
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Proceedings of the

32nd USENIX Security Symposium

is sponsored by USENIX.

TRIDENT: Towards Detecting and Mitigating
Web-based Social Engineering Attacks

Zheng Yang, Joey Allen, and Matthew Landen, Georgia Institute of Technology;

Roberto Perdisci, Georgia Tech and University of Georgia;

Wenke Lee, Georgia Institute of Technology

https://www.usenix.org/conference/usenixsecurity23/presentation/yang-zheng

TRIDENT: Towards Detecting and Mitigating

Web-based Social Engineering Attacks

Zheng Yang†, Joey Allen†, Matthew Landen†, Roberto Perdisci†‡, Wenke Lee†

†Georgia Institute of Technology ‡University of Georgia

Abstract
As the weakest link in cybersecurity, humans have become

the main target of attackers who take advantage of sophisti-

cated web-based social engineering techniques. These attack-

ers leverage low-tier ad networks to inject social engineer-

ing components onto web pages to lure users into websites

that the attackers control for further exploitation. Most of

these exploitations are Web-based Social Engineering Attacks

(WSEAs), such as reward and lottery scams. Although re-

searchers have proposed systems and tools to detect some

WSEAs, these approaches are very tailored to specific scam

techniques (i.e., tech support scams, survey scams) only. They

were not designed to be effective against a broad set of attack

techniques. With the ever-increasing diversity and sophistica-

tion of WSEAs that any user can encounter, there is an urgent

need for new and more effective in-browser systems that can

accurately detect generic WSEAs.

To address this need, we propose TRIDENT, a novel de-

fense system that aims to detect and block generic WSEAs in

real-time. TRIDENT stops WSEAs by detecting Social Engi-

neering Ads (SE-ads), the entry point of general web social

engineering attacks distributed by low-tier ad networks at

scale. Our extensive evaluation shows that TRIDENT can de-

tect SE-ads with an accuracy of 92.63% and a false positive

rate of 2.57% and is robust against evasion attempts. We also

evaluated TRIDENT against the state-of-the-art ad-blocking

tools. The results show that TRIDENT outperforms these tools

with a 10% increase in accuracy. Additionally, TRIDENT only

incurs 2.13% runtime overhead as a median rate, which is

small enough to deploy in production.

1 Introduction

Social Engineering (SE) has become an ever more sophisti-

cated and common attack method [1]. Recent surveys report

that 84% of hackers leverage Web-based Social Engineer-

ing Attacks (WSEAs) in the cyber kill chain with a high

success rate [2–4]. Moreover, 64% of companies have ex-

perienced web-based attacks, and 62% have seen phishing

and WSEAs [5]. Attackers also target regular Internet users.

The Federal Trade Commission received 2.8 million fraud

reports in 2021 in the United States, which led to a $5.8 bil-

lion financial loss [6]. The top 3 fraud categories – impostor

scams (e.g., tech support scams), online shopping scams, and

reward and prize scams (e.g., survey scams) – are commonly

seen on the Internet [7–10]. These scams account for $2.3

billion of losses, almost doubling from 2020.

Researchers have studied countermeasures to mitigate the

impact of WSEAs. For example, Miramirkhani et al. analyzed

tech support scams [7]; Kharraz et al. built Surveylance [8],

which is specifically designed to detect survey scams; and

Invernizzi et al. developed EVILSEED [11], a crawler that

searches the Internet to identify risky websites that install

unwanted software. However, these previous works only focus

on specific SE attack vectors. Because of the diversity of

WSEAs that users can encounter [1], there is an urgent need

for new and more effective in-browser defense systems that

can accurately detect generic WSEAs.

This paper proposes a new defense system that aims to

detect and block generic WSEAs in real-time while the user

is browsing the web. The main challenge we face is that

directly detecting malicious web pages related to WSEAs

is extremely difficult due to the large variety of SE tactics

attackers can employ and the freedom they have in building

malicious content. Therefore, in this work, we investigate how

to indirectly detect and block WSEAs at their inception before

the user interacts with the related scam content.

Recent works have shown that users often reach Social

Engineering Websites (SE-websites) by interacting with ma-

licious ads [7–9, 12–16]. More specifically, attackers are in-

clined to leverage low-tier ad networks to inject ads into many

different publisher websites at scale and use these ads to lure

users to their SE-websites so that various attacks such as lot-

tery scams, reward scams, tech support scams, etc., can be

launched. Importantly, these low-tier ad networks often do

not inject traditional ads onto the page. Instead, they inject

DOM elements into ad-publishing web pages and leverage

different social engineering tricks to lure users into clicking

USENIX Association 32nd USENIX Security Symposium 6701

Figure 5: WAHG based on step 3 in the motivating example.

websites that host SE attacks. TRIDENT achieves this by

leveraging the design illustrated in Fig. 4. First, TRIDENT

instrument Chromium by extending the Chrome DevTools

Protocol framework (CDP) [35] with a new agent, Social-

Engineering agent (SEAgent). While a user is visiting a web-

site, the SEAgent collects JS actions (e.g., event listener regis-

trations, DOM modifications) and sends them to a background

daemon. The background daemon builds an in-memory graph

representation of the web page and its activities, which we call

Web Action History Graph (WAHG). While TRIDENT builds

and updates the WAHG, it also extracts property features,

action features, and consequence features about the page’s

JS code from the graph. These features describe how these

scripts are included, what contexts the scripts are running in,

and what the scripts do on a web page. These features are

passed to TRIDENT’s classification module, which classifies

the navigation as related to SE-ads or benign.

In the remainder of this section, we first give an example

of the WAHG of the motivating example in §3.2, and then

explain how TRIDENT instruments Chromium in §3.3. Next,

we discuss how to construct WAHG while the user is browsing

a website in §3.4, and the feature extraction along with it in

§3.5. Finally, we introduce the classifier in §3.6.

3.2 Web Action History Graph

The Web Action History Graph (WAHG) is a graph-based

representation of a web page. Nodes in the graph represent

web objects (e.g., window, resource, DOM node, etc.) and

edges represent causal relationships between objects. For

example, when a script inserts a new DOM element into the

DOM tree, an edge from the script to the element will be

connected into the WAHG. We formally define all graph

objects and relationships in Tab. 1.

