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Abstract

In this work, we describe a generic approach
to show convergence with high probability for
both stochastic convex and non-convex optimiza-
tion with sub-Gaussian noise. In previous works
for convex optimization, either the convergence
is only in expectation or the bound depends on
the diameter of the domain. Instead, we show
high probability convergence with bounds de-
pending on the initial distance to the optimal
solution. The algorithms use step sizes analo-
gous to the standard settings and are universal
to Lipschitz functions, smooth functions, and
their linear combinations. The method can be
applied to the non-convex case. We demonstrate
an O((14021og(1/6))/T+0//T) convergence
rate when the number of iterations 7" is known
and an O((1 + o2 1log(T/5))/\/T) convergence
rate when 7" is unknown for SGD, where 1 — § is
the desired success probability. These bounds im-
prove over existing bounds in the literature. We
also revisit AdaGrad-Norm (Ward et al., 2019)
and show a new analysis to obtain a high prob-
ability bound that does not require the bounded
gradient assumption made in previous works. The
full version of our paper contains results for the
standard per-coordinate AdaGrad.

1. Introduction

Stochastic optimization is a fundamental area with extensive
applications in many domains, ranging from machine learn-
ing to algorithm design and beyond. The design and analysis
of iterative methods for stochastic optimization has been the
focus of a long line of work, leading to a rich understanding
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of the convergence of paradigmatic iterative methods such
as stochastic gradient descent, mirror descent, and acceler-
ated methods for both convex and non-convex optimization.
However, most of these works only establish convergence
guarantees that hold only in expectation. Although very
meaningful, these results do not fully capture the conver-
gence behaviors of the algorithms when we perform only
a small number of runs of the algorithm, as it is typical in
modern machine learning applications where there are sig-
nificant computational and statistical costs associated with
performing multiple runs of the algorithm (Harvey et al.,
2019; Madden et al., 2020; Davis et al., 2021). Thus an im-
portant direction is to establish convergence guarantees for a
single run of the algorithm that hold not only in expectation
but also with high probability.

Compared to the guarantees that hold in expectation, high
probability guarantees are significantly harder to obtain and
they hold in more limited settings with stronger assumptions
on the problem settings and the stochastic noise distribution.
Most existing works that establish high probability guaran-
tees focus on the setting where the length of the stochastic
noise follows a light-tail (sub-Gaussian) distribution (Ju-
ditsky et al., 2011; Lan, 2012; 2020; Li & Orabona, 2020;
Madden et al., 2020; Kavis et al., 2021). Recent works also
study the more challenging heavy-tail setting, notably under
a bounded variance (Nazin et al., 2019; Gorbunov et al.,
2020; Cutkosky & Mehta, 2021) or bounded p-moment as-
sumption (Cutkosky & Mehta, 2021) on the length of the
stochastic noise. Both settings are highly relevant in practice
(Zhang et al., 2020).

Despite this important progress, the convergence of cor-
nerstone methods is not fully understood even in the more
structured light-tailed noise setting. Specifically, the exist-
ing works for both convex and non-convex optimization
with light-tailed noise rely on strong assumptions on the op-
timization domain and the gradients that significantly limit
their applicability:

The problem domain is restricted to either the unconstrained
domain or a constrained domain with bounded Bregman
diameter. The convergence guarantees established depend
on the Bregman diameter of the domain instead of the initial
distance to the optimum. Even for compact domains, since
the diameter can be much larger than the initial distance,
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these guarantees are pessimistic and diminish the benefits of
good initializations. Thus an important direction remains to
establish high probability guarantees for general optimiza-
tion that scale only with the initial Bregman distance.

The gradients or stochastic gradients are assumed to be
bounded even in the smooth setting. These additional as-
sumptions are very restrictive and they significantly limit
the applicability of the algorithm, e.g., they do not apply to
important settings such as quadratic optimization. Moreover,
the stochastic gradient assumption is more restrictive than
other commonly studied assumptions, such as the gradients
and the stochastic noise being bounded almost surely.

The above assumptions are not merely a technical artifact,
and they stem from very important considerations. The
high probability convergence guarantees are established
via martingale concentration inequalities that impose nec-
essary conditions on how much the martingale sequence
can change in each step. However, the natural martingale
sequences that arise in optimization depend on quantities
such as the distance between the iterates and the optimum
and the stochastic gradients, which are not a priori bounded.
The aforementioned assumptions ensure that the concentra-
tion inequalities can be readily applied due to the relevant
stochastic terms being all bounded almost surely. These
difficulties are even more pronounced for the analysis of
adaptive algorithms in the AdaGrad family that set the step
sizes based on the stochastic gradients. The adaptive step
sizes introduce correlations between the step sizes and the
update directions, and a crucial component is the analysis of
the evolution of the adaptive step sizes and the cumulative
stochastic noise. If the gradients are bounded, both of these
challenges can be overcome by paying error terms propor-
tional to the lengths of the gradients and stochastic gradients.
Removing the bounded gradient assumptions requires new
technical insights and tools.

In addition to requiring stronger assumptions, due to the
technical challenges involved, several of the prior works are
only able to establish convergence guarantees that do not
match the ideal sub-Gaussian rates. For example, a com-
mon approach is to control the relevant quantities across all
T iterations of the algorithm via repeated applications of
the concentration inequalities, leading to convergence rates
that have additional factors that are poly-logarithmic in 7.
Additionally, achieving noise-adaptive rates that smoothly
interpolate between the faster rate in the deterministic set-
ting and the state of the art rate in the stochastic setting is
very challenging with existing techniques.

This work aims to contribute to this line of work and over-
come the aforementioned challenges. To this end, we intro-
duce a novel generic approach to show convergence with
high probability under sub-Gaussian gradient noise. Our ap-
proach is very general and flexible, and it can be used both

in the convex and non-convex setting. Using our approach,
we establish high-probability convergence guarantees for
several fundamental settings:

In the convex setting, we analyze stochastic mirror descent
and stochastic accelerated mirror descent for general opti-
mization domains and Bregman distances, and we analyze
the classical algorithms without any changes. These well
studied algorithms encompass the main algorithmic frame-
works for convex optimization with non-adaptive step sizes
(Lan, 2020). Our convergence guarantees scale with only
the Bregman distance between the initial point and the opti-
mum, and thus they can leverage good initializations. Our
high-probability convergence rates are analogous to known
results for convergence in expectation (Juditsky et al., 2011;
Lan, 2012). The algorithms are universal for both Lipschitz
functions and smooth functions.

In the non-convex setting, we analyze the SGD as well as the
AdaGrad-Norm algorithm (Ward et al., 2019). Compared to
existing works for SGD (Madden et al., 2020; Li & Orabona,
2020), our rates have better dependency on the time hori-
zon and the success probability. For AdaGrad-Norm, our
approach allows us to remove the restrictive assumption on
the gradients as made in previous work (Kavis et al., 2021).
In the full version of our paper', using a slightly different
technique, we give a high probability convergence of the
standard per-coordinate AdaGrad (Duchi et al., 2011). To
the best of our knowledge, this is the first result for high
probability convergence of AdaGrad.

1.1. Our techniques

Compared to prior works that rely on black-box applications
of martingale concentration inequalities such as Freedman’s
inequality and its extensions (Harvey et al., 2019; Mad-
den et al., 2020), in this work we introduce a “white-box”
concentration argument that leverages existing convergence
analyses for first-order methods. More precisely, the high-
level approach is to define a novel martingale sequence
derived from the standard convergence analyses and derive
concentration results for this sequence from first principles.
By leveraging the structure of the optimization problem,
we are able to overcome the aforementioned key difficul-
ties associated with black-box applications of martingale
concentration results: these concentration results require
certain important conditions on how much the martingale
sequence can change, which are generally not a priori sat-
isfied for the natural martingales that arise in optimization.
By seamlessly combining the optimization and probability
toolkits, we obtain a flexible analysis template that allows
us to handle general optimization domains with very large
or even unbounded diameter, general objectives that are not
globally Lipschitz, and adaptive step sizes.
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Our technique is inspired by classical works in concen-
tration inequalities, specifically a type of martingale in-
equalities where the variance of the martingale difference
is bounded by a linear function of the previous value. This
technique is first applied to showing high probability con-
vergence by Harvey et al. (2019) in the strongly convex
setting. Our proof is inspired by the proof of Theorem 7.3
by Chung & Lu (2006). In each time step with iterate x4,
let & = Vf (x;) — Vf () be the error in our gradient
estimate. Classical proofs of convergence evolve around
analyzing the sum of (&, z* — x;), which can be viewed as
a martingale sequence. Assuming a bounded domain, the
concentration of the sum can be shown via classical mar-
tingale inequalities. The key new insight is that instead of
analyzing this sum, we analyze a related sum where the co-
efficients decrease over time to account for the fact that we
have a looser grip on the distance to the optimal solution as
time increases. Nonetheless, the coefficients are kept within
a constant factor of each other and the same asymptotic
convergence is attained with high probability.

1.2. Related work

Convex optimization: Nemirovski et al. (2009); Lan (2012)
establish high probability bounds for stochastic mirror de-
scent and accelerated stochastic mirror descent with sub-
Gaussian noise. The rates shown in these works match the
best rates known in expectation, but they depend on the Breg-
man diameter max, yecx Dy (2, y) of the domain, which
can be unbounded. Our work complements the analysis with
a novel concentration argument that allows us to establish
convergence with respect to the distance Dy, (z*, z1) from
the initial point. Our analysis applies to the general setting
considered in (Lan, 2020) and we use the same sub-Gaussian
assumption on the noise.

