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ABSTRACT

Existing analysis of AdaGrad and other adaptive methods for smooth convex
optimization is typically for functions with bounded domain diameter. In un-
constrained problems, previous works guarantee an asymptotic convergence rate
without an explicit constant factor that holds true for the entire function class. Fur-
thermore, in the stochastic setting, only a modified version of AdaGrad, different
from the one commonly used in practice, in which the latest gradient is not used
to update the stepsize, has been analyzed. Our paper aims at bridging these gaps
and developing a deeper understanding of AdaGrad and its variants in the standard
setting of smooth convex functions as well as the more general setting of quasar
convex functions. First, we demonstrate new techniques to explicitly bound the
convergence rate of the vanilla AdaGrad for unconstrained problems in both de-
terministic and stochastic settings. Second, we propose a variant of AdaGrad for
which we can show the convergence of the last iterate, instead of the average it-
erate. Finally, we give new accelerated adaptive algorithms and their convergence
guarantee in the deterministic setting with explicit dependency on the problem
parameters, improving upon the asymptotic rate shown in previous works.

1 INTRODUCTION

In recent years, the prevalence of machine learning models has motivated the development of new
optimization tools, among which adaptive methods such as Adam (Kingma & Ba, 2014), AmsGrad
(Reddi et al., 2018), AdaGrad (Duchi et al., 2011) emerge as the most important class of algorithms.
These methods do not require the knowledge of the problem parameters when setting the stepsize as
traditional methods like SGD, while still showing robust performances in many ML tasks.

However, it remains a challenge to analyze and understand the properties of these methods. Take
AdaGrad and its variants for example. In its vanilla scalar form, also known as AdaGradNorm, the
step size is set using the cumulative sum of the gradient norm of all iterates so far. The work of
Ward et al. (2020) has shown the convergence of this algorithm for non-convex funtions by bound-
ing the decay of the gradient norms. However, in convex optimization, usually we require a stronger
convergence criterion—bounding the function value gap. This is where we lack theoretical under-
standing. Even in the deterministic setting, most existing works (Levy, 2017; Levy et al., 2018; Ene
et al., 2021) rely on the assumption that the domain of the function is bounded. The dependence
on the domain diameter can become an issue if it is unknown or cannot be readily estimated. Other
works for unconstrained problems (Antonakopoulos et al., 2020; 2022) offer a convergence rate that
depends on the limit of the step size sequence. This limit is shown to exist for each function, but
without an explicit value, and more importantly, it is not shown to be a constant for the entire func-
tion class. This means that these methods essentially do not tell us how fast the algorithm converges
in the worst case. Another work by Ene & Nguyen (2022) gives an explicit rate of convergence for
the entire class but requires the strong assumption that the gradients are bounded even in the smooth
setting and the convergence guarantee has additional error terms depending on this bound.

*Equal contribution, corresponding authors.
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In the stochastic setting, one common approach is to analyze a modified version of AdaGrad with
off-by-one step size, i.e. the gradient at the current time step is not taken into account when setting
the new step size. This is where the gap between theory and practice exists.

1.1 OUR CONTRIBUTION

In this paper, we make the following contributions. First, we demonstrate a method to show an
explicit non-asymptotic convergence rate of AdaGradNorm and AdaGrad on R? in the deterministic
setting. Our method extends to a more general function class known as y-quasar convex functions
with a weaker condition for smoothness. To the best of our knowledge, we are the first to prove this
result. Second, we present new techniques to analyze stochastic AdaGradNorm and offer an explicit
convergence guarantee for y-quasar convex optimization on R? with a mild assumption on the noise
of the gradient estimates. We propose two new variants of AdaGradNorm which demonstrate the
convergence of the last iterate instead of the average iterate as shown in AdaGradNorm. Finally, we
propose a new accelerated algorithm with two variants and show their non-asymptotic convergence
rate in the deterministic setting.

1.2 RELATED WORK

Adaptive methods There has been a long line of works on adaptive methods, including AdaGrad
(Duchi et al., 2011), RMSProp (Tieleman et al., 2012) and Adam (Kingma & Ba, 2014). AdaGrad
was first designed for stochastic online optimization; subsequent works (Levy, 2017; Kavis et al.,
2019; Bach & Levy, 2019; Antonakopoulos et al., 2020; Ene et al., 2021) analyzed AdaGrad and
various adaptive algorithms for convex optimization and generalized them for variational inequality
problems. These works commonly assume that the optimization problem is contrained in a set with
bounded diameter. Li & Orabona (2019) are the first to analyze a variant of AdaGrad for unbounded
domains where the latest gradient is not used to construct the step size, which differs from the
standard version of AdaGrad commonly used in practice. However, the algorithm and analysis of
Li & Orabona (2019) set the initial step size based on the smoothness parameter and thus they do
not adapt to it. Other works provide convergence guarantees for adaptive methods for unbounded
domains, yet without explicit dependency on the problem parameters (Antonakopoulos et al., 2020;
2022), or for a class of strongly convex functions (Xie et al., 2020). Another work by Ene & Nguyen
(2022) requires the strong assumption that the gradients are bounded even for smooth functions and
the convergence guarantee has additional error terms depending on the gradient upperbound. Our
work analyzes the standard version of AdaGrad for unconstrained and general convex problems and
shows explicit convergence rate in both the deterministic and stochastic setting.

Accelerated adaptive methods have been designed to achieve O(1/72) and O(1/+/T) respectively
in the deterministic and stochastic setting in the works of Levy et al. (2018); Ene & Nguyen (2022);
Antonakopoulos et al. (2022). We show different variants and demonstrate the same but explicit
accelerated convergence rate in the deterministic setting for unconstrained problems.

Analysis beyond convexity The convergence of some variants of AdaGrad has been established
for nonconvex functions in the work of Li & Orabona (2019); Ward et al. (2020); Faw et al. (2022)
under various assumptions. Other works (Li & Orabona, 2020; Kavis et al., 2022) demonstrate the
convergence with high probability. We refer the reader to Faw et al. (2022) for a more detailed survey
on AdaGrad-style methods for nonconvex optimization. In general, the criterion used to study these
convergence rates is the gradient norm of the function, which is weaker than the function value
gap normally used in the study of convex functions. In comparison, we study the convergence of
AdaGrad via the function value gap for a broader notion of convexity, known as quasar-convexity,
as well as a more generalized definition of smoothness.

2 PRELIMINARIES

We consider the following optimization problem: minimize,cgaF(x), where F' is differentiable
satisfying F* = inf cga F(z) > —o0 and z* € arg min,cpa F'(z) # (. We will use the following
notations throughout the paper: a* = max {a,0}, a V b = max{a,b}, [n] = {1,2,--- ,n}, and
|| - || denotes the ¢5-norm || - ||o for simplicity.
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Algorithm 1 AdaGradNorm Algorithm 2 Stochastic AdaGradNorm
Initialize: 1,7 > 0 Initialize: 1,7 > 0
fort=1t0T fort=1t0 T

by = \/bg + L IVE ()2 by — \/bg + Y VE )2

Tl = Tt — ;,%VF(It) Tt41 = Tt — bﬂtHVF(xt)HQ

Additionally, we list below the assumptions that will be used in the paper.

1. y-quasar convexity: There exists v € (0, 1] such that F'* > F(z)+ %<VF(.1), r* — ), Vo € RY
where z* € arg min,cgs F'(z). When v = 1, F' is also known as star-convex.

1’. Convexity: F'is convex. This stronger assumption implies that Assumption 1 holds with v = 1.
2. Weak L-smoothness: 3L > 0 such that F(z) — F* > ||VF(z)||?/2L,Yx € R
2°. L-smoothness: 3L > 0 such that F(z) < F(y) + (VF(y),z — y) + £z — y||?, Vz,y € R™.

2”. L-smoothness: IL = diag (L;c[g) with L; > 0 such that F(z) < F(y) + (VF(y),z — y) +
Lz — yll3, Yz, y € R? where ||al|y, = v/{a, La).

In the stochastic setting, we assume that we have access to a stochastic gradient oracle VF (x) that
is independent of the history of the randomness and it satisfies the following assumptions:

3. Unbiased gradient estimate: E[@F(x)] = VF(x).
4. Sub-Weibull noise: E {exp ((||§F(at) - VF(CC)H/O‘)UG)} < exp(1) for some 6 > 0.

Here, we give a brief discussion of our assumptions. Assumption 1 is introduced by Hinder et al.
(2020) and it is strictly weaker than Assumption 1°. Assumption 2 is a relaxation of Assumption 2,
the latter is the standard definition of smoothness used in many existing works (see Guille-Escuret
et al. (2021) for a detailed comparison between different smoothness conditions). Assumption 2”
is used to analyze the AdaGrad algorithm which uses per-coordinate step sizes. Assumption 3
is a standard assumption in stochastic optimization problems. Assumption 4 is more general and
encapsulates sub-Gaussian ( = 1/2, used in Li & Orabona (2019)) and sub-exponential noise
(8 = 1). We refer the reader to Vladimirova et al. (2020) for more discussion on sub-Weibull noise.

3 CONVERGENCE OF ADAGRADNORM ON R? UNDER ¥-QUASAR
CONVEXITY

We first turn our attention to AdaGradNorm (Algorithm 1) in the deterministic setting, which will
serve as the basis for the understanding of Stochastic AdaGradNorm (Algorithm 2) and determin-
istic AdaGrad (Algorithm 7). To the best of our knowledge, we are the first to present the explict
convergence rate of these three algorithms on R?. Due to the space limit, we defer the theorem of
the convergence guarantee of AdaGrad and its proof to Section A.3 in the appendix.

3.1 ADAGRADNORM

Previous analysis of AdaGradNorm often aims at bounding the gradient norm of smooth nonconvex
functions, or is conducted for smooth convex functions in constrained problems with a bounded
domain. Bounding the gradient norm is strictly weaker than bounding the function value gap due
to the fact that ||VF(z)||*> < 2L(F(z) — F*), where L is the smoothness parameter. For convex
functions, the common analysis will always meet the following intermediate step

b
F(zy) — F* < 24 [l — 2*[|* = |[z¢+1 — 2*||?] + Other terms.
Ui
Assuming a bounded domain is a way to making the terms S—;} [lze — 2*||> = |ze1 — 2 ||?] tele-
scope after taking the sum over all iterations ¢. This is critical in the analysis, but at the same

*“2
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time leads to the dependence on the domain diameter, which can be hard to estimate. For un-
constrained problems, a natural approach is to divide the terms by b;, so that the remaining terms
2—17] [lze — z*||? = |lzt41 — *||?] can telescope. Our key insight is that we can bound the function

value gap via the step size b;, which in turn can be bounded via the function value gap. This self-
bounding argument allows us to finally prove the convergence rate. This result holds under more
general conditions than convexity and smoothness (Assumptions 1 and 2).

Theorem 3.1. With Assumptions 1 and 2, AdaGradNorm admits

2L|lzi—2"||®> | 4nL  + 2nL lzi=z"lI® | 294 .+ 2nL
Z?:l F(xy) — F* < ( n T log oo T bo) ( T log vbo
T - T

Proof. Starting from the y-quasar convexity of F', we have
(VF(xy), 2y — x*) _ b
Y m

F(l’t)*F* S <xt—xt+1,xt—x*>

*H2

= — [llz¢ — e [E e | [ $t||2]

29n

Notice that ;41 — x; = —nb; "V F(z;). Dividing both sides by b; and taking the sum over ¢, we
obtain

Fz,) = F* _|loi -2 & 7 )
< F .
P +§t:13 g VF@)l

— 2vn
Note that F’ also satisfies Assumption 2, i.e., F'(z;) — F* > w. Therefore
T T T
F(zy) = F* V()| F(xy) = F* _ [l — | U 5
+ < < + VF(x
; 2b; ALb, 2 by 291 ; 27b2 IVEG)l

Fla) = F* _ oy —a']? | < (77 1 ) 2
= < +3 (o5 = 57 | IVF(2)]?.
=t w2 e ) V)

We can bound the term A by the technique commonly used in the analysis of adaptive methods. Let
7 be the last ¢ such that b; < % Ifb; > %, we have A < 0 < 27" log+ ?’Tf. Otherwise

([ n 1 s b —b < b} _2n. . 2yL
A< N <N % TN < Mgt T2
_;(vb? 2th>” (@l _;v b} —v;‘)gb‘@ =%

+ 2nL
vbo ’

Thus we always have A < 27" log and obtain

T _x _ex]|2
ZF(%) F < 21 — 2| +2—n10g+ %’
— by n ¥ vbo

which gives

T * (|2

- 2 2L
S F(a) — F* < by (xl T L 20 g+ 20E ) .
P T v Ybo

Note that by Assumption 2 again, we have

T T
b= | B3+ D IIVF(2)]? < | B3+ > 2L (F(ay) — F*).
t=1

t=1

Let Ar = Zthl F(z;) — F*, then

— a2 2 2nL
Ar < /0 +2LAT (“m LT 20 1ot n)
gl gl Ybo

2L||z; — 2*||*  4nL 2nL —z*?2 2 2nL
S Ap< ( |21 — 2| AL+ 20 +b0) (Ile z*|| + 2ot 2 )
n ¥ vbo v ¥ 7bo
Dividing both sides by T, we get the desired result. O
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When F' is convex (which implies v = 1), using the above theorem and convexity, we obtain the
following convergence rate for the average iterate:

T
Corollary 3.2. With Assumptions 1’ and 2, for Tp = # AdaGradNorm admits

*12 * (12
(QLH-’Eln—f I +4nL IOng % + bO) (Hml—nm Il + 27 log+ %)
F(i‘T) —F* < T .