To demonstrate the WAHG’s capability to represent SE-ads,

we provide an example WAHG of the suspicious publishing

page, “www.movies123.sbs”, that Alice encountered in the

motivating example (3) in Fig. 5. For clarity, the example

only contains the portions of the WAHG related to two SE-ad

attacks on the page. The first SE-ad is launched by an inline

script on “ww.movies123.sbs” and is represented by the set

Object Type Attributes

Frame security_origin, url, is_page

Window url

Resource url, type

Script url, is_isolated, frame_owner

Function url, is_eval_or_new_function, location

DOM Node tag_name, is_inserted_by_js

HTML Parser frame_owner

(a) Graph Objects. The unique ID for each object is omitted.

Relationship Example

Attached Frame → Frame

Compiled by Script → Frame

Created Script/Function → Frame

Add event listener Script/Function → Function

Listen to events Function → DOM Node

Add callback function Script/Function → Function

Navigated Frame → Frame

Opened Frame → Window

Load Window → Frame

Respond Parser/Script/Function → Resource

Response Resource → Parser/Script/Function

(b) Relationship between objects.

Table 1: WAHG objects, relationships, and key attributes.

of nodes connected by the solid blue edges. The inline script

initiates the deployment of the SE-ad by scheduling a delayed

callback to be executed using setTimeout. When this call-

back is executed, it adds a new mouse event listener onto the

#document element which consequently covers the whole

viewport. When Alice clicks on the input box to search for

a movie, the click is effectively hijacked. The mouse event

listener on #document is fired and redirects Alice to the mali-

cious website called “Rainbox Blocker”. The second SE-ad

attack is shown by the dashed yellow path, which is initiated

by the same inline script, but with a different deployment

technique. More specifically, the inline script injects a third-

party ad script that also uses setTimeout to create an iframe

and insert it onto the page. If Alice clicks on the “Skip Ad”

button, which is rendered in the iframe, it would cause Alice

to download a malicious Chrome Extension. This example

demonstrates the fine-grained details related to a web page

that is embedded into the WAHG.

3.3 Social-Engineering Agent

The Social-Engineering Agent (SEAgent) module resides

within the browser to emit event logs for constructing the

WAHG. To minimize our footprint in the browser, we imple-

mented the SEAgent on top of the Chrome DevTool’s Protocol

(CDP) [35] which can be easily updated and maintained.

CDP is a debugging tool to assist web developers with

USENIX Association 32nd USENIX Security Symposium 6705

Hooks Description Locations

DOM
Record DOM activities including DOM manipulation, etc. Attribute the

operation to a JS function.

Node creation, insertion, and removal

Node attributes modification

Page
Record frame activities including iframe creation and deletion, frame

navigation, and opening new tabs. Attribute the operation to a JS function.

iframe attach and detach

Frame navigation / Opening new windows

Network
Record network activities including what resources are being requested and

who are responsible for these requests

Network requests

Network responses

Script Record JavaScript activities including what scripts are compiled and executed,

what user callbacks are added, and what event listeners are registered.

Script compilation, execution

Function invocation

Add user callbacks / event listeners

Table 2: Instrument hooks to construct WAHG.

Property Features

execution context (first party or third party frame)

script type (inline, remote file, eval, or function)

owner (first party or third party)

requestor (HTML parser or another script)

requestor’s properties

Actions Features

register event listeners (event_type, event_target)

add timer callbacks (setTimeout, setInterval)

insert DOM nodes (node_type)

open new windows (url, target)

initiate navigation (url, iframe, origin, client_redirect, browser_initiated)

modify DOM node attributes (attributes)

send network requests (resoure_type, url)

Consequence Features

of redirect hops

of unique domains

redirect type (JS-driven, response-header-driven)

Table 3: Feature groups used by TRIDENT.

Property Features. Property features target the properties of

a script, including how the script is included in a web page,

who owns the script, and the context it is running in. TRIDENT

determines the property features when a script is compiled and

executed. If the script is inserted into the web page by another

script, TRIDENT adds the requestor’s properties too. First-

party scripts are usually included by the website operator,

which implies they can be trusted, whereas third-party scripts

(e.g., ad scripts from ad networks) are unverified and should

not be trusted. Legitimate ad scripts follow the FTC rules [27]

to inject ads, for example, by isolating their ad contents inside

an iframe as shown in Fig. 3a. In contrast, SE-ad scripts

are strongly motivated to elicit user’s click by any means.

Therefore, TRIDENT uses this feature group to learn whether

a suspicious action can be trusted.

Action Features. Action features represent the behaviors

exhibited by a script on the web page. These actions are

primarily related to click hijacking, including registering

event listeners, adding large hyperlinks, and injecting visually

deceptive elements. Each action becomes an edge in the

WAHG. TRIDENT then extracts these features from both

the node’s and the edge’s properties. For instance, the

register event listeners feature considers the event_type

of the edge and event_target of the target node. More

specifically, a JS function registers an event listener that

listens to mouse events on a specific DOM element. This

DOM element is the event_target. TRIDENT checks

whether this DOM element is a JS inserted DOM Node or a

built-in large element (e.g. #document, body). For actions

involved in network requests such as open new windows,

attach iframe, initiate same-tab navigation, and

send network requests, TRIDENT examines the URL to

determine where the resources are from. This feature group

helps TRIDENT learn to separate malicious activities from

benign ones. For example, appending a transparent hyperlink

covering the whole viewport is more suspicious than adding

a visible iframe to load content.

Consequence Features. Consequence features describe what

happens after the navigation. We extract the URLs in the

redirect chain and collect the number of unique domains.

TRIDENT also checks whether the redirect is initiated by JS

or an HTTP response header. We consider the redirect chain

between the first page and the eventual landing page because

the window directly opened by clicking an ad usually is not

the eventual landing page [9, 38]. Usually, ad networks need

to determine what ad to present by collecting the user’s cook-

ies before deciding where to send the user. Unlike clicking

on ads, clicking on a link to an article usually directly opens

the article without any redirects because the website knows

where the user is heading. Therefore, redirects between the

opening action and the final landing action are good indica-

tors of ads. This is useful for TRIDENT to determine whether

a newly opened tab is for ads. Moreover, analyzing these

consequence features is mandatory because popular websites

may also deploy techniques to intercept the users’ clicks for

benign purposes [36] and merely relying on the features of

USENIX Association 32nd USENIX Security Symposium 6707

the current page can cause high false positive [13].