The works by Nazin et al. (2019); Gorbunov et al. (2020)
and Parletta et al. (2022) consider the more general set-
ting of bounded variance noise. However, their problem
settings are more restricted than ours. Specifically, Nazin
et al. (2019) analyze stochastic mirror descent only in the
setting where the optimization domain has bounded Breg-
man diameter. Parletta et al. (2022) analyze modifications
of stochastic gradient descent, but only for problems with
bounded domains. The work by Gorbunov et al. (2020) for
smooth functions and by Gorbunov et al. (2021) for non-
smooth functions, analyze stochastic gradient descent and
accelerated stochastic gradient descent with gradient clip-
ping, for unconstrained optimization with the /5 setup. In
contrast, our work addresses the sub-Gaussian noise setting
but it applies to general optimization, and we analyze the
classical stochastic mirror descent and accelerated mirror de-
scent without any modifications and with general Bregman
distances and optimization domains.

The algorithm of Davis et al. (2021) is restricted to well-
conditioned objectives that are both smooth and strongly
convex, and do not apply to general convex optimization.
Additionally, compared to classical methods such as SGD
and stochastic mirror descent, the proposed algorithm solves
an auxiliary optimization problem in each iteration and is
thus more computationally expensive. The high-probability
convergence of SGD is studied in Kakade & Tewari (2008);
Rakhlin et al. (2011); Hazan & Kale (2014); Harvey et al.
(2019); Dvurechensky & Gasnikov (2016). These works
either assume that the function is strongly convex or the
domain is compact. In contrast, our work applies to non-
strongly convex optimization with a general domain.

Non-convex optimization: Li & Orabona (2020) demon-
strate a high probability bound for an SGD algorithm with
momentum while Madden et al. (2020) and Li & Liu (2022)
show for the vanilla SGD and generalize to the family of
sub-Weibull noise. However, the existing bounds are not op-
timal, which we improve in our work, using a very different
approach. Convergence in high probability of algorithms
with adaptive step sizes for non-convex problems has also
been studied, for example, by Li & Orabona (2020); Kavis
et al. (2021). We note that the algorithm in (Li & Orabona,
2020) is not fully adaptive due to the dependence of the ini-
tial step size on the problem parameters, whereas in (Kavis
etal., 2021) the gradients or stochastic gradients are required
to be uniformly bounded almost surely. Using techniques
from Liu et al. (2022) and extending the argument for SGD
in Section 4.1, we are able to establish convergence in high
probability of the vanilla version of AdaGrad-Norm (Ward
etal., 2019; Faw et al., 2022) without any of these additional
assumptions. We provide a more detailed comparison with
prior work in the subsequent sections.

High probability convergence in the heavy-tail noise regime
has also been studied. However, instead of analyzing exist-
ing algorithms, most works propose new algorithms which
usually require gradient clipping to ensure convergence.
Zhang et al. (2020) propose a gradient clipping algorithm
that converges in expectation for noise distributions with
heavier tails that satisfy the assumption that the p-moments
are bounded for 1 < p < 2. Cutkosky & Mehta (2021)
propose a more complex clipped SGD algorithm with mo-
mentum under the same noise assumption, for which they
show a high probability convergence. In another line of
works, Zhang & Cutkosky (2022) consider parameter-free
algorithms that adapt to the initial distance in the heavy tail
regime. In contrast, we focus here on vanilla algorithms that
have been successfully employed, including stochastic mir-
ror descent, stochastic gradient descent and AdaGrad-Norm
with sub-Gaussian noise, and fill in the missing pieces in the
literature. We believe our techniques are general and they
may lead to further progress in the heavy tailed setting, and
we leave this direction to future work.
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2. Preliminaries

We consider the problem min, ¢y f(x) where f : R? — R
is the objective function and X’ is the domain of the problem.
In the convex case, we consider the general setting where
f is potentially not strongly convex and the domain X is
convex but not necessarily compact. The distance between
solutions in X" is measured by a general norm ||-||. Let ||-||,
denote the dual norm of ||-||. In the non-convex case, we
consider the setting where X' is R? and ||-|| is the ¢ norm.

In this paper, we use the following assumptions:

(1) Existence of a minimizer: There exists z* =

argmingey f(x).

(2) Unbiased estimator: We assume to have access to a
history independent, unbiased gradient estimator V f () for
any v € X, that is, E {ﬁf(a:) | x} =V f(z).

(3) Sub-Gaussian noise: H@f(x) - Vf(z) H is a o-sub-

Gaussian random variable (Definition 2.1).

There are several equivalent definitions of sub-Gaussian ran-
dom variables up to an absolute constant scaling (see, e.g.,
Proposition 2.5.2 in (Vershynin, 2018)). For convenience,
we use the following property as the definition.

Definition 2.1. A random variable X is o-sub-Gaussian if

1
E [exp (A\*X?)] < exp (A%0?) VA such that [A| < —.

o
We will also use the following helper lemma whose proof
we defer to the Appendix.

Lemma 2.2. Foranya > 0,0 < b < % and an o-sub-
Gaussian random variable X,

2v2 | o (aX + 02 X2)
E[l—i—bX +;7ﬂ
< exp (3 (a2+b2) 02).

When b = 0, the upper bound improves to exp (2a202).

3. Convex case: Stochastic Mirror Descent and
Accelerated Stochastic Mirror Descent

In this section, we analyze the Stochastic Mirror Descent
algorithm (Algorithm 1) and Accelerated Stochastic Mirror
Descent algorithm (Algorithm 2) for convex optimization.
We define the Bregman divergence Dy, (z,y) = ¢ (z) —
¥ (y) — (VY (y) ,x — y) where ¢ : R? — Riis a 1-strongly
convex mirror map with respect to ||-|| on X. We remark
that the domain of 1) is defined as R? for simplicity, though
it is not necessary.

Algorithm 1 Stochastic Mirror Descent Algorithm

Parameters: initial point x; € X, step sizes {7}, strongly
convex mirror map
fort=1toT"

zesn = argmingex {n (Vf (22) @) + Dy (0,20 |

1 T
return 5y, ¢

3.1. Analysis of Stochastic Mirror Descent

The end result of this section is the convergence guaran-
tee of Algorithm 1 for constant step sizes (when the time
horizon 7' is known) and time-varying step sizes (when
T is unknown) presented in Theorem 3.1. However, we
will emphasize presenting the core idea of our approach,
which will serve as the basis for the analysis in subsequent
sections. For simplicity, here we consider the non-smooth
setting, and assume that f is G-Lipschitz continuous, i.e.,
we have ||V f(z)|, < G for all x € X. However, this is
not necessary. The analysis for the smooth setting follows
via a simple modification to the analysis presented here as
well as the analysis for the accelerated setting given in the
next section.

Theorem 3.1. Assume f is G-Lipschitz continuous and
satisfies Assumptions (1), (2), (3), with probability at least
1 — 9, the iterate sequence (x1)¢>1 output by Algorithm 1
satisfies

Di/i(x*!ml)
6(G2+02(1+10g(%)))T’
Dy (%, 2741) < 4Dy (¢*, 21), and

(1) Setting mn; then

1 T
fgj(f(xt)—f(m )

SLL\F\?PE_ Dy (z*,21) (G2 +o? <1 +log (<15>)>’

Dw(m*,ml)
6(G2+02(1+10g(3)))t’
Dy (%, 2741) < 2(2+1logT)Dy (2*, 1), and

(2) Setting then

Nl
[M]=

(f (z) = f(27)) < 2\;/;(2 +1logT)

~
Il

1

Dy (x*,x1) <G2 + 02 <1 + log (;)))

We define & := %f (x¢) — Vf(x¢) and let F; =
o (&1, ..,&—1) denote the natural filtration. Note that x; is
Fi-measurable. The starting point of our analysis is the fol-
lowing inequality that follows from the standard stochastic
mirror descent analysis (see, e.g., (Lan, 2020)). We include
the proof in the Appendix for completeness.

X

&
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Lemma 3.2. (Lan, 2020) For every iteration t, we have

Ap = (f (@) — [ (27)) — 77t2G2
+ Dy (%, 2441) — Dy (27, 24)

2
< (& — ) + 7 &l -

We now turn our attention to our main concentration argu-
ment. Towards our goal of obtaining a high-probability con-
vergence rate, we analyze the moment generating function
for a random variable that is closely related to the left-hand
side of the inequality above. We let {w;} be a sequence
where w; > 0 for all . We define

Zt:tht_UtDw (x*,a:t), \VllgtST,
where v; = 602nfw?,
T
and Sy =Y Z;, V1<t<T+1.
i=t

Before proceeding with the analysis, we provide intuition
for our approach. If we consider S, we see that it com-
bines the gains in function value gaps with weights given
by the sequence {w;} and the losses given by the Bregman
divergence terms D, (2*, z;) with coefficients v; chosen
based on the step size 1; and w;. The intuition here is that
we want to transfer the error from the stochastic error terms
on the RHS of Lemma 3.2 into the loss term v, D, (z*, z;)
then leverage the progression of the Bregman divergence
Dy (z*,2441) — Dy (2, 24) to absorb this loss. For the
first step, we can do that by setting the coefficient v, to equal-
ize coefficient of divergence term that will appear from the
RHS of Lemma 3.2. For the second step, we can aim at
making all the divergence terms telescope, by selecting v,
and w; such that w; + v; < wy_1 to have a telescoping sum
of the terms w; Dy, (2, 2441) — wi—1Dy (2%, 2¢). In the
end we will obtain a bound for the function value gaps in
terms of only the deterministic quantities, namely 7;, w;, G
and the initial distance. In Theorem 3.3, we upper bound
the moment generating function of .S; and derive a set of
conditions for the weights {w; } that allow us to absorb the
stochastic errors. In Corollary 3.4, we show how to choose
the weights {w; } and obtain a convergence rate that matches
the standard rates that hold in expectation.

