrangian decomposition. For such nested hierar-
chical structures, open questions remain such as how “deep”
into the hierarchy is it still effective to detect and exploit
structure, as well as how information can be most effectively
shared within the hierarchy of decomposition algorithms.
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D. When is a Decomposition Needed?

Although decomposition-based solution methods have
been widely applied for large-scale problems, for some cases,
such as convex MINLPs, they can be efficient even for
small-scale optimization problems [153]. Similarly, while
Dantzig-Wolfe decomposition has been widely applied for
the solution of MILP problems, its effectiveness over other
solution methods such as branch and cut [154] is not known
a priori. Indeed, recent work has demonstrated that for one
class of optimization problems with the same structure but
varying parameters or numbers of variables and constraints, a
single solution approach between decomposing the original
problem or solving the original problem monolithically is
not uniformly superior with respect to time required to find
a globally optimal solution [105]. The problem of whether
to use a decomposition over a monolithic solution approach
can be posed as an algorithm selection problem [154]–
[156] where the goal is to find the algorithm that solves
an optimization problem in the minimum solution time.

VI. CONCLUSIONS

In this tutorial paper, we focus on decomposition as
an important principle of resolving large-scale control and
optimization problems. In the context of control problems
(especially that of model predictive control) and optimization
problems, we reviewed how decision making can be achieved
on the basis of subsystems under a decomposition of the
monolithic system (problem), and how such a desirable
decomposition can be determined. In particular, we high-
light the detection of latent block structures in networks as
a general framework of systematically finding statistically
significant mesoscale interaction patterns, thus generating
subsystems for distributed control and optimization. We have
also discussed promising future directions, especially on an-
swering the open questions regarding the characterization of
the performance of decomposition configurations, incorpora-
tion of constraints on decomposed subsystems, hybridization
of prototypical block structures, and comprehension of the
necessity of decomposition. Given its wide applicability and
theoretical profundity, we believe that this broad area of
decomposition and decomposition-based problem solving is
worth deeper exploration.
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“Distributed model predictive control: A tutorial review and future
research directions,” Comput. Chem. Eng., vol. 51, pp. 21–41, 2013.

[74] S. S. Jogwar and P. Daoutidis, “Community-based synthesis of
distributed control architectures for integrated process networks,”
Chem. Eng. Sci., vol. 172, pp. 434–443, 2017.

[75] S. S. Jogwar, “Distributed control architecture synthesis for integrated
process networks through maximization of strength of input–output
impact,” J. Process Control, vol. 83, pp. 77–87, 2019.

[76] M. Xie, L. Zhang, and W. Xie, “Subsystem decomposition of
complex nonlinear systems,” CIESC J., vol. 72, no. 3, pp. 1557–
1566, 2021.

[77] D. B. Pourkargar and S. S. Jogwar, “Distributed model predictive
control of integrated process networks: Optimal decomposition for
varying operating point,” in American Control Conference (ACC).
IEEE, 2021, pp. 801–807.

[78] W. Tang and P. Daoutidis, “Network decomposition for distributed
control through community detection in input–output bipartite
graphs,” J. Process Control, vol. 64, pp. 7–14, 2018.

[79] W. Tang, D. Babaei Pourkargar, and P. Daoutidis, “Relative time-
averaged gain array (RTAGA) for distributed control-oriented net-
work decomposition,” AIChE J., vol. 64, no. 5, pp. 1682–1690, 2018.

[80] W. Tang, A. Allman, D. B. Pourkargar, and P. Daoutidis, “Optimal
decomposition for distributed optimization in nonlinear model pre-
dictive control through community detection,” Comput. Chem. Eng.,
vol. 111, pp. 43–54, 2018.

[81] I. Mitrai, W. Tang, and P. Daoutidis, “Stochastic blockmodeling for
learning the structure of optimization problems,” AIChE J., vol. 68,
no. 6, p. e17415, 2022.