To conclude, TRIDENT’s primary goal is to detect naviga-

tion made by clicking benign ads, links, or SE-ads. Simply

put, benign ads follow FTC rules which create iframes that do

not intercept users’ clicks; anchor links usually do not need

to redirect the users multiple times; and SE-ads steal users’

clicks by any means and redirect the users to SE-websites.

3.5.2 Real-time Feature Extraction

Unlike prior approaches [9, 37] that collect features offline,

TRIDENT extract features while the user is browsing so that

TRIDENT can timely detect and block SE-related navigation.

This process is asynchronous to the browser rendering pro-

cess, so collecting features for each event will not impact the

user experience. For instance, when a script registers an event

listener, TRIDENT creates or finds the script node, creates or

finds the function node (the event listener), and creates or finds

the event target node (e.g., a DOM node). Then, TRIDENT up-

dates the WAHG by connecting them. Meanwhile, TRIDENT

updates the action features of this script for adding a listener.

When a navigation event is received, TRIDENT only needs

to update the WAHG one last time to insert the target frame

node and connect the frame to the script or function node

which initiated the navigation. The initiator then becomes

the entry point for backtracking on the WAHG. Taking the

example in Fig. 5, when the user clicks the #document, it trig-

gers the event listener to open a new window. At this point,

TRIDENT has already learned that the in-line script added a

setTimeout which registered the event listener. As the fea-

tures have already been stored in memory for the in-line script,

TRIDENT only needs to update the features by adding that the

script also opens a new window. Therefore, TRIDENT does

not need to make expensive queries to traverse the WAHG for

feature collection at the last point. Then, TRIDENT translate

these features into a feature vector that captures the actions

done by this script under its owner frame’s context and pass

down to the classifier.

3.6 Blocking SE-ads related Navigation

The final portion of TRIDENT is its classification module.

When a navigation event is about to occur, the extracted fea-

tures discussed in §3.5 are passed to the classification module,

which will classify the navigation as SE-ad-related or benign.

If the navigation is determined to be SE-ad-related, TRIDENT

will block the navigation to prevent the user from being di-

rected to the SE attack. Internally, TRIDENT uses a random

forest [39] classifier for classification. We configure the ran-

dom forest as an ensemble of 100 decision trees with each

decision tree using
√

N features, a default value that works

well for TRIDENT, where N is the total number of features.

When visiting a website, the SEAgent continuously sends

events to the post-processing daemon, which builds the

WAHG, extracts the features, and runs the classifier.. When

navigation is scheduled, the features, except for the conse-

quence ones, are sent to the classifier. When the navigation

is about to commit, the daemon receives the updated conse-

quence features and reruns the classifier before the landing

page commits. When the classifier classifies a navigation

request as malicious, the SEAgent inserts an interstitial warn-

ing page to make the user aware of the dangers ahead. Note

that we use one single model rather than two, trained with

and without consequences features because the performance

difference is minimum as shown in §4.4.

4 Evaluation

This section discusses the extensive experimental evaluations

we completed for TRIDENT and compares TRIDENT with the

state-of-the-art tools. Our evaluations address the following

research questions:

RQ1: How accurately can TRIDENT detect navigation initi-

ated by SE-ads?

RQ2: Are the features used by TRIDENT understandable and

robust?

RQ3: How well does TRIDENT perform compared with the

state-of-the-art tools?

RQ4: What is the runtime performance and resource con-

sumption overhead for SEAgent?

4.1 Experiment Setup

This section discusses the websites used in our evaluation

and how we simulated user actions to trigger SE-ads and

navigation to SE-websites for data collection.

Data Source. Our data collection process relied on pub-

licwww.com (P.W.) [40], a popular source code search engine,

to collect scripts that may deploy SE-ads. We obtained over

100,000 ad publisher websites by searching JS code snippets

on P.W. by following the approaches used in the study [9].

These JS code snippets were obtained by analyzing web-

sites, which were open-sourced in that study, and websites we

encountered by searching for free content-sharing websites,

which prefer to include low-tier ad networks as suggested by

prior research [12].

Crawler Design. Unlike prior works [19, 33, 41] that only

crawl the Internet by loading the home page, this work re-

quires a crawler to interact with as many SE-ads as possible.

To achieve this, we built the crawler on top of Puppeteer [42]

to simulate users’ interactions with web pages, and developed

a clicking strategy conducive to triggering navigation. First,

we collect anchor elements that point to a different origin and

place them in an anchor node pool. Additionally, we collect

elements with mouse listeners in a mouse event pool. Because

large elements have a higher chance of being clicked, we sort

the DOM nodes in descending order of the element’s bound-

6708 32nd USENIX Security Symposium USENIX Association

Ad Network # of navigation events # of SE-websites landed % of SE attacks

Unknown 119,391 438 0.37%

AdSterra 1,247 350 28.07%

PopCash 1,085 267 24.61%

___cdn.com 559 141 25.22%

lkqd / Nexstar 236 105 44.49%

RevenueHits 276 41 14.86%

cdn.___.xyz 77 36 46.75%

whos.amung.us 29 29 100.00%

ZarPop (Persian specific) 25 16 64.00%

AdMaven 324 13 4.01%

OnClasrv 20 12 60.00%

uTarget (Russian specific) 32 11 34.38%

realsrv.com 650 10 1.54%

Propeller 4 4 100.00%

AdExtrem 21 3 14.29%

AdFly 61 3 4.91%

AddThis 5,552 0 0.00%

Google Ads 66,677 0 0.00%

AdGebra 311 0 0.00%

AdPartner 93 0 0.00%

Amazon Ads 24 0 0.00%

Facebook Ads 13,983 0 0.00%

Infolinks 15,162 0 0.00%

Mgid 6,290 0 0.00%

PopAds 1,087 0 0.00%

Rekmob 248 0 0.00%

ShareThis 17,973 0 0.00%

TeckAd 22 0 0.00%

Twitter 6,549 0 0.00%

Total 258,008 1,479 0.05%

Table 4: Statistics of the ground truth dataset by ad network.