We now give our main concentration argument that bounds
the moment generating function of \S; inspired by the proof
of Theorem 7.3 in (Chung & Lu, 2006).

Theorem 3.3. Suppose that w;n? < ﬁ foreveryl <t <
T. Forevery 1 <t <T + 1, we have

T
E [exp (St) | Fi] <exp (302 Zwiﬁ) .
i=t

Proof. We proceed by induction on ¢. Consider the base
case t = T'+ 1. We have the inequality holds true trivially.

Next, we consider 1 < ¢ < 7T'. We have

Elexp (St) | Fi] = E [exp (Z; + Sit1) | Fi
= E[E [exp (Z; + St41) | Fega] | Fi] - (1

We now analyze the inner expectation. Conditioned on
Fiy1, Zy is fixed. Using the inductive hypothesis, we obtain

E [exp (Z: + Sty1) | Fri1)

T
< exp (Z;) exp (302 Z wm?) . (2

i=t+1

Plugging into (1), we obtain

E [exp (St) | Fi]

T
< Elexp(Z;) | Fi] exp (30’2 Z wm,?) )

i=t+41

By Lemma 3.2
eXp(ZO==exp<U&Ok(f($0<—f(x*ﬂ-—nfG2
4Dy (2%, 7101) — Dy (%, 2) ) — 0Dy (", 2) )
< oxp (i (61a” = ) + w1

% exp (~v Dy (2, 21))

Next, we analyze the first term in the last line of the above
inequality in expectation. Let X; = (&, 2* — x;). Using
Taylor expansion of e”, and that E [X; | F;] = 0, we have

E [exp (weXs + wor? [6117) | 7]

2

+Zﬁ (thtermeﬁtlli) | ]:t]
i=2

(@
<E |1 +we [|&]7

+Z.@%W%HMﬁw%Mﬂ)M4

1!
=2

(b)
< exp (302 (wtzntz lx* — (L’t||2 + wmf))

< exp (302 (2wt277t2Dw (z% ) + U/t77t2)) : “4)

For (a), we use Cauchy-Schwartz and obtain X; =

1 (& 2™ — ) < e ([l [[2™ — 2. For (b), we apply
Lemma 2.2 with X = ||&]||,, a = wny [|2* — x¢||, and

*9
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b? = wm} < 1iz. For (c), we use that Dy, (2%, 2) >
La* — |* from the strong convexity of 1.

Plugging back into (3) and using that v; = 60%n?w?, we
obtain the desired inequality

E [exp (St) | Fi]

T
<exp <(60277t2wt2 —v¢) Dy (2%, 2¢) + 307 Z wmf)

i=t
T
=exp (302 Z wm?) .

i=t

O

Using Markov’s inequality, we obtain the following conver-
gence guarantee.

Corollary 3.4. Suppose the sequence {w;} satisfies the
conditions of Theorem 3.3 and that w; + 60277t2wf < wig_q.
For any § > 0, with probability at least 1 — §:

T
Y wine (f (1) = f (@) + wrDy (2", 2741)

T
1
< ’LUoDw (CC*,Il) + (G2 + 3()’2) Z’wt’r]? + log <§) .
t=1

With the above result in hand, we complete the convergence
analysis by showing how to define the sequence {w;} with
the desired properties. Below we give the choice of 7, and
w; for fixed step sizes. The choice for time-varying step
sizes can be found in Corollary B.1 in the appendix.

Corollary 3.5. Suppose we run the Stochastic Mirror De-
scent algorithm with fixed step sizes 1 = % Let wp =
TE\UQ and wi_1 = wy + %UQUQw?for all1 <t <T. The
sequence {w; } satisfies the conditions required by Corollary
3.4. By Corollary 3.4, for any § > 0, the following events
hold with probability at least 1 — 0: Dy, (z*,x741) <

2Dy (z*,21) + 12 (G* + 02 (1 +log (3))) n? and

1< . 1 2Dy (z*, 21)
72U ) ) < gt

2 (e (1 (1))

Dy (z*,x1)
6(G2+02(1+log(%)))T
tain the first case of Theorem 3.1.

In particular, setting n, = we ob-

Proof. Recall from Corollary 3.4 that the sequence {w;}
needs to satisfy the following conditions forall 1 <¢ < 7T

wy + 6027]t2wt2 < wy_1; and wmf <

402’

Algorithm 2 Accelerated Stochastic Mirror Descent Algo-
rithm (Lan, 2020).
Parameters: initial point zg = yg = 29 € &, step size 7,
strongly convex mirror map
fort=1toT"

Set oy = t_%l

v =(1—ay) Y1+ a2z

Zt = argmingey (Ut <§f(l”t>>z> + Dy (z, Zt—l))

Y= (1 =) ye1 +auzn
return yr

Let C = 60%n%. We set wp = m = 20 Fpr
1 <t < T, we set w; so that the first condition holds with

equality

6
Wy—1 = Wy + 60271175277,52 = w¢ + TUQanf.
We can show by induction that, forevery 1 <t < T,
1

wy <K —————.
=0y %0277%

The base case ¢ = T follows from the definition of wy.
Consider 1 <t < 7T'. Using the definition of w;_; and the
inductive hypothesis, we obtain

6
Wr—1 = Wt + TUQUQU}?
1 602n?

< 5
C+ 7020t
1
S 602
C+ 7020t
(C+ %0277215) - (C+ %02172(15 —-1))
(C+ S22 (t—1)) (C+ So2n2t)
_ 1
SO+ So2(t-1)

T (C+ So2p2t)?

as needed. This fact implies the second condition as follows:

2 2
2 M ’7_1
Welly =W S G aa T Go2

Thus, using Corollary 3.4, wr = % and % <w <

1

c
for all 0 < ¢t < T, we obtain the desired inequalities. O
3.2. Analysis of Accelerated Stochastic Mirror Descent

In this section, we extend the analysis detailed in the pre-
vious section to analyze the Accelerated Stochastic Mirror
Descent Algorithm (Algorithm 2). We assume that f satis-
fies the following condition: for all z,y € X

F(9) < F@)+ (9 F @)y~ )
POy —al+ Syl ®
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Note that L-smooth functions, G-Lipschitz functions, and
their sums all satisfy the above condition. Here, we obtain
the following guarantees in Theorem 3.6.

Theorem 3.6. Assume f satisfies Assumptions (1), (2), (3)
and condition (5). Then, with probability at least 1 — 6,
the output yr of the Accelerated Stochastic Mirror Descent
algorithm (Algorithm 2) satisfies

(1) Setting m; = min

t \/Dw(z*,ZO)t
76\ [G2 o2 (1+l0g(})) T2 |
then Dy, (x*, zr) < 4Dy, (2%, 20) and

F(r) — £ (a) < POERuT20)

8v6

+7

Nii Dy (x*, 20) (G2 + <1 + log (;)) 02>.

t vV Dy (2*,20)
41 \/6\/G2+02(1+10g(%))t1/2 B
then Dy, (¥, 2r) < 2(2 +1ogT)Dy, (z*, 20) and

o) ) < D20 0E - LosT)

X \/D,p (x*, 20) <G2 + <1 + log (;)) a2>.

We will only highlight the application of the previous anal-
ysis here. Define &; := Vf (z;) — V f (2¢). We start with
the inequalities shown in the standard analysis, e.g, from
(Lan, 2020) (proof in the Appendix).

Lemma 3.7. (Lan, 2020) For every iteration t, we have

B = (f(y) - f (z")

(2) Setting m; = min

Qi
O () - 5 )
_ 7]152 2

1 — Loy,

+Dy (2", 2) — Dy (2", 24-1)

2
"t 2
< g gy — .
< (G2’ — 2-1) 1— Lagn, &l

We now turn our attention to our main concentration argu-
ment. Similar to the previous section, we define

Zy = wi By — Dy (2%, 2-1), V1<t<T,
where v; = 602w?n?,
T
and Sy =Y Z;, V1<t<T+1.
i=t

Notice that we are following the same steps as in the
previous section. By transferring the error terms in the

RHS of Lemma 3.7 into the Bregman divergence terms
Dy (z*, z,—1), we can absorb them by setting the coeffi-
cients appropriately. In the same manner, we can show the
following Theorem:

2
Wiy

Theorem 3.8. Suppose that 1— Tom < ﬁ forevery 0 <
t <T. Then, forevery1l <t < T + 1, we have

T 2
Elexp (S¢) | Fi] < exp (302 szl_m>

— Lan;

Corollary 3.9. Suppose the sequence {w.} satisfies the
conditions of Theorem 3.8. For any § > 0, the following
event holds with probability at least 1 — §:

T
> w (Z (f (ge) — f (27))

Qi

L ACLD VTR f(af*))>

—+ wTD¢ (ZE*, ZT)
< weDy (%, 20)

T 2
1
G? 4 302 M g (2.
+( +0);wt1_Lamt+og 5

With the above result in hand, we can complete the con-
vergence analysis by showing how to define the sequence
{w;} with the desired properties. For the algorithm with
known T, we set oy = H%, n = nt for n < ﬁ,

wr = 362772T(T11)(2T+1) and wy_1 = wy + 60277t2wf for
all 1 <t < T. For the algorithm with unknown 7', we
set ay = 2q, 1 = min{ 47, 7}, wr = m
and wy_1 = w; + 60?nfw? forall 1 < ¢t < T. In the
Appendix, we show that these choices have the desired prop-
erties (Corollaries B.2 and B.3).

