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ABSTRACT

Given the availability of abundant data, deep learning models have
been advanced and become ubiquitous in the past decade. In prac-
tice, due to many different reasons (e.g., privacy, usability, and
fidelity), individuals also want the trained deep models to forget
some specific data. Motivated by this, machine unlearning (also
known as selective data forgetting) has been intensively studied,
which aims at removing the influence that any particular training
sample had on the trained model during the unlearning process.
However, people usually employ machine unlearning methods as
trusted basic tools and rarely have any doubt about their reliability.
In fact, the increasingly critical role of machine unlearning makes
deep learning models susceptible to the risk of being maliciously
attacked. To well understand the performance of deep learning
models in malicious environments, we believe that it is critical
to study the robustness of deep learning models to malicious un-
learning attacks, which happen during the unlearning process. To
bridge this gap, in this paper, we first demonstrate that malicious
unlearning attacks pose immense threats to the security of deep
learning systems. Specifically, we present a broad class of malicious
unlearning attacks wherein maliciously crafted unlearning requests
trigger deep learning models to misbehave on target samples in a
highly controllable and predictable manner. In addition, to improve
the robustness of deep learning models, we also present a general
defense mechanism, which aims to identify and unlearn effective
malicious unlearning requests based on their gradient influence
on the unlearned models. Further, theoretical analyses are con-
ducted to analyze the proposed methods. Extensive experiments
on real-world datasets validate the vulnerabilities of deep learning
models to malicious unlearning attacks and the effectiveness of the
introduced defense mechanism.
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1 INTRODUCTION

Deep Neural Networks (DNNs) are powerful and efficient frame-
works for visual learning and have been extended to diversified
architectures. Patterns and features of big data can be learned au-
tomatically and efficiently through DNNS. In recent years, DNNs
have achieved state-of-the-art results on challenging real-world
problems such as image classification [64, 91], autonomous deriv-
ing [55, 79], natural language processing [17, 23], recommendation
[14, 89], cancer diagnosis and prognosis prediction [16, 46, 97].

In practice, individuals may choose to have their data completely
removed from the trained deep learning models due to many rea-
sons, such as privacy, usability, and fidelity [33, 59, 90]. Particularly,
recent regulations (e.g., the California Consumer Privacy Act [60]
and the former Right to be Forgotten [26]) now also compel organi-
zations to give individuals “the right to be forgotten”, i.e., the right
to have all or part of their data deleted from a well-built system
upon request. The most straightforward approach is to retrain the
model on all data except the requested unlearning data to be re-
moved, but this approach is in general impractical for deep learning
models since the entire training set is usually very large. In addition,
although retraining deep models in some cases is a feasible solution,
frequent data removal requests inevitably put enormous compu-
tational pressure on the infrastructures responsible for real-time
services. Hence, effectively eliminating the contributions of the
requested data while preserving model performance is a critical
and challenging research question.

In the literature, extensive research works [4, 6, 10, 57, 58, 67,
75, 85] have been proposed to allow individuals the possibility and
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flexibility to completely delete their data from a well-trained model,
which calls for a new paradigm, namely machine unlearning. Ex-
isting machine unlearning methods can be generally divided into
two categories: exact and approximate. Exact unlearning refers to
unlearning methods that can completely remove the data influence
from the model. The most representative exact unlearning method
is SISA [4, 10], which divides the training data into disjoint data
shards. During training, one constituent model is trained per shard.
If any given data sample has to be deleted, only the constituent
model associated with the shard containing this data sample has to
be changed. Approximate unlearning refers to unlearning methods
that try to approximate the model parameters that exact unlearn-
ing would yield without actually retraining the model. Existing
approximate unlearning methods usually adopt the gradient-based
update strategies to eliminate the influence of request samples on
the model [85]. For example, [85] first estimates changes of the
training data and then builds on closed-form updates of model
parameters for unlearning the requested data changes.

However, in practice, environment interactions expose deep
learning models to extra adversarial risks during the unlearning
process. In fact, during the unlearning process, a motivated attacker
could generate malicious unlearning requests to deteriorate the
performance of deep learning models on some specific tasks. These
malicious unlearning attacks pose a risk to the use of deep learning
in safety- and security-critical decisions. For example, the attacker
can make malicious unlearning requests to the owner of a well-
trained deep learning model for the classification of traffic signs
and cause the unlearned model to misclassify the Stop sign.

Despite the extensive studies for deep neural networks, there is
no existing work studying the possibility and feasibility of malicious
unlearning attacks against deep learning models, not to mention
the effective defense mechanisms to resist such malicious unlearn-
ing attacks. Existing works that study the security vulnerabilities
of deep neural networks to adversarial attacks and data poisoning
attacks only focus on the testing and training stages, and fail to un-
cover the failure mode of deep neural networks through malicious
unlearning attacks. The main challenge here is how to ensure the
stealthiness of the performed malicious unlearning attacks. Studies
of DNNs’ robustness have enabled advances in defending against
adversarial attacks and data poisoning attacks. However, existing
defenses [18, 42, 44, 51, 61, 71, 73, 77, 86] are often effective only
against a specific attacking type of traditional adversarial and poi-
soning attacks, drastically degrade the generalization performance,
or are computationally prohibitive for standard machine unlearn-
ing pipelines. For example, a straightforward defense seems to use
an ensemble of multiple deep learning models. However, such an
ensemble method is only effective against a specific attack targeting
a certain type of deep learning model. Additionally, one challenge
of adopting existing robust training methods [20, 38, 39, 81, 94, 100]
is the high computational cost due to the model retraining.