SE Attacks # of SE attacks # labeled by L1 # labeled by L2

Unwanted-software Download 857 817 539

Dating Scam 222 204 48

Reward / Lottery Scam 177 156 92

Push Notification 148 148 25

Scareware 51 29 42

Tech-support Scam 24 20 13

Table 5: SE attack types in the ground truth dataset.

The unwanted-software download includes binary files and

browser extensions. We identify SE attacks based on the union

of L1 and L2.

Class Label New-Tab Nav. Same-Tab Nav.

Malicious 1,358 121

Benign 5,726 250,803

Table 6: Navigation events made by scripts in the training

dataset. The data within the benign class is imbalanced in

terms of navigation pattern.

nign/negative) class. To address our problems, we decided to

under-sample the negative class as recommended by the state-

of-the-art techniques [44, 45] to reduce the false-negative rate

as our goal is to detect SE-ads as accurately as possible.

Additionally, we removed “silent” scripts that do not in-

voke any DOM APIs of our interest and under-sampled the

same number of positive class from the negative class, which

addressed the first problem. To address the second problem,

we analyzed the distribution of the features and found that

benign scripts tended to navigate the users in the same tab. In

contrast, the malicious scripts preferred to open new windows,

as shown in Tab. 6. Random sampling from the benign class

would yield a large portion of same-tab navigation entries,

making a performant classifier. However, this classifier would

not generalize to websites that open windows in new tabs,

which are data points near the classification border. Therefore,

we need to choose more samples near this border, in this case,

more entries in the new-tab navigation from the benign class.

After analyzing the distribution of benign navigation events,

we chose 50% from the NT entries and 50% from the ST ones.

We will explain why we choose this ratio in §4.3.1.

4.3 TRIDENT Performance

To answer RQ1, we evaluated our model using 10-fold cross-

validation on the training dataset and reported the average ac-

curacy. Next, we discuss the disagreement between TRIDENT

and the ground truth data.

New-tab Nav. Same-tab Nav. Accuracy Precision Recall F-1 Score

100% 0% 87.76% 86.69% 89.31% 87.98%

90% 10% 88.30% 86.09% 91.68% 88.80%

50% 50% 92.63% 90.63% 96.28% 93.37%

0% 100% 99.76% 99.78% 99.43% 99.60%

Random Sampling 99.36% 99.14% 99.59% 98.17%

No Sampling 97.69% 89.71% 76.39% 82.52%

Table 7: Model accuracy with different approaches of under-

sampling the majority (negative) class.

4.3.1 Accuracy

First, we trained the model with the raw imbalanced dataset

(no sampling), which reported good accuracy, but bad pre-

cision and recall, as shown in Tab. 7. Next, to improve the

performance, we used five approaches to balance the dataset.

Tab. 7 presents the results. Notably, the more Same-tab Navi-

gation (STN) entries we sample, the better the model performs.

However, it lacks generality. When we trained the model with

(New-tab Navigation) NTN benign samples (all benign data

points near the borderline), the accuracy dropped to 87.76%.

Although the model has the lowest accuracy, this situation

(each navigation opens a new tab) is implausible. As shown

in Tab. 6, 97.77% of the navigation events happened in the

same tab for the benign class. Therefore, to be conservative

and include a good number of data points near the borderline

from the benign class, we decided to use 50% from the NTN

entries and 50% from the STN entries for the benign samples

to balance the dataset.

With this balanced training dataset, TRIDENT detects SE-

ads related navigation with 92.63% accuracy, 90.63% preci-

sion, 96.28% recall, and 93.37% F-1 score.

4.3.2 TRIDENT on Tranco Top 1K

TRIDENT is designed to detect and block navigation initiated

by SE-ads. In other words, TRIDENT is not supposed to block

normal ads and harm the user experience. Therefore, we tested

TRIDENT on popular websites from the Tranco Top 1k list. In

6710 32nd USENIX Security Symposium USENIX Association

of 99.87% at an FPR of 2.57% offers a better trade-off. The

main reason is that the baseline for computing the false posi-

tives consists only of navigation events that are initiated by

JS. As discussed in 4.3.2, navigation events initiated by JS are

relatively rare; we only found 78 navigation events initiated

by JS out of thousands of instances. Therefore, TRIDENT’s

classifier is rarely invoked, and only a small fraction of those

rare events result in a potential false positive (i.e., an erro-

neously blocked navigation). Furthermore, to further improve

TRIDENT by reducing the FPR, we can use a whitelist-based

approach to avoid incorrectly blocking trusted ad networks,

e.g., AddThis, to reduce the first type of FP. This whitelist is

configurable, allowing the user to decide what to include.

False Negatives. TRIDENT only found one false negative,

which converts to 0.13% false negative rate. The adult website

hentaibedta.net embedded malicious links in its first-party

content. Specifically, it included ad images that pointed to an

external website (ouo.io/QqJgfz). During the investigation,

this external website eventually landed the user on a malicious

browser extension downloading page and two reward scam

pages. The SE-ads on the adult site were injected by the first-

party script and behaved as if they were the first-party content.

Although TRIDENT failed to detect the script, we argue that

this type of ad script is considered out of scope as TRIDENT

focuses on ad networks that distribute malicious ad scripts at

scale. If we changed its property to third-party, TRIDENT can

detect the navigation initiated by this script. We will discuss

TRIDENT’s limitations in §5.

4.4 Feature Importance and Robustness

To answer RQ2, we assessed TRIDENT’s classifier by analyz-

ing its feature importance to confirm that the features were

understandable and reflected domain experts’ intuition. Be-

yond explaining feature importance, we analyzed our model’s

robustness against concept-drift [47] and evading techniques.

4.4.1 Feature Importance

We selected TRIDENT’s features based on our domain knowl-

edge, expert intuition, and previous studies [13, 14] to obtain

meaningful and understandable features. To this end, we eval-

uated the feature group importance, guided by the Leave-One-

Group-Out approach proposed by Au et al. [48]. We reported

the results in Fig. 9a using ROC curves. The property feature

group has the lowest AUC score, whereas the action feature

group has the highest score. This result is understandable as

the properties of a script do not indicate its maliciousness,

and what a script does reflects its objective the most. To better

understand what matters most in the action feature group, we

also present a breakdown in Fig. 9b, which depicts that the

navigation features are more important than others. The rest

of the features contribute almost equally.