4. Nonconvex case: Stochastic Gradient
Descent and AdaGrad-Norm

In this section, we analyze the Stochastic Gradient Descent
(SGD) algorithm (Algorithm 3) and the adaptive version,
commonly known as AdaGrad-Norm (Algorithm 4) for non-
convex optimization, where we look to find an approximate
stationary point of f. Here, we assume that the optimization
problem has domain & = R, and that f is an L-smooth
function, i.e., the gradients of f is L-Lipschitz:

IVf(z) = Vi)l < Lilz—yll,

This implies the following inequality on f at any z,y € R%:

Vz,y € R4,

F)~ @) < (Vi@hy—a)+ 2yl ©
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Algorithm 3 Stochastic Gradient Descent (SGD)

Parameters: initial point x1, step sizes {n; }
fort =1to 71 do

— eV f(xy)

Ti41 = Tt

4.1. Analysis of Stochastic Gradient Descent

In this section, we provide a high probability analysis of
SGD (Algorithm 3) that is tighter than previous works. Our
main result is presented in Theorem 4.1.

Theorem 4.1. Assume that f is L-smooth and satisfies
Assumptions (1), (2), (3), and let Ay = f(x1) — f(z*).
Then, with probability at least 1 — 0, the iterate sequence
(x¢)e>1 output by Algorithm 3 satisfies

(1) Setting n; = min { i, UQALlT }

2A1 AlL 1202 log%
5 .
+ o004/ T + T

*vaf )| 2_

(2) Setting ny = v

1 T
7 2 IV f@)l
t=1

_ 2A1L 4 30% (1 4+ log T) + 120% log 3
< T .

Comparison with prior work: When the time horizon T’
is known to the algorithm, by choosing the step size 7 in
part (1) of Theorem 4.1, the bound is adaptive to noise,
i.e, when o = 0 we recover O( %) convergence rate of
the (deterministic) gradient descent algorithm. Notice that
the bound in this case does not have a log T" term incurred.
When T is unknown, the extra logT" appears as a result
of setting a time-varying step size 1y = %[ This log T

appears as an additive term to the log 5 term, as opposed to
being multiplicative, i.e, log T'log 5 as in previous works
(Li & Orabona, 2020; Madden et al., 2020; Li & Liu, 2022).

To proceed to the analysis, we define for ¢ > 1
Ay = fz) = f(@); &= V() — V().

We let F; := o (&1, ..., &—1) denote the natural filtration.
Note that x; is F;-measurable. The following lemma serves
as the fundamental step of our analysis, the proof of which
can be found in the appendix.

Lemma 4.2. Fort > 1, we have
L
Coimn (1= 1) IVF @I + A - A

< (Ln? — ) (Vflan) &) + 200 L’“ T

Now we can follow the similar concentration argument from
the convex setting. The difference now is the error term in
the RHS of (7) can be transferred into the gradient term
|V f(x¢)||? instead of a function value gap term. This ac-
tually makes things easier since this term can be readily
absorbed by the gradient term in C}, and we do not have to
carefully impose an additional condition on w; to make a
telescoping sum. For w; > 0, we define

Zy = w,Cy — vy |V f(z0)]?, V1<t<T,
where v; = 30211)?77?(77,5[/ —1)2,
and S; V1<t<T+1.

:ZZ“
i=t

Using the same technique as in the previous section, we can
prove the following key inequality.

Theorem 4.3. Suppose that 1 and wy satisfy 0 < wm?L <
#forall 1<t<T. Then

d win?Z L
E[exp (St) [ Fi] < exp (3022 o) ) ®)

s=t

Markov’s inequality gives us the following guarantee.
Corollary 4 4. Forall1 <t < T,ifmpyL < land 0 <
wn?L < then

20-2 bl

d L
> {wmt (1 - ?7;) - Ut} IV f(@)lI” + wrAriy

t=1
T T 2
L 1
<wi A + Z(wt —w;_1)A; + 302 Z % + log 5
t=2 t=1
9

Equipped with Lemmas 4.2 and 4.3, we are ready to prove
Theorem 4.1 by specifying the choice of w; that satisfy the
condition of Lemma 4.3. In the first case, we choose =1,

}. In the

w = w = where 7 = min{+; 2LT

second case, we set 7, = % and wy; = w =

1
602n
ﬁ, where
n = 1. We show the full proof in the Appendix.

4.2. Analysis of AdaGrad-Norm

In this section, we show that AdaGrad-Norm (Algorithm 4)
converges with high probability under minimal assumptions.
Our main result is presented in Theorem 4.5.

Algorithm 4 AdaGrad-Norm

Parameters: x1, 17, by
fort = 1to 1 do

= \/ba + Y0 ||V @)
xt—i—l =Tt — *Vf(iEz)

2
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Theorem 4.5. Assume f is L-smooth and satisfies Assump-
tions (1), (2), (3). With probability at least 1 — 30, the iterate
sequence (x1)¢>1 output by Algorithm 4 satisfies

1 T
=S IVl
t=1

4

2
= /42T 1 1(9) (nLlogM

a4 g0)

1 64nL 2
+ = (32nL10g =1 1 16¢(5) )
T bo

T

where r(8) = 2b% + 40%logs = O(1 + o?log )
and g(0) = &t 4+ INLEIE 4 E(H%)log% +
”LU (1+log 5) o1 +02 log L).

Comparison with prior work: (Ward et al., 2019; Faw
et al., 2022) show the convergence of this algorithm with
polynomial dependency on % where 1 — § is the success
probability. The latter relaxes several assumptions made
in the former, including the boundedness of the gradients
and noise variance. When assuming a sub-Gaussian noise,
(Kavis et al., 2021) show a convergence in high probability,
but still assume that the gradients are bounded. We remove
this assumption and establish the convergence of Algorithm
4 in the following theorem. We highlight that the bound in
4.5 is adaptive to noise. When o = 0, we obtain the O(7,)
convergence of the deterministic AdaGrad-Norm.

We next give an overview of the technique. We will start
from Lemma 4.6 (proof in the Appendix) and proceed to
bound each term in the RHS of (10). In contrast to the
techniques used in (Kavis et al., 2021), in which they mul-
tiply both sides of (23) by b; to separate b; from the term
(Vf(xe), &), we rely on the insight from (Liu et al., 2022)
and multiply by 2b . This factor is but a small devia-
tion from a constant, Wthh helps us obtain a coefficient
for (Vf(x:),&) that depends on b;_;. This makes the

M a sub-Gaussian random variable. To bound

term

Zt 1 M, we follow an argument similar to the

proof of Lemma 4.3. Finally, by bounding Zthl €17 viaa
simple concentration argument, we can obtain a relationship
between by and Zthl |V f(z¢)||>. Combining this with
Lemma 4.6, we arrive at Theorem 4.5 via a self-bounding
argument as used in (Li & Orabona, 2019).

Lemma 4.6. Fort > 1, let & = @f(a:t)
M, = max;<¢ &% then we have

— Vf(xt), and

A brArp
n 1 (2br —bo)

Z IV f ()] o LMz A
%W — by = B2

nL @ _ i (Vf(e), &) (10)

+ —1lo .
P A T -

Now, notice that M follows a sub-Gaussian dis-

tribution with mean O we can obtain a bound for
Zt 1 %ﬁbﬁ)ﬁ in the next lemma. The choice of the
coefficient w is crucial but will be specified later.

Lemma 4.7. For any w > 0, with probability at least 1 —
T

> -G

P 2bs_1 — bg

T
A’ Lo% ) Vi g A IV £ (@e—0)]”

-~ b2 b2 pos (th_l _ b0)2
2w02 ||Vf(x1)|| 1
_— 1 —. 11
b2 T w B3 (n

Returning to Lemma 4.6, by choosing an appropriate co-

efficient w in Lemma 4.7, we can use a fraction of the
LHS T 4w<72||Vf(.'ct,1)H2

of (10) to cancel out the term ) _,_, b b
in (11). It is also known that with probability at least
1 -4, My < 0?(1+1log%) (Li & Orabona, 2020; Liu
et al., 2022). Further, we have a relationship between

LIV ()| and by

T T
br < \[B+2) &1+ D 2(IVi@)®. (2
t=1 t=1

The term 23:1 €117 can be bounded by o2T + o2 log 3

with high probability as in Lemma C.1.

IV f()|?
b0 =

. Now we can solve a system combin-

Finally for the LHS of 4.6, we have Zthl
T 2
LTIVl

ing the two relationships between Zthl IV f ()| and by
to obtain the desired bound.

5. Conclusion

In this work, we present a generic approach to prove high
probability convergence of stochastic gradient methods un-
der sub-Gaussian noise. In the convex case, we show high
probability bounds for (accelerated) SMD that depend on
the distance from the initial solution to the optimal solution
and do not require the bounded domain or bounded Bregman
divergence assumption. In the non-convex case, we apply
the same approach and obtain a high probability bound for
SGD that improves over existing works. We also show that
the boundedness of the gradients can be removed when
showing high probability convergence of AdaGrad-Norm.
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A. Proof of Lemma 2.2

Proof. Consider two cases either a > 1/(20) ora < 1/(20). First suppose a > 1/(20). We use the inequality uv < “72—1—112

here to first obtain

(aX +5°X?)" < |aX +0°X2|" < (a]X|+5°X?)' < (43}2X2 +a%0” +b2X2> :

Thus, we have

E|1+6X2+ Z (aX +bx2)’

1= 2

<E

1+b2X2+Z < SX? +a%0” + 07 X° )1

b2X2 + exp ((42 + b2> X2 + a20'2> _ (412 + b2> X — a20'2:|
g

[ 1 1
exp ((42 + b2) X2 4 a202> — @XQ a202]

1
< exp <<42 + b2> o+ a202>

Next, let c = max(a,b) < 1/(20). We have

E|1+6°X2+) = (aX +0°X7)'

i=2

=E [exp (aX + bQXQ) — aX]

§E[(aX—|—exp( 2))exp (bzXQ) —aX]

=E [exp ((a® + b*) X?) + aX (exp (¥ X?) — 1)]
< E [exp ((a® +b*) X?) + c|X| (exp (*X?) — 1)]
< E [exp ((a® +b*) X?) +exp (2¢2X?) — 1]
SE[e ((a +b% +2¢2 )X )}

< exp ((a2 + b2+ 202) 02)

< exp (3 (a2 + b2) 02)

In the first inequality, we use the inequality e” — z < ¢®*Vz. In the third inequality, we use x (e"2 — 1) < e’ —1Va.