In order to address the above challenges, in this paper, we un-
dertake this pioneering study on the security vulnerabilities and
robustness of deep neural networks to malicious unlearning at-
tacks, which happen during the unlearning process. Specifically,
we first realize the effective malicious unlearning attacks against
deep neural networks. We formulate a generic unlearning attack
framework as a constrained optimization problem that maximizes
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the attacker’s utility while constraining the malicious unlearning
requests. We also extend the attack to different attacking settings
(e.g., the black-box setting). Second, to effectively defend against ma-
licious unlearning attacks, we present a general gradient influence
based defense mechanism to defend malicious unlearning requests.
For its realization, we iteratively find out the effective malicious un-
learning requests by using their gradient influence on the unlearned
models and unlearn the bad influence of these identified bad data
from the unlearned models. We further conduct theoretical anal-
yses for the proposed methods. Lastly, we empirically justify the
proposed malicious unlearning attacks and the gradient influence
based defense mechanism. Extensive experimental results validate
that existing deep learning models lack robustness to malicious
unlearning requests; we can significantly improve the robustness of
deep learning models by removing the bad influence of the effective
malicious unlearning requests from the unlearned models.

2 PRELIMINARY

Notations. Without loss of generability, we here consider a C-class
(C > 2) classification problem, where we are given a training dataset
D ={z; = (xi, yi)}fil with x; € R? as a natural example and y; €
[C] as its associated label. Let Fpy(x; 0*) denote a DNN classifier
with the corresponding model parameters 0* € ©, which assigns
a given input x to one of the predefined classes, i.e., Fp(x; 0%) =
¢ € [C]. Note that Fp(x; 0%) is trained over the given training
dataset 9. We use U to denote the unlearning method, which
takes the well-trained model Fgy (-; 0*), the training dataset 9, and
the unlearning data 9, as input, and returns an unlearned model
U(Fp, D, D,,) that is expected to be the same or similar as the
retrained model Fp\ p, . Importantly, the retrained model Fp\ p,,
is derived based on the remaining dataset (i.e., D\ Dy,,) instead of
the original training dataset .

Machine unlearning. Note that machine unlearning aims to
make models forget about some particular data. Upon a data re-
moval request, the current model will be processed by an unlearning
method to forget the corresponding information of that data inside
the model. The outcome is an unlearned model, which becomes
the new model for downstream prediction tasks. Next, we describe
some popular machine unlearning methods.

e SISA [3]. In SISA, the original training dataset 9 is ran-
domly partitioned into M disjoint shards (i.e., {Dm}%zl)
[10]. For the m-th shard, we can train a corresponding shard
model Fp, (-;6;,) by using Dy, where 6, € O are the
obtained model parameters. After that, the final prediction
results are obtained from the aggregation of the M submod-
els. Upon receiving an unlearning data, the model provider
only needs to retrain the corresponding shard model.

o The first-order based unlearning method [85]. This
method uses a first-order Taylor Series of model 6* to derive
the gradient updates. Here, we use Z = {ZP};P;:I c Dto

denote the set of targeted training data and Z = {zp };1::1 for
the corresponding unlearned versions, where Erp = (xp -
6p, yp) and 6p is the unlearning modification for Xp. Then,
this method unlearns the modifications by updating the

model parameters as 0% «— 0% — T(ZEPEZ Vi(zp; 6%) —
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Figure 1: Illustration of malicious unlearning attacks. The attacker aims to make malicious unlearning requests to the model
holder. After unlearning malicious modifications on the pre-trained DNN, the target image is successfully misclassified.

Zzp ez Vi(zp;0%)), where 0" denote the pre-trained model
parameters, 7 is a pre-defined unlearning rate, £ is a loss func-
tion (e.g., cross-entropy), and 6* is the unlearned model.

e The second-order based unlearning method [85]. This
method uses the inverse Hessian matrix of the second-order
partial derivatives to change the original model’s parame-
ters to obtain the unlearned model. The unlearned model
can be formulated as 0% «— 6* — Hg*l (Zépei Vi(zp; 07) -
ZzPEZ V(zp; 0%)), where H! is the inverse Hessian ma-
trix, £ is a loss function, and 6% is the unlearned model.

e The unrolling SGD unlearning method [74]. It expands a
sequence of stochastic gradient descent (SGD) updates with
a Taylor Series to formalize a single gradient unlearning
method. To reverse the effect of unlearning data provided in
the SGD training steps, this unlearning strategy adds back
the gradients of the unlearning data computed with respect
to the initial weights to the final model weights.

e The amnesiac unlearning method [28]. The amnesiac
unlearning method views model training as a series of pa-
rameter updates to the initial model parameters. If the data
owner is only concerned about the possible potential re-
moval of a subset of data, they need only keep the parameter
updates from batches containing that data.

3 MALICIOUS UNLEARNING ATTACKS

In this section, we first present the considered threat model. Then,
we design a general attack framework to find out the effective un-
learning attacking strategies to evaluate the robustness of deep
learning models. After that, we give more discussions on the pro-
posed malicious unlearning attacks.