Although the property feature group scores 0.03% lower

than the best score by using all the three feature groups, based

on the FN discussion in §4.3.3, it is helpful when a data point

is near the decision boundary. Also, the scores of training

with and without consequence features only have a 0.67%

difference. Therefore, we can use one single model before

and after navigation as mentioned in §3.6.

4.4.2 Robustness

In this section, we evaluated how well TRIDENT performs

against concept-drift [47] by testing the model using the test-

ing dataset. Next, we tested the robustness of TRIDENT’s clas-

sifier by altering feature values to simulate evading TRIDENT.

Concept Drift. Machine learning models are known to lose

their effectiveness over time due to the underlying changes

in the data distribution used to train the model. We build

TRIDENT to slow down the degradation process by focusing

on the behaviors of the scripts that inject SE-ads. To this end,

we evaluated TRIDENT’s accuracy over time by testing it on

a dataset crawled in October 2022, almost one year after the

initial model was trained. We obtained a similar result for the

dataset used for FP and FN analysis. TRIDENT achieves an

accuracy of 97.37 % with a precision of 98.25% and a recall

of 97.37%. These results indicate that we do not need to fre-

quently retrain TRIDENT because the fundamental techniques

used by those SE-ads do not change often. However, we rec-

ommend updating TRIDENT and retraining the model every

several months for the potentially new JS APIs introduced

and employed by ad networks.

Evasion Simulation. We have discussed one FN that evaded

TRIDENT in §4.3.3. Given the limitation of gathering more

evading samples, we simulated evasive SE-ads by altering

feature values. We generated four guidelines based on our

domain expert intuition of feasible evading techniques: (1)

include the malicious script as the first-party script; (2) put

the script as an inline script; (3) directly bring the user to SE-

websites without redirects; and (4) behave as benign scripts

while stealing clicks. Based on these four guidelines, we re-

ported the evasion rates in Tab. 9 by techniques.

First, we changed the property feature groups to make the

scripts first-party and/or inline. This alternation yields a max-

imum of 5.11% evasion rate. Next, we let the attacks directly

bring the users to the SE-websites. This change alone leads to

a 3.62% evasion rate. When combining the techniques used

for the property features, the evasion rate went up to 9.17%.

Finally, we tested altering the action features, which is the

most challenging part since we need to keep the attacks valid.

We took a conservative approach, keeping the features related

to DOM manipulations, including event listener registrations,

DOM node modifications, etc. We only updated the remaining

features in this feature group and reported the result in the

lower part in Tab. 9. We did not report the combination of

these behaviors since the evasion rate did not increase signifi-

6712 32nd USENIX Security Symposium USENIX Association

Dataset FNR by Brave Shields FNR by TRIDENT

First batch 15.14% 2.13%

Second batch 12% 1.49%

Table 10: FNR of detecting SE-ads by Brave Shields and

TRIDENT. The first batch is 30% split from the training

dataset. The second batch is from the testing dataset.

Model Accuracy Precision Recall F-1 Score

ADGRAPH for Generic Ads 83.25% 80.12% 81.65% 80.88%

ADGRAPH for SE-ads 81.51% 71.34% 75.33% 73.28%

TRIDENT 95.07% 96.11% 95.49% 95.79%

Table 11: TRIDENT outperforms both ADGRAPH models

for detecting SE-ads. The “Generic Ads” is the original

ADGRAPH model and tested on the SE-ads dataset, whereas

the “SE-ads” is trained and tested on the SE-ads datasets.

dropped to 83.25%. This shows that ADGRAPH for generic

ads does not work well for SE-ads.

Next, we sampled 1,000 websites from the training dataset

and 1,000 websites from the testing dataset, respectively. We

refer to the two datasets as P.W. 1k Trn. and P.W. 1k Tst. for

simplicity. For each batch of P.W. 1k, 500 sites were from web-

sites known to publish SE-ads and 500 were from benign web-

sites. Then, we let ADGRAPH crawl these 2,000 websites and

labeled the datasets using our ground truth. Finally, we trained

ADGRAPH and TRIDENT on the same training dataset and

tested them on the same testing dataset. As shown in the lower

part in Tab. 11, TRIDENT outperforms ADGRAPH by over

10%. ADGRAPH trained by P.W. 1k Trn. performs even worse

than the generic model. However, this is not an apple-to-apple

comparison. The ADGRAPH for Generic and ADGRAPH for

SE-ads are two different models as they are trained on differ-

ent datasets which are labeled differently. The former targets

generic ads while the latter targets SE-ads. Moreover, while

replicating ADGRAPH, we found URLs with protocol data:

will be considered as NON-AD in the labeling process of

ADGRAPH. This implies resources using base64 encoded

URL would likely escape ADGRAPH’s detection because

ADGRAPH can extract nothing from such URLs. This gives

the adversaries opportunities to import external scripts us-

ing "data:text/javascript,ZG9Tb21ldGhpbmcoKQ=="

which means doSomething() to evade ADGRAPH.

WEBGRAPH improves the robustness of ADGRAPH by

removing the content features and adding information flows

of network, storage, and shared. Because WEBGRAPH is not

open-sourced as of writing, we are not able to evaluate it with

our datasets. However, we argue WEBGRAPH is not designed

to capture how a script manipulates the DOM to lure users to

social engineering websites. Hence, its performance on our

datasets should be equivalent to ADGRAPH’s.

4.6 Runtime Overhead

To answer RQ4, we evaluated the runtime performance of

SEAgent, the major component that may induce overhead,

including running time and memory and CPU usage.

Runtime Overhead. To quantify the impact on the user expe-

rience, we measured the page load time to evaluate the runtime

overhead for the Tranco top 1k websites [50]. To measure this,

we leveraged Chromium’s TRACE_EVENT instrumentation in-

frastructure for profiling [51]. We added a new trace category

named blink.seagent and put TRACE_EVENT0 marco at the

beginning of each instrumentation hook. Then, we enable

blink.user_timing to measure the page load time, which

is defined as the time spent between the navigation request

start and the load event end [52]. For each website, we loaded

the page into the browser 10 times and selected the median

page-load overhead.

