

Drawing on Kinship

Rurally Sustaining Computational Thinking Pathways

<https://bit.ly/kyste23ctkinship>

This material is based upon work supported by the National Science Foundation under Grant No. [1923314](#) and [2219401](#). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Project Organizers

Emi Iwatani
Senior Education
Researcher, Digital
Promise

Traci Tackett
Director of Digital
Literacy, Bit Source

Quinn Burke
Director,
Computational
Thinking Research,
Digital Promise

Aileen Owens
Director,
ThroughlinesEdu

Merijke Coenraad
Senior Learning
Experience
Designer, Digital
Promise

District leads

Denise Isaac

High School Instructional Lead,
Floyd County Schools

Mike Bell

Digital Learning Coach
Floyd County Schools

Kelsey Tackett

Digital Learning Coach
Floyd County Schools

Neil Arnett

District Technology Coordinator,
Pikeville Independent School District

Bobby Akers

Chief Communications Officer
Floyd County Schools

Our “Why” - Connecting CT with Appalachian Ingenuity

“Who are the community makers? Who are the creators? Even the historians? ... [T]hat conversation about imparting that Appalachian Ingenuity and how we capture and perpetuate that, for me that's the biggest driver that has come out of what we've done in the past 3 years. It takes [computer science] from novelty to actual change, and it ties it directly to the people on the ground.”

Neil Arnett (Pikeville Independent School District) reflecting on possible research questions for “TAN2”

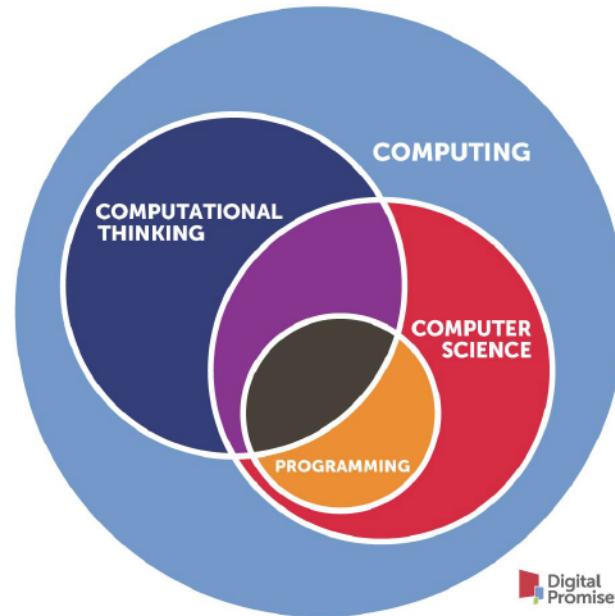
Drawing on Kinship Project Questions

- How can we create a rurally sustaining K-8 CT pathway in Eastern KY, leveraging the tradition of Appalachian Ingenuity?
- Does a rurally sustaining CT pathway substantially benefit CT teaching and learning? If so, how and why?

Rural Innovation: Community P X +

digitalpromise.org/2022/10/0... TweetDeck RedSky Horizon M... Neil Copy of KyST... SAME WEB Read... Other Bookmarks

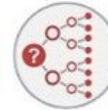
Digital Promise


engineer who visited Eastern KY once remarked that technologies in the coal mines were equivalent to those used at NASA. Currently, an Eastern KY high school incorporates workforce readiness into its normal high school curriculum. There, an English teacher assigns sections of the Occupational Safety and Health Administration (OSHA) manual so that students are learning about grammar and sentence structure while also learning content extremely pertinent to their future careers. Many students graduate with certificates in fields such as welding and automotive mechanics that allow them to begin their careers straight out of high school. This strong focus on career readiness outside of college provides real-world skills and opportunities to these students.

What is “Computational Thinking”?

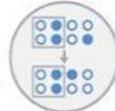
- Coding: a technical skill
- CS: an academic discipline
- CT: a problem-solving process that is central to CS, and also applies to learning in many disciplines

<https://bit.ly/AboutCT>



What is “Computational Thinking” (CT)?

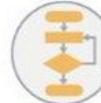
Computational thinking allows us to take a complex problem, understand what the problem is and develop possible solutions. We can then present these solutions in a way that a computer, a human or both, can understand.


There are five key techniques to computational thinking:

Decomposition

Breaking something into smaller parts.

Pattern Recognition

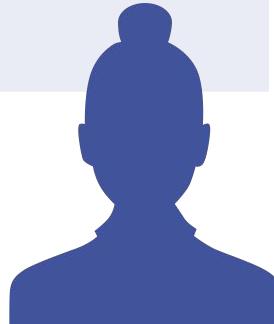

Looking for similarities and trends.

Abstraction

Focusing on what's important, ignoring what is unnecessary.

Algorithm

Step by step instructions.


Debugging

Fixing errors within your algorithm.

What is computational thinking? - Teachers explain

“Computational thinking is not a new theory—this is just a new name of a problem solving approach that involves using innovative technology to assist in the process.”

*“Computational thinking is **being able to analyze, build and create steps in a process in order to generate new understandings.** This can entail collecting data, problem solving while building our understanding of various competencies.”*

*“Computational thinking is **problem solving steps that teach students perseverance through exploring and analyzing algorithms to find solutions**”*

Key project activities

1 Community, CT & Heritage-focused PBL

- Middle school
- About data science or automation
- Solve a local problem
- Connect to local heritage

← This is very difficult!

- Heritage?*
- CT?*
- Community needs?*
- PBL?*

What is our Cultural Capital?

Our cultural wealth is rich in:

- Familial Capital (kinship)
- Social Capital

We aim to improve our student's

- Aspirational Capital
- Linguistic Capital
- Navigational Capital
- Resistant Capital

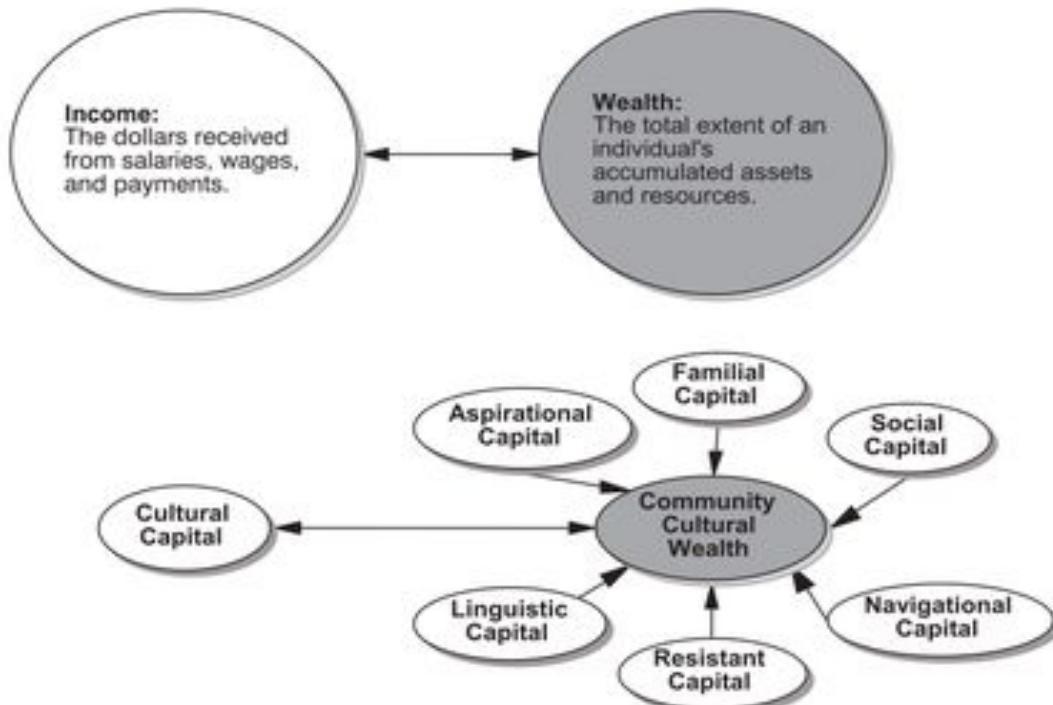


Figure 2. A model of community cultural wealth. Adapted from: Oliver & Shapiro, 1995

Building background information is very important!

Background knowledge helps students make connections with new information and helps them understand concepts. When teachers make connections between the lesson and their ELL students' backgrounds, they validate their culture and experiences and may facilitate greater interest in the lesson.

- IRIS Center Vanderbilt University


So, how can we leverage student's background knowledge through stories of Appalachian Ingenuity?

Students bring an object that represents a story of Appalachian Ingenuity from their family. We then discuss the competencies, mindsets and dispositions that are found in the story.

Examples of objects:

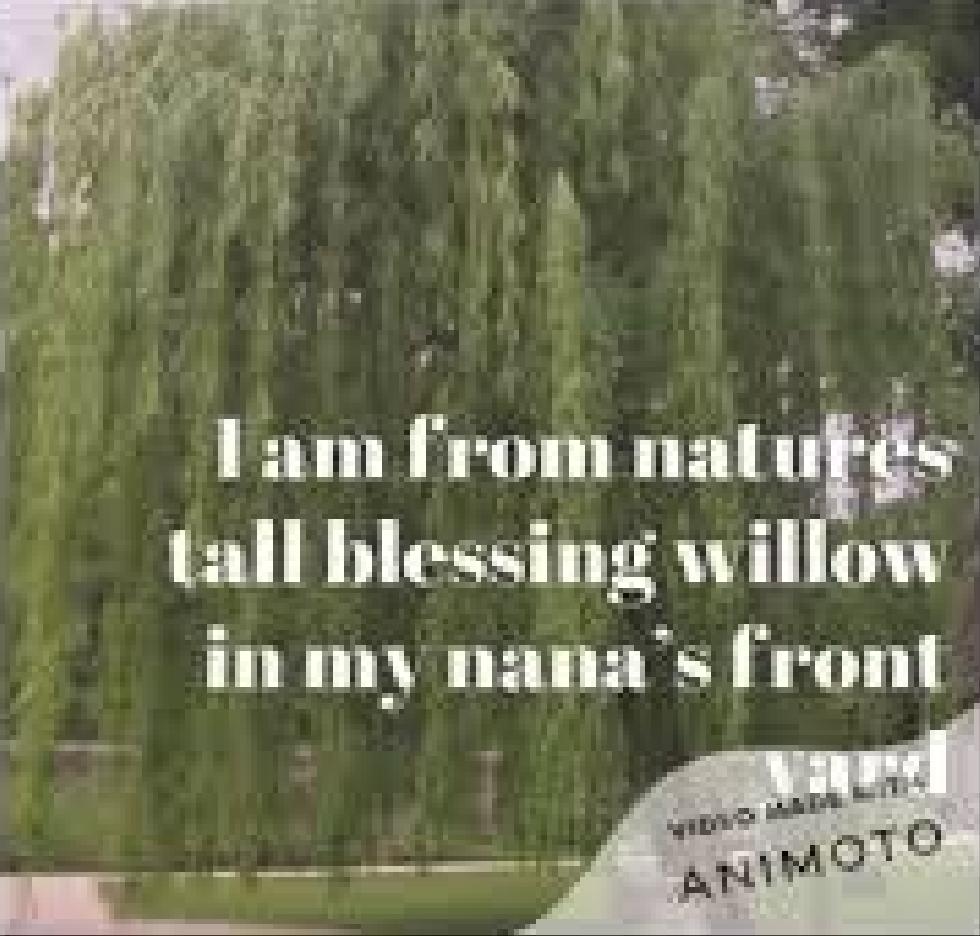
Where I'm From

by George Ella Lyon

I am from clothespins,
from Clorox and carbon-tetrachloride.
I am from the dirt under the back porch.
(Black, glistening,
it tasted like beets.)

I am from the forsythia bush
the Dutch elm
whose long-gone limbs I remember
as if they were my own.

I'm from fudge and eyeglasses,
from Imogene and Alafair.


I'm from the know-it-alls
and the pass-it-ons,
from Perk up! and Pipe down!
I'm from He restoreth my soul
with a cottonball lamb
and ten verses I can say myself.

I'm from Artemus and Billie's Branch,
fried corn and strong coffee.
From the finger my grandfather lost
to the auger,
the eye my father shut to keep his sight.

Under my bed was a dress box
spilling old pictures,
a sift of lost faces
to drift beneath my dreams.

I am from those moments--
snapped before I budded --
leaf-fall from the family tree.

I am from nature's
tall blessing willow
in my nana's front

video by
ANIMOTO

Where I'm From by George Ella Lyon Template

Where I'm From

I am from

(a specific item from your childhood home)

from

(two products or objects from your past)

I am from

(a phrase describing your childhood home)

and

(more description of your childhood home)

I am from

(a plant, tree or natural item from your past)

whose

(personify that natural item)

I am from

(two objects from your past)

from _____ and _____

(a family name) (another family name)

I am from _____ and _____

(a family trait or tendency) (another family trait or tendency)

and from

(another family trait, habit or tendency)

from

(another family trait, habit or tendency)

I am from

(a religious phrase or memory)

I am from _____ and _____
(an ancestor) (another ancestor)
from

(two foods from your family history)

from

(a specific event in the life of an ancestor)

and from

(another detail from the life of an ancestor)

(a memory or object you had as a child)

I am from those moments

(conclude by finishing this thought or by repeating a line or idea from earlier in the poem)

Key project activities

1 Community, CT & Heritage-focused PBL

- Middle school
- About data science or automation
- Solve a local problem
- Connect to local heritage

In PBL, we want students to...

1. **Select** the problem they would like to work on (rather than working on a pre-defined problem), and **deeply understand** a local issue(s)
2. **Design** a solution to a locally and personally relevant issue, with a process aligned with human-centered design.
3. **Create their own algorithm or collect and analyze their own [numeric] data** as part of the design process
4. **Make explicit connections** between Appalachian Ingenuity and CT (data and algorithms)

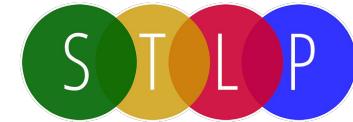
Getting heritages into PBL

What we want

- Understand and Connect with the student's heritage
- Solve real-world problems with ingenuity and the resources they have available
- Understand how their general problem-solving skills involve CT concepts

How we'll do it

- ✓ Showcase and provide examples of ancestral / local inventor problem-solvers who came before for inspiration.
- ✓ Make connections from ancestral problem-solving to human-centered innovative design.
- ✓ 1-day **Civic Imagination Workshop**


Getting students to address community needs

What we want

- Student designed projects that demonstrates creativity and functionality for those other than themselves using the innovative design method.
- Most importantly use CT concepts to develop and improve their human-centered design product.

How we'll do it

- Students will provide innovative ideas of how to improve someone's quality of life.
- Students will use the innovative design method to produce their human-centered design product.
- Use Automation, computational modeling, and Data practice to determine the feasibility and quality of the product.

Incorporating CT into PBL

What we want

- Students engaging in a CT practice
 - Automation
 - Data practices
 - Computational modeling

How we'll do it

- Train teachers in data practices, and automation in summer institute and throughout the year as needed
- CT competency consultations with Digital Promise

Kelsey Tackett • 1m

Drawing on Kinship

What are innovations from your state, region or county that you could draw on to inspire your students?

What are ways you could use those innovation as inspirations for PBL in your classroom?

Drop and image of a picture that represents your innovation or PBL project!

Add section

Join our Padlet to brainstorm various innovations from your area and how it can be used to develop PBL learning opportunities for your students!

Where I'm From Poem Template Activity

Practice using this template as a way to engage students in evaluating their cultural capital as a way to identify ingenuity within their communities!

Presentation Resources