3.1 Threat Model

In malicious unlearning attacks, we consider a threat model that
includes a model holder and an attacker (as shown in Figure 1).
The model holder owns a well-trained DNN model. The attacker
pretends to be the provider of some data used by the pre-trained
model and aims to make malicious unlearning requests to the model
holder to delete the information of his/her requested data from the
well-trained model such that the correspondingly unlearned model
produces misclassifications on inputs. We assume that the attacker

does not have the ability to modify the target samples during in-
ference. Here, we study both the white-box and black-box settings.
The white-box threat model [12, 27, 56, 63, 83] represents the most
powerful attacker that can appear in real-world settings and is of
great importance to fully study the attacker’s behaviors. In this
white-box setting, we assume the attacker has perfect knowledge
of the system, including the model structure and the parameters of
the pre-trained model, but the attacker’s capability to manipulate
is bounded in the Ly, norm sense. In the black-box setting, we as-
sume that the attacker does not have any prior knowledge about
the target pre-trained model, including the model architecture and
model parameters. The black-box setting produces a realistic threat
model in real-world applications.

3.2 Attack Formulation

Here, we study the robustness of DNNs by designing the unlearning
attack framework to explore the attacker’s capability to fool DNNs.

Unlike traditional adversarial attacks and poisoning attacks, our
proposed malicious unlearning attacks deceive the DNN model
by making malicious unlearning requests during the unlearning
process. As shown in Figure 1, the model holder owns a pre-trained
model, i.e., a classification model Fq (+; 0*) trained on dataset D.
The unlearning system represents an unlearning method U that
can be used to unlearn the information from this classification
model upon the data removal requests. The attacker’s goal is to
utilize the unlearning system to generate malicious unlearning
requests to attack the targeted testing samples {x; }le, forcing the
targeted testing sample x; (e.g., the bird image in Figure 1) to be
designated as the attack targeted label s (e.g., the dog label in Figure
1). Without loss of generality, we here consider a very realistic and
general setting where the attacker pretends to be a normal user
and makes malicious data modification requests on the targeted
training samples. In practice, the attacker can make a reasonable
request for malicious data modifications by using the excuse of
bad data quality issues (e.g., noises) or some privacy requirements,
so that the unlearned model will be fooled into misclassifying the
targeted testing samples during inference, thereby reaching the
attacker’s goal.

Let D = {(xp, yp)};}::l denote the set of targeted training sam-
ples. The attacker wants to make the corresponding malicious un-
learning modification (i.e., 8p) on each x, and replace the sample
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(xp, yp) with the unlearned version (x, = x; — 8p,yp) to update
the pre-trained model and derive an unlearned model. Note that the
attacker’s objective is to derive effective unlearning requests (i.e.,
the set of unlearning modifications ® = {8, W _,) to maliciously up-
date the pre-trained model and successfully misclassify the targeted
testing samples. In order to achieve this, based on the pre-trained
model and the targeted testing samples {xs}le, the attacker can

generate the malicious unlearning requests as follows

S
max > I[Fpp(xs:0“) = 5s)] (1)
(8p}p 51
s.t.Fp\p(:0Y) = U(Fp(+6%), D, {5;:}5:1)
Vp € [PL116plleo < €,

where Fp\g(+; 0*) is the unlearned model, and € is the maximal
magnitude of the requested data modifications. In the above, the un-
learning method U unlearns the modifications ® and produces an
unlearned model 6%, after which the output of the target sample xg
is incorrectly identified as the attack targeted label gs. By solving
the above optimization, the attacker can generate malicious un-
learning requests to maximize his/her attack goal, i.e., maximizing
the number of successful targeted testing samples attacks.

Note that the above attack framework can be easily generalized
to a scenario where the targeted training samples are completely
removed from the model during the unlearning process [85], which
means that the above malicious unlearning attacks can be easily
transformed to the whole data removal case. In such a case, the mo-
tivated attacker wholly removes a set of targeted training samples
instead of partially unlearning some data information (e.g., noises).
The above security vulnerability analysis will help us understand
how the attacker can generate malicious unlearning requests to
mislead the trained deep learning models to output incorrect pre-
dictions. Below, we discuss malicious unlearning attacks in the
second-order based unlearning setting.

3.3 Discussion

The black-box setting. For the malicious unlearning attacks pro-
posed above, we also consider the black-box setting. In such a
setting, the attacker can randomly select one or several deep neural
network architectures to substitute the pre-trained model and then
transfer the generated malicious unlearning data leveraging the
transferability property of neural networks [29, 37, 48, 84, 87, 96].
For example, we can easily train a random set of deep learning
models to substitute the pre-trained model in unlearning methods.
We are then able to generate malicious unlearning modifications
and transfer them to the target black-box model.

Malicious unlearning attacks in the second-order based
unlearning case. Note that we can perform malicious unlearn-
ing attacking by using existing machine unlearning methods. Due
to space limitations, we here take the second-order unlearning
method [85] as an example to show how to generate malicious un-
learning requests by following the above proposed general attack
framework in Eqn. (1). This unlearning strategy uses the inverse
Hessian matrix of the second-order partial derivatives to change
the original model’s parameters to obtain the unlearned model.
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Specifically, the second-order change A(Z, Z) is derived by com-
puting the gradient difference between Z and Z, ie., A(Z,Z) =
H;}(ZEPEZ V(zp; 0%) - Zz,,ez V¢(zp; 0%)). To achieve the at-

tack goal, the attacker here can manipulate the original model as

S
. F€ .Qu _ng - 0% —
{;‘1:;?:1 2, max(?;%f Z)\q)(xs,e ) 2)\<I>(xs’9 ), =B)
st 0% — 0 — Hyl( Z Vi(zp:6%) @)
z,€Z
= D, Vilzp:6")

zp€Z
Vp € [P, [16plleo < €,

where 0* denote the model parameters, £ is a loss function (e.g.,
cross-entropy loss), ® = {3, }11;1, and Fp\ o (+; 6%) is the logit out-
put of the unlearned model 6%. Note that the above adversarial loss
aims to misclassify the targeted testing sample x; to the attack tar-
geted label 7. The first constraint directly updates the pre-trained
model 0% by the inverse Hessian matrix H, ;*1 with the gradient
difference between Z and Z. The second constraint controls the
maximum manipulation of malicious unlearning modifications.