The distributions of the runtime overhead are shown in

Fig. 10. The median runtime overhead is 2.13% which re-

sults in a 0.02-second increase in the page load time, which

are comparable to previous works [41, 53, 54]. Looking at

outliers, we found the websites have more DOM modifica-

tions were more impacted by the SEAgent. For instance, kick-

starter.com took the longest to load with 14.34% (0.33 sec-

onds) overhead. After checking this website, we found that

JS inserted more than 35,000 DOM nodes and modified their

attributes, and then removed half of them before the page was

fully loaded. These outliers are rare given that the overhead

for the 95% of the Tranco 1k list is less than 5.7%.

0WFSIFBE�3BUJP
	B

1
BH
F�
-
P
BE
�0
WF
SI
FB
E
�1
FS
DF
O
UB
HF
�X
��
3
FD
P
SE
JO
H

0WFSIFBE�"CTPMVUF�7BMVF�
	C

*O
TU
SV
N
FO
UB
UJ
P
O
�)
P
P
L
T�
0
WF
SI
FB
E
	T

Figure 10: The runtime overhead induced on the page load by

TRIDENT for the Tranco 1k. (a) presents the runtime overhead

increase for the page load. (b) provides the absolute time

induced by TRIDENT.

Resource Overhead. To evaluate TRIDENT’s resource usage

overhead, we measured the CPU and memory usage for the

websites listed in the Tranco top 1k [50]. It is challenging

to separately measure the precise resource consumption of

6714 32nd USENIX Security Symposium USENIX Association

6 Related Work

Web-based social engineering attacks. While previous

works [7–10, 13, 14, 36, 37] have studied web-based SE at-

tacks through malicious advertising, they either focus on de-

tecting specific web SE attack vectors or lack a defensive

method towards their findings. For example, Vadrevu and

Perdisci [57] used visual clustering and heuristics to iden-

tify SE-attack campaigns at the landing page level, which

was done “offline”. And this work [57] does not focus on de-

tecting SE-ads, which is TRIDENT’s focus. Sanchez-Rola et

al. [36] found that even popular websites intercepted users’

clicks and brought them to harmful websites; nonetheless,

this study does not provide a solution to mitigate the conse-

quences of those clicks. Zhang et al. [13] built OBSERVER to

study three click intercepting techniques. However, turning

OBSERVER into an accurate detection system is challenging

because benign websites may also intercept users’ clicks for

benign purposes [36]; therefore, analyzing the events trig-

gered by the clicks is mandatory, which OBSERVER does

not focus on while TRIDENT does. Koide et al. [37] devel-

oped STRAYSHEEP to identify SE-websites effectively by

using a crawler to interact with the websites. Unfortunately,

STRAYSHEEP is also an offline tool and is not designed for

online detection. TRIDENT takes a generic approach, con-

sidering both what a script is doing on a webpage and what

consequences it causes, to detect SE attacks by detecting their

leading cause, which is SE-ads that often employ SE tech-

niques to hijack clicks.

Clickjacking. Clickjacking is known as UI redressing attack

that uses multiple transparent or opaque layers to trick a user

into clicking on third-party content such that to bypass the

same-origin policy [58]. Framebusting [59] is a good defense

against clickjacking. However, it degrades the user experi-

ence on websites that requires cross-origin iframes, and the

inconsistencies of implementation are concerning [60]. Pre-

vious works [61, 62] rely on the users to verify what they

have clicked, which are not comprehensive and have usability

concerns [63]. Unlike traditional clickjacking attacks which

inject iframes, SE-ads have employed new techniques to steal

clicks. Our work takes a new approach by analyzing what JS

scripts do on a web page to complement prior studies.

Ad blocking. Generic ad blockers are efficient at blocking

generic ads. However, they suffer from incompleteness and

are easy to evade [9, 10]. Advanced ad blockers [17, 19, 33,

41] employ ML techniques to complement the generic ad

blockers. Unfortunately, they are not trained to detect SE-ads

and block the subsequent events triggered by interacting with

those SE-ads. TRIDENT will be the second defense to protect

users from falling into SE tricks by complementing them.

Browser Provenance Graph. JSGRAPH [54] instruments

Chromium to build a graph for forensic analysis offline.

MNEMOSYNE [53] builds a graph by leveraging the exist-

ing APIs in CDP. As discussed in §3.3, the current domains

in CDP can not meet the expectation of recording the JS

actions in real-time. PAGEGRAPH [41], as the successor of

ADGRAPH [19], instruments the browser and expose its API

through CDP. However, this implementation only sends a com-

pleted page graph when the web page emits unload event. In

contrast, our real-time feature extraction requirement needs

to access the graph whenever the graph is updated. While

PAGEGRAPH maintains an in-memory graph representation

as TRIDENT does, it still requires significant engineering work

to use it directly. Therefore, we decided to extend the existing

CDP with minimal instrumentation for TRIDENT.

7 Conclusion

In this work, we present TRIDENT, a novel online system

for detecting and blocking social engineering ads. We show

that TRIDENT can effectively detect SE-ads and block the

consequent navigation to social engineering websites with

an accuracy of 92.63%, which outperforms the state-of-the-

art generic adblocking tools by more than 10%. Finally,

TRIDENT ’s runtime performance is extremely low and only

has a 2.13% median increase on the page load time on web-

sites in the Tranco 1k list.

8 Acknowledgments

We thank the anonymous reviewers and our shepherd for

their helpful and informative feedback. This material was

supported in part by National Science Foundation (NSF) un-

der grants No. CNS-2126641; the Office of Naval Research

(ONR) under grants N00014-17-1-2179, N00014-17-1-2895,

N00014-15-1-2162, and N00014-18-1-2662; and Cisco Sys-

tems under an unrestricted gift. Any opinions, findings, con-

clusions, or recommendations expressed in this material are

those of the authors and do not necessarily reflects the views

of NSF or ONR.

References

[1] Fatima Salahdine and Naima Kaabouch. “Social engineering

attacks: A survey”. In: Future Internet 11.4 (2019), p. 89.

[2] Fully 84 Percent of Hackers Leverage Social Engineering

in Cyber Attacks. https : / / www . esecurityplanet .

com / threats / fully - hackers - leverage - social -

engineering-in-cyber-attacks/. 2017.

[3] The Social Engineering Infographic - Security Through Ed-

ucation. https://www.social-engineer.org/social-

engineering/social-engineering-infographic/.