[82] D. B. Pourkargar, A. Almansoori, and P. Daoutidis, “Impact of
decomposition on distributed model predictive control: A process
network case study,” Ind. Eng. Chem. Res., vol. 56, no. 34, pp. 9606–
9616, 2017.

[83] ——, “Comprehensive study of decomposition effects on distributed

3127

Authorized licensed use limited to: University of Minnesota. Downloaded on September 27,2023 at 15:10:47 UTC from IEEE Xplore.  Restrictions apply. 



output tracking of an integrated process over a wide operating range,”
Chem. Eng. Res. Des., vol. 134, pp. 553–563, 2018.

[84] D. B. Pourkargar, M. Moharir, A. Almansoori, and P. Daoutidis,
“Distributed estimation and nonlinear model predictive control using
community detection,” Ind. Eng. Chem. Res., vol. 58, no. 30, pp.
13 495–13 507, 2019.

[85] W. He and S. Li, “Enhancing topological information of the
Lyapunov-based distributed model predictive control design for large-
scale nonlinear systems,” Asian J. Control, 2022.

[86] P. Segovia, V. Puig, E. Duviella, and L. Etienne, “Distributed model
predictive control using optimality condition decomposition and
community detection,” J. Process Control, vol. 99, pp. 54–68, 2021.

[87] P. H. Constantino and P. Daoutidis, “A control perspective on the
evolution of biological modularity,” IFAC-PapersOnLine, vol. 52,
no. 11, pp. 172–177, 2019.

[88] W. Tang, P. H. Constantino, and P. Daoutidis, “Optimal sparse
network topology under sparse control in Laplacian networks,” IFAC-
PapersOnLine, vol. 52, no. 20, pp. 273–278, 2019.

[89] R. R. Rocha, L. C. Oliveira-Lopes, and P. D. Christofides, “Partition-
ing for distributed model predictive control of nonlinear processes,”
Chem. Eng. Res. Des., vol. 139, pp. 116–135, 2018.

[90] X. Yin and J. Liu, “Subsystem decomposition of process networks
for simultaneous distributed state estimation and control,” AIChE J.,
vol. 65, no. 3, pp. 904–914, 2019.

[91] L. S. Masooleh, J. E. Arbogast, W. D. Seider, U. Oktem, and
M. Soroush, “An efficient algorithm for community detection in
complex weighted networks,” AIChE J., vol. 67, no. 7, p. e17205,
2021.

[92] ——, “Distributed state estimation in large-scale processes decom-
posed into observable subsystems using community detection,” Com-
put. Chem. Eng., vol. 156, p. 107544, 2022.

[93] J. Wang, C. Song, J. Zhao, Z. Mo, and Z. Xu, “Distributed model
predictive control-oriented network decomposition based on full
dynamic response,” AIChE J., vol. 69, no. 1, p. e17951, 2023.

[94] M. R. Kilinc and N. V. Sahinidis, “Exploiting integrality in the global
optimization of mixed-integer nonlinear programming problems with
baron,” Optim. Meth. Softw., vol. 33, pp. 540–562, 2018.

[95] D. Bongartz, J. Najman, S. Sass, and A. Mitsos, “MAiNGO –
McCormick-based Algorithm for mixed-integer Nonlinear Global
Optimization,” Process Systems Engineering (AVT.SVT), RWTH
Aachen University, 2018.

[96] R. Misener and C. A. Floudas, “ANTIGONE: Algorithms for coN-
Tinuous / Integer Global Optimization of Nonlinear Equations,” J.
Global Optim., vol. 59, pp. 503–526, 2014.

[97] D. E. Bernal, S. Vigerske, F. Trespalacios, and I. E. Grossmann,
“Improving the performance of DICOPT in convex MINLP problems
using a feasibility pump,” Optim. Meth. Softw., vol. 35, pp. 171–190,
2020.

[98] M. R. Bussieck and S. Vigerske, “MINLP solver software,” GAMS
Development Corporation, 2014.

[99] A. J. Conejo, E. Castillo, R. Mı́nguez, and R. Garcı́a-Bertrand, De-
composition techniques in mathematical programming: Engineering
and science applications. Springer, 2006.