THEOREM 3.1. Let 0 and 0" denote the original and the unlearned
model, respectively. We use D to denote the dataset containing the
malicious unlearning modifications Z required for the unlearning
task. Assume that ||x;|| < 1 for all samples, the gradient VE(zp; 6%)
is &1 -Lipschitz with respect to z at 0%, and V*£(zp; 0*) is &-Lipschitz
with respect to 0. For the proposed malicious unlearning attacks in
the second-order update case, we can derive the following

g% §2d2 €2P2

IVE(D;6%) = Ve(D;0%)]|2 < g0,
[ Hg. I3

where H(;*1 is the inverse Hessian matrix for the original model 0, e
is the maximal magnitude of the requested data modifications, and d
denotes the feature dimension.

From the above theorem, we can see that the larger the magni-
tude of the requested malicious unlearning modifications, the less
robust the deep learning model is to malicious unlearning attacks.
To solve the proposed optimization problem in Eqn. (2), we use Hes-
sian Vector Product to approximate the inverse Hessian to reduce
the computational cost, which only requires calculating Ho instead
of storing H ™! for computing the expressions of H™ v, where v is a
vector and H is the Hessian matrix. Note that it is computationally
infeasible to compute the exact Hessian matrix and its inverse for
models with a very large number of model parameters [50, 52, 65].
In Algorithm 1, we provide the procedure to solve the optimization
problem of unlearning attacks in the second-order case. For sim-
plicity, we use (x5, §s; 0%) to denote the adversarial loss (defined
in Eqn. (2)) for sample xs.

4 A GENERAL GRADIENT INFLUENCE BASED
DEFENSIVE MECHANISM
In the above, we propose malicious unlearning attacking strategies

to demonstrate the vulnerabilities and weaknesses of deep learning
models during the unlearning process. This lack of robustness is
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Algorithm 1: Malicious unlearning attacks in the second-
order based data removal case

Input: Pre-trained model 6%, training dataset D, target
data {xs}le, attack targeted label g, targeted

training data points Z = {z, }1}::1,
Yy, modification bound €, optimization steps T

Output: Malicious modifications ® = {5, }‘5:1

modification rate

1 Randomly initialize unlearning modifications {8, }£=1

2 fort=1toT do

3 Compute corrected data Z « {(xp = 8p yp)}g:1

4 Update the unlearned model 6% with A(Z, Z) and the
inverse Hessian matrix in Eqn. (2)

5 Compute the adversarial loss ¥ «— Zle VY (xs, §s; O%)

6 | Update {(sp}fj:1 — {csp}fj:1 -1V, }5:1\1/

7 Project {5, }5:1 onto € bound

problematic in real-world applications where maliciously manipu-
lated predictions could impair safety and trustworthiness. However,
existing unlearning methods fail to provide robustness guarantees
for the unlearning system. As aforementioned, existing defenses
[18, 42, 44, 51, 61, 71, 73, 77, 86] are often effective only against a
specific attacking type of traditional attacks, or are computationally
prohibitive for standard machine unlearning pipelines. For example,
existing robust training methods [32, 34, 39, 47, 82, 94] are limited
by the high computation complexity due to model retraining.

To address the above challenges, we here develop a general
gradient influence based defensive method to improve the robust-
ness of deep learning models against malicious unlearning attacks.
Note that for a targeted attack to be successful, the target x5 needs
to be misclassified as the adversarial class §s. To this end, the
corrected samples need to pull the representation of the target
sample toward the adversarial class. This means that after fulfill-
ing the unlearning requests, the corresponding corrected samples
need to mimic the gradient of the adversarially labeled target, i.e.,
Ve((xs, gs); O%) ~ @ Ypep VE((Xp = xp — 8p,yp); 0%), where
¢ is the training loss (e.g., cross-entropy) for training classifier F,
Dy = {(xp, yp)}f;:l is the set of targeted training samples and 6“
denotes the unlearned model. Therefore, instead of directly reject-
ing unlearning requests, we drop the corrected malicious samples
that have a different gradient compared to other instances in their
class. In order to find the corrected malicious samples, we can find
the medoids of each class in the gradient space [1, 25, 31, 49, 92].
Note that for class ¢ € [C], its corresponding medoids are the most
centrally located samples of a dataset, which minimize the sum of
dissimilarity between every sample to its nearest medoid. Let v, de-
note the number of medoids for class c. We use Q¢ to denote the set

of v.-medoids to be optimized. Let D = {zi = (xi,yi)}lg | denote
the set of new training samples having the class label of c. Note
that these new training samples are derived by implementing the
requested unlearning modifications. We introduce a binary variable
i which are 1 if sample x; € D° is a medoid, 0 otherwise; and the
variables Z;; which takes 1 if sample x; is assigned to medoid x;, i.e.,
x; is the most similar medoid to data sample x;. We also introduce
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a set of sample indexes y~(j) = {j € [|@C|]|zi,zj € Di# Jt
The set of v.-medoids can be obtained by solving the following
formulated optimization problem

min > D(VE((xi,y1); 0%), VE((x),4); 6)) + B

QCCD zi,ZijC
s.t., Z Eij+{i=1, ®3)
iex=(j)
Eij <8
|D°|

Z gi = Uc,
i=1

where {; € {0,1}, E;; € {0,1}, and D calculates the Euclidean
distance between V£((x;, y;); 0%) and V£((xj,y;); 0%). The objec-
tive stated above aims to minimize the dissimilarities between data
samples and their closest medoids. The first constraint ensures that
a sample is either a medoid itself or assigned to a medoid. The
second constraint enforces that each sample is assigned to exactly
one medoid. The third constraint in the above imposes that the
number of medoids must be equal to v,.

