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The method of Least Square Approximation is an important topic in some linear algebra classes. 
Despite this, little is known about how students come to understand it, particularly in a Realistic 
Mathematics Education setting. Here, we report on how students used literal symbols and 
equations when solving a least squares problem in a travel scenario, as well as their reflections 
on the least squares equation in an open-ended written question. We found students used 
unknowns and parameters in a variety of ways. We highlight how their use of dot product 
equations can be helpful towards supporting their understanding of the least squares equation. 
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Linear algebra courses frequently include the topic of least squares approximation. A central 
focus of the least squares problem is when the matrix equation 𝐴𝒙 = 𝒃 has no solution. When 
this occurs but some kind of solution is needed, one tries to “find an 𝒙 that makes 𝐴𝒙 as close as 
possible to 𝒃” (Lay et al., 2016, p. 362). This is consistent with a subspace orientation to the least 
squares problem (i.e., finding the best approximation in a subspace to a vector not in a subspace), 
which we leverage in our design research, as compared to a statistical interpretation. The set of 
least squares solutions to 𝐴𝒙 = 𝒃 are the vector(s) 𝒙 that are solution(s) to 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃. How
can we, as instructors, help students come to understand why that equation is relevant to solving 
the least squares problem? Or, how can we, as curriculum designers, engage students in the 
guided reinvention of that equation? In this paper we pursue the research question: How do 
students use literal symbols and equation types as they solve an experientially real least squares 
problem, and what reactions do they share about the least squares equation 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃?

The work presented in this paper is from a project (DUE-1915156/1914841/1914793) that 
aims to create research-based curricular materials for the guided reinvention of core concepts 
within an inquiry-oriented linear algebra class. This work is guided by making sense of student 
thinking and the complexity of mathematical ideas, which informs the refinement of the 
curricular materials. In pursuit of our research question, we examine written data from 13 
students and analyze the variety of ways they use literal symbols and equations when solving a 
least squares problem in an experientially real (Gravemeijer, 1999) task setting. We also analyze 
the students’ reactions to the least squares equation 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃. This analysis will inform a
future conceptual analysis of the mathematics as well as refinements to the task sequence.  

Theoretical Framing and Literature Review 
Our approach to design research is informed by what we refer to as the Design Research 

Spiral (Wawro et al., 2022), which is based on the design research cycle (e.g., Cobb et al., 2003), 
is composed of five phases, with revisions occurring between each phase based on ongoing 
analyses of student thinking and reflections on the mathematics. Within the first phase, the 
Design phase, our work is based in Freudenthal’s philosophy of mathematics as a human activity 
(1973) and the design principles that emerged from his work in Realistic Mathematics Education 
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(RME) (Gravemeijer, 2020; Gravemeijer & Terwel, 2000; Treffers, 1987). RME design 
principles include didactical phenomenology (the means for creating the task setting of the 
phenomena to be organized), emergent models (a process through which students can progress 
from a less formal understanding of the phenomena to a more mathematized organization of the 
phenomena), and guided reinvention (a mechanism by which students can reinvent mathematical 
ideas guided by the task structure and their interactions with the instructor and their peers).  

There is little literature on the teaching or learning of least squares approximation within the 
context of linear algebra. Turgut (2013) designed a lesson to teach least squares as a line of best 
fit using Mathematica. His lesson invited students to use commands in Mathematica to plot dots, 
form matrices from points, transpose a matrix, and take an inverse of a matrix in finding the best 
possible solution. A topic we view as related to the teaching and learning of least squares is dot 
product. Donevska-Todorova (2015) identified three definitions of the dot product within three 
modes of description (arithmetic, geometric, abstract-axiomatic) and created an applet to 
promote students’ geometric understanding of the dot product. Cooley et al. (2014) developed a 
module to teach dot product, focusing on the cosine definition. Their task included comparing 
frequency vectors and determining if an author wrote two different texts. Dray and Manogue 
(2006) found projection to be essential in understanding dot product. They claimed the geometric 
approach of the dot product benefits students in many applications of physics and engineering. 