The rate in Theorem 3.1 can be improved by a factor 1/~ by replacing Assumption 2 by 2’. The
details and the proof are deferred into Section A.1 in the appendix.

3.2 STOCHASTIC ADAGRADNORM

In this section, we consider the stochastic setting where we only have access to an unbiased gradient
estimate @F(xt) of VF(z) (Assumption 3). As expected for a stochastic method, the accumulation
of noise is the reason that we can only expect an O(1/+/T) convergence rate, instead of O(1/T).
This convergence rate is already shown by prior works (Levy et al., 2018) under the bounded do-
main assumption. However, in an unbounded domain, when extending our previous analysis to the
stochastic setting, that is, dividing both sides by b;, we will face several challenges. One of such is
the term b; ' (VF(x;) — VF(x;), 2 — x*). To handle this term, often we see that existing works,
such as Li & Orabona (2019), analyze a modified version of Stochastic AdaGradNorm with off-by-

one stepsize, i.e., by = \/bg + Z:;i ||§F(IZ)H2 in which the latest gradient @F(zt) is not used
to calculate b;. This allows to decouple the dependency of b; on the randomness at time ¢, thus
in expectation E[b; *(VF (z;) — VF(x¢), 2 — 2*)] = 0. Yet, this analysis does not apply to the
standard algorithm which is more commonly used in practice.

To the best of our knowledge, we are the first to propose a new technique that can show the con-
vergence of Algorithm 2 on R? without going through the off-by-one stepsize. Here, we briefly
compared the assumptions in our analysis with the assumptions in Li & Orabona (2019). Assump-
tions 2’ and 3 used in both works are standard. Meanwhile, Assumptions 1 (y-quasar convexity)
and 4 (sub-Weibull noise) in our analysis are much weaker than the convexity and sub-Gaussian
noise assumptions in Li & Orabona (2019). Besides, we note that, while the guarantee in Li

& Orabona (2019) is a bound on E[\/(Zszl F(z;) — F(2*))/T], we will present a bound for

E[(ZZ;I F(z;) — F(z*))/T], which is a stronger criterion that is often used in convex analysis.
We also remark that the algorithm and analysis of Li & Orabona (2019) still require the smoothness
parameter to set the initial stepsize, thus their method is not fully adaptive.

The first observation is that, if we let & = VF(z,) — VF(z,) be the stochastic error and My =
max;e (7] [|&]|2, Mr is bounded by o log?’ <L with probability at least 1 — & (c.f. Lemma A.4 in
Appendix A), which can give a high probability bound on bp.

20 T

Lemma 3.3. Suppose F satisfies Assumptions 2’ and 4, if M7 < o2 log 5> then

A(F(zq) — F* L T 1602T log®” <L
bT§2bO+M+4nLlog+%+4a Tlog296(510g<1—|—0b(2)g5 .
n 0 0

Lemma 3.3 gives us an insight: b; = 6(1 + m/tlogw t). Note that this can be expected since

we know the classic choice of the step size for SGD is of the order of O(1 + a\/f). Hence, if
we are willing to accept extra log terms in the convergence guarantee, the appearance of log b, is
accommodatable. Next we will introduce our novel technique, which, to the best of our knowledge,
is the first method that allows us to analyze the standard Stochastic AdaGradNorm on R%.

Lemma 3.4. Suppose F satisfies Assumptions 1 and 3 then

E S F(xt) — F(x¥)
br

2
—2 2m  [M b

<Nz =t 2y {,f +log T]. (1)
v Y b5 bo
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Proof sketch. Starting from the y-quasar convexity, with simple transformations, we obtain
* _5 y Lt — x* b * *
Flay) - P < 280000 LV (a2 2 e — )
Y 2vn

Here we introduce our novel technique: instead of dividing by by, we divide both sides by 2b; — bg.

This divisor causes a slight non-uniformity between the coefficients of the distance terms ||z; — z* ||2
making the sum of them not telescoping. However, this is exactly what we want to handle the

difficult term % which does not disappear after taking the expectation.

E{F(xt)_F*}g]El<_&’xt_x*> be X||xt—x*||2—|xt+1—x*||2+||xt+1—wt|2]'

th — b() ’}/(th - bo) th — bo 2’}/77

The key step is to use Cauchy-Schwarz inequality for the term

(=&, ze —2")| < ||§t|| ||l’t —a|?

with the appropriate coefficient \ so that the term ||z; — x ||2 can be absorbed to make a telescoping
be—ilme—a*|® _ bellwipr—a*|?

2bt717b0 thfb(]
bounded. We can obtain

sum . The remaining terms are free of £*; hence can be more easily

~ 2
- [FW _F*] <8 |z e 1 etz = bz — o n|[Vre|
o 1| = s’ - ,
2b, — by 29n(2bi—1 —bo)  2yn(2b; — bo) 2707
where Z; = % (2bt_117b0 - 2bt£b0). Now we have a telescoping sum % -

bellwer—a”||? :
Sm(3br—bg) " Taking the sum over ¢, we have

T T
F(x:) — F* F(xy) — F*
E — | <E - -
2o | SE I o
t=1 t=1
N 2
T
_ n HVF(%)
< M Z zlal?| +E |3 A
P 2vb;
Proceeding to bound each term, we will obtain Lemma 3.4. O

We emphasize the following crucial aspect of Lemma 3.4: the inequality gives us a relationship
between the function gap and the stepsize by, which we know how to bound with high probability
under Assumptions 2’ and 4. On the other hand, this relationship is not ideal due to the fact that on
the L.H.S. of (1), we have not obtained a decoupling between the function gap and b. To this end,

we introduce the second novel technique. Let Ay = Zthl F(x;) — F(z*), we write

Ar = Arlgey + Arlpes)

where we define the event E(§) = {MT < 021og? %} For the first term, when E(4d) happens,
we also know from Lemma 3.3 that the stepsize is bounded. Thus we can bound

T *
Yy o) = Fla >bT]1E(5)]

br

E[Arlng)] =E

which leads us back to Lemma 3.4. We can bound the second term using a tail bound for the event
E<(8), knowing from the first observation that Pr[E¢(§)] < ¢. From this insight, and using the
self-bounding argument as in the proof of Theorem 3.1, we finally obtain the following result.

Theorem 3.5. Suppose F satisfies Assumptions 1, 2°, 3 and 4, Stochastic AdaGradNorm admits

T 0
F — F(z*
2=y F1) (=) =0 ((1 + poly (02 log?® T, log(1 + 0T log? T))) <; + alogT)) .

T VT




Published as a conference paper at ICLR 2023

Algorithm 3 AdaGradNorm-Last Algorithm 4 AdaGradNorm-Last
Initialize: x4, > 0,A > 0,p; > 0 Initialize: 21,7 > 0,6 € [2/3,1),p; > 0
fort=1toT fort=1t0T
by = (b2+A 4y P )I\Q)j (bz 3 Lo Tq)uz)
T4l = T — *VF(ZL’t) Ti41 = Tt — WVF(%)

Remark 3.6. In the big-O notation, we only show the dependency on ¢, T" and 6 for simplicity. The
dependency on the other parameters will be made explicit in the proof of the theorem. By setting

o = 0, we obtain the standard convergence rate E [(ZZ;I F(xy)—F(x*))/T] = O(1/T) as shown
in Section 3.1 for the deterministic setting. This means our analysis adapts to the noise parameter o.

Finally, it is worth pointing out that even when we relax Assumption 2’ to Assumption 2, we can still
provide a convergence guarantee for Stochastic AdaGradNorm. We present the result in Theorem
A.9 in the appendix.

4 LAST ITERATE CONVERGENCE OF VARIANTS OF ADAGRADNORM FOR
v-QUASAR CONVEX AND SMOOTH MINIMIZATION ON R¢

In Section 3, under Assumptions 1 and 2, we proved that the average iterate produced by AdaGrad-
Norm converges at the 1/7 rate, i.e., (Zle F(xy) — F*) /T = O(1/T). A natural question is

whether there exists an adaptive algorithm that can guarantee the convergence of the last iterate. In
this section, we give an affirmative answer by presenting two simple variants of AdaGradNorm and
show convergence of the last iterate under Assumptions 1 and 2°.

In Algorithm 3, by setting p; = i~1, |[VF(z;)||* has a bigger coefﬁcient than in the standard
AdaGradNorm. Should we use the l—povver (A = 0) instead of 5 + 53 x With A > 0, by will grow
faster compared with the same term in AdaGradNorm. We will see later that A = 0 still leads to
the convergence of the last iterate. However, we first focus on the easier case with A > 0 and state
convergence rate of Algorithm 3 in Theorem 4.1.

Theorem 4.1. With Assumptions 1 and 2’, by taking p; = % in Algorithm 3, we have

o G ) 18) (2 )

Fary) - T
where
@A) 1 o+ @ A>1 A
= 24+ A 2nL 2nL
h(A) = (2+A)22L +gL and g(A) = 2+ 8 (L log* il
S logT A€ (0,1) v Y Ybo

26072

An issue with variant 3 is that, when using ﬁ-power the stepsize ceases to be scale-invariant.
Algorithm 4 shows a different approach, using the scale-invariant power , but a different stepsize
b bi_f , for a constant § € [2/3,1). The tradeoff is that the provable convergence rate of the second
variant depends exponentially on the smoothness parameter. We also note that, when 6 = 1, we
obtain the same algorithm as when setting A = 0 in the previous variant.

Remark 4.2. by in every algorithm is only for stabilization and is set to a constant that is very close
to 0 in practice. However, the first stepsize in Algorithm 4, i.e., b3 b(lf‘s will explode. To avoid this
issue, we can simply set the first stepsize as b; instead of bg b(l)*‘;. We note that, under this change,
Algorithm 4 still admits a provable convergence rate. However, for simplicity, we keep b‘fb(l]_cs in
both the description of the algorithm and its analysis.
Theorem 4.3. With Assumptions I and 2’, by taking p; =

% in Algorithm 4, we have
bo exp ((—g) k()

F(zry1) — F* <

b

N T
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1\ +
|2 5
where k(5) = 7”;1;17:2; =4 % <1 — (S—%) ) + ,36 (%ﬁ)ﬁ) log+ —iﬁﬁ

To finish this section, we briefly discuss the case when A = 0 in Algorithm 3 or equivalently
0 = 1 in Algorithm 4. First, by seeing A tends to 0, we can expect a convergence rate depending
exponentially on the problem parameters. When A = 0, while we can still expect a bound of the

function gap via the final stepsize by, bounding by becomes problematic. In the proof of Theorem
¥+A7M+A

4.1, to bound b, we use the sum ZT W Zt | =z This sum only admits a
tf t

lower bound in terms of by when A > 0, thus the argument does not work when A = 0. However,
it is still possible to give an asymptotic rate under the y-quasar convexity assumption. If we further
assume that F’ is convex, we can give a non-asymptotic rate. The main idea on how to bound b is as
follows. Let 7 be the last time such that b; < nL/2. The increment from b, 41 to by can be bounded
by observing that the increase in each step [VF(x¢)]|? < 2p,b?. Moreover, the critical step is the
increase from b, to b1, which again can be analyzed via the function gap and smoothness. We
present the asymptotic and a non-symptotic convergence rate and their analysis in Sections B.4 and
B.5 in the appendix.