This inequality can be proved with the Taylor expansion.

x(em2—1> ZZ' 2’+1<le

The case when b = 0 simply follows from the above proof.

21 + $22+2

12
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B. Missing Proofs from Section 3
B.1. Stochastic Mirror Descent

Proof of Lemma 3.2. By the optimality condition, we have

<77t§f($t) + VoDy (zig1, ) , 2" — $t+1> >0

and thus R
<77tVf(xt),xt+1 - x*> <(ViDy (Te41,2e) , 2" — xpy1) -
Note that
(VaDy (eg1,24) ;27 = 241) = (VY (Te41) = VU (@), 7" — 2441)
=Dy (2", 2) — Dy (w141, 7)) — Dy (2%, 7441)
and thus

Nt <§f($t)’$t+1 - $*> <Dy (z%,2¢) — Dy (2%, 2441) — Dy (2441, 7¢)
* « 1
< Dw (;v 793t) - Dw (93 795t+1) -3 ||$t+1 - xtH27

where we have used that Dy, (2411, %) > 5 |41 — @4 ||? by the strong convexity of 1.

By convexity,

F @)= f @) < (VF @) a0 —2%) = (&2" —a0) + (VF (@) a0 =)
Combining the two inequalities, we obtain
me (f () = f (@) + Dy (27, 2141) — Dy (27, 24)

" ~ 1
<&, x™ —xe) + <Vf($t)79€t - 9Ct+1> 3 241 — 9Ct||2

n; 2
< (&, x™ — ay) + ?t

‘@f(xt)

*

Using the triangle inequality and the bounded gradient assumption ||V f(x)||, < G, we obtain

2
= &+ VI @I} < 26l + 21V @2 < 2 (gl +G?) .-

*

foste

Thus
me(f (20) = £ @)+ Dy (@ 2141) = Dy (@ 21) <y (G, = )+ (Jlel? + G?)

as needed.

Proof of Corollary 3.4. Let

T
1
K = 302 Zwtnf + log (5) .

t=1
By Theorem 3.3 and Markov’s inequality, we have
Pr[S; > K] < Prlexp (S1) > exp (K)]
< exp (—K) E [exp (51)]

T
< exp (—K) exp (302 ZWW?)

t=1

=4

13
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Note that since v; + w; < wy_1

T T
S1=>"7Z =Y w (f (@) — f(2%) =G> wnf + > (wiDy (2%, 2141) — (0 + w) Dy (2%, 7))

1 t=1 t=1 t=1

T T T

> wine (f (@) = f (2%) = G Y weg; + Y (wDy (27, 2111) — w1 Dy (2, 2))
t;l t;l t=1

=Y wm (f (22) — f (%)) = G*>_win} + wrDy (&%, 741) — weDy (z°,71) .
t=1 t=1

Therefore, with probability at least 1 — §, we have

T
Zwmt (f (@) = f (%)) + wrDy (2*, 2741) < woDy (2%, 21) + (G + 30?) prrlnf + log (1) .

)
t=1 t=1

O

Next we extend the analysis to the setting where the 7" is not known and we use the step sizes 7, = % to complete the proof
of Theorem 3.1.

Corollary B.1. Suppose we run the Stochastic Mirror Descent algorithm with time-varying step sizes 1; = % Let
W and wi—1 = wy + 60w} for all 1 < t < T. The sequence {w,} satisfies the conditions
t=11t

required by Corollary 3.4. By Corollary 3.4, for any § > 0, the following events hold with probability at least 1 — 6:
Dy (z*,2741) < 2Dy (z*,21) + 12(G? + 02 (1 +log (3))) n*(1 + log T, and

wr =

1 2Dy (2", 1)
VT U

+ % (G2 + 07 (1 + log (;))) n(1+4logT).

In particular, setting n; = \/6(sz0‘2(&1;:()§))))5 we obtain the second case of Theorem 3.1.

1 T
f;(fm)ff(x ) <

Proof of Corollary B.1. Recall from Corollary 3.4 that the sequence {w; } needs to satisfy the following conditions for all
1<t <T:

wy + 602773111? <w;_1 and wtnf < =k
o

Let M, = 602 22:1 n? and C = My = 602n? (ZtT:I %) We set wp = #MT For 1 <t < T, we set w; so that the
first condition holds with equality

W1 = Wy + 60277t2wt2~
We can show by induction that, for every 1 < ¢ < T, we have

1

< .
Y=o M,

The base case t = T' follows from the definition of wr. Consider 1 < ¢ < T'. Using the definition of w; and the inductive

14
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hypothesis, we obtain
wy—1 = wy + 60°Nfw;
< 1 60%n}
T C+ M (C+ M)
o1 N (C+ M) — (C+ My_y)
- C+ M, (C+ My) (C+ My_y)
B 1
O+ M,

as needed.
Using this fact, we now show that {w; } satisfies the second condition. For every 1 < ¢ < T, we have
no_ 1

2ot < =
Wil =0 = 602n? 602

as needed.

Thus, by Corollary 3.4, with probability > 1 — 4, we have

T T

1
Zwtnt (f (@) = f (@) + wrDy (2, 2741) < woDy (2%, 21) + (G + 30?) Z’LUH]? + log <5) :
t=1 t=1

Note that wr = 5 and 55 < wy < & forall 1 <t < T. Thus, we obtain

T T
1 * 1 * 1 * 2 2 1 2 1
%nT;(f(xt)_f(x ))+%Dw (%, 2741) < aDw (z 7$1)+(G + 30 )5;% + log <5>

Plugging in n; = % and simplifying, we obtain

% tz:; (f (ze) = f(z")) + Dy (", z741) < 2Dy (2", 21) + (2G2 + 602) n? (Z 1) + 2C'log <;>

Thus, we have

;ZT:(f(xt)—f(l‘*)) < % (mw(:*’xl)+ <2G2—|—602 (1+210g (;)))n (ii)) ,

t=1

and

T
Dy (2", 2741) < 2Dy (27, 21) + (2G2 + 602 (1 +2log (;))) n* <Z 1) .

15
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B.2. Accelerated Stochastic Mirror Descent

Proof of Lemma 3.7. Starting with smoothness, we obtain

= f(2e) +(Vf (@) ,ye-1 — ) (VI (@), 90 — Y1) + G [lys — 2| + g lye — It||2
= (1 —ag) (f (@) +(Vf (@), y1-1 — w)) + (f (2) + (VI (1) ye—1 — 24))

convexity convexity

L
+ o (Vf(2e), 20 —ye—1) + G |lye — 24 + 3 lys — ¢

L
< (=) f(ye—1) +ouf () + e (Vf (1), 20 —20) + G |lye — 24| +t5 e — 2
—— ——

=al|ze—2ze—1]| =a?|lzt—2zi-1]?

=1 =) f(ye—1) +arf (xe) + e (Vf(2), 20 — 24) + Gy |20 — 21| + %af l|z¢ — thlHQ .
By the optimality condition for z;,
N <§f(:17t), 2zt — x*> <(ViDy (21, 20-1) 2" — z;) =Dy (2%, 2¢-1) — Dy (21, 2e-1) — Dy (2%, 2¢) -
Rearranging, we obtain
Dy (2%, 2¢) — Dy (2%, 2e—1) + Dy (24, 20-1) < e <§f (zy) " — zt> = (Vf(xe)+&,2" —z).
By combining the two inequalities, we obtain

I (ye) + % (Dy (2%, 2¢) — Dy (2%, 2¢-1) + Dy (24, 26-1))

< (=) f (Y1) +ae (f (x) + (Vf (20) 2" — 1))

convexity

L
+Gaylz =zl + 56@ |2 — Zt71||2 + o (§e, 2™ — 2t)

* L *
< (T—ag) fye—1) +aef (2%) + Gay ||z — 21| + 5@5 ll2e — ze—1||> + @ (&, 2" — 22) -

. . . . 2 .
Subtracting f (*) from both sides, rearranging, and using that Dy, (2;, 2e—1) > 1 ||z — 2;-1]|", we obtain

f(ye) = f (@) + S (Dy (2%, 20) — Dy (2%, 2-1))

Mt

< (1= 00) (F (1) = F (@) + 0 (€, 3" — 200+ G 20— 21| — oot

B (B Zt—1||2
Mt

=1 =) (f (ye—1) = f (&%) +ap (& 0™ — 2z—1) + o (& 20 — 2e—1)

1— Lamt

B) |2 — Zt—lH2
Tt

+ GO[t ||Zt — Zt_1|| — O

1-L
< (1= @) (f () = £ 7)) + (62" = 2ea) + o=zl (el + G) = v =28 1 — 2
t

< (1= a0) (F (get) = 1 @) F 0 (2" = 20} + 5 s (60l + 6.