As we examined students’ work on the question shown in Figure 2, we were struck by the 
variety of ways literal symbols and equations were used as students completed the problem. In 
undergraduate mathematics, literal symbols are used in many ways. It is important to understand 
students’ interpretation of literal symbols and how they are used when solving problems. For our 
analysis, we draw from Philipp (1992) and Drijvers (2003) for unpacking the nuance in literal 
symbol use. Drawing on works such as Keiran (1988), Küchemann (1978), and Usiskin (1988), 
Philipp uses literal symbol to describe the mathematical use of a letter; he provides seven literal 
symbol uses: labels, constants, unknowns, generalized numbers, varying quantities, parameters, 
and abstract symbols; most relevant to our work is unknown, varying quantity, and parameter. 
Philipp states that an “unknown involves the use of a literal symbol when the goal is to solve an 
equation” (p.558), such as in the role of x in 8x + 4 = 28. Philipp’s use of varying quantity is 
consistent with Knuth et al.’s (2005) definition of variable as “a literal symbol that represents, at 
once, a range of numbers” (p. 70), such as x and y in y = 3x + 5. Finally, Philipp describes 
parameters as generalized constants, such as m and b in the linear equation y = mx + b. 

Drijvers (2003) focused on design research related to the concept of parameter, which he sees 
as “an ‘extra variable’ in a formula or function that makes it represent a class of formulas, a 
family of functions and a sheaf of graphs” (p. 60). Drijvers delineates four roles that a parameter 
can assume: placeholder, changing quantity, generalizer, and unknown. First, a parameter as a 
placeholder plays the role of a constant value that does not change; whether known or unknown, 
its value is fixed, and filling in different known values relate to different situations rather than 
variations of the same situation. Second, a parameter as a changing quantity represents a 
numerical value that takes on a dynamic character of systematic variation. It runs smoothly 
through a reference set, affecting the complete, global situation set rather than a single situation 
(e.g., 𝑝 and 𝑞 in 𝑦 = (𝑥 − 𝑝)2 + 𝑞). Third, a parameter as a generalizer does not stand for a 
specific number but rather for an exemplary number or set of numbers. It facilitates seeing the 
general in the particular, formulating solutions at a general level, and solving concrete cases at 
once by means of a parametric general solution (e.g., 𝑡 in a parametric solution 𝑥 = 𝑡(1,2,3)). 
Fourth, the parameter as unknown facilitates “selecting particular cases from the general 
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representation on the basis of an extra condition or criterion. In such situations, the parameter 
acquires the role of unknown-to-be-found” (p. 69) (e.g., solve for 𝑡 for a specific 𝑥 in the above).  
Finally, these roles are not fixed and can change in the solution process.   
 

The Task Setting 
Our task sequence leverages the subspace-oriented version of the least squares problem (the 

best approximation to a vector not in a subspace is its orthogonal projection onto the subspace). 
We designed an experientially real task setting called Delivering Mail to Gauss, which is based 
on the Magic Carpet Ride sequence (Wawro, et al., 2012) in the Inquiry-Oriented Linear Algebra 
(IOLA) curriculum (Wawro et al., 2013). Even though it is a fantasy setting, we have found that 
students can immediately engage with the idea of different transportation modes, each traveling 
forward and backward in a single vector direction. The first Delivering Mail task asks students to 
use three specific travel vectors (the same vectors in Task 3 of the Magic Carpet Ride sequence) 
to travel to Gauss in ℝ3 so that they can deliver his mail. This differs from the Magic Carpet ride 
task in that Gauss is now in a location outside of the span of the travel vectors. Using previous 
knowledge, students determine Gauss cannot be reached and the travel vectors span a plane in 
R3. Students are then told their cousin has a drone they can use to deliver Gauss’s mail, on the 
condition that they get as close as they can to Gauss using the travel vectors before they use the 
drone. They then determine where to travel to, how to get there with the travel vectors, along 
what vector the drone would travel, and what distance the drone’s trip would be (Figure 1a).  

 

 
(a)                                                                                               (b) 

Figure 1. The setup of Task 3 and the class’s shared development of known relationships to help solve the task.  
 