5 ACCELERATED VARIANTS OF ADAGRADNORM FOR CONVEX AND
SMOOTH MINIMIZATION ON R

In this section, by using the stronger Assumption 1°, we give two new algorithms that achieve the ac-
celerated rate O(1/7?), matching the optimal rate in 7' for convex and smooth optimization for un-
constrained deterministic problems. Our new algorithms are adapted from the acceleration scheme
introduced in Auslender & Teboulle (2006) (see also Lan (2020)). They are also similar to existing
adaptive accelerated methods designed for bounded domains, including Levy et al. (2018); Ene et al.
(2021). However, previous analysis does not apply in unconstrained problems; we therefore have to
make necessary modifications.

To the best of our knowledge, in unconstrained problems under the deterministic setting, the only
existing analysis for an accelerated method was introduced in Antonakopoulos et al. (2022). Here
we discuss some limitations of this work. The convergence rate for the weighted average iterate

Tr1/2 18 given by

f(@ri1y2) — fz) < O( (Rh hm by + Ky, hm b ))

where h is a Kj,-strongly convex mirror map function, R, = max h(xz) — min h(zx) is the range
of h. This result is only applicable when the domain is unbounded but the range of the mirror map
is bounded. Even in the standard (5 setup with i(z) = 1|z this assumption does not hold.
Moreover, due to the term lim;_, ., b, the above guarantee is dependent on the particular function.
Thus, while a standard convergence guarantee is applicable to say, all SVM models with Huber loss,
the above guarantee varies for each SVM model and there is no universal bound for all of them.

We further highlight some key differences between this work and ours. While the convergence rate
above depends on the convergence of the stepsize, for both our variants, we will show an explicit
convergence rate that holds universally for the entire function class. Second, the algorithm in Anton-
akopoulos et al. (2022) is based on an extra gradient method which requires to calculate gradients
twice in one iteration. Instead, our algorithms only need one gradient computation per iteration. Fi-
nally, our algorithms guarantee the convergence of the last iterate as opposed to that for the weighted
average iterate as shown above.

Algorithm 5 shows the first variant. For an accelerated method, the step size typically has the form

1
by = (b% + 22:1 5i||VF¢||2) * where VF; is the gradient evaluated at time 4, and s; = O(i2).
However in order to be able to give an explicit convergence rate, Algorithm 5 uses a smaller b; with
power 3 + 57x» With A > 0. When A = 0, we can only show an asymptotic convergence rate, similarly

to Antonakopoulos et al. (2022). We first focus on the case when A > 0. In the appendix we will
discuss the convergence of the algorithm when A = 0. We have the following theorem.
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Algorithm 5 AdaGradNorm-Acc Algorithm 6 AdaGradNorm-Acc
Initialize: ©y = wi,m > 0,A > 0,a; > Initialize: 1 = w1, > 0,0 € [2/3,1),a; >
0, qr > 0 07 qt >0
fort=1t0oT fort=1toT

v = (1 — ay)wy + agry ) ve = (1 — ay)ws + agxy

)12 A NS
b= (03 4+ i, VEGE) ™ b= (08 + i, V)
Ti41 = Tt — qtnTtVF(Ut) Ti41 = Tt — %VF('[&)
tY %1

wir1 = (1 — ap)wy + apTeqq Wesr = (1 — ap)w + aze

Theorem 5.1. Suppose F satisfies Assumptions 1’ and 2°, let a; = t_%l, qr = % in Alg. 5, then
1 22" =z | 4h(A) A\ [Nl =
F(w —F* < + +b —— + h(A

where
A—
(2+A)(2n2L) Ln? log+ 2;]0L A>1

h(A) =
(&) 7(2;?2&"2 log" 21E A€ (0,1).
0

Similarly to the second variant in the previous section, we also have a scale-invariant accelerated
algorithm, shown in Algorithm 6 using power % but a smaller stepsize b? b%:f . This algorithm also
has an exponential dependency on the problem parameters, which is given in the following theorem.
Remark 5.2. Similar to Remark 4.2, the first stepsize in Algorithm 6, i.e., b bé*‘s can be replaced by
b1. However, for simplicity, we keep b§ b(lf‘s in both the description of the algorithm and its analysis.

Theorem 5.3. Suppose F satisfies Assumptions 1’ and 2’, let a; = t_%l qr = % in Alg. 6, then

bo exp (29 (s(5))
Flurs) - F" < = TETi)l) ’

1\ T+
where s(§) = la® —aa |7 ;;1”2 + % <1 — (ZI:TOL) 5) .

Similarly to the previous section, we give a more detailed discussion of the convergence of the
Algorithm 5 when A = 0 or equivalently Algorithm 6 when § = 1 in Section C.4 in the appendix.
While we can still show an accelerated O(1/7?) asymptotic convergence rate, we only present an
O(1/T? + 1/T) non-asymptotic rate. The difference between these algorithms and the ones in the
previous section is that the stepsize b; increases much faster. More precisely, the increment in each
step is now O(2||VF (v¢)||?) instead of O(t||VF(x4)||?). Thus we can only show an upperbound
for b; that grows linearly with time, which leads to the O(1/T? + 1/T) convergence rate.

6 CONCLUSION AND FUTURE WORK

In this paper, we go back to the most basic AdaGrad algorithm and study its convergence rate in gen-
eralized smooth convex optimization. We prove explicit convergence guarantees for unconstrained
problems in both the deterministic and stochastic setting. Building on these insights, we propose
new algorithms that exhibit last iterate convergence, with and without acceleration. We see our
work as primarily theoretical since the first and foremost goal is to understand properties of existing
algorithms that work well in practice. We refer the reader to the long line of previous works (Duchi
et al., 2011; Levy, 2017; Kavis et al., 2019; Bach & Levy, 2019; Antonakopoulos et al., 2020; Ene
et al., 2021; Ene & Nguyen, 2022; Antonakopoulos et al., 2022) that have already demonstrated the
behavior of AdaGrad and accelerated adaptive algorithms empirically.



Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

TN and AE were supported in part by NSF CAREER grant CCF-1750333, NSF grant I1I-1908510,
and an Alfred P. Sloan Research Fellowship. HN was supported in part by NSF CAREER grant
CCF-1750716 and NSF grant CCF-1909314.

Reproducibility Statement. We include the full proofs of all theorems in the Appendix.

REFERENCES

Kimon Antonakopoulos, E Veronica Belmega, and Panayotis Mertikopoulos. Adaptive extra-
gradient methods for min-max optimization and games. arXiv preprint arXiv:2010.12100, 2020.

Kimon Antonakopoulos, Dong Quan Vu, Volkan Cevher, Kfir Levy, and Panayotis Mertikopoulos.
Undergrad: A universal black-box optimization method with almost dimension-free convergence
rate guarantees. In International Conference on Machine Learning, pp. 772-795. PMLR, 2022.

Alfred Auslender and Marc Teboulle. Interior gradient and proximal methods for convex and conic
optimization. SIAM Journal on Optimization, 16(3):697-725, 2006.

Francis Bach and Kfir Y Levy. A universal algorithm for variational inequalities adaptive to smooth-
ness and noise. In Conference on learning theory, pp. 164—194. PMLR, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Alina Ene and Huy L Nguyen. Adaptive and universal algorithms for variational inequalities with
optimal convergence. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pp. 6559-6567, 2022.

Alina Ene, Huy L Nguyen, and Adrian Vladu. Adaptive gradient methods for constrained convex
optimization and variational inequalities. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 7314-7321, 2021.

Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai, and
Rachel Ward. The power of adaptivity in sgd: Self-tuning step sizes with unbounded gradients
and affine variance. arXiv preprint arXiv:2202.05791, 2022.

Charles Guille-Escuret, Manuela Girotti, Baptiste Goujaud, and Ioannis Mitliagkas. A study of
condition numbers for first-order optimization. In Arindam Banerjee and Kenji Fukumizu (eds.),
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume
130 of Proceedings of Machine Learning Research, pp. 1261-1269. PMLR, 13-15 Apr 2021.
URL https://proceedings.mlr.press/v130/guille-escuret2la.html.

Oliver Hinder, Aaron Sidford, and Nimit Sohoni. Near-optimal methods for minimizing star-convex
functions and beyond. In Conference on learning theory, pp. 1894—-1938. PMLR, 2020.

Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher. Unixgrad: A universal, adaptive algorithm
with optimal guarantees for constrained optimization. Advances in Neural Information Processing
Systems, 32, 2019.

Ali Kavis, Kfir Levy, and Volkan Cevher. High probability bounds for a class of nonconvex al-
gorithms with adagrad stepsize. In 10th International Conference on Learning Representations
(ICLR), 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Guanghui Lan. First-order and stochastic optimization methods for machine learning. Springer,
2020.

Kfir Levy. Online to offline conversions, universality and adaptive minibatch sizes. Advances in
Neural Information Processing Systems, 30, 2017.

10


https://proceedings.mlr.press/v130/guille-escuret21a.html

Published as a conference paper at ICLR 2023

Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and acceler-
ation. Advances in Neural Information Processing Systems, 31, 2018.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In The 22nd international conference on artificial intelligence and statistics, pp. 983—
992. PMLR, 2019.

Xiaoyu Li and Francesco Orabona. A high probability analysis of adaptive sgd with momentum.
arXiv preprint arXiv:2007.14294, 2020.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26-31,
2012.

Mariia Vladimirova, Stéphane Girard, Hien Nguyen, and Julyan Arbel. Sub-weibull distributions:
Generalizing sub-gaussian and sub-exponential properties to heavier tailed distributions. Stat, 9
(1):e318, 2020.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. The Journal of Machine Learning Research, 21(1):9047-9076, 2020.

Yuege Xie, Xiaoxia Wu, and Rachel Ward. Linear convergence of adaptive stochastic gradient de-
scent. In International conference on artificial intelligence and statistics, pp. 1475-1485. PMLR,
2020.

11



Published as a conference paper at ICLR 2023

A MISSING PROOFS FROM SECTION 3

A.1 ADAGRADNORM

As we pointed out before, it is possible to obtain an improvement by a factor 1/ compared with
Theorem 3.1 by assuming L-smoothness instead of weak L-smoothness.

Theorem A.1. With Assumptions I and 2°, AdaGradNorm admits

Lllo =27 + 1L llza=a> | 20104+ 2nL
ZtT=1 F(xy) — F* < ( n +2nLlog bo +b0> < po + S log bo )
T - T .

Proof. Note that Assumption 2’ can imply Assumption 2, so following the same proof of Theorem
3.1, we still have

T * (|2
— 2 2nL
pat m v vbo

However, from here, we will bound b directly, rathe than use the self bounded argument in the
previous proof. By the L-smoothness, we know

L
F(zi1) = Fla) < (VF(@), 041 — 1) + §||3?t+1 —a?

- (5 - 2)Ivreor

202 b,
IVE@)|* _ 2(F(xs) = F(x41)) Ln 1 2
< — — — F .
= b, < ; + 2 b [VE ()|
Sum up from 1 to 7', we know
T T
VF(z)|* 2 Ly 1
S IEEEIE <2 (P — Pera + 3 (- 3 ) IVPG0P
t=1 by N =1 by b
2 = (Ly 1 )
S;(F(xl)_F(x N+ 2 [IVE (2"
t

Use the the same proof technique as before, we can bound

T
L 1 L
S (22— ) [VE@)? < 2L logt 2.
b bt bO
t=1 t

and

T T ;9 2 T
3 [VE ()| by —bi_y
T:E TZE by — bs—1 = by — bo.
t=1 t=1 t=1
Hence, we know

2 L
br < = (Fla1) = Fla)) +20L log™ Z— +bo
0

Lljz1 — z*|2 L
< M+2¢7Llog+%+bo.
0

By using this bound on by, we can get the final result with an improvement by a factor 1/+. O

12
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A.2 STOCHASTIC ADAGRADNORM

We will employ the following notations for convenience

t
Ay = ZF(xé) — I
s=1

& = VF(z,) — VF(z,);

M, == max ||&]*.
s€(t]

Before diving into the details of our proof, we first present some technical results we will use in the
proof of Theorem 3.5.

A.2.1 TECHNICAL LEMMAS

To start with, under Assumptions 1 and 3 only, we can obtain a bound for a term close to our final
goal Ar.

