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Introduction Heterogeneous nature of tra�c makes it di�cult to accurately predict the short-

term tra�c states. The adverse impact of unstable tra�c prediction influences the quality of life,

economic output, and social trust of information. To overcome these challenges, recent studies have

addressed spatiotemporal correlations, however, limited only to neighbouring correlations not far

distant non-contiguous locations. As another important statistical perspective, travel time distri-

butions have shown two or more modes as distinct peaks in the probability distribution function

due to the mixes of driving patterns and vehicle types (Guo, Rakha, and Park 2010). However,

travel state bimodality has not been considered in tra�c state prediction.

Temporal Multimodal Multivariate Learning (tmml) by (Park et al. 2022) addressed the above

limitations by indirectly learning and transferring online information from multiple modes of prob-

ability distributions and multiple variables across di↵erent time stages. This paper advances tmml

with two contributions: 1) extends data-driven part by incorporating physics knowledge to decou-

ple spurious correlations, 2) relaxes Gaussian noise assumption by developing dynamic graphical

deep learning that accomodates the bimodality.

Partial information gain from multimodal distribution and multivariate correlation has been left

unaddressed, possibly due to the main focus of reinforcement learning (RL) on games and simple

control problems with a lack of generalization to real-world problems. In a sequence of transfer

learning, the RL does not utilize the covariance structure and ignore multimodal and multivariate

gains in the reward function. Hybrid deep learning tra�c studies extract spatiotemporal correla-

tions (Zhang 2021), but static graph is unable to capture dynamic nature of tra�c. Recent adaptive

adjacency graphs (Kong et al. 2022) however does not consider multimodality. This study develops

a novel Graph Convolutional method to e�ciently accommodate evolving adjacency graph based

on multimodal distributions.
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Methodology The distinguishable aspect of the physics-informed and -regularized (pir) model

in the hierarchical update steps is the use of new information obtained from TMML (fig. 1). We

first predict the chosen state variable at the next time interval t+1 using the measurement from

the previous time interval t. In the update step, the predicted state is corrected using the noisy

measurements at t+1. Clustering identifies similar travel time distributions. The global correlation

between non-contiguous cells of an entire map are estimated by using Expectation Maximization.

The optimal distribution of the data over K clusters are determined by maximizing the lower

bound of the log of the likelihood. We decouple the spurious correlations first and then use the

entropy method to estimate the mixture of multimodal and multivariate distributions. Since the

mixture could be non-Gaussian and non-linear, providing an accurately estimated distribution

rather than just mean and standard deviation will increase the accuracy of updating the error

covariance matrix.
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Figure 1 Physics-informed and -regularized (pir) KF in the hierarchical update steps

Prediction-Collection Step: We project the state at time t using the prediction at previous time

t� 1 as x̂
�
t = Ax̂

+
t�1 +Bµt and error covariance of state as P

�
t = P

+
t�1A

T +Q. We determine the

Kalman Gain at time t as Kt = P
�
t H

T (HP
�
t H

T +R)�1 where H is the connection matrix between

the state vector and the measurement vector and R & Q are Gaussian noise vectors. Zt is the

observations used to correct the predicted estimate. Observations considered for KF model with

Physics Informed Regularization (pir) is di↵erent than that for no-pir. Zt for KF-no pir are the
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speed observations on a given day while, in case of KF-pir, Zt are the observations drawn through

two steps as described in fig. 1.

In the first update step of KF-pir, if there are conflicting observations from multimodal and mul-

tivariate clusters at the same time and location, then the original cell distribution of observation

is investigated. If spurious correlations are reckoned, then they are filtered using the coe�cient of

variation parameter given by CV = �
µ
to identify extent of variability with respect to the mean of

distribution. Once the conflicting observations are resolved, in the second step, a mixture of multi-

modal and multivariate distributions is estimated using cross-entropy method. The relative entropy

between the true distribution f and the mixture of multimodal and multivariate distributions g

parameterized by ✓ is minimized using ✓⇤
g = argmin

✓g

�
R
x2X f

⇤(x) log g (x | ✓g)dx. The cross-entropy-

method uses a multi-level algorithm to estimate ✓⇤
g iteratively. Specifically, the parameter ✓k at

iteration k is used to find new parameters ✓k0 at the next iteration k
0.

The multivariate fundamental diagram will be further considered in the regularization step by the

conference. Deep learning will be presented to overcome the limitations of Kalman Filtering (KF).

Clustering on TMCs as explained previously is performed for each time interval t. We employed

a more e�cient method of evolving the adjacency matrix than (Li et al. 2021) which is capable

to capture geographical adjacency as well as dynamic tra�c flow. The dynamic adjacency graph

used in Graph Convolutional Neural (GCN) network will assign weights according to semanticity

in road tra�c flow during time interval t. For example, similar weights will be assigned to two or

more distant locations where the tra�c patterns show similarity.

Results & Conclusion

Figure 2 Percent change in uncertainty of KF prediction when PIR with mixture is considered.
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KF with both pir and mixture model shows the superior performance with total uncertainty

reduction of 19% compared to traditional-KF without any updates, while KF with only pir reduce

uncertainty by 14% and tmml (Park et al. (2022) data-driven model by 5% as shown in fig. 2.

GCN with dynamic adjacency model is expected to further reduce uncertainty in prediction than

highest performing KF model considering GCN do not restrict noise to be Gaussian unlike KF.

The route suggestion that users receive at the outset of their commute may not be optimal

when they are on the road due to the uncertainty in travel time prediction. More reliable traf-

fic predictions can be achieved by capturing unobserved heterogeneity by analyzing a mixture of

multiple probability distributions. This study enhanced the author’s data-driven model Park et al.

(2022) by using physics of tra�c flow to regularize factitious correlations improving the prediction

accuracy significantly. Traditional deep learning models overlook the time-dependent spatial cor-

relations which results in degradation of prediction performance. The new family of deep learning

models enhanced with cross-entropy-based mixture estimation of multimodal distribution presents

a superior performance in travel time prediction against the TMML-pir model. The model devel-

oped in this study takes advantage of explored correlated link to reduce prediction uncertainty for

unexplored one. This paper opens appealing research opportunities in the study of deep learning

models based on information-theoretic decision making that exhibits nontrivial indirect learning

from spatiotemporal correlation.
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