There are many aspects of the problem to symbolize. Gauss’s location is denoted as 𝒃. The 

three travel vectors 𝒗1, 𝒗2, and 𝒗3 are in the first task statement, but once students realize the 
three span a plane, they work only with 𝒗1 and 𝒗2. The sequence is designed to foster students’ 
exploration of what location on the plane would be closest to Gauss, and students consistently 
suggest the location that creates a path orthogonal from the plane to Gauss (Lee et al., 2022). 
With an instructor’s suggestions for which literal symbols to choose, the class uses vector 𝒑 to 
denote where on the plane they should travel to and use the drone, e as the drone’s path to Gauss, 
and ||𝒆|| as the distance of the drone’s trip. The class symbolizes the relationship between these 
as 𝒑 + 𝒆 = 𝒃. To denote how to get to 𝒑 using the travel vectors, the scalars 𝑥1 and 𝑥2 are used 
to mean how much and in what direction to travel on 𝒗1 and 𝒗2 so that 𝑥1𝒗1 + 𝑥2𝒗2 = 𝒑, which 
can be written as a matrix equation 𝐴𝒙 = 𝒑 where 𝐴 is the matrix with columns 𝒗1 and 𝒗2 and 𝒙 
is the vector with components 𝑥1 and 𝑥2. Finally, the instructor leads the class in a derivation that 
the dot product of two orthogonal vectors is zero, which results in the class denoting 𝒗1ᐧ 𝒆 = 0, 
𝒗2ᐧ 𝒆 = 0, and 𝒑ᐧ 𝒆 = 0. All of these relationships are summarized in Figure 1b, which shows 
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one instructor’s written work that recorded the relationships during class. 
Students then use these known relationships to solve for 𝒑, 𝒙, 𝒆, and ||𝒆||. Students make 

progress in a variety of ways. If students combine 𝒗1ᐧ 𝒆 = 0 and 𝒗2ᐧ 𝒆 = 0 into a system of 
equations and write it as an augmented matrix, the instructor could notate the coefficient matrix 
as 𝐴𝑇  and leverage the student work towards the matrix equation 𝐴𝑇𝒆 = 𝟎. The final task 
prompts students to “Combine three of our main equations, 𝐴𝒙 = 𝒑, 𝒑 + 𝒆 = 𝒃, and 𝐴𝑇𝒆 = 𝟎, to 
come up with one general equation (symbols only, no specific numbers) that would help us 
determine 𝒙 for any 𝐴 and 𝒃. The only unknown in your general equation should be 𝒙 (i.e., no 𝒑 
or 𝒆).” Student work on this task allowed for the guided reinvention of the least squares equation 
𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 (abbreviated LSE), where 𝒙 is the least squares solution to 𝐴𝒙 = 𝒃.  

 
Methods 

The data for this paper come from in an in-person introductory linear algebra class at a large, 
public, research university in the Mid-Atlantic US. The course had 27 students, of which 13 both 
gave consent and completed the assignments analyzed in this paper. In the university system, 8 
of these students chose he/him/his pronouns (pseudonyms begin with “M”), 4 chose she/her/hers 
pronouns (pseudonyms begin with “W”), and 1 did not choose pronouns (pseudonym P1). Most 
were second-year students by credit hours and were general engineering majors. The prerequisite 
was a B or higher in Calculus I or a passing grade in Calculus II. The data analyzed in this paper 
come from student responses to two written reflections. After most class sessions, students were 
asked to complete a reflection by the end of the day and submit their work via an online learning 
management system. Students were asked to spend 5-10 minutes on a reflection, for which full 
credit was awarded based on effort rather than correctness. Reflection #1 (Figure 2) was given 
the day that the class completed their solutions to the Delivering Mail to Gauss tasks and the 
reinvention of 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 (the LSE). The purpose of this reflection was to learn more about 
how students were making sense of the various aspects of the least squares problem and what 
solution approaches they would use. Reflection #2 (Figure 3) was given the following day to 
learn more about how students were making sense of the least squares equation.  