Lemma A.2. (Lemma 3.4) Suppose F satisfies Assumptions 1 and 3, we have

A —a > 2 [M b
E{ﬂ<wlxﬂ+"E{gﬂ%T}
br m vy b5 bo

Proof. We start by using the y-quasar convexity of the function F’

(VF(zy),my — x*)
’y AN A~
(VF(x) — VF(x1),; — x*) n (VF(xzy), 2 — x*)
Y Y

.
==ttt o (e @I = = 21 o e = )

F(J}t)—F*

IN

Dividing both sides by 2b; — by and taking expactations, we have

E{F(u)—F*} ol =) b =2t = e — o+ o — )
2bt — bo - 7(2bt — bo) 2bt — bo 2’}/77

Now we no longer have a telescoping sum in the R.H.S.. However, this is exactly what we want to

handle the difficult term % which does not disappear after taking the expectation. The key

step is to use Cauchy-Schwarz inequality for the term

A

2, 1 2
o

(=&, 2 —27)| <

with the appropriate coefficient \ so that the term ||z, — z*||* can be absorbed to make a telescoping
be—llwe—x* |2 bellzepr—az|?

sum ——5y; = "5, 2b;—bo

. The remaining terms are free of x*; hence can be more easily

13

] |



Published as a conference paper at ICLR 2023

bounded. To do this, note that

(=& a0 —27)
E:v@m—m>}

1 1 1
—E|= _ - .
Y <2bt_bo 2b_1 —b0>< &, e — ™)

L A
<E[|A|[(—&, 2 — 2%)|]

g (A bi1 b, o
<E ||A|l | — _
- -| | ( 4 \2yn(2b4—1 —bo)  2yn(2b; — bo) 1€l

_ bt—l bt 2
+1A7t < - ) T, —x* ﬂ
4 29n(2bs—1 —bo)  2yn(2b; — bo) I |

n 1 1 2
:E —_— —_
L’bo <2bt1 —by  2b; — bo) Il ]

bt b =)
2b;_1 — by 2b; — b 29m

+E

Thus we have

=

n 1 1 )
<E |- B
>~ [’Ybo (th—l — bO 2bt _ b0> ||£tH :|

~ 2
Y G O e ) )
2yn(2by—1 — by) 2yn(2by — by) 27vbi(2by — by)

n 1 1 )
E|L _
>~ [’Ybo (th—l — bO 2bt _ b0> ||£tH :|

~ 2
bhﬂ%—x*Z_@WMJ—ﬁF]+E NS

+E

+E

2yn(2bi—1 — bo) 2yn(2b; — bo) 207

Now we have a telescoping sum

b1 || — $*”2 _ by ||weq1 — $*||2
29n(2bt—1 — bo)  2yn(2b: — bo)

and the remaining terms are free of z; — x*. Taking the sum over ¢, we have

T

F(x;) — F*
E i e 7
P
t=1
T
n 1 1 ,
<E _
> ; 271)0 (2bt — bo 2bt—1 _ b0> ||§t|| ]
T ~
Hl‘l - aj*H? UHVF(xt)HZ
+ +E lvE@)|” |
27 ; 2707

2
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. T < 4 2
First for the easy term [E {thl W} , we have
NI VE@) 2| _ [~ 008
Z 2t _ g Z t 21:71
2vb; 27 p b;
. T
< %E lz log b? — log bfll
b
- "E [1 T} 3)
bo
Next, we bound
rT
n 1 1
E 2
> (5=~ 75— ) e ]
r T
n 1 1 )
<E — — M
- ; b <2bt1 ~bo 2b b T]
<E | gy )
— [
Plugging the bounds (3) and (4) into (2), we have
T
F(xy) — F* 1 —fr*||2 n " br
E —= "~ | <E < —E[M E log
t§::1 2b; - ; th - bo - 29n b2 [ } bo

Fz)-F" S, Fz)—F~

The last step is using Zt 1 20, > by

= 2%}—; to finish the proof. O

Due to the appearance of M7 in Lemma A.2, it is natural to consider what we can obtain under the
additional Assumption 4, i.e., sub-Weibull noise with parameter §. We first provide the following
simple bound on E [||&]|?]. The result is not new and the proof is only included for completeness.

Lemma A.3. Under Assumption 4, V't € [T], we have

E [[|&]1*] <T(260 + 1)eo?

Proof. We first note that from the definition of sub-Weibull noise, the tail of ||£|| can be bounded

as follows
E [exp (([|¢:]/0)"/?)]
exp ((u/a)l/e)

Prli&] > u) < < exp (1= (u/)/?).

Then we can obtain

E (lt?] = | " ouPr (e > u]du
< /000 2u exp (1 — (u/o)1/9> du

= 20602/ v~ exp(—v)dv
0
=T(20+ 1)ec

where u is substituted by ov? in the second equation. O

Next, we prove a high probability bound on My, the proof of which is inspired by Lemma 5 in Li
& Orabona (2020).

15
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Lemma A.4. Under Assumption 4, given 0 < § < 1, define the event
T
E(8) = {MT < 62log® 65} :
we have Pr [E(6)] > 1 — 4.

Proof. Note that

Pr[Mr > u] =Pr {max l€sI1? > u]
s€(T]

=Pr {max ||§3||% > U"’l"]
se(T)
- E [exp (max,e(r) ([|€]1/0) /%))
exp ((Ul/z/g)l/e)

_ S fexp (16 1/))]
- exp ((ul/Z/a-)l/G)

=Texp (1 — (ul/z/a)l/e) .

Choose v = o2 10g29 % to obtain

T
Pr [MT > g2 10g20 65] < 4.

Lastly, we will find an upper bound on the p-th moment of M.
Lemma A.5. Under Assumption 4, given p > 0, there is

E[MZ] < 0% <10g20p (D(40p + 1)e2T?) + 1) :

Proof. Note that in Lemma A.4, we proved
Pr[Mp > u] < Texp (1 - (u1/2/a)l/6> .
Let F() be the same as it in Lemma A.4. Then, by Holder’s inequality we have
E[Mp] =E [M1gs)] +E [Mpl )]

<E[M7ipe) + \/E (M| B [15:5)]

T
< 0% log?%? % +4/E [M%p] é

eT e
= o2 log??? 5 + (5/ 2pu?P=1 Pr [Mr > u]du
0

T o0
< 0™ log™” = + \/5 / 2pur T exp (1 = (ul/?/0)!/7) du
0
T
— 0_2p 10g20p % + 0_2[7 F(49p + 1)€T6
T
— (log29P % + /T (46p + 1)@T5> .

Choose § = < 1, we have

1
T'(46p+1)eT

E[M2] < o® (10g29p (T(40p + 1)e>T2) + 1) .

16
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Note that all the above results only depend on Assumptions 1, 3 and 4 without requiring the smooth-
ness of F.

A.2.2 PROOF OF THEOREM 3.5

Theorem 3.5 requires Assumption 2’ additionally. Thus we first show that under Assumptions 2’

and 4. by enjoys a 6(1 +oy/T log20 T') upper bound with high probability.

Lemma A.6. (Lemma 3.3) Suppose F satisfies Assumptions 2’and 4. Under the event E(5) =
{MT < o2 log29 %} we have

br < g7(8) = 2by + + 4nLlog"t 2— + 40, | Tlog? &
0

5 B2

Additionally, by Lemma A.4, there is

1—6 <Pr[E(5)] <Prlbr < gr(9)].

Proof. We start by using the smoothness of F'
L 2
F(aip1) — Fa) < (VF(2y), 201 — @) + 5th+1 — x|

2
~ L ~
= — L(VF(2,), V() + 15 5 IVF(z)|?
by 202

2
~ ~ ~ L ~
= =3 (VF () = VF (@), V(@) = 3 HIVF @) P + 3|V F ) P

VE@)|2 2 2(&, VF(xy L
o WP 2 ) — paay + 2 EE 4 (B LY jopye
b, n b by
Taking the sum over ¢ we have
TS T )
VF(x)|2 2UF F*) ,VF x
YTl 20 1)y ST Lo s (% - 5 ) I9F G
=1 t=1 t=1

Using the common technique, we know that Zt 1 (ZzL - é) IVF(z)|? < 2nLlog™ % More-
over, for the L.H.S.

b2—b )

2
Z HVF o) || Z Z — b1 = by — by.

t=1 t=1

Thus we have

ZT: &,VF )

17

A(F (1) — F) L T g ( 16027 log™ <
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For the last term in this equation, we notice that (&, VF(z)) < [&IIVF(z)| <

VM7 ||V F(z4)]), hence

w+2nLlog +b +2Z§t’L@“)>

br <
n by
2(F — F* L VF
 2rte) )+2nmog+%+bo+wM72 197 (a0
0 t

@) 2(F(z1) — F*)

L VF 2
< BV TT )y opLlogt 22 4 by + 2/ My | T Z I xt i
7 bo

b — bfl

t

2(F () — F*
=M+2nLlog —+b + 4MTTZ
n bo

< 2(F(21) — F7) + 2nLlog™ bf +bo + {/4M7T log b%
n 0

where (a) is due to Jensen’s inequality. We can write

b2 b2 b2 + 16 My T
AM7Tlog £ = AMyT (1 L log -2
TL08 3 T <°g Rt 160, T 8T 2
b2 b2 4+ 16 My T
<AMT| —T L gg0 't 727
= ST <bg+16MTT+ TR )
b2 b 16M+T
< T L 4M;Tlo w.
1 B2
Hence
2(F — I b 16M7yT
bT§b0—|—((x173)+277L10g \/+4M T log +b2 r
2(F — F* nL b 16MrT
§b0+w+27ﬂ410g +—+2 My T log *
n b bo
which gives us
4(F — F* b 16M1T
br < 200 + 2EE)ZFD) | ogt +4\/M Tlog °+b2 .
Recall the definition of the event E(6) is M7 < o2 1og20 %, thus we know
4(F(z1) — F* L eT 16027 log?? <L
bT§2b0+M+4nL10g+%+4a T(log 5)1g< +% .
n 0 0

O

By using Lemma A.6, we can consider the following decomposition
E [AT} =K [AT]lE((;)] +E [AT]lEc(,;)}

A
=K |:b;:bT]1E(5):| +E [AT]lEc((;)]

A
< gr(6)E {b;ﬂpj(a)} + E [Arlpes)]

Ar

b ] +E [AT]].EC 5)}
T

< e |57

18
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Note that Lemma A.2 tells us
A —z*)|?2 2 M. b
E {T] < s — 7|7 + 2R [T + log T} .
br m v

Hence our remaining task is to find a proper bound on E [AT]I Be( 5)] , which is stated in the following
lemma.

Lemma A.7. Under Assumptions 2’ and 4 we have

L b2
E [Arlpes)] < (F(xl) — F* +n°Llog™" ;’b) T +nEY* [MZ] | [logE [bﬂ T3/25/4,
0 0
Proof. We restart from the smoothness of F':
U S S e
F(aoi1) - F(2,) € —L(VF(x,) - VF(2,), VF(z,)) — L |[VF ()| + (@)l

bs bs 2b2
Taking the sum over s, we have for ¢t > 2
t—1 n t—1 2L n
o . 2
Pl ~F(en) < 3~ (VF) = 9P, 97 + 3 (g~ ) 197

t—1
nL n S
<P Llog" o0+ > &IV E @)
s=1 %

Following the same proof of Lemma A.6, we have

L b?
F(mt)—F*§F(x1)—F*+n2Llog+gT—|—n Mt_l(t—l)log;)—gl.
0 0

Now we bound A7 as follows

T
AT:ZF(xt)_

* * 2 b
< F(xy)—F —|—ZF$1 —F —|—77L10g ——|—n M;_ 1t—1log b2

nL b?_
* 2
S(F( 1) — F* +n*Llog™ 2b>T+E M;_1(t —1)log

nL b2
< (F( 1) — F* +n*Llog™" 20 >T+771/MT10g bgTB/Q
Thus we obtain
b%
MT lOg ?1EC(5)
0

Here we invoke Holder’s inequality for three variables: for p,q,r > 0,1/p+ 1/q + 1/r = 1 then

E[XY Z] < EV/P[XP|EY/4[Y9E'/"[Z"]. By substituting X = /Mp,Y = y/log ’,’T% Z = 1pes),
0
and p =4, q = 2,r = 4, we have

b2
MT IOg b2 ]lEC(J)

b2

nL
E [Arlges)] < (F( 1) = F* +nLlog* 2 2, >T6+77E T3/,

E

<EY* [MZ]E'/? [logl; }El/‘l (1))

0

<EY* [M3] |/logE [b

51/4
A
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So finally we get

L
E [Arlge)] < <F(m1) — F* 4+ n°Llog™ ;7b> TS
0

b2
+nEY* [MZ] {logE {b’g] T3/254/4,

0

Lemma A.8. Suppose F satisfies Assumptions 1, 2°, 3 and 4 then
E[Ar]

b
b

o o2 (2(49—1)v29 logzeT—i—Cl)

271 Vb3

rﬂl\.')

|

(1 +logE [

+nlogE[
Y

N

F(x1) — F* + 772L log+ 77L no (2(29_1)\/0 loge T+ Cg)
T3 ot 2

where C; = 201" 10g?® (D(40 + 1)e®) + 1 and Cy = 20~V 1og? (D(860 + 1)e
constants and

)

N
om‘ﬂw

are two

4(F — F*
—( (z1) ) +4nLlog™ Ui
0

16027 log™ (eT®
+ 40, | T'log®® (eT) log <1+ bo Zg (e )>
0

agr = 2b0 +

Proof. As stated above, we know
E[Ar]=E [AT]IE((;)} +E [AT]lEc(5)]

A
=E |:b;rbT]lE(6):| +E [AT]IEC(ZS):I

(a) A
< gr(9)E |:bT]lE(6):| +E [ArLpes)]

A
< gr(O)E [ bﬂ +E [ArTpp)]

® w1 = 2*|* 29 [Mr br
< gr( E log E [Arlge
< gr( )( T T B Tl | ) tE[ArLe)

lzy — 2™ | 29 U b%
< g7(9) ( + —ZE[Mr]+ LlogE | L | ) +E[Arlges
2777 b2 y b(Q) [ ( )]

where (a) is due to Lemma A.6. (b) is by Lemma A.2.