16
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Finally, we divide by %, and obtain

D (f () = f (27)) + Dy (2%, ) — Dy (2", 2-1)

2
< o (=) (Flun) = £ @) 4 6” — 2+ gy pos (Il + G

IA
|

2
o (1= o) (F () = £ ) (6o = 2} + g (s +67).

Proof of Theorem 3.8. We proceed by induction on ¢. Consider the base case ¢ = 1" 4 1, the inequality trivially holds. Next,
we consider ¢t < T". We have

E [exp (St) | ]:t] =E [exp (Zt + St+1) | ./T"t] =E [E [exp (Zt + St+1) | .Ft_i'_l} ‘ ./T"t] . (13)

We now analyze the inner expectation. Conditioned on F1, Z; is fixed. Using the inductive hypothesis, we obtain

T 2
E [exp (Z; + Si41) | Feg1] < exp (Zy) exp (302 Z wll—%an) . (14)
i=t+1 v

Let X; = n¢ (&, 2" — 2;—1). By Lemma 3.7, we have

TF )~ £ @) = (1 a0) (f (o) — f (2)) — — G

o o 1— Loy
+Dy (z*,2) — Dy (2", 24-1)
2
< X, . 2
< X+ (lfLOZtnt) ||€tH*7
and thus
Zy < wi Xy + w2 — Dy (2%, 1) -
- ]. — L 77t *

Plugging into (14), we obtain
Efexp (Z; + Sty1) | Feya]

2
< exp (tht —uDy (2%, 20-1) +wt1 77 ||§tH +30° Z WiT o —La m )
1=t+1 illi

Plugging into (13), we obtain
E [exp (S:) | F

< exp (vtDw (", ze-1) + 302 Z w11_m> E {exp (tht + wtﬁtamt ||§t|rf> | ft} . (15)

Loun;
i=t+1 illi

17
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Next, we analyze the expectation on the RHS of the above inequality. We have

2
E |exp ((wiXy + w—i—|l&|? ) | F
l—Lamt
- ;
1 2
=k a (tht+wtnt||ft||i) | F
= 1— Laymy

2 00 2 i

i3 2 ! i 2
—E |14 w— L -
R AR (1wt w6 | ]

I 2 o0 2 i
U 2 1 * Mt 2

<E|14+w—"T - — _ M F
< B Lwe el + 3 (b sl el + g 60 | ]

- 2 n;
<exp (3 (w?n? l2* = zealI” + wtlLtat,%) 02>

2
* n

< exp (3 <2w§nt2Dw (", 2¢-1) + wtlLtat?7t> 02) . (16)

On the first line we used the Taylor expansion of e”, and on the second line we used that E [ X, | 7;] = 0. On the third line,
we used Cauchy-Schwartz and obtained

Xe=nt (e 2™ — ze-1) < e &l 2™ — 21| -

2
2 un 1
,and b° = wy L, < 1=- On the

fifth line, we used that Dy, (2%, z—1) > % |lz* — 21 ||?, which follows from the strong convexity of 1.

On the fourth line, we applied Lemma 2.2 with X = ||&;

o 0 =Wy |la* — 21

Plugging in (16) into (15) and using that v; = 602w?n?, we obtain

T 2
E [exp (S) | Ft] < exp <302 szl—TL)

— Lain,

as needed. ]

Proof of Corollary 3.9. Let
T 2
Tt 1
K = 30* —— +1 - .
7 ;wtl — Lagmy e <§)
By Theorem 3.8 and Markov’s inequality, we have

Pr[S1 > K] < Prlexp(S1) > exp (K)]
< exp (—K) E [exp (51)]

T 2
<m0 (7))

t=1

=4

18
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Note that since v; + w; < wy_1

T
=S (2 - 5@ - 20 g - g (x*)))

Qi Qi

T
+ Zth¢ (2%, 2t) — (v + we)Dy (2%, 2-1) — G? Zwﬁ _ Lamt

T
S (Z o — ey A=) f(x*))>

Qi

Dy (2%, 2¢) — w;_ 1Dy (x* - G?
Jr;wt v (@, 20) —w—1Dy (27, 24-1) Zwl—Latnt

T
=S (2 - @) - EZ2 () - £ 0))

Qg at
+wrDy (2%, 21) — woDy (27, 20) - & Zwtl—Lamt

Therefore, with probability at least 1 — J§, we have

Qi

T
S (206 ) - 1) = 2C=0 () - @) )+ wrDy ()

1 2
1
< weD * +(G? + QE M +1 - .
woDy (2%, 20) (G 3U)t_1wt1 Lo og 3

O

Corollary B.2. Suppose we run the Accelerated Stochastic Mirror Descent algorithm with the standard choices oy = t_%l

and ny = nt withn < ﬁ. Let wr = 302172T(T}|-1)(2T+1) and wy_1 = wy + 602ntw? forall 1 < t < T. The
sequence {w;} <t< Satisfies the conditions required by Corollary 3.9. By Corollary 3.9, with probability at least 1 — d,

Dy (z*, 21) < 2D_w (z*,20) +12 (G* + (1 +log (3)) 02) n*T? and

fyr) — f(z%) SW + 24 (G2 + <1 + log (;)) 02> nT.

In particular, setting n = min {41]:, f\/G2 Y ]ZZJ(IZ ’Zo()l N }, we obtain the first case of Theorem 3.6.
6 +02(1+log 5 T

Proof of Corollary B.2. Recall from Corollary 3.9 that the sequence {w; } needs to satisfy the following conditions:
wy + 60 Pw? <w,_y, V1<t<T, 17)

wmt 1
— < —, YOL<t<T. 18
]-7L05t77t _40'27 - ( )

We will set {w;} so that it satisfies the following additional condition, which will allow us to telescope the sum on the RHS
of Corollary 3.9:

W1 >, . V1<t<T. (19)



High Probability Convergence of Stochastic Gradient Methods

Given wr, we set wy_1 for every 1 < ¢ < T so that the first condition (17) holds with equality:

2.2 2 2,242, 2
w1 = wy + 60N wi = wy + 60y 2wy

Let C = o?n*T (T + 1) (2T + 1). We set

1 1 1
CCH62 L2 CHorpPT(T+1)2T+1)  202*T(T+1) (2T + 1)

Given this choice for wr, we now verify that, for all 0 < ¢ < T, we have

1 1
< = .
'S0t 6orpY_ 2 CHodpt(t+1) 2+ 1)

We proceed by induction on ¢. The base case t = T follows from the definition of wy. Consider ¢ < T'. Using the definition
of wy_; and the inductive hypothesis, we obtain

2,242, 2
wi—1 = wy + 60°N°t wt

1 6027]2t2
S 2,2 t 72 + °
C+602n? 3 i (C + 6022 35, iQ)

1 (C + 60223, i2) - (C + 60202 30 } z2)
<
— O+ 6072 Zﬁzl i? ’ (C + 60272 Z§=1 i2> (C + 60212 Zl Lt )
1

O+ 6021)? Ef;i 12

as needed. Let us now verify that the second condition (18) also holds. Using that ; +1 <2, Ln< < ,and T' > 2, we obtain

wyg  wt o Pt
T Loy~ 1 L2 S 2T S G e
— Laymy —Lny + 6o
2
T T (T+1) (2T + 1) + 30212
< ! < !
T 022 +1) 4 302 ~ 402
as needed.
Let us now verify that the third condition (19) also holds. Since 7; = 7t and oy = t—~2-1 , we have 2= == m(:at) = nt(t;l).

Since w; < w¢_1, it follows that condition (19) holds.

We now turn our attention to the convergence. By Corollary 3.9, with probability > 1 — §, we have

T
S (2 ()= £ @D = U= (1 ) - £ @) ) + wrDy 07, 21)

a a
t=1 t t

T
1
< woDy (2%, 20) + (G* + 30?) Z t] L o +1g<6>
- ¢

Grouping terms on the LHS and using that o; = 1, we obtain

— Nt N1 (1 — apyn) * nr * *
S (1~ e PO () = )+ wn 22 (F ) = £ )+ wrDy (0

(0%
=1 t+1

T
1
< woDy (2, 20) + G2 + 30 Z 17 Latnt + log <(5) .

20
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Since {w, } satisfies condition (19), the coefficient of f (y;) — f (z*) is non-negative and thus we can drop the above sum.
We obtain

T 2
T]T * * * 1
w27 () = £ D (o7, 20) S WD 07, 20) (67 480%) S w5
Using that wy = 5 and wy < & forall 0 < ¢ < T — 1, we obtain
1 nr 1
T _ * D
20 ar (f(yr) — f (x ))+20 o (2%, 27)
1 T2 1
<_-D — (G? + 302 ¢ log ( =
< 5Dy (@ 20) + 5 (GP + f’);l-mmﬁ g5
Thus,
n *
L (f (yr) — f (")) + Dy (a*, 27)
ar
T 2 )
< 2Dy (z* 2 (G? + 302 — 1 92Clog | =
< 2Dy (27, 20) + 2 (G* + U);:[fLOéﬂ]t—i_ B\5
T 2 )
= 2D, (z* 2 (G? + 302 —t 4 925%log | = | n*T(T+1)(2T +1).
o (hh20) +2(G%430%) 3 gy o+ 20 og (5 ) w*T (T4 1) (T + 1)
Using that L < § and 24 < 2, we obtain
T 2 T 242

T
1
5 <D 2P = T (T+1) (2T +1).

U _ n
glfLatnt_tgl*Ln

Plugging in and using that 77 = 7T’ and arp = 737, we obtain
T(T+1 )
O (f(yr) - £ @) + Dy 0 20)

S?Dw(x*,zo)Jr<§G2+2<1+log( >) > (T +1) (2T +1)
)

1
)
< 2Dy, (2%, 20) + 2 <G2 + <1+log< )

We can further simplify the bound by lower bounding 7’ (T + 1) > T? and upper bounding T (T + 1) (2T + 1) < 673.
We obtain

) T(T+1) (2T +1).

nT%(f (yr) — f (z%)) + 2Dy (z*, 27) < 4Dy (2%, 20) + 24 <G2 + (1 + log ((15)) 02) T3,

Thus we obtain
flyr) = f(z") < W + 24 (02 + <1 + log (;)) 02) nT,

and

Dw ((E*, ZT) < 2D¢ (.’t*, ZO) + 12 (G2 + (1 + log (;)) 0'2) 772T3.
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Corollary B.3. Suppose we run the Accelerated Stochastic Mirror Descent algorithm with the standard choices oy = t_%l
and n; = min { i 7} Let wp = m and wy_1 = wy + 60277t2wt2f0r all1 <t < T. The sequence {wt}ogth

satisfies the conditions required by Corollary 3.9. By Corollary 3.9, with probability at least 1 — 6, Dy, (z*, zp) <
2Dy (2%, 20) + 12 (G + (1 +1og (§)) o) n*(1 +log T') and

flyr)—f(z*) < lﬁ—LDw (z*, z0) + Tli/% (2D1/, (z*, 20) + 12 <G2 + (1 + log (2)) 02) (1 +10gT)> .

In particular, setting 1, = min { i f\/G; D;E(T 1 20()1 EE } we obtain the second case of Theorem 3.6.
+0o?(1+4log 5 t

Proof of Corollary B.3. Recall from Corollary 3.9 that the sequence {w;} needs to satisfy the following conditions:
wy + 60" nfw; <wpy, V1<t<T, (20)

2
Wi 1
o — o Wo<t<T. 21
1—L04t7]t - 40'2 - ( )

We will set {w;} so that it satisfies the following additional condition, which will allow us to telescope the sum on the RHS
of Corollary 3.9:

w1 > w, Y v1<t<T-1. (22)

Given wp, we set wy_1 for every 1 < ¢ < T so that the first condition (20) holds with equality:

Wi_1 = Wy + 602nt2wt2 =w; + 602n2t2w

2
2.
Let C = 6023, n?. We set

1 1

52T 2 o0
120237, 0 2C

Given this choice for wr, we now verify that, for all 0 < ¢ < T, we have

wr =

1
tS ¢ 9"
C+602) 1 m;

We proceed by induction on ¢. The base case t = T follows from the definition of wy. Consider ¢ < T'. Using the definition
of wy_; and the inductive hypothesis, we obtain

wy_y = wy + 60 njw;
1 6 2,2
< - _+ o .
C+602) 1 m; (C + 602 Zle 7712)
< ) N (C+602 Sic nf) - (C+ 602 35— 1773)
T C+602Y 2 (C+602222177i2) (C+6‘7221 1771)
1

C + 602 Zz N2

as needed.
Let us now verify that the second condition (21) also holds. Using that Ln; < 7, and T' > 2, we obtain
2 2 2
Wy < th?t — < Quwn? < 207 < 27l2t < %
l—=Logme =~ 1= 375 6o 222 L6023 120277 = 4o
as needed.
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2

Let us now verify that the third condition (22) also holds. Since a; = o1 We have
Mt—1 _ Mm—1t
Q1 2 ’
m(l—or)  m(t—1)
Qg 2 '
If ,_1 = L=} then we have i, < ;.- and %ﬁ‘”) < el o WD qf gy = —i then 1, = Z,we also have

mlload) < =L Since w, < wy_1, it follows that condition (22) holds.

We now turn our attention to the convergence. By Corollary 3.9, with probability > 1 — 4, we have

Qi

T
> wy (Ztt (f (ye) = f (2%)) — e (1= o) (f (ye—1) — f(x*))> +wrDy (27, 27)

T 2
1
< woDy (2%, 20) + (G* +30%) Y w2 +1o <)
< woDy (a7, 20) + ( U)tzlwtl—LatT]t 5\5

Grouping terms on the LHS and using that «; = 1, we obtain

«— e (1—oyq1) nr
Z (“’t — Wiy > (f (ye) = f(2%)) + wr o (f (yr) — f(2")) + wrDy (2%, 27)

Q41

T
1
< woDy (%, 20) + (G? + 30?) E t] La p + log <5) .
— Laym,

Since {w;} satisfies condition (22), the coefficient of f (y;) — f (z*) is non-negative and thus we can drop the above sum.
We obtain

T
1
wr B )~ ) D 07 ) S oD (520 + (6 +30%) S +1og( 5)

Using that wp = % and wy <3z L forall0 <t < T — 1, we obtain

L nr
_ * D
3Car (f (yr) = f(z")) + 20 (2%, 27)
T
1 1 02 1
< =D * — (G* + 302 —t 4] - .
Sz ¢($,20)+C( + o)gl_Lamt+og 3
Thus
nr * *
— (f(yr) — f (@")) + Dy (27, 27)
ar
T 2 1
< 2D, (z* 2 (G? 2 — 4+ 2Clog | ).
< 2Dy (z%,20) + 2 (G +3J);1_Lamt+ C'log 5
Using that Ln; < 4, we obtain
T ? T 2 T
P e D s =D DL
t 2
ol-Lam Hl-g9vy IS
Plugging in and using that 777 = 7T and arp = 757, we obtain
T+1 . N
D (f tyr) — £ @) + Dy (0" 20)

< 2Dy (7%, 20) + (2G2 +6 (1 + log <(15)> 02) 3—02
g
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If L < % which means 7°/2 < 4Ly then np = L we have

Hence

which entails

flyr) = f(@%) < =5

and

Dq/, (1‘*, ZT) < 2Dw (13*, Zo) +1

Hence
<

flyr) = f (%)

and

Dy (2, zr) < 2Dy (27, 29) + 12 (G2 + (1 + log (

Overall we have

16L

flur) = £ (") < 5Dy

T
C = 602 an =
i=1

nr (T +1)

< 2Dy (2%, 20) + <G2 + <1 + log (

then nr = % Let T} be the largest ¢ such that

2

— T1/277

*

z 20

602
16L2

2772.

T
30273

§ 2~ <

Z‘:115 S 372 < 6o

(f (yr) = f(«)) + Dy (27, 27)

5))7)

2
373
412’

0

2

T
C = 60° Z n?
i=1

To T
:602277t2+602 Z n?
i=1

i=To+1

IN

<2Dw (z*, 20) + 12 <G2 + (1 + log ((15)) 02> (1 + logT)> ,
;)) a2> n*(1+log T).

)+ Tli/% (sz (z*,20) + 12 <G2 + (1 + log <(15>> 02> n*(1+ 10gT)> .

24



High Probability Convergence of Stochastic Gradient Methods

C. Missing Proofs from Section 4
C.1. Stochastic Gradient Descent
Proof of Lemma 4.2. We start from the smoothness of f

F(oes) = Fn) < (V) zors =2 + 5 s — o]
2

G ere

= i (Vf(ae), V() +
By writing V f(z;) = & + V f(z;) we have
F@err) = flo) < = (Vf ), & + V() + %’72 &+ f (o]
= =0 IV (@) = e (V f (@), &)
B e+ 2 o) P+ 202 (7 @), 60)
We obtain the inequality (7) by rearranging the terms.

Proof of Theorem 4.3. We prove by induction. The base case t = T" + 1 trivially holds. Consider 1 < ¢ < T', we have

Elexp (St) | Ft] = E [E [exp (Z; + Sit1) | Fea] | F]
= E [exp (Z:) E [exp (St41) | Fes1] | Fil -

From the induction hypothesis we have E [exp (S;41) | Fey1] < exp (302 DO wig? L), hence

T 2
E [exp (S) | F¢] < exp (302 Z wzgzL> Elexp (Z:) | F4] -

i=t+1
‘We have then

lexp (2 | 7] = & [exp (e (e (1- %) |9 1(0 >2+At+1At)vtnw(wnﬁ)m}

<& [owp (e (mlnL = 1) (V1. )+ F ||£t|)—vt||w<xt>||2)ﬂ]
exp (<0 197 E [exp (an (L~ 1) (V50060 + ZE el ) ) 1 7]

< oxp (=0 197017 ex (30% (a1 ||Vf<xt>ll2+wtgtL>)

2T,
— oxp (3“”;) .

where the second line is due to (7) in Lemma 4.2 and the second to last line is due to Lemma 2.2.Therefore

D win?L
E [exp (St) | Fi] < exp (302 Z 17271)

i=t

which we what we need to show.

Proof of Corollary 4.4. In Lemma 4.3, Let { = 1 we obtain

T wm?L
E[exp (S1)] < exp <3022 tzt )

t=1
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hence by Markov’s inequality we have

2 - weni L 1
t=1

In other words, with probability > 1 — § (once the condition in Lemma 4.3 is satisfied)

> {wt”t <1 - L) - Ut] IV f (@)l + we (Apr — Ay)

=1
2

wyn; L 1

< 30? —— +log —.

< atzzl 5 tlogs

This gives

T

ne L wn? L 1
Z [wmt (1 — 2> — vt] |\Vf(mt)||2 +wrAryy <wi A+ (Z(wt wi_1)A¢ + 3022 tnt ) —I—logg

= t=2 t=1

as needed. ]

Proof of Theorem 4.1 . First case.