 
Create your own example of two travel vectors in ℝ3 and a 
location for Gauss in ℝ3that you cannot reach with your 
travel vectors. Then solve for at least two of the following: 
the vector closest to Gauss that you can reach, how you 
would get there with the travel vectors, and the distance 
from that location to Gauss. Show your work and/or 
explain your thinking 

 We started Least Squares Approximation with the 
“delivering mail to Gauss” scenario, eventually 
deriving the equation 𝐴𝑇𝐴𝒙̂ = 𝐴𝑇𝒃 as a way to directly 
solve for 𝒙̂. We are really curious about your reaction to 
the equation. In 2-3 sentences, please share with us how 
you are making sense of it, your thoughts, or any 
questions you may have. 

Figure 2. Reflection prompt #1.  Figure 3. Reflection prompt #2. 
 
To analyze the data, we began by creating thick descriptions for student responses to 

Reflection Prompt #1. In doing so, we were struck by the variety of ways in which most students 
leveraged the known relationships from Figure 1 to reach a solution for the travel scenario that 
they created, rather than using the LSE formalized in class that day. In order to capture the 
nuance of students’ solution processes, we decided to focus on the diversity in their use of literal 
symbols and equation types. We studied the related literature and found Philipp’s (1992) 
characterization of literal symbols and Drijver’s (2003) characterization of parameter to be 
particularly appropriate; thus, we coded the data within their frameworks (summarized in the 
Theory section). We also studied the literature related to students’ use of various types of 
equations in linear algebra, and we found Zandieh and Andrews-Larson (2019) to be most 
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helpful. Their work, which is grounded in their prior research on three interpretations of 𝐴𝒙 = 𝒃 
(Larson & Zandieh, 2013), characterizes students’ symbolizing while solving linear systems. We 
coded the data in a way compatible with their approach, analyzing the various equations types 
(e.g., vector equation, matrix equation) students brought to bear in their solution process. For 
Reflection #2, we engaged in open coding to make sense of the variety of student responses. The 
first two authors independently coded all the data, conferred with each other to resolve any 
differences, discussed the data with the author team, and further refined as needed.  
 

Results 
Overall, in Reflection Prompt #1, we found that students use literal symbols as unknowns in 

three ways: as vectors, vector components, and scalars. We found that students used literal 
symbols as parameters in three ways: as placeholder, generalizer, and unknown. Students also 
leveraged six equation types in their problem solving: matrix equation, vector equation, system 
of linear equations, augmented matrix, dot product equation, and quadratic equation. Because of 
space, we focus on a vignette from one student. We chose M7 as a paradigmatic example 
because of the broad range of literal symbols and equation types that he used. A limitation of 
our data is that it is written data only; we cannot know how the students were thinking about the 
various symbols they wrote. Instead, we focus on how the literal symbols seemed to function in 
use; for this reason, our analysis makes claims such as “𝒆 and 𝒑 are unknowns” rather than “the 
student reasoned about 𝒆 and 𝒑 as unknowns.” To help the reader follow the analysis, we use 
italics for literal symbol use and underlining for equation type within the vignette. We do not 
label the equations that are of the type unknown = determined value, which communicate when a 
student completes a solution process for the unknown vector, component, parameter, or scalar. 
 
M7’s Work on Reflection Prompt #1  

At the top of his page (see Figure 4), M7 wrote the relationships 𝒆 ∙ 𝒑 = 0, 𝒆 ∙ 𝒗1 = 0, and 
𝒆 ∙ 𝒗2 = 0, which had been established in class (Figure 1). These three equations are dot product 
equations; within them are four literal symbols: 𝒆 and 𝒑 are unknown vectors, and vectors 𝒗1 and 
𝒗2 are each a parameter-as-placeholder. M7 shifts to a system of equations 𝑒1 + 2𝑒2 + 3𝑒3 = 0, 
𝑒1 + 𝑒2 + 𝑒3 = 0 created from the latter two dot product equations. This introduces three new 
literal symbols– 𝑒1, 𝑒2, and 𝑒3 –which are each unknown components. We note that 𝑒1, 𝑒2, and 
𝑒3 are the components of the 𝒆; to eventually solve for unknown vector 𝒆, M7 decomposed it 
into unknown components. M7 transitions to an augmented matrix equation, using it four times 
as he carries out row reduction. M7 expresses the solution resulting from the row reduction as a 
system of linear equations 𝑒1 = 𝑒3 and 𝑒2 = −2𝑒3, which again use 𝑒1, 𝑒2, and 𝑒3; in this 
instance, however, the three literal symbols are now used as varying quantities because the 
system expresses how they are related and change together. It seems that M7 next compacted this 