Lemma A.7 gives us

L b
E [Arlges)] < (F(xl) — F* +n°Llog™ ;7bO> 76 +nEY* [M7] [logE [bﬂ T3/254/4,

Pluggin in this bound, we have
E[Ar]

z —z|? 2p n b2,
<gr(9) <”12777” bz]E[M ] + log]E {b2]>

2
- (F(xl) — F*+n*Llog" %L) T6 +nEY* [M3] | [logE [ZIE]T?’/%V‘*.
0
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Now we take § = 7~% and let g7 := gr(T~*) to obtain
E[Ar]

ey —2*|* | 2 n b7
<gr ( + —5E[Mr]+ = logE | =
21 b3 v bg

+ % (F(ml) — F* +n*Llog™" ;i) +nEY* [M3] | [logE B}%} VT.
From Lemma A.5, we know
E[M7] < o2 (1og29 (T(40 + 1)e2T?) + 1) < o2(2W40-1)V2015020(y 4 ()
and
E [M3] < o*(log*(D(860 + 1)€*T?) + 1)
=EY [M}] =0 (1og49(r(89 +1)e*T?) + 1) v < a(log?(T'(80 + 1)e2T?) + 1)
< (200106 T + )

Hence we have

E [A7]
_ w2 2no? (2(49_1)V29 log?’ T + Cl) b2
S e ; + 7 logE [5}
29m b5 gl b5
F(z1) — F* + n?Llogt 2& b2
n (z1) T377 8 26 +no (2(29—1)v0 log? T + C2> log E [bﬂﬁ
. 2 ((o(40—-1)v20 1,20 )
<o |21 — %2 2no (2 log™ T + C} N 7 log B [b%«:|
- 27n) oL v b
F(.’lﬁl) — F* 4 772L10g+ % no (2(29*1)\/0 loga T+ 02) b%
0
+ 73 + 5 (1 +log E [b%D VT

O

With these results, we can finally show the theorem 3.5.

Proof of Theorem 3.5 . The key technique we use is the self-bounding argument. That is, we have
expressed a bound for E[Ar] via E[b2./b2], now we will show how to bound this term via Ar. To
do this, we rely on the smoothness assumption and Lemma A.3

T
b+ |VF<xt>||2]
t=1

T
> 2llél”

t=1

E[b7] =E

< +E +E

Z2VF(wt)||2]

t=1

T

ALY F(xy) — F(a¥)

t=1

< bZ 4 20(20 + 1)ecT + ALE [Ar] .

< by +2I'(20 + 1)ed’T +E

Thus from Lemma A.8 we can write

2
(20 + 1)ec®T AL ) )

E[A7] < Go + Gy log (1 + P + bTE [A7]
0 0
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where

F(z1) — F* +n?Llog* % no (2(20—1)v9 log” T + C2> VT
Gy = >+

T3 2
Y 0l 210 (214070V2 log™(T) + C1)
291 05
=0 <1 +0y\/T1og® T + (1 + 02 log* T)gT>
(20-1)vo 0
. 77)0(2 log T—i—Cz)\/T ngr
1= +

2 v

=0 (U\/Tlogng—l—gT)

4(F(x,) — F* L 1602T log (eT>
gr = 2bg + M +4nLlog™ Z— + 4o T10g29(eT5) log (1 + 6o Zg (e )>
n 0 0

=0 (1 + a\/T log?’ Tlog(1 + 02T log? T))

Now we solve (5). Consider two cases:

If 4LE [A7] < 2I'(260 + 1)ecT then

AT(20 + 1)eo®T
E[AT]SGMGllog(H(“)w)

b
If ALE [Ar] > 2T'(20 + 1)ec?T then

8L
E [AT] < GO + G1 log <1 + bTE [AT]>
0

1+ 8L [AT]

1+ 16LG, /b2 b2
1+ 3 E[A7] 16LG
< L m T L Gilog (1 !
_GO+G11+16LG1/b8+G1 0g< + B )
E[A 16LG
<Gyt G+ EOTl 4 1 1g (14 182G
2 0
16¢L
= E[Ar] < 2Go + 2G, + 26, log (1 + 6€b2G1>
0

In both cases, we have

16eL 4T(20 + 1)eaT
E[Ar] < 3Go +2G +2G) log <1+ bc G1)+G1log <1+(+)60>

b bg
=0 <(1 + poly (o2 log®® T, log(1 + 0>T1og® T)))(1 + o\/ T log® T))
Dividing both sides by 7" concludes the proof. O

A.2.3 CONVERGENCE OF STOCHASTIC ADAGRADNORM UNDER WEAKER ASSUMPTIONS

Note that Theorem 3.5 depends on the stronger Assumption 2’ instead of Assumption 2. Besides,
in Section 3.1, we proved that Assumptions 1 and 2 are enough to ensure that AdaGradNorm can
converge in the deterministic setting. Hence it is reasonable to conjecture Stochastic AdaGradNorm
can also converge if replacing Assumption 2’ by Assumption 2. In this section, we show that, indeed,
this conjecture is true.
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Theorem A.9. Suppose F' satisfies Assumptions 1, 2, 3 and 4. Stochastic AdaGradNorm admits

\/Z?_lF =) 0 (0 + potytiog( + VD0 ) =+ 2172 ).

Proof. First we invoke Lemma A.2 to get
A - 22 M b
{ T] <Nz =a? | 2np { Mr o T}
br V1 v Lo ® by
Using Holder’s inequality we have

E[v/Ar] g\/<w 2 Hfjﬂ l;ODE[bT]

n
< (”xl — I 20 () 4 210 Bl M) E [br].
- n b3 5y bo

Applying Lemma A.5 with p = 1 to get
E(Mr] < o® (log?” (T(40 + 1)e*T2) +1)
o? (229 logm9 T2 )+ 220 10g%¢ (T'(46 + 1)62) + 1)
— o2 (249 log29 T4 C’)
where C' = 22010g® (I'(460 + 1)¢?) +

Besides, note that

T T
br = |03+ D IIVE()|? < |0 +2 [|&]1? +4LAT < by +

t=1 t=1

T
23 " [I& )12 + 2v/LAr.
t=1

Thus we know

Ebr] <E by +

T
2> [l& )12+ 2v/ LAy
t=1

< by +

T
2> E[l&lP) +2VIE |v/Ar]
< b+ V2@ + DeoT +2VIE [v/Aq]|

where the last inequality is due to Lemma A.3.
Hence, by letting
2y — z%|| 2n (24910g29T+C) o?

B = +
m b3

= O0(1+ o%1log? T)
By = by + /2I'(20 4+ 1)ec?T
= O0(1+0VT)
e

we can solve the following inequality

2 By + 2VILX
X2 < <31 + 777 log <2+b\r>> (By + 2V LX)
0

to get the final result. [
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A.3 ADAGRAD

Algorithm 7 AdaGrad

Initialize: 1,7 > 0
fort=1toT
forj=1tod

bt,] \/b +211VF( ))

Tt41,5 = Tt,5 — b s V F(l’t)

In this section, we will extend the result of AdaGradNorm to AdaGrad (Algorithm 7) in the deter-
ministic setting. To our knowledge, we are the first to give the explicit bound of the counvergence
rate of AdaGrad on R?. First, we examine the growth of the stepsize.

Lemma A.10. Suppose F satisfies Assumptions I and 2", we have

d d

d
2(F(z,) — F* L
S bry <D jbo,j+((x1;)+2n§ "Ljlog* Ziﬂ

j=1 j=1
Proof. By smoothness we have

F(x11) — F(x4)

IN

(VE(21), 2441 — ) +

j=1

0,5

[[EE e

d 2
n Ly
(e
.j:1 124 t,J
d
Ljn n
= Z 20, P < F(xr) = F(xe) + Z 223 - - 2b“> V,;F ()
j=1 J ,
T d . T Ly ;
=3 D gy ViF @) < F@) = F 3% | G = g | ViF(w)
— 2b; ; _ 27 . 2b;,
t=lg=1 " =1 j=1 J :
Note that, for the L.H.S
7VJF(ZZ7t) — »J 4]
EFE 2ai= be.
T
n
S0 S TR
j=1t=1
" d
- §Z (bTJ bO,J)
j=1
Besides,
T d P
Lj772 n > 9 M L 1
_ VF(xt) = = =3 = VF(Z‘t)
2 J > §
d T
< HZ J MVF(x )? (7 is the last ¢ such thatb; ; < nL;)
-2 b2, " ¢ J tg =1
j=1t=1 "tJ
2 Tiop2 2
n t, t—1,
= ? ZLj ’ b2 .
j=1 t=1 12%]
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Hence we have

d d d

2(F(z) — F* L
S by <3 bo + (@113) N Sy A L
j=1 j=1

bo,;
j=1 0,7

Theorem A.11 states the convergence guarantee for Algorithm 7.

Theorem A.11. Suppose F satisfies Assumptions 1 and 2", we have

T *
Zt:l F(zy) - F
T

« d —* |2 +
d 2(F(z1)—F d + nL; llzr—a”|| 2 d 2nL;
(S0 o+ 2EE=ED oy 5 g 1) < byt (g ) )

T (dd e, bo,j)

where

d
oy — 2* |3, =Y by — a))2
j=1

Before going into the proof, it is worth discussing the result above as well as the main challenges
and differences compared with AdaGradNorm. For simplicity, let b; = diag(b; ;). We can expect
that, by a similar argument that we used before to bound the function value gap via the stepsize, we
will have

HQTI*I*Hi 2 d 2nL; +
SL Py —pe 007 <w + BT (2 - boy)
T - T

2t |2 _ +
where g(br) is a function of the last stepsize and the factor % + 27" 2?21 (21771;] — by, j>

is obtained in a similar manner as before, but in d-dimensions. The challenge is that since the
stepsize is a vector, it is not possible to use “division” by the stepsize as in AdaGradNorm. On the
one hand, we can overcome this by rewriting the argument; on the other hand, this problem will
incur an exponential rate for g(br) dependent on the smoothness parameters.