[100] O. E. Flippo and A. H. Rinnooy Kan, “Decomposition in general
mathematical programming,” Math. Program., vol. 60, no. 1-3, pp.
361–382, 1993.

[101] A. M. Geoffrion, “Elements of large-scale mathematical program-
ming part i: Concepts,” Manag. Sci., vol. 16, no. 11, pp. 652–675,
1970.

[102] ——, “Elements of large scale mathematical programming part ii:
Synthesis of algorithms and bibliography,” Manag. Sci., vol. 16,
no. 11, pp. 676–691, 1970.

[103] J. Jalving, S. Shin, and V. M. Zavala, “A graph-based model-
ing abstraction for optimization: concepts and implementation in
Plasmo.jl,” Math. Program. Comput., vol. 14, pp. 699–747, 2022.

[104] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear
programs,” Oper. Res., vol. 8, pp. 1–157, 1960.

[105] A. Allman and Q. Zhang, “Dynamic location of modular manufac-
turing facilities with relocation of individual modules,” Eur. J. Oper.
Res., vol. 286, pp. 494–507, 2020.

[106] J. Desrosiers, F. Soumis, and M. Desrochers, “Routing with time
windows by column generation,” Networks, vol. 14, pp. 545–565,
1984.

[107] G. Desaulniers, J. Desrosiers, and M. M. Solomon, “Accelerating

strategies in column generation methods for vehicle routing and crew
scheduling problems,” Ess. Surv. Math., pp. 309–324, 2002.

[108] A. Wang, A. Subramanyam, and C. E. Gounaris, “Robust vehicle
routing under uncertainty via branch-price-and-cut,” Optim. Eng.,
vol. 23, pp. 1895–1948, 2022.

[109] A. Klos and S. Gortz, “A branch-and-price algorithm for the capac-
itated facility location problem,” Eur. J. Oper. Res., vol. 179, pp.
1109–1125, 2007.

[110] K. J. Singh, A. B. Philpott, and R. K. Wood, “Dantzig-Wolfe
decomposition for solving multistage stochastic capacity-planning
problems,” Oper. Res., vol. 57, pp. 1271–1286, 2009.

[111] A. Flores-Quinoz, J. M. Pinto, and Q. Zhang, “A column generation
approach to multiscale capacity planning for power-intensive process
networks,” Optim. Eng., vol. 20, pp. 1001–1027, 2019.

[112] M. E. Lubbecke and J. Desrosiers, “Selected topics in column
generation,” Oper. Res., vol. 53, pp. 1007–1023, 2005.

[113] A. Allman and Q. Zhang, “Branch-and-price for a class of nonconvex
mixed-integer nonlinear programs,” J. Global Optim., vol. 81, pp.
861–880, 2021.

[114] J. Benders, “Partitioning procedures for solving mixed-variables
programming problems ‘,” Numer. Math., vol. 4, no. 1, pp. 238–252,
1962.

[115] I. Mitrai and P. Daoutidis, “A multicut generalized Benders decompo-
sition approach for the integration of process operations and dynamic
optimization for continuous systems,” Comput. Chem. Eng., vol. 164,
p. 107859, 2022.

[116] ——, “Efficient solution of enterprise-wide optimization problems
using nested stochastic blockmodeling,” Ind. Eng. Chem. Res.,
vol. 60, no. 40, pp. 14 476–14 494, 2021.

[117] A. M. Geoffrion, “Generalized Benders decomposition,” J. Optim.
Theor. Appl., vol. 10, pp. 237–260, 1972.

[118] N. Sahinidis and I. E. Grossmann, “Convergence properties of
generalized Benders decomposition,” Comput. Chem. Eng., vol. 15,
no. 7, pp. 481–491, 1991.

[119] M. J. Bagajewicz and V. Manousiouthakis, “On the generalized
benders decomposition,” Comput. Chem. Eng., vol. 15, no. 10, pp.
691–700, 1991.
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