information into 𝒆 = [
𝑡

−2𝑡
𝑡

]. M7 did not explicitly write the “𝒆 =”, but he substituted the vector in 

for 𝒆 twice in his subsequent work. Thus, at this point in his work, M7 used the literal symbol 𝑡 
as a parameter-as-generalizer to represent all possible solutions for 𝒆.  

M7 then writes the vector equation 𝒃 − 𝒆 = 𝒑. Here, 𝒃 is a parameter-as-placeholder and 𝒑 
is still an unknown vector. However, we see a shift in 𝒆 from vector unknown to parameter-as- 
placeholder; this is evidenced by the subsequent vector equation in which M7 substitutes in 
component-wise versions of both 𝒃 and 𝒆, using the parameterized version of 𝒆, where again 𝑡 
functions as a parameter-as-generalizer. M7 then simplifies that vector equation into 𝒑 in terms 
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of 𝑡. Next, M7 next brings in the very first known relationship he had written, 𝒆 ∙ 𝒑 = 0, but now 
that dot product equation is written with component-wise expressions in terms of 𝑡 for both 𝒆 
and 𝒑. Thus, we see a shift in the role of 𝑡 to that of parameter-as-unknown. This use of 𝑡 
continues in M7’s simplification of the dot product equation into a quadratic equation in 𝑡; two 
additional quadratic equations are written as M7 simplifies in order to solve for 𝑡. This leads to 
M7’s solution 𝑡 = 0, ⅙, where 𝑡 as a literal symbol is a determined value (i.e., the values of 𝑡 
that make the equation true, determined through a solution process). Choosing ⅙ as an assigned 
value for 𝑡 (Alaee et al., 2002), M7 gets exact solutions for 𝒆 and 𝒑 via substitution. M7 boxes 
the 𝒑 vector and writes “closest vector we can reach.” M7 completes his work by using a vector 
equation to write 𝒑 as a linear combination of 𝒗1 and 𝒗2, with the literal symbols 𝑠 and 𝑡 as 
unknown scalars. Although M7 again uses 𝑡 as a literal symbol, we see no evidence that the two 
uses of 𝑡 were connected in any way. M7 transitions to a system of linear equations in 𝑠 and 𝑡 
and solves for the unknown scalars 𝑠 = −½ and 𝑡 = 4/3; M7 concludes by explaining how to 
use the travel vectors, presumably to reach 𝒑, which is consistent with his algebraic solution.  

 

 
Figure 4. Student M7’s written solution for Reflection 1.  

 
We emphasize that the first augmented matrix M7 wrote corresponds to the matrix equation 

𝐴𝑇𝒆 = 𝟎; he did not use the literal symbol 𝐴𝑇  to notate his work, and we have no evidence he 
recognized the coefficient matrix as 𝐴𝑇 . We point this out as an implicit use of 𝐴𝑇  that grows out 
of the student’s own problem-solving, which is important in terms of RME-inspired curriculum 
design and the class’s use and understanding of the least squares equation 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃.  

 
Student work on Reflection Prompt #2 

When asked about their sense-making, thoughts, or remaining questions they may have about 
𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 (Figure 3) after the following class, students shared a range of reactions about both 
individual parts of the equation and it as a whole.  