Proof. We can write
Tl = Tt — ’I]bt_1VF(IZ7t)
Starting from ~y-quasar convexity

(VF(z¢),m¢ — z*)

F(.Z't) — F* S
Y
_ (by (w1 — @440) 2 — 27)
nmy
_ lze — 213, — lzesr — ¥}, + [l — 23,
21y
ze — 2|3, — 2o — ¥},
= —||VF 2.
o + 2 IVPEI
Note that F’ also satisfies Assumption 2"
VF(z)|?
ey - > IVFCOE
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Hence

Fla) - F* IVE (@)L,

5 1 < F(xy) — F*
ze = 2*[Ig, = llwerr —2*[I5,
< t t s VF 27
s + VP @)
_ Ix X2 ¥ ||2 VF 2
N F(xy) — F < e — 2", = lzerr — 27l +£HVF( D2 ,%
2 - 2y 2y b, 4
e = a*1f, = llwes —a®I, S~ m 1
= F(x) — F* < : ¢ V,;F :
() < - +Y o 3L, (z1)?
Taking the sum over ¢
T
ZF(xt)—F*
T
lze — 25, — ||$t+1 I3, 1 2
B S () v
t=1 t=1 j=1 FY t.J J
oy — 2% 3, = llorss — 2713, lze =213, < ( )
_ ¢ Ly V,iF(x)”.
o ; P ZZ Vbr 2L (21)?

t=1 j=1

llwe—z"|5, .
% in the RHS, we need to proceed and bound ||z; —

z* ||%t_bt71. First, observe that since the L.H.S. is non-negative,

Due to the excess term 3,

e e T Al S R 1
"L < 2D S (e g ) V@)
J

m ou] ~ m ==
To upperbound ||z, — 2* |3, _,, . a key observation is that

2
2741 — 2" [[g,

K12 — k|12
e e v=r

br 1
> lory1 — ||bT+1 br 1 m

Hence for T > 1

|21 — x*”%ﬂl—bT
n

< max bri1,k 1 ||331—$*||12)1 +i
~k b %

T,k n —a m =1 j=1

|z —
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2
lor—2* 13, oy,

By using this bound for the last term T we obtain
T
D Fla) -
t=1
s =27, = llorss = a*3, o=@ b, g~ (0 1
< : =+ ——+ — 5 ) ViF (@)
m ;2 v ;; Yo 2L;)
ey — 2|3, = Nz — 2"l S 1
<P g SRy — o | ViF(2)?
m ; m ; SS\bey 2L;)
b o — 2 2 Tl m, — 22 T-1 d 1
+ max (T’k —1> I Hbl + I Hbt Do + ( il > VjF(ﬂct)z
k T—1,k m —a m =1 j= Yoirj 2L
T-1 T-1 d
bry | e — 2", [ — IIbt b, ( )
= d + + Vi F(x4)?
br—1k m ; = 1; i 2L
d . 1
=+ ( — ) \Y% F(xT)
j; ’}/bT)7 2Lj J

=1, we have

by
Continue to unroll this relation and for convenience let Hf —74q MaXy 5=

M=

F(x,) — F*
t

|
d

Il
-

IN

H bk ] |71 — = ||b1
m

*b
=5 t—1,k

a bk | lor =2}, G- T be,k n 1 2
Hm +ZZ H max ) -_27[/]4 V,;F ()

P be—1,k gl

+
(]~
/\
N~
B
><
g
EX
~—
M~
N
2
I3
<
|
[\)
JE
~——
<
~
=
8

~+

. . 2L,
Given j, if by ; > ",y i we know
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Otherwise, let 7; be the last ¢ such that b; ; < 21;71:] , we also have

-7 .
be i - ( n 1 )
< max — —— | V,F(x
<[ s (z D
rr ] Tj
< max —" Z 'l VF(z)?
s F by Lk |\ by j
[T ] Ti 72 2
b b? . — b2
= max t.k ﬁz t,J t—1,5
s ko bk |\ = t,j
o : .
b,k 2n
< max — — by — b1,
sk bt—lk_ (7 ; by
T
2n bek 2nL; +
<— m —bo,j
A e R ¥

Hence we know

j=1t=1 =t+1 3
2 [ bi i L, +
<— Hmax d Z ( J o,g)
S PR R I i N
Thus we have
T
> F(xy) - F*
t=1
[l o £ ([ megts) (e
< max max b F(x,
mr b bk TiE o B b )\ 2L !
T *|2 d +
b T —T 2 L.
< | et | (Lol +”Z< o —bo,j)
i b bi—1,k N v = v

From Lemma A.10

d d d
2(F(x1) — F*) 4L
D D ) DL

j=1 0,j

Using AM-GM we have

d St )1 (R 2F@)-FY NS
[Ibr, < J < > boj+ . +2n7)  Ljlog o
Jj=1 j=1 —

j=1 )J
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Note that

d
H max < H H bbt’J

be—15 t=2 j=1

Ly
T,j
<
<113,

d
d
1 2(F(x1) — F*) nL;
< Zbo~+—+2nZLlog
d l.j
de Hj:l bO,j j=1 n j=1 b
Hence
T
> F(w) - F
t=1
T b H o +
H T,j Tq T ||b1 2’]7 Z <277L b )
s “br1y m ’7 o\ !
2F(z L |1 —2* |13 d (2L, +
( j= 1bo,; + ((17) +2772] 1L10g+" ) <1'm b1+27n2j:1(n ) >
da? Hj:l bo;
which finishes the proof. O

B MISSING PROOFS FROM SECTION 4

B.1 IMPORTANT LEMMA

First, we state a general lemma that can be used for a more general setting. The proof of the lemma
is standard.

Lemma B.1. Suppose F satisfies Assumptions 1 and 2’ and the following conditions hold:
o xy is generated by xy, 1 = Ty — %VF(xt), withn > 0 and ¢, > 0 is non-decreasing;
* pt € (0,1] satisfies p% b = q;

-  DPt+1

Then we have

F(JST+1)—F*<||a:1—a:*||2+2T:<L_1 P tcf>nVF<xt>||2 ©

prer - \2¢, n m 2°L cipe
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Proof. Starting from L-smoothness

L
F(ze11) = Fwe) S (VE(@0), 2041 = @) + Sl — ||

- ,];t (VE(z), 21 — ) + (1 - ?) (VF(xt), 041 — 20) + §||$t+1 - :Ct||2
2
= pt< (.’L’t)7$ _xt> <VF(.’Bt) Tt41 —{L'*>

2 L
<1 - pt) VF It s L1 — IEt> §||It+1 — II?t||2

v
biCy o .
< 2py (F" = F(w¢)) + [H wp = 2| = [lzerr — 2*|* = | — 1H2]
2pt> ct L 9
1= == ) =g — + 5zt =z
-(-%)3
bic * *
= 2p, (F* — F(x)) + — [th — & |? = |z — 27
L piC
+ < - + tt) ||£L't+1 - $t||2.
2.n
Note that Assumption 2 can be implied by Assumption 2°, hence we have
. [V (x)|? tllwer — @?
F*—F < - = —
() < 2L 221

Therefore
* p * *
F(zp11) — F(xe) < 2p (F" — F(a)) + ;7; (e = 2*[|* = Jz41 — 2*||?]

L ¢ c

+ < -2 + be t> ||£Ut+1 - $t||2
2 n

2 2
* DPtCy||Tt4+1 — Tt PiCt *
< p (P~ Play)) - PP 20D POy o)
n?L

L Ct ptct> 2
5 -+ lzer1 — o4l
2 n

* PtCt * *
F* = F(a ))+W[||xt—l’ I = Nz — 2*)1%]

L Ct PiCt PfCt )
st lwesr — .
<2 n o yn  2n*L

e — 2*|* = ||lzgp1 — 2*]?

We obtain

1—
< — P (P(a) - F*) +
DtCt bic n

n (L_l P ptct> |zes1 —
s

2 n yn 29*L

. 1— .. .
Note that we require p% > # and ¢; is increasing hence

1 1—peaa S 1—pi

>
PiCt — Dt+1Ct  DPt+1Ct+1
which leads to
F(.I‘T+1) — F*
prcr
T
1-p1 ||951 - ||2 ( pt PeCt ) lxep1 — $t||2
< F(x)— F* + P2
pic1 (F(a) )+ tz:; 2 'yn 2n2L Dy
1-p ||x1 —x ||2 - p o me ) PIVE@)IE
=P () -y LT S b P
pic1 2Cf w 2n*L D

t=1
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By setting p; = 1 we get the desired result. O

B.2 FIRST VARIANT

Note that if we assume p; satisfies the condition in Lemma B.1, by replacing c; by b;, we have

Flari) - ||x1 —a HQ . Z < L b ) 2| VF (o)

prT 2% n ' m 2PL bipe
immediately. Now our two left tasks are to bound the residual term
S (2LTt - % + 5 - 21);52) 1 HbeIStrt)H and find an upper bound on by. Lemmas B.2

and B.3 demonstrate how we achieve these two goals.
Lemma B.2. Ifp; < 1 for every t, we have

T
—1 2bt 277 b%pt

T 2
3 (pt_ piby ) | VE (24| < g(A)

—~\m 2L byt
where
(2+A)n(nL) + nL A
hA) o g —logm B A>1 and  g(A) = (2+4)n <277L> Jog+ 2nL
(2;?# 10g+ "L A€ (0,1) ~ ~y ~vbo

Proof. We first bound

Z( > n ||VF(9Ct)||2
2b; 277 btpt

t=1
If by > nL, we know

T
L 1 2|VF 2
= 201 21 by pe

Otherwise, we define the time 7 = max {¢ € [T], b, < nL}. Hence, we have

T T

L PIVE@)|® _ 5~ (L IVE ()| L P IVE ()]
Z 20, 2n b? Z 20, 2n b? * Z 20, 2n b?
— t n t Pt P t n tPt — t n t Pt

T 2 T 2 2
<3 (& b) TR (5 & AT
= \20; 2 b?py th bip:

T 2+A 2+A 2+A 2+ A
_ n*L Z b - b . n?L < Z b — b « pA-1
- 3 - 2+A t
2 t=1 b; 2 t=1 by
2L b2+A_b2+A A1
>t b2+A x (nL) Az1
< 2L b2+Aib2+A N
1= POHEE bf*A/ X R A<l

24+ A 24+ A
n(nL)> L e
QZt 1T A1

b2+A ¢ b2+A

{blAZtl - A<
- (2-~-A)77(77L)A log A>1
= (2+A)77 L
7%1 log A<l
< h(A).
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By applying a similar argument, we can prove

T 2
3 <pt _ b > [ VE ()| < g(A).
t=1

yn - 2n*L b7 py
O

Lemma B.3. Suppose all the conditions in Lemma B.1 are satisfied by replacing c; by b, addition-

ally, assume p; < 1, we will have
1

br < (727 (W + (D) +g(A)) 4 bOA) )

Proof. Using Lemma B.1 by replacing c; by b;, we know

prbr
T
||;1c1 —z*||? +Z ( l Pt piby ) n? | VE () |”
—\20; n 7y 29°L b7p:

t=1

T
||w1 —a ||2 'y L P pb \ PINVE@)IP - nl V()]
2bt 27’}

po o 2L b7y 2b7py

i - x*||2

Z n||VF(x) ||2
mn

h(A
B thzpt ’

where the last inequality is by Lemma B.2. Notlcmg F(xzry1) — F* > 0, we know

*“2

nIVE@)? _ o -
< + h(A) + g(A).
Z 207 py m (&) +9(4)

Now we use the update rule of b, to get
T A A
ZU”VF ) |* _n ber _b2j1

2 2
207 23 bi t=1
Hence we know

by < (727 (W +h(A) +g(A)> +b§)A

Equipped with Lemmas B.2 and B.3, we can give a proof of Theorem 4.1.

Proof. Note that if p; = %, all the conditions in Lemma B.1 are satisfied by replacing c; by b;.
Hence we have

Farg) — F* < oy — 2*||? + ET: (L _! L b Piby > IV E ()|
prbr T —\20: n m 29°L bipe
|21 — 2|2 +i ( L 1 po pibe > n?|VE (z,)|”
- —\2b: 29 o 29°L bip:
a2
< B = )+ g(a),

where the last inequality is by Lemma B.2. Multiplying both sides by prbr, we get

br (1225215 1 h(A) +g(2))

T
By using the upper bound of b7 in Lemma B.3, we finish the proof. O

F(rryr) — F* <
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B.3 SECOND VARIANT

Similar to the previous section, what we need to do is to bound the residual term

2 2
—lpp pe N VE (x| — popl-9d
E =1 (20r Ly o L) e and find an upper bound on c¢r where ¢, = bb,~{

here. We first bound the residual term by the following lemma.

Lemma B.4. Ifp, <1 for every t, we have

52 ()

T
Z< DiCt > n ||VF(%)||2 <2 <277L> log™ 21L& 2nL
~22L cip 76 \ 7vbo 7bo

t=1

where c; = bJb; 0.