[4] Gianpiero Costantino et al. “CANDY: A social engineering at-

tack to leak information from infotainment system”. In: 2018

IEEE 87th Vehicular Technology Conference (VTC Spring).

IEEE. 2018, pp. 1–5.

6716 32nd USENIX Security Symposium USENIX Association

[5] 15 Alarming Cyber Security Facts and Stats | Cybint. https:

//www.cybintsolutions.com/cyber-security-facts-

stats/. 2020.

[6] New Data Shows FTC Received 2.8 Million Fraud Reports

from Consumers in 2021 | Federal Trade Commission. https:

//www.ftc.gov/news-events/news/press-releases/

2022 / 02 / new - data - shows - ftc - received - 28 -

million-fraud-reports-consumers-2021-0. 2022.

[7] Najmeh Miramirkhani, Oleksii Starov, and Nick Nikiforakis.

“Dial One for Scam: A Large-Scale Analysis of Technical

Support Scams”. In: 2017. DOI: 10.14722/ndss.2017.

23163.

[8] Amin Kharraz, William Robertson, and Engin Kirda. “Sur-

veylance: Automatically Detecting Online Survey Scams”.

In: Proceedings - IEEE Symposium on Security and Privacy.

Vol. 2018-May. Institute of Electrical and Electronics Engi-

neers Inc., July 2018, pp. 70–86. ISBN: 9781538643525. DOI:

10.1109/SP.2018.00044.

[9] Phani Vadrevu and Roberto Perdisci. “What you see is not

what you get: Discovering and tracking social engineering

attack campaigns”. In: Proceedings of the ACM SIGCOMM

Internet Measurement Conference, IMC (2019), pp. 308–321.

DOI: 10.1145/3355369.3355600.

[10] Karthika Subramani et al. “When Push Comes to Ads:

Measuring the Rise of (Malicious) Push Advertising”. In:

{IMC} ’20: {ACM} Internet Measurement Conference, Vir-

tual Event, USA, October 27-29, 2020. 2020, pp. 724–737.

ISBN: 9781450381383. URL: https://doi.org/10.1145/

3419394.3423631.

[11] Luca Invernizzi et al. “EvilSeed: A guided approach to find-

ing malicious web pages”. In: Proceedings - IEEE Symposium

on Security and Privacy. Institute of Electrical and Electron-

ics Engineers Inc., 2012, pp. 428–442. ISBN: 9780769546810.

DOI: 10.1109/SP.2012.33.

[12] M. Zubair Rafique et al. “It’s Free for a Reason: Exploring

the Ecosystem of Free Live Streaming Services”. In: Internet

Society, May 2017. DOI: 10.14722/ndss.2016.23030.

[13] Mingxue Zhang et al. “All your clicks belong to me: Investi-

gating click interception on the web”. In: Proceedings of the

28th USENIX Security Symposium. 2019.

[14] Ting Yu et al. “Knowing Your Enemy: Understanding and

DetectingMalicious Web Advertising”. In: p. 1070. ISBN:

9781450316514.

[15] USENIX Association., ACM SIGMOBILE., and ACM Digi-

tal Library. “Towards Measuring and Mitigating Social Engi-

neering Software Download Attacks”. In: USENIX Associa-

tion, 2005, p. 48. ISBN: 9781931971324.

[16] Apostolis Zarras et al. “The dark alleys of madison avenue:

Understanding malicious advertisements”. In: Proceedings of

the ACM SIGCOMM Internet Measurement Conference, IMC.

Association for Computing Machinery, Nov. 2014, pp. 373–

379. ISBN: 9781450332132. DOI: 10 . 1145 / 2663716 .

2663719.

[17] Zain Ul Abi Din et al. “PERCIVAL: Making in-browser

perceptual ad blocking practical with deep learning”. In: Pro-

ceedings of the 2020 USENIX Annual Technical Conference.

2020. ISBN: 9781939133144.

[18] Blocking goals and policy - Brave Browser Wiki. [Online;

accessed 20-January-2022]. 2021. URL: https://github.

com/brave/brave- browser/wiki/Blocking- goals-

and-policy.

[19] Umar Iqbal et al. “AdGraph: A graph-based approach to ad

and tracker blocking”. In: Proceedings - IEEE Symposium on

Security and Privacy 2020-May (2020), pp. 763–776. ISSN:

10816011. DOI: 10.1109/SP40000.2020.00005.

[20] VirusTotal. [Online; accessed 20-January-2022]. 2022. URL:

https://virustotal.com.

[21] Google Safe Browsing | Google Developers. https://

developers.google.com/safe-browsing/. 2022.

[22] Rainbow Blocker Adware - Easy removal steps (updated).

https://www.pcrisk.com/removal- guides/23298-

rainbow-blocker-adware. 2022.

[23] How Much Money Do Websites Make From Advertising?

https : / / adsterra . com / blog / how - much - money -

websites-make-from-ads/. 2020.

[24] Best CPM Rates for Publishers and Webmasters. https :

//adsterra.com/blog/geos-with-high-cpm-rates-

for-publishers/.

[25] Google Display Ads CPM, CPC, & CTR Benchmarks in Q1

2018. https://blog.adstage.io/google- display-

ads-cpm-cpc-ctr-benchmarks-in-q1-2018. 2018.

[26] Better Ads Standards - Google Ad Manager. https : / /

admanager . google . com / home / resources / feature -

brief-better-ads-standards/. 2018.

[27] Advertising and Marketing on the Internet: Rules of the

Road | Federal Trade Commission. https : //www .ftc .

gov / business - guidance / resources / advertising -

marketing-internet-rules-road. 2022.

[28] What are IAB Standard Ads? Why are They Important?

https://www.adpushup.com/blog/what- are- iab-

standard-ads-why-are-they-important/. 2021.

[29] IAB New Ad Portfolio: Advertising Creative Guidelines.

https : / / www . iab . com / guidelines / iab - new - ad -

portfolio/. 2022.

[30] EasyList. [Online; accessed 20-January-2022]. 2022. URL:

https://easylist.to/.

[31] blocklistproject/Lists: Primary Block Lists. [Online; accessed

05-June-2022]. 2022. URL: https : / / github . com /

blocklistproject/Lists.

[32] uBlock Origin - Free, open-source ad content blocker. https:

//ublockorigin.com/. 2022.

[33] Sandra Siby et al. WEBGRAPH: Capturing Advertising and

Tracking Information Flows for Robust Blocking. Tech. rep.

USENIX Association 32nd USENIX Security Symposium 6717

[34] Florian Tramèr et al. “AdVersarial: Perceptual Ad Block-

ing meets Adversarial Machine Learning”. In: Proceed-

ings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security. 2019, pp. 2005–2021. ISBN:

9781450367479.

[35] Chrome DevTools Protocol. [Online; accessed 20-January-

2022]. 2022. URL: https://chromedevtools.github.

io/devtools-protocol/.

[36] Iskander Sanchez-Rola et al. “Dirty Clicks: A Study of the

Usability and Security Implications of Click-Related Behav-

iors on the Web”. In: Proceedings of The Web Conference

2020. WWW ’20. Taipei, Taiwan: Association for Computing

Machinery, 2020, 395–406. ISBN: 9781450370233.

[37] Takashi Koide, Daiki Chiba, and Mitsuaki Akiyama. “To Get

Lost is to Learn the Way: Automatically Collecting Multi-

Step Social Engineering Attacks on the Web”. In: Proceed-

ings of the 15th ACM Asia Conference on Computer and

Communications Security. ASIA CCS ’20. Taipei, Taiwan:

Association for Computing Machinery, 2020, 394–408. ISBN:

9781450367509.

[38] Umar Iqbal et al. KHALEESI: Breaker of Advertising and

Tracking Request Chains. Tech. rep.

[39] Leo Breiman. “Random forests”. In: Machine learning 45.1

(2001), pp. 5–32.

[40] Search Engine for Source Code - PublicWWW.com. https:

//publicwww.com/. 2022.

[41] Quan Chen et al. “Detecting Filter List Evasion With Event-

Loop-Turn Granularity JavaScript Signatures”. In: IEEE Sym-

posium on Security and Privacy (S&P) (2021).

[42] Puppeteer. [Online; accessed 20-January-2022]. 2022. URL:

https://pptr.dev/.

[43] Kind of Like That - The Hacker Factor Blog. https://www.

hackerfactor.com/blog/index.php?/archives/529-

Kind-of-Like-That.html.

[44] Miroslav Kubat, Stan Matwin, et al. “Addressing the curse

of imbalanced training sets: one-sided selection”. In: Icml.

Vol. 97. 1. Citeseer. 1997, p. 179.

[45] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. LNCS 3644

- Borderline-SMOTE: A New Over-Sampling Method in Im-

balanced Data Sets Learning. Tech. rep. 2005, pp. 878–887.

[46] Get more likes, shares and follows with smart website tools -

AddThis. https://www.addthis.com/.

[47] Alexey Tsymbal. “The problem of concept drift: definitions

and related work”. In: Computer Science Department, Trinity

College Dublin 106.2 (2004), p. 58.

[48] Quay Au et al. “Grouped feature importance and combined

features effect plot”. In: arXiv preprint arXiv:2104.11688

(2021).

[49] brave/adblock-rust. [Online; accessed 20-January-2022].

2021. URL: https://github.com/brave/adblock-rust.

[50] Victor Le Pochat et al. “Tranco: A research-oriented top sites

ranking hardened against manipulation”. In: arXiv preprint

arXiv:1806.01156 (2018).

[51] The Trace Event Profiling Tool (about:tracing). https://

www . chromium . org / developers / how - tos / trace -

event-profiling-tool/. 2022.

[52] Page load time - MDN Web Docs Glossary: Definitions of

Web-related terms | MDN. https://developer.mozilla.

org/en-US/docs/Glossary/Page_load_time. 2022.

[53] Joey Allen et al. “Mnemosyne: An Effective and Efficient

Postmortem Watering Hole Attack Investigation System”.

In: Proceedings of the ACM Conference on Computer and

Communications Security. Association for Computing Ma-

chinery, Oct. 2020, pp. 787–802. ISBN: 9781450370899. DOI:

10.1145/3372297.3423355.

[54] Bo Li et al. “JSgraph: Enabling Reconstruction of Web At-

tacks via Efficient Tracking of Live In-Browser JavaScript

Executions”. In: Network and Distributed Systems Security

(NDSS) Symposium February (2018). DOI: 10.14722/ndss.

2018.23319.

[55] ps(1) - Linux manual page. 2022. URL: https://man7.org/

linux/man-pages/man1/ps.1.html.

[56] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. “Finger-

printing the fingerprinters: Learning to detect browser finger-

printing behaviors”. In: 2021 IEEE Symposium on Security

and Privacy (SP). IEEE. 2021, pp. 1143–1161.

[57] Jochem van de Laarschot and Rolf van Wegberg. “Risky

business? Investigating the security practices of vendors on

an online anonymous market using ground-truth data”. In:

Proceedings of the 30th USENIX Security Symposium. 2021.

[58] Clickjacking | OWASP Foundation. https://owasp.org/

www-community/attacks/Clickjacking.

[59] X-Frame-Options - HTTP | MDN. https://developer.

mozilla . org / en - US / docs / Web / HTTP / Headers / X -

Frame-Options. 2022.

[60] Stefano Calzavara et al. “A Tale of Two Headers: A For-

mal Analysis of Inconsistent Click-Jacking Protection on the

Web”. In: 29th USENIX Security Symposium (USENIX Se-

curity 20). USENIX Association, Aug. 2020, pp. 683–697.

ISBN: 978-1-939133-17-5.

[61] Lin Shung Huang et al. “Clickjacking: Attacks and defenses”.

In: Proceedings of the 21st USENIX Security Symposium.

2012.

[62] Marco Balduzzi et al. “A solution for the automated detection

of clickjacking attacks”. In: Proceedings of the 5th Interna-

tional Symposium on Information, Computer and Commu-

nications Security, ASIACCS 2010. 2010. DOI: 10.1145/

1755688.1755706.

[63] Devdatta Akhawe et al. “Clickjacking revisited a perceptual

view of UI security”. In: 8th USENIX Workshop on Offensive

Technologies, WOOT 2014. 2014.

6718 32nd USENIX Security Symposium USENIX Association