Reactions to individual parts of the equation were typically related to the interpretation of its 
components. Among these, the most common topic invoked by students was that of 𝐴𝑇 , both its 
properties and its function in the LSE. For example, W4 shared, “I’m wondering how 𝐴𝒙 = 𝒃 
and 𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 don't have the same solutions since it's just multiplication 𝐴𝑇  to both sides.” 
We note that W4 wrote x rather than 𝒙 in her LSE, helping us understand that the nuance 
between x and 𝒙 may not be straightforward for students. W7 wrote, “It may be because I’m still 
a little confused as to how transposing a matrix effects [sic] the original image, but I still don’t 
understand how it adds possible solutions to the equation.” We interpret the first part as W7 
trying to make sense of what 𝐴𝑇  means as a linear transformation, which we see as a valuable 
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curiosity. We interpret the second part as W7 grappling with how the two equations are related 
and what it means to be a solution, which seems related to W4’s response. We do have evidence 
that some students understood the utility of the transpose matrix; for example, M6 wrote "𝐴𝑇𝒆 
does the job of dot product each column of 𝐴 by 𝒆, that's why 𝐴𝑇𝒆 would yield the zero vector." 

Other students commented on the efficiency of the LSE or contextualized their understanding 
on how to use the LSE within the class’s work together. For example, M2 wrote “It condensed a 
mess of variables and diagrams into a single expression,” and M8 said “The formula is quite 
simple to use” (M8). It appears that some students’ comfort in using the equation related to their 
understanding of its derivation. For example, W5 wrote: “I would not know what to do with [the 
equation] if I didn't understand the derivation.” It is unclear what W5 means by “what to do,” 
possibly meaning use the equation to solve a least square problems or knowing what each literal 
symbols means in the context of least square problems. W6 wrote: “The equation makes sense to 
me based on how we derived it based on what we knew. However, I don’t really understand how 
it all works together/why it all works.” It is unclear what the distinction is for W6 between the 
LSE making sense and understanding why it works.  

 
Discussion 

The method of Least Squares is an important topic in linear algebra, although it is not always 
discussed in a first course possibly because of the background needed to understand all aspects 
involved in the SLE solution method. The first task in the least squares sequence, Getting Mail to 
Gauss, is straightforward enough to introduce in the first or second week of an introductory 
linear algebra course (such as after the second task of the Magic Carpet Ride IOLA sequence, 
Wawro et al., 2012). As explored in this paper and in our previous work (Lee et al., 2021), 
however, the solution process may bring to bear equation types and solution strategies learned 
across the entire introductory course. M7’s work above illustrates the range of equation types 
and literal symbol use that this student has knowledge of and can flexibly move between in 
reconstructing a successful solution method.  

One of the key features of the LSE is the presence of the matrix 𝐴𝑇 . The student work in this 
study (not all of which we could share in limited space) suggests some connections the students 
were making between the LSE and 𝐴𝑇 . While some students used 𝐴𝑇  immediately in Reflection 
#1, such as M8, others such as M7 derived it through their solution process without labeling with 
the literal symbol 𝐴𝑇 , such as M3, M7, and P1. The use of the array of numbers that experts 
think of as 𝐴𝑇  was not problematic for students such as M7 when using these as coefficients in a 
system of equations or within the related augmented matrix equation. Students in this class were 
familiar with converting between systems of equations (or augmented matrices) and matrix 
equations of the form 𝐴𝒙 = 𝒃. So, converting equations such as M7’s initial work into the 
expression 𝐴𝑇𝒆 = 𝟎 was not itself problematic for students; however, thinking of this array as a 
matrix that 𝐴, 𝐴𝒙, or 𝒃 can be multiplied by seemed to be something students wondered about. 
The questions some students such as W7 and W6 wondered about on Reflection #2 seemed to be 
about the meaning or role of 𝐴𝑇  when multiplied by the other expressions in the LSE. Given that 
students in an IOLA classroom tend to be familiar with reasoning about a matrix times a vector 
as a transformation of that vector (Andrews-Larson et al., 2017), these students may have 
wondered what transformation 𝐴𝑇  imparts on input vectors.  

Our future work involves further analyzing the nuances in student solution strategies and 
their conceptual understanding of the LSE, using this to make adjustments to the task sequence, 
and developing a conceptual analysis for the mathematics in least squares approximation. 
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