After finding the medoids for each class, we can identify the
potential effective unlearned samples and then use existing un-
learning techniques to unlearn the isolated medoids to effectively
defend malicious unlearning attacks. With such robustness guaran-
tees of the unlearning system, we do not need to worry about an
attacker with clever algorithms for choosing malicious unlearning
requests. However, directly solving the above optimization is NP-
hard [5, 45, 78]. In order to optimize it, we employ a randomized
algorithm inspired by multi-arm bandits [9, 70]. This technique
helps reduce the time complexity while ensuring the same results
with high probability. To solve the optimization problem described
above, we begin by iteratively selecting samples that minimize the
given loss function to obtain an initial set of v, medoids in a greedy
manner. The first sample added in this manner is the medoid of all
(2% samples. For a given set of ¢ medoids Qfl ={z1,--+, 24}, the
next sample to be added is determined by solving the following loss

|D°|
min " min((D(Ve((x,y);: 0*), Ve((x7. ;) 6“))
zeD\Qg j=1

- ereuél D(Ve((x',y');: 0), Ve((x5,y5);6))),0),  (4)

where z = (x,y) and 2’ = (x/,y’). Then, we identify the medoid-
nonmedoid pair that yields the greatest reduction in loss among
all possible ve (| D°| - v.) pairs. Let Qy, represent the current set
of v, medoids. To determine the best medoid-nonmedoid pair for
swapping, we solve the following optimization problem
|D°)
min > min((D(Ve((x% y%); 04), Ve((xj, (5)
(2,2%) € Q5. X (D\Q5,.) =1
g:0") —  min | D(VE(,y');0%), VE((x;.4,): 6%)),0),
z’'eQp. \{z'}
where v; denotes the number of medoids for class c. To optimize the
search for effective medoid-nonmedoid pairs, we continue swap-
ping until no further improvements can be achieved. The optimiza-
tion problems described in Eqn. (4) and (5) can be formulated as
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Figure 3: Attack success rate of malicious unlearning attacks via the approximate removal methods.

a best-arm identification problem, drawing inspiration from the
multi-armed bandits literature [2, 9, 70, 76]. In a typical best-arm
identification problem, we have a set of arms, and the objective is
to identify the arm with the highest expected reward while mini-
mizing the total number of arm pulls. Specifically, in Eqn. (4), each
potential medoid is treated as an arm in the best-arm identification
problem. The arm parameter corresponds to the associated distance
value, and pulling an arm corresponds to calculating the loss for
a randomly selected sample. Similarly, in Eqn. (5), each medoid-
nonmedoid pair corresponds to an arm. Note that after finding
out the potential effective samples based on the above proposed
method, we then unlearn these identified samples by using existing
machine unlearning techniques [28, 74, 85].

5 EXPERIMENTS

We conduct experiments on real-world datasets to evaluate the
performance of the proposed mechanisms. The experimental setup
is first described in Section 5.1. Then we show the experimental
results for our proposed malicious unlearning attacks and the black-
box setting in Section 5.2 and Section 5.3, respectively. Next, in
Section 5.4, we evaluate the defense performance. Lastly, we present
the experimental results for the ablation study in Section 5.5.

5.1 Experimental Setup

Datasets and network architectures. In experiments, we eval-
uate our methods on the following datasets: CIFAR-10 [41], Tiny
ImageNet [19], and Dogfish [40]. The CIFAR-10 dataset contains
50,000 training images and 10,000 test images for 10 classes. Each
image has a resolution of 3 X 32 X 32. The Tiny ImageNet dataset
contains 100,000 training images, 10,000 validation images, and
10,000 test images for a total of 200 classes. Each image has dimen-
sions of 3 X 64 X 64. The Dogfish dataset contains 1,800 training
images and 600 test images. Each image is represented by a 2,048-
dimensional vector. In experiments, we use various neural network
architectures, including ResNet-18 [30], VGG-16 [68], MobileNetV2

[66], a 6-layer ConvNet with batch normalization [24, 36], and a
2-layer fully connected neural network.