Starting from this inequality, we will spec1fy the choice of 7, and w; to obtain the bound. Consider n; = n with nL < 1,

wy = W = z—=—. Note that w;n; 27 = g’(ﬂ < 2%2 satisfies the condition of Lemma 4.3, we have

T
LHS of ) = wires + Y- [uwn (1) = 3022202 = V2] 1V
t=1

L 1
— e +un Y [1- 1 Lgr 1 s
t=1

T
w
> whrss + 5 > [V )

t=1

77L = nL) >

where the last inequality is due to 1 — when 0 < nL < 1. Besides,

1
2

302 1

Hence with probability > 1 — ¢

T
2A 2A 1
Z||Vf(xt)u2+%< = +3° LT+—log§
=1

2A 1
= 22 4 302nLT + 1202 log 5
"

Finally by choosing 7 = min {i, UQALIT} and noticing A1 > 0, we obtain the desired inequality.

Second case.
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Consider 1, = % withnL <1, w; =w = W Again, we have w;7n; 21 = 602t < 202 , then

T
N~ |wn (L 302w2772< ﬂL) 2
LHS Of(9)*t=21 l\/i <1 2\/£) 7 1 Vi IVf(@)l™ +wAriq
T’ _
wn nL  3o0%wn ( nL)
=) —F|1-—-%- 1- IV £(z0)]|” + wA
;\/{5 _ W NG i t T+1
>2T:w _1—7—30' (1—7]IJ)Q ||Vf($t)||2+UJAT+1
227 | v Vi
T r 2
S 2% 5 (1= 22) IVl +wa
= — l-——=—-c|1-——= T+1
2wtz f *
T

wn 2
>y —= |V +wAri > E v +wAT, 1,
= - 2\/1? || f(wt)H WAT+1 \/» || f T H WAT 1

t

2
where the second inequality is due to 1 — 2"—\% — % (1 — %) > % when 0 < L < 1. Besides,

g

RHS of (9) =wA; + 80 ZLXT: L
=W — W —_ —
PTG

302 1
<wA; + 5w L(1+1ogT) + log 5

Therefore, with probability > 1 — §

T
SV + WWAT

2A 2 1
VT (1 +30?nL (1 +logT) + — log >
U wn 0
2A 1
=VT (1 +30?nL (1 +log T) + 1202 log 6) .
n

Choose 7 = +, and notice Ar,1 > 0, we obtain

T
1 2A1L 4 30% (1 +log T) + 120% log &
=3IV < ( ) :

VT
O
C.2. AdaGrad-Norm
Proof of Lemma 4.6. Starting from the smoothness of f
L 2
f(@ip1) = fze) <(Vf(2e), 21 — o) + b ||5Ut+1 — 4|
__n < 2
e e 4 e
n 2 1 2
= LI )1 — (V). ) + [ ) 23)
bt bt 2b
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Multiplying both sides by m and rearranging, we obtain

IVF@OI® _ = (VF@e) &) | be (A= Arpy) nL _ 2
2 —bo = 2 —bo | n(@b—bo) | by (b —bo) va(““)
= L1 _ V(o). &)
- (2bt—1 —bo  2b; — bo> (V@) &) 2bs_1 — by
be (A — Agyq) nL ~ 2
72 —by) | 20y (2b; — bo) LD (24)

Note that by the smoothness of f we also have ||V f(z;)||> < 2LA;. Combining with Cauchy-Schwatz inequality we have

1 1
(2bt1 - bo B th — b0> <vf(xt)v§t>
g( e )”W(mt)”2+< Lo ) L el

2b:—1 —bo  2b: —bo 2nL 2by—1 —bo  20; — bo thb:ibo - 2btbib0 2

(ot ) S () e
T\ 21 —by 2b—by) 7 2,1 — by 2b;—by) by "N

Plugging into (24) we obtain

2y — by ~ \2bi_1—by 2b,—by) by 2b,_1 — bo
by 14 _ biA¢y1 nL
n (2bt—1 — bo) n (Qbf — bo) th (2bt — bo)

2

fosce

Sum up from 1 to T’

an z)? <i 11 \nLMy i (Vf (),
2by — by 2b;_1 — by 2b; — by bo = 2b;_1 — bO
bt 1At btAt+1 > l 77L ~ 2
: + 2 =) 19760
Z ( 2bt 1— bo) (th — bo) tz:; 2bt (2bt _ bO) f( t)
~ 2

S8 n2br-b) 24 B £~ 21 — by
CnMr Ay brdpa by Vg (VS().6)
b n n@br—by) 2 b3 = 2 by
O
Proof of Lemma 4.7. For 1 <t < T, given [A| < 1, we have
V() ’ 2 2 2 2
E |exp )\2<,§t | Fi SE[exp ()\ 1€ ) \]—"t] <exp (A°0?).
l ( Vol (X%
Thus — < ngﬁgigu ; £t> is a centered o-sub-Gaussian RV given F;, and we can apply Lemma 2.2 for a = w”v,f(ff,zju and

b = 0, for some constant w > 0 to get

. [exp< <Vf(xt)>) |F] o le"p (wIIVf(mt)l<|§§ G |’€t>) -

th 1 — bo 2btfl - bO
2 2 2
< exp [ 22 IVI@IE S
(2b—1 — bo)
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By a simple induction argument we obtain

L w(V(),&) 20|V ()] o2
exp (; - 2bi_1 — b N (2bt71 — b0)2 <1.

E

Hence, by Markov’s inequality

Pr

2btfl - bO (2bt—1 — b0)2

T
S wlVie).&) 2 IVl 1] <5
t=1 J
which implies with probability at least 1 — §, we have

T

L w(V(@),&) _ - 2020 |V (@) 1
Z th—l - b() S ; (2(),5,1 — b0)2 + log 5

t=1

However, we now have a mismatch between the index of the numerator and denominator of the first term in the RHS. To
resolve this, observing that ||V f (z)]|* < 2|V f(x¢) — Vf(:z:t 1) I + 2|V f(2;—1)||” and using the smoothness of f for

the first term, ie ||V f(z¢) — Vf(2-1)|| < L ||z — 21| = V(e 1)H, we have

btl

—~ 2
T 4P L20? |V f ()|

i 20202 ||V f (1) N i 4w?o? |V f (i)

t=1 (2bt 1= bO) B t=2 bt2 1 (2bt 1— b0)2 =2 (2bt71 — b0)2
2w?o® HVf(xl)H
+ b2

w < 10g , the proof is completed. -

Finally, since 2b, 1 — by > bo and 3.,
Lemma C.1. With probability at least 1 — §
d 1
Sl < o7 + o log .
t=1

Proof of Lemma C.1. 1t is not hard to verify that

exp (W)} < exp <Z 1) = exp(T)

E

Thus by Markov’s inequality

T T 2
1 T
Pr LZ; &7 > 02T + o logg = Pr |exp (Zt;J&H ) > eXp(S( ) <.
Therefore with probability at least 1 — §
o 1
Z I1&]|* < 0*T + o*log 3
O
Proof of Theorem 4.5. From Lemma 4.6 and 4.7, we have with probability at least 1 — §
V£ () LMy Ay 2wo® ||V f(x1)|? L dwnp?L?c? b
§:||ft||7772T+71Jr f7||2f(1)||+7L+ ’720 og T
2by — b bg n bg 2 bg bg

T 2 2
+Z4w0 HVf(fUtflz)H Jrl]og}.
P (th—l - bO) w o
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Here we choose w = 8% min {1; ;—%} and simplify the result to get

IVF@)® O dwo? [V @)l _ LMy IV £ (1) b 80” ( nL>
< +—+7+ Llog L +— (14 2= )log=.
Z 2b; — by ; (21 — by)? R 1 402 T T bo 5
Note that by the choice of w, in the LHS of the above,
4dwo? bo 1
5 < 5 < -
(2bt_1 - bo) 2 (th—l - bo) 2 (2bt71 - bO)
Hence, we have
Z IV f(z0)|? Z IV f(x0)|? Z dwo? ||V f(z—1)|)?
2bt - bO 2bt - bO t—2 (2bt71 — b())2
which implies
IV ()l® _ nLMzr IV £ ()| by 8a” nL
—_— L1 14+ — |log .
Z Wy 02 +n+ w7 Ogb2+b0 by ) 85

It is known that with probability at least 1 — §, My < o? (1 + log %) (Li & Orabona, 2020; Liu et al., 2022). By the union
bound, we have with probability at least 1 — 24

[V f (2)] b2, IVf(z)|]> 802 nL 1 nLo? T
< Llog —_—t —— 4+ — [14+ — ] ]log = 1+ log —
Z by " Ob2+n+ w2 T U)ot LT

T 2
b2 IVf(z1)]|” 8o? nL 1 nLo? T
< - - - 7 - - — —
= Eﬁ HVf(act 4by | nLlog L b2 + L 17 + b 1+ b log 5 + 7 1+ log 5

g(6)=0(140c2log %)

Note that

NS |V
t=1

2 T T
<\ [BB 2D NG+ 2V ()
t=1 t=1

Now we consider the following two cases

Case 1. 31, 2|V f(z)|* < b2 +23/, ||&]%, then we have

T T T 2

202 +45 L |€
S IVA IR < 4y 25 +43 &P (m:log R +g<6>).
t=1 0

t=1
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Case 2. Y1, 2|V f(z)|® > b2 + 23/, ||&]%, then we have

T T T 2
SISl <8, Y19 o) <nL tog * 2= [V /()] +g<6>>

0

a 20/ IV f ()]
= | SV @)l < 16nL1og == +8()
1 bo
Sy 1V f