, bs . . . .
Proof. Note that—%t— = ——t— > 1, this means ¢;is monotone increasing. We first bound
Ct—1 b b;~5

T
3 ( L ) n IIVF(fEt)H2
2¢y 277 ctpt

t=1
If ¢; > nL, we know

T 1\ +
Z(L >TI|VF($t)||2 0<T]2—L 1_(50)5
—\2¢ 2y cip ~ bo nL
Otherwise, let 7 = max {t € [T],¢; < nL}. We have

T T
3 < L ) n IIVF(fvf)H2 Z L VF (x|
— \2¢ 2 cipt - 26}y
_ ﬂ 5 b — by
2 = 0P

by — b1
< Zb&s 3

by — b
2L t t—1
Z bibt—1

TVT—1

11 1 ()it AN
7_7§7_L5§7 1_(0> )
bo b, bo (nL)l/ bo 7’)L

Combinging two cases, there is always

1\ +
fﬁ(L >n|VHmm2 Ll_(m)é
—~\2c: 29 cipe bo nL .

Now we turn to the second bound. If ¢; > 2nL/~, we know
T 2_
Z(m_wﬁnWﬂm20<%G%y2mﬂM
—~\m 29°L cipe ~ 76 \ vbo Ybo
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Otherwise, we define the time 7 = max {t € [T],¢; < 2nL/~}. Then, we have

T
Z (pt b ) n ||VF($t)||2 Z bt n HVF(J%)”
o 2L cipe —m  cip

n Z HVF zy)|”

Ct Pt

= 2 Z b26b2 25

n T
N Z<bt 1) b

1/6

Because bfb%:f =c¢; < 2nL/~fort < T, so we know b; < (;’ZL(; . Using this bound
t—1

< -

2—26 b2 _ bQ

2_
772( ) i Qt_1§n2(2nL)5zbf—f?_1
bt 1 bt Pybt 1 bt

" <M>QZ b — b3,
7 \ 7bo — b

o (2nL\ 52
<2 (77) log 2

v \ 7bo bo

2_9
2 2nL\ ° 2nL
<2 (77) log* 21
v§ \ ~vbo vbo

The proof is completed. O

IN

As before, our last task is to bound cp. It is enough to bound by since cr < by.

Lemma B.5. Suppose all the conditions in Lemma B.1 are satisfied by replacing c; by by, addition-
ally, assume py < 1, we will have

+
|z —=* || 4L (1- (b 5 + 2 (2L 32 logt 21L
n? bo nL v \ vbo & Sbo

br < by exp

Proof. By Lemma B.1, we know
F(Z'T+1) — F*
prcr

0<

< Nz = z*|?

+

(L 1 ope pe ) | VE (z,)|?

M=

- —~\2¢, n A 2°L cipe
N T
o < llz =2 Py (L_ L pe pec ) PIVE(@)? — nllVE ()|
- om ~\2¢ 20 7 2°L cipe 2cip:
N T
S UTRE b 5 (L Lt ) IR
2pe  — = \2¢; 2y 2L cipe
lzy —z*||*>  7°L bo AN 2nL 52 2nL
< =2 4= 1() + = ( > logt =2
gl bo nL 76 \ 7vbo Ybo
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where the last inequality is by Lemma B.4. Note that for the L.H.S., we have

ZnIIVF ) |)? nz _ Z 2 b\
2c2p; b25b2 W bt 1 by

>n(1 —5)

Hence we know

ler—a* |2 | nL 2\ " AL oL,
T1—® nL (1 _ (b 2 (29 + 21
7 T <1 (nL> > T35 (’Ybo) log vbo
br < bgexp

Finally, the proof of Theorem 4.3 is similar to the proof of Theorem 4.1, hence, which is omitted.

B.4 AN ASYMPTOTIC RATE WHEN A =0AND§ =1

As mentioned before, by setting A = 0 in Algorithm 3 and § = 1 in Algorithm 4 we obtain the
same algorithm. The square root update rule of b; and the step size now are both more similar to
the original AdaGradNorm. Intuitively, we can also expect the convergence of the last iterate in
this case; furthermore, by taking the limit when A — 0 and § — 1, we can have a sense of the
exponential dependency of the provable convergence rate on the problem parameters. However,
previous analysis strictly requires that A > 0 and § < 1, thus does not apply here.

In this section, we partially confirm the convergence of this variant by proving an asymptotic rate,
ie., F(zp41) — F* = O (1/T). Unfortunately, under Assumptions 1 and 2°, we cannot figure out
the explicit dependency of the convergence rate on the problem parameters. However, in the next
section, we will give an explicit rate by replacing Assumption 1 with the stronger Assumption 1°.
As stated, our goal is to prove Theorem B.6 in this section.

Theorem B.6. Suppose F' satisfies Assumptlons 1 and 2’, when A = 0 for Algorithm 3, or equiva-
lently, 6 = 1 for Algorithm 4, by taking p; = +, we have

Flzri1) — F* =0 (1)T).

Before starting the proof, we first discuss why we can obtain only an asymptotic rate when A = 0
and 6 = 1. As before, one can still expect that F(xry1) — F* < % remains true for some
constant C'. However, a critical difference will show up when we want to find an explicit upper

bound on br. Using the proof of Lemma B.3 as an example (similarly for the proof of Lemma
IV EY (@)l?
b7 t Pt

”Vng’”)”Q by b2+A b2+A with A > 0, we can lower bound Zthl HVI;;#”‘Q by a function

of by and finally give an exphclt bound on br. However, this is not possible when A = 0 as

B.5), one key step is to get ZZ; = O(1), where in the previous analysis, by replacing

2 2 _p2
S % =y b bl;f L. The only information we can get from 3, bi bl;t* =0(1)is
mr_ o bz = 1. This is not enough to tell us whether by is upper bounded or not. In Lemma B.8§,

we will use a new argument to finally show that limp_, ., by < oo, which leads to an asymptotic
rate as desired. It is worth pointing out that finding an asymptotic without explicit dependency on
the problem parameters is the approach used in some of the previous work, such as Antonakopoulos
et al. (2022). This also gives us a glimpse of the method used to analyze the convergence of the
accelerated methods in Section 5.

Now we start the proof. As before, we can employ Lemma B.1. Hence we only need to bound the
residual terms as following
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Lemma B.7. Suppose p; < 1, when A = 0 for Algorithm 3, or equivalently, 6 = 1 for Algorithm

4, we have
| VF()|? nL  \*
3 PIVFE (1L
th 277 b py bo

i( _ oy ) PIVE@? _ 20, s 20L
m o 2*L bipe T ~bo

t=1

The proof is essentially similar to the proof of Lemmas B.2 and B.4, hence we omit it here.

Lemma B.8. Suppose all the conditions in Lemma B.1 are satisfied by replacing c; by by, then when
A = 0 for Algorithm 3, or equivalently, 6 = 1 for Algorithm 4, we have

lim by = by < 0.
T— o0

Proof. First note that b, is increasing, by the Monotone convergence theorem, we know
limyp_, o by = by exists. We aim to show b, < co. By Lemma B.1 and replacing c; by b,
we have

F(Q?TJrl) — F*
prbr
N T
M=zl | 5~ (L Sl i > IV @)l
T —~\20, n n 2°L bip
N T
21 — *|| 'y (L L pe pib ) PIVE@)I? 1 PV
v ~\2b, 29 7 2°L b7t 2 b¥pe
T
_lzy — = S <L 1 b ) PIVE(@)|?  nlVE ()]
m = \2b, 29 2L bipe 2b7py
k]2 + 2
< |21 — 2" g <77L _ 1) el 274, 277L Z 77||VF2 2l 7
ol bo ¥ 2bipt

where the last inequality is by Lemma B.7. Noticing F' ($T+1) — F* > 0, we know

VF (x| — a*||2 L t o9 oL
ZWH 293t il < |21 — 2| +n<”_1) +ﬂ10g+ n 7
2bipy m bo ~vbo

which implies

VF( o|zy — z*||? L Ty 2nL
Z | th < [E 2x [ I (’7 _ 1) + A gt 2L )
bipe o] bo 5 vbo
We observe that

VF 2

=i IVPGOI
pr
b7y
2 _

=br = 1_ NEGOP? — H HVF IR

b%"pT b2p¢

Taking log to both sides, we get

2 _
log b7 = log b *Zl‘)g nvm)n? logbo+2 HVF oF !

b2p b2ps
o IvE) o ITEE)?
pt pt
= log b + Z uvtF g < logbi+ Z nvtF(z,)uz
b2ps b2p,
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Note that Inequality (7) tells us lim;_, o % = 0, hence we can let 7 be the time such that
% < & fort > 7. Then we know
o HVIZQ(OH)H2 r—1 I\Vi(ﬂﬂt)ll2 I\Vlljz(ﬂb’t)ll2
Pt _ tpt Dt
Z 1 — IVE@)[I? Z 1 — IVE@)II? + Z _ IVE(@)|?
t=1 bipe t=1 bip: bipe
-1 HVF(ﬂﬂt)II2
VF(x)|?
< tpt ||
Z WF(MH2 +2Z b2p,
b7ps =T
r—1  IVE@)I? 9 +
bZpe 2||zy — 2| nL 4. 2L
< 1= _ -
Z TG 2 ( o TG ) e Ty
bfpt
< 0.
The above result implies log b2- has a uniform upper bound which means b, < oco. O

Now we can start to prove Theorem B.6.

Proof. Note that when A = 0 for Algorithm 3, or equivalently, 6 = 1 for Algorithm 4, if p; = %,
all the conditions in Lemma B.1 are satisfied by replacing c¢; by b;. Hence we have

Flari) — F* _ Jor— 2| | < (L_l P piby ) 2|V F (1))

< +
prbr v 20 n oy 2°L b p:

(]

t=1
[l

m

IA

+

(L1 pe opeb | PPIVE@)
—\2b, 29 yn 2L bip

— |2 L t o9 oL
_ Mz — 2] +n("1> 4 gt 2
m bo ol bo

where the last inequality is by Lemma B.7. Multiplying both sides byprbr, we wknow

b T — 2|2 L t o2 2nL
Flage) — F* <22 1||+,7(’7_1> 2 gt 2L
ol bo Y 7bo

— x| L L 2nL
oo (= +n(”—1) L2 20
T m bo o vbo

where the last line is by Lemma B.8. O

B.5 A NON-ASYMPTOTIC RATE WHEN A = 0 AND § = 1 FOR CONVEX SMOOTH FUNCTIONS
In the previous section, we only give an asymptotic rate when A = 0 and § = 1. In the following,

we will show that, by replacing Assumption 1 by the stronger Assumption 1°, a non-asymptotic rate
can be obtained as stated in Theorem B.9.

Theorem B.9. Suppose F satisfies Assumpnons 1’ and 2’, when A = 0 for Algorithm 3, or equiv-
alently, 6 = 1 for Algorithm 4, by taking p, = +, we have

+
z1—z*]? 2nL
( ()
)- P <

F(Z‘T+1 - T )

+
where b = max{"L VU + |[VF(z1)|? exp (W +3 (2"L 1) > )
; + - +
77L\/}1 el oy (22 1) exp (3'“,72 (2L 1) >}
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We first give another well-known characterization of convex and L-smooth functions without proof.
Lemma B.10. Suppose F satisfies Assumption 1’ and 2, then ¥z, y € R?

S IVE@) - VE(@y)|*

p— L -

(VF(z) = VF(y),z —y)

Next, we state a simple variant of Lemma B.1, the proof of which is essentially the same as the proof
of Lemma B.1, hence we omit it.

Lemma B.11. Suppose the following conditions hold:
* F satisfies Assumptions 1’ and 2’;

o : 1 1-p —
pt € (0, 1) satisfies 2 ﬁ,pl =1

When A = 0 for Algorithm 3, or equivalently, § = 1 for Algorithm 4, we have

* * T
Flaps) = F* _ o —a*|? (L_1+pt>772w~m)||2
prbr T 2y —\2b: n 29 bip:

The same as Lemma B.7, we give the following bound on the residual term without proof.
Lemma B.12. Suppose p; < 1, when A = 0 for Algorithm 3, or equivalently, § = 1 for Algorithm

4, we have
T
Z<L_1>’72”WW<”<277L_1)+
=1 th 477 b%pt - 2 bo
Again, the above two lemmas give us

x1 — x*|? 2nL +
F(zry1) — F* < prbr (”1277' +g (” - 1) ) ®)

W.lo.g., we assume by > % in the following analysis. Otherwise, we can use the bound by < %
to get a trivial convergence rate. Now we define the time

Tmax{tE[T],thnQL}\/O.