Parameter settings. In experiments, we adopt the following
popular unlearning methods: SISA [3], the first-order based un-
learning method [85], the unrolling SGD unlearning method [74],
the amnesiac unlearning method [28], and the second-order based
unlearning method [85]. For SISA, we train the submodel for 200
epochs with a learning rate of 0.01 and a batch size of 125 in each
data shard. Then, we perform 60 optimization steps with an initial
modification rate of 200 (decayed by 10X every 20 steps) in the
selected data shards for unlearning attacks. During the defense
stage, we train the model for the same 200 epochs and use a subset
of 40% of medoids. For other adopted unlearning methods (i.e., first-
order, unrolling SGD, amnesiac unlearning, and second-order), we
pre-train the models for 20 epochs with a learning rate of 0.01 and a
batch size of 128. Then, we perform 180 optimization steps with an
initial modification rate of 200 (decayed by 10X every 60 steps) for
unlearning attacks. In the first-order method, we set the unlearning
rate to 0.00002. In the unrolling SGD method, we use a learning
rate of 0.00015 and perform a fine-tuning epoch of 1 (representing
the number of copies of the gradient performed in the SGD steps).
In the amnesiac unlearning method, we initialize a learning rate of
0.0001 and perform a fine-tuning epoch of 1 to regain performance.
For each adopted approximate unlearning method in the defense
stage, we use a subset of 40% of medoids. In all the aforementioned
methods, we choose a small modification bound of 8/255 for the
malicious modifications, unless otherwise specified.

Baseline. Since there is no existing work studying the vulnera-
bilities of DNNs to malicious unlearning attacks, in experiments,
we adopt the RandUn baseline, where we craft the unlearning mod-
ifications by using uniform random noises.

5.2 Malicious Unlearning Attacks

We start with evaluating the performance of the proposed mali-
cious unlearning attacks via various unlearning methods, including
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the exact unlearning method (SISA) and the approximate unlearn-
ing methods (first-order, unrolling SGD, and amnesiac unlearning).
For each method, we compare our proposed malicious unlearning
attacks with the baseline in terms of attack success rate which is de-
fined as the number of successful attacks achieved among all attack
attempts. We use 5 sets of targeted testing samples corresponding
to the first 5 image IDs from the test set and aggregate their results.
Different proportions of unlearning requests (i.e., the targeted train-
ing samples to generate malicious modifications) are involved in
the evaluation and are randomly selected from the training set.

First, we conduct experiments to investigate the performance of
unlearning attacks in the exact setting (via SISA). In Figure 2, we
adopt the CIFAR-10 dataset with 40% training size and divide it into
5 disjoint data shards. Each data shard is trained with the ConvNet
model. We then randomly select 3 out of 5 shards (M=3), 4 out of 5
shards (M=4), and all shards (M=5) to attack, respectively. Here, we
focus on the target class of the bird and the attack targeted label of
the dog. As shown in the figure, our proposed unlearning attacks
achieve significant attack success rates compared to the RandUn
baseline on different numbers of attacked shards. Random noises
work poorly on attacking models during the unlearning process,
reflecting the challenge of conducting targeted unlearning attacks
in the exact setting. In the majority vote aggregation setting, our
mission is to successfully attack more shards to obtain more tar-
geted misclassifications. In our approach, we can find that even
attacking 3 shards, which is on the margin of voting, we can still
remarkably achieve an attack success rate of 75% when unlearning
modifications on targeted training samples of 6% and as high as
97.5% attack success rate when unlearning modifications on tar-
geted training samples of 10%. When attacking all 5 shards, we can
easily hit an attack success rate of 72% with 4% unlearning requests
and an attack success rate of 100% with 8% unlearning requests. All
in all, the results show that our unlearning attacks have an efficient
attack performance of unlearning malicious modifications in the
exact setting with the SISA method.

4 |‘ Trail-1
| ~—— Trial-2
3 “ —— Trial-3
°2
-l
Y Ay
0 \'(\}\](/,)A v /VM\N%%A\
0 10 20 30 40 50 60

Optimization steps
Figure 4: Convergence of the optimization for malicious un-
learning attacks in the exact setting.

Next, we show the derived experimental results of unlearning
attacks in the approximate settings (via the first-order unlearning
method, the unrolling SGD unlearning method, and the amnesiac
unlearning method). In Figure 3, we pre-train the ResNet-18 model
on the CIFAR-10 dataset and then target different percentages of
unlearning requests, from 2% to 10%, to attack the target images of
birds to be predicted as dogs. As shown in the figure, the RandUn
baseline, which utilizes random noises as unlearning modifications,
has almost no effect on attacks using the first-order unlearning
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method or the unrolling SGD unlearning method. It has some ef-
fect on attacks using the amnesiac unlearning method, but the
success rate is still very low, with only a 36.5% attack success rate
for 10% unlearning requests. In contrast, our proposed unlearning
attacks demonstrate high confidence in achieving successful attacks
through various unlearning methods. For example, when unlearn-
ing malicious modifications on targeted training samples of 6%,
our approach hits about 76% attack success rate via the first-order
unlearning method, 79% attack success rate via the unrolling SGD
unlearning method, and 87% attack success rate via the amnesiac
unlearning method. From these derived experimental results, we
can find that our optimization framework is applicable and effec-
tive for malicious unlearning attacks in approximate settings with
the first-order unlearning method, the unrolling SGD unlearning
method, and the amnesiac unlearning method.

Then, we evaluate the convergence of the optimization process in
our proposed malicious unlearning attacks to show how it benefits
the attack success rate in the experiments. In Figure 4, we report
the evolution of the objective value of a particular data shard in the
exact setting (via SISA) with respect to the number of optimization
steps. We perform the experiment three times, each time randomly
selecting the targeted training samples from the same data shard.
From this figure, we can observe that the adversarial loss, which
is the objective to be minimized, rapidly decreases up to step 15
and converges around 0. This adversarial loss has the property that
when it is less than 0, the targeted testing sample is successfully
misclassified as the attack targeted label. Therefore, this objective
can contribute to the attack success rate in the optimization stage.

Further, we extend our proposed malicious unlearning attacks to
the untargeted setting, where the attacker aims to mislead the model
to predict any of the wrong labels for targeted testing examples.
We here take the malicious unlearning attacks via the first-order
unlearning method as an example, and report the corresponding
experimental results in Figure 5. Here, we perform the untargeted
unlearning attacks on the dog class in the CIFAR-10 dataset and
compare the attack success rates with the RandUn baseline. As
shown in the figure, our proposed malicious unlearning attacks
also achieve impressive performance in the untargeted setting.

100% - - o =
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T 80%
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8 I
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@
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< 40%
E

20%

2% 1% 6% 8% 10%

Percentage of unlearning requests
Figure 5: Attack success rate of malicious unlearning attacks
in the untargeted setting,.

5.3 Black-box Setting

In this section, we conduct experiments to explore the malicious
unlearning attacks in the black-box setting. In Figure 6, we apply
three different network architectures (i.e., ResNet-18, VGG-16, and
MobileNetV2) on the CIFAR-10 dataset with targeted training sam-
ples of 8%. The horizontal line represents the pre-trained black-box
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Table 1: Attack success rate and test accuracy of the proposed defense mechanism against malicious unlearning attacks.

Removal method

Percentage of
unlearning requests

Undefended

Defended

Attack success rate T

Test accuracy T

Attack success rate | Test accuracy T

62.89% + 0.29%
62.37% + 0.28%
62.37% + 0.32%
61.19% + 0.32%

0.00% * 0.00%
5.00% % 3.49%
5.00% * 3.49%
2.50% + 2.50%

74.17% = 0.27%
73.20% + 0.34%
73.19% + 0.22%
71.09% + 0.25%

88.60% + 0.20%
88.32% + 0.15%
77.16% £ 0.65%
79.09% + 0.55%

0.00% *+ 0.00%
0.00% %+ 0.00%
0.00% + 0.00%
0.00% + 0.00%

82.73% + 0.83%
82.35% + 0.82%
81.52% + 0.84%
80.50% + 0.67%

4% 52.50% + 8.00%

6% 75.00% + 6.93%

SISA 8% 87.50% + 5.30%
10% 97.50% + 2.50%

4% 65.00% + 7.64%

Firet-order 6% 77.50% + 6.69%
8% 97.50% + 2.50%

10% 100.00% + 0.00%

4% 62.50% + 7.75%

‘ 6% 85.00% + 5.72%
Unrolling SGD 8% 97.50% + 2.50%
10% 100.00% + 0.00%

88.69% + 0.20%
88.67% + 0.20%
76.87% + 0.49%
74.91% + 0.60%

0.00% % 0.00%
2.50% %+ 2.50%
2.50% * 2.50%
0.00% % 0.00%

83.25% + 0.70%
82.71% + 0.76%
82.68% + 0.81%
82.62% + 0.79%

network, and the vertical line represents the surrogate unlearning
network used to attack the black-box network. As shown in the
figure, the unlearning attacks demonstrate the ability to transfer
the generated malicious modifications to attack the black-box net-
work, even though the black-box network is trained with a different
network architecture than the surrogate network. For example, the
surrogate network of ResNet-18 achieves an attack success rate of
89% to attack the black-box network of MobileNetV2. Note that
the malicious unlearning modifications generated on MobileNetV2
do not work as well on other networks. One explanation is that
MobileNetV2 is not trained as well as others in our experimental
settings, which may make the generated malicious modifications
less confident to attack a relatively robust network.

Attack success rate (%)

o 90
56 ResNet-18 -

H 80
2

o -16 | 71 93 70
3

g

E 60
[75]

ResNet-18 VGG-16 MobileNetV2
Black-box network

Figure 6: Attack success rate of malicious unlearning attacks
in the black-box setting.

5.4 Gradient Influence based Defense

In this section, we evaluate the effectiveness of our proposed de-
fense method against malicious unlearning attacks during the un-
learning process. We employ the same setup as in the experiments
on malicious unlearning attacks, and we compare the attack success
rate and test accuracy before and after the defense.

Table 1 shows the results of defending against malicious un-
learning attacks in the exact setting (via SISA) and the approximate
settings (via the first-order unlearning method and the unrolling
SGD unlearning method). In SISA, we adopt the same partition with
the malicious unlearning modifications generated from unlearning
attacks and defend against 3 attacked shards among the partitioned

5 disjoint data shards on the CIFAR-10 dataset. As shown in the
table, the undefended unlearned model achieves high attack suc-
cess rates for various percentages of unlearning requests. However,
when applying our proposed defense method to each attacked shard
using different percentages of unlearning requests, the attack suc-
cess rate of the defended unlearned model is significantly reduced
below 5%. Especially with 4% unlearning requests, the attacked un-
learned model can be completely defended (0% attack success rate).
In first-order and unrolling SGD unlearning methods, we defend
against the malicious unlearning requests generated on the Dogfish
dataset with a 2-layer fully connected neural network. Here, we
set the unlearning rate to 0.02 for first-order and the learning rate
to 0.02 for unrolling SGD, and we use a subset of 20% of medoids.
As we can see, unlearning attacks using both approximate meth-
ods before the defense can achieve remarkable attack success rates
for various percentages of unlearning requests. However, when
our proposed defense method is adopted, the attack success rates
decrease significantly. Specifically, the defended unlearned model
achieves attack success rates of 0% via the first-order unlearning
method and attack success rates below 2.5% via the unrolling SGD
unlearning method for different percentages of unlearning requests.
In addition, our proposed defense method can retain the test accu-
racy after defense and even showcases minor improvements. Based
on these reported comparative results, it is evident that our pro-
posed defense method successfully decreases the attack success
rates of malicious unlearning attacks in both the exact setting and
the approximate settings by a large margin, thereby enhancing the
robustness of the unlearning system.

5.5 Ablation Study

Here, we conduct an ablation study to analyze the impact of the
modification bound on the proposed malicious unlearning attacks.
In experiments, we compare the modification bound from e = 4/255
to € = 32/255 for unlearning attacks via the first-order based un-
learning method, the second-order based unlearning method, and
the unrolling SGD unlearning method. We pre-train ResNet-18 on
the CIFAR-10 dataset and unlearn the malicious modifications on
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targeted training samples of 4%. As Figure 7 shows, for each un-
learning method, the attack success rate increases as the maximal
magnitude of requested unlearning modifications increases. The
results are consistent with the theoretical analysis results (See The-
orem 3.1) and the observation that deep learning models become
less robust to malicious unlearning attacks when larger magnitudes
of unlearning modifications are conducted.

100%
80%

60%

First-order
—— Second-order
—— Unrolling-SGD

40%

Attack success rate

20%
°4/255 8/255 12/255 16/255 32/255

Modification bound &

Figure 7: Impact of the modification bound € on malicious
unlearning attacks.

In addition, we test with our proposed malicious unlearning
attacks and the gradient influence based defense method on the
Tiny ImageNet dataset. We select the first 50 classes of the Tiny
ImageNet dataset and pre-train with the VGG-16 model. In experi-
ments, we randomly sample the target class, the adversarial class,
and the target image. We then perform malicious unlearning at-
tacks via the first-order unlearning method, incorporating targeted
training samples of 4%, 6%, and 8%, with a modification bound of
16/255. Table 2 shows the derived experimental results of the unde-
fended and defended models against malicious unlearning attacks.
As shown in the table, our proposed malicious unlearning attacks
can achieve an attack success rate of 62.5% with 8% unlearning
requests. However, after applying the defenses, the attack success
rate of the unlearned model drops below 5% in all cases presented
in the table and reaches 0% with 4% unlearning requests.

Table 2: Malicious unlearning attacks and the defending on
the Tiny ImageNet dataset.

Percentage of Attack success rate

unlearning requests

Undefended T Defended |
4% 53.85% +9.97% 0.00% % 0.00%
6% 56.25% + 8.91% 5.00% % 3.49%
8% 62.50% + 8.70% 2.50% % 2.50%

6 RELATED WORK

Currently, there are two broad and important areas of security
attack: adversarial attacks [12, 15, 35, 69, 72, 88, 98, 99] and data
poisoning attacks [11, 21, 22, 43, 53, 54, 93]. In adversarial attacks
that happen at the test stage, the attacker aims to add deliberately
designed tiny perturbations to benign test examples such that the
perturbed samples are misclassified by a model with high confi-
dence. In data poisoning attacks that happen at the training stage,
the attacker tries to manipulate the training data in order to corrupt
the trained model. The attack model for the two security attack
classes can be generally specified as either black-box, or white-box.
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In a black-box threat model, the attacker has no access to the trained
model [15]. White-box attacks refer to the case when the attacker
has complete knowledge about a target model, which can facilitate
the tasks of crafting adversarial examples and poisoning training
samples [21]. However, all of these mentioned works fail to address
the security vulnerabilities of deep learning models during the un-
learning process. Different from traditional adversarial attacks and
data poisoning attacks, the proposed malicious unlearning attacks
directly manipulate the pre-trained models during the unlearning
process and aim to generate malicious unlearning requests to fool
the unlearned models into making wrong predictions.

The paradigm of machine unlearning [3, 7, 8, 13, 62, 80] has at-
tracted much attention recently. It has emerged from “the right to be
forgotten” [26, 59, 60], where individuals should be entitled to the
right to have their data removed from public directories. A line of
works focus on post-processing the trained model [28, 57, 74, 85, 95]
so that the results of the unlearned model are statistically (almost)
indistinguishable from those of the retrained model. Another one
is to find new training algorithms to reduce the retraining cost.
For example, [3] proposes to split the entire training dataset into
several shards and train a separate sub-model for each shard. The
unlearning process can be achieved simply by only retraining these
involved shard sub-models (that contain the requested unlearning
samples) to reduce the overhead of computational resources and
memory storage. However, all existing works on machine unlearn-
ing fail to study the vulnerabilities and robustness of deep learning
models to malicious unlearning attacks, which generate malicious
unlearning requests during the unlearning process.

7 CONCLUSION

In this paper, for the first time, we systematically study the secu-
rity vulnerabilities and robustness of deep learning to malicious
unlearning attacks, where the attacker wants to generate malicious
unlearning requests during the unlearning process. Specifically,
we first propose a novel generic unlearning attacking framework,
which reveals that current deep learning models are vulnerable
to malicious unlearning attacks. We also explore various unlearn-
ing attacking settings. In addition, to counteract these unlearning
risks, we also present a general gradient influence based defense
mechanism. We also conduct theoretical analyses of the proposed
methods. The extensive experimental results on real-world datasets
not only show that existing deep learning models are vulnerable
to malicious unlearning attacks, but also demonstrate that the de-
fense mechanism can substantially enhance the robustness of deep
learning models to malicious unlearning attacks. We believe that
our work makes people aware of potential risks when they apply
machine unlearning methods to critical applications.
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