This time 7 is extremly useful and will finally help us bound b7. Now we list the following three
important lemmas related to time 7.

Lemma B.13. With Assumptions 1’ and 2°, whent > 1 + 1,

V F(x:)| is non-increasing.

Proof. Taking v = x4,y = x4+ in Lemma B.10, we get
IVF (1) = VF(2441)]?

SA(VE(xy) = VF(2441), 2 — Tey1)

L
= (VE(x) = VF(ae1), 3 VF(x)
= (1= D) VRGP + LIVFGnl < (5 - 1) (T, V@)

Note that when t > 7 + 1, we know b; > % = % — & > 0, hence we have

1 n 1
(£-2) VPGP + LIVF@)?

< (i — Z) (VF(x1), VF(2t41))

1 Ui 2 1 n 2
<| == — _ - \V/

which implies |V F (z¢41)||? < [[VF (z¢)|?. This is just what we want. O
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Lemma B.14. With Assumptions 1’ and 2, if p; = %, whent > 17+2 > 2,

V@I _ 2
by -3
Proof. This is because
IVE()? tHIVE ()]
bipe b3+ ey iV (a)|2
3 HVEG)]?
T (t= DIVF(ze-1)|I? + tIVE (1) |2
t|VE ()|
T (= DIVE(z)[? + IV ()2
_t
21
where the last inequality is because t — 1 > 7 4 1, hence |[VF(z¢—1)|| > ||VF(z)|| by Lemma
2
B.13. Note that t > 2, so IVEE0ll < 200 < 2, O

Lemma B.15. With Assumptions 1’ and 2’, if p; = +

1 — p*||2 L +
b < /B3 + IV F(2y)]? an\/4 4 W + (g _ 1)
0

Proof. If T = 0, we have

b7—+1 = b1 = \/bg + ||VF(I1)||2

Otherwise, we know 7 + 1 > 2, hence

Dy =0+ (4 1) [VE ()
<B4 2L (1 4+ 1) (Flogi1) — FY)

k|2 +
< popTHly, (ot om0k
T 2n 2\ by

—x*||? 2nL +
< p? 4Lb, M n 279
2 _ax]|2 +
< @ 4 ?L? [z — 2| 4 277L71
2 n? bo

1 ey — 2| onL +
:bmgnL\/gh a +<n _1>
4 Ui bo

where the second inequality is due to (8). O

Now we combine Lemmas B.14 and B.15 to get an upper bound for b7.
Lemma B.16. With Assumptions 1’ and 2, if p; = %

L — z*? 2nL *
br < max L,\/b%‘F”VF(Il)‘PeXp M+3 i )
2 U bo
U e =2 (20l i 3z — |2 2nL N
FORY R L | R (e e An =TI g (202
! \/4 " Us " bo P U - bo
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Proof. Note that if by < L , we are done. If by > = we will bound b7 as follows:
VF(z 2
%:%1+H;;w
b ki 1
2 T-1 — 2
=0 = TR T U 11 | INE@I
b2 pr t=7+42 b7p:
d 1
2 2
= long S 10gb7.+1 -+ Z log w
t=7+4+2 btpt
T HVF(JK)H2
{p
<logbyy + Z —IVF@I
t=7+4+2 bfpt
T
3| VF ()|
<logh? | + )
o t ;2 b

where the last inequality is by Lemma B.14. Noticing p; = % < 1, combining Lemmas B.11 and

B.12,we can find
* +
ZIIVF zl? _ 2||x1—xll2+2<2nL_1> |
b7 p: U bo

Hence we know

T
3| VE ()|
log b3 < log b2 1t Z —_—
t=7+42 btpt
6[jz1 — z*||? 2nL +
< log b? ——+6( — -1
= 108071 7> * bo
6|21 — 2*|? 2nL "
= 1)2 <v? —_—+6| —-1 .
TP ( n? - bo
The last step is to use the bound on b, in Lemma B.15. O

Finally, the proof of Theorem B.9 is obtained by simply using Lemma B.16 to Equation (8).

C MISSING PROOFS FROM SECTION 5

C.1 IMPORTANT LEMMA

First, we state a general lemma that can be used for a more general setting. The proof of the lemma
is standard.
Lemma C.1. Suppose F satisfies Assumptions 1’ and 2’ and the following conditions hold:

e wy is generated by
Vg = (1 — at)wt + A+t
n
Tt 1:$t—7VF (%7
+ e (ve)
w1 = (1 — ag)wy + g
withn > 0 and ¢, > 0 is non-decreasing;

l—asqq

* a; € (0,1] and q¢ > ay satisfy =~ > > oot ar =1
Then we have
T
- aRD B - e L
arqrer T 2n — \ 2b; 2 a7

t=1
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Proof. Starting from smoothness

F(wi1) — F(u)
<(VF(vg), w1 — ve) + gHth —ug)?
=(1 = a)(VF(ve), we — ve) + ar(VF (), 241 — ve) + %Hwtﬂ —ug|?
=(1 = a)(VF(v),ws —v) + a(VF(vy), 2" — o) + a(VF(vy), Tps1 — ) + gHth — g2
<L —a)(F(wy) — Fv)) + ar(F* = F(ve)) + ae{VE(vr), 21 — %) + g”wt-H — vg|?
Thus
Fwipr) = F* < (1 —a)(F(we) = F7) + ae(VE(ve), @41 — 27) + g”wtﬂ —v?

where the last inequality is due to the convexity of F. Using the update rule VF(v;) =

q‘n” (x4 — x441) and w1 — vy = ag (Tr41 — x4) We obtain

F(wpgr) — F* < (1 —a)(F(w) — F7)

aqc ai
T (I =l =l =z = llzers = wel®) + =5 e —

Dividing both sides by atqic; and sumning up from 1 to 7', we have

e

r 1—a
Flwi1) —F*) <> “(F(wp) — F7)

=1 GtQtCt = QtqtCt
T
LCLt 1 ) 2 1
+ Tyl — Tt||" + || — 21
> (5t = 5o oo =l 4 5 la” =l
Note that a; < ¢y, atqltct > at:l;i:fcftﬂ and a; = 1. Thus
Fluwrp) = F" _ o= S~ (L1 :
< + (5 =5 ) e — 2l
argrcr 21 =1 200 2n
||$1 — + 3 < ) n IIVF(vt)II2
P 2, 21 ciq?

C.2 FIRST VARIANT

By using Lemma C.1, the proof idea of Theorem 5.1 is the same as the proof of Theorem 4.1. Hence,
we omit it for brevity.

C.3 SECOND VARIANT

By using Lemma C.1, the proof idea of Theorem 5.3 is the same as the proof of Theorem 4.3. Hence,
we omit it here.

C.4 A DISCUSSION ON WHENA =0ANDJ =1
Algorithms 5 and 6 become one when A = 0 and § = 1. As discussed in B.4, the challenge is to

find a explicit bound on br. First, we give an asymptotic rate in Theorem C.2 of which the proof
idea is the same as the proof of Theorem B.6, thus is omitted.
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Theorem C.2. Suppose F' satisfies Assumptions 1 and 2°, when A = 0 for Algorithm 5, or equiva-
lently, 6 = 1 for Algorithm 6, by taking a; = t% pr = % we have

F(wri1) — F* =0 (1/T?).

Now, we aim to prove the following non-asymptotic rate.

Theorem C.3. Suppose F satisfies Assumptions 1 and 2°, when A = 0 for Algorithm 5, or equiva-
lently, 6 = 1 for Algorithm 6, by taking a; = t%, P = %, we have

n

F —F* < '
(wr41) T(T + 1) i T

We shortly discuss here why we can only give a rate in the order of 1/7 but not 1/72. Recall that
in the proof of Theorem B.9, the key step is that after a certain time, ||V F(x)|| is a non-increasing
sequence, by using which we can finally give a constant upper bound on by that finally helps us
to get the final 1/7T rate. However, it is unclear under what condition on b, ||V F(v¢)|| now will
be a non-increasing sequence in our accelerated algorithm. Thus it is unclear to us whether it is
possible to give a constant bound on bp. Instead, we will show b; can increase at most linearly in
this accelerated scheme by a new trick, for which reason, we can finally obtain the rate in the order
of 1/T. This guarantees that the convergence of the last iterate is no worse than the variants in
Section 4.

Proof. As before, to start with, we use Lemma C.1

* * T
Flurp) = F* o —a*[? | (L )nHVFUII
arqrbr - 2n 2b; 27 biq?

2
By using b7 = b7_, + % and the same technique in the previous proof, we know
t

Z( > 7 ||VF(7Jt)||2 Ll ot 1 nL
2bt 2n btqt ~ by b()

t=1

So we have

x1 — z*||? 2L L
F(wry1) — F* < arqrbr (Hl +I= log™* 77)

2n bo bo
D
Now we turn to bound b; by observing
VF(vy)?
e, 4 IVEE
a:
o 2AVEE) - VE@enI? | 20V Ewe)
<bi,+ 5
qt qt
20, 2 2
<8+ 2L7 vy 2wt+1|| 2||V11’1(wf+1)||
a; @
_y o 2LPaflwen —al? | 20V E (wer)|?
=0i1 + 2 + 2
4q; qy
2|VF(w 2
< b2+ 202 ||z — |+ |(q2t+1)||,
i
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5 2 2,2 ;2
. o VF by —bi_
where the last inequality is due to a; < p;. Then we use ||z;41 — 2|2 = L1 b2;fft)” = 1 e J
t 1t t

and ||VF(1U,5+1)||2 < 2L(F(wt+1) — F*) < 2Latqtth to get
27]2[/2 (b% - b%—l) n 4Latqtth

b2 < b2+

by a;
2 2L2 b2 _ b2
<p2, 4+ (bg ) 4
t
b2 b2 7b2
= by < L +2p?L2 =L 4 4LD
by b3
b 1 1
<bq+4p?L* (— — =) +4LD
b1 b
an?L2
= by < by + ”b +4LDt.
0

Using this bound, we finally get
F(wriq1) — F* < arqrbrD
4 (bo U 4LDT) D

—_ b[)

T(T +1)

2752 z1—z*||? 2 21—z 12 2 2
) 4(b0+4nb0L ) (u L L gt %) . 16 (%Jr%log %)
B T(T+1) T+1 ’

O

D EXPERIMENTS

Fix,)—F"

—— AdaGradNorm Last lterate
AdaGradNorm Averaged lterate

—— AdaGradNorm-Last (4 =0, equivalently, 5=1) \/ Y

—— AdaGradNorm-Last (4 =1.00) \/
AdaGradNorm-Last (5 =0.90)

107° 1 — AdaGradNorm-Acc (A =10, equivalently, 5=1)

AdaGradNorm-Acc (A=1.00)

AdaGradNorm-Acc (5 =0.90)

Accelerated GD

o 200 400 600 800 1000

Figure 1: Function value gap for different algorithms

In this section, we provide some empirical evidence to compare the performances of our algorithms
in the deterministic setting. Our test function follows the quadratic function used to prove the lower
bound of the first order method constructed by Nesterov (Nesterov et al., 2018). That is

o1 afd? + S ) = ali )
: |

F(z) =

43



Published as a conference paper at ICLR 2023

where 2[i] refers to the i-th coordinate of point # € R?. It is known that F' is 4-smooth and convex
with the unique minimizer
et i .
i) =1 d+1,Vz€[d].

We fix d = 101 and set the time horizon to 7" = 1000 in the test. The starting point z; is initial-
ized randomly satisfying that every coordinate is uniformly chosen in [0, 1). All algorithms share
the same ;. For the adaptive algorithms, we choose by = 1072 and set = 1 without any fur-
ther tuning. We also compare with an accelerated algorithm (Lan, 2020), which requires using the
smoothness constant L = 4.

The result is shown in Figure 1. We can find that our Algorithms 3 and 4 admit the last iterate
convergence. Additionally, both our accelerated algorithms, i.e., Algorithms 5 and 6, enjoy the
accelerated property without knowing the smoothness parameter and are competitive against Ac-
celerated Gradient Descent (Lan, 2020) which requires the smooth parameter to set the step size.
Another interesting observation is that it seems AdaGradNorm also exhibits the last iterate conver-
gence. However, whether this is indeed a property of AdaGradNorm has not been confirmed by the
theory. We leave this as a future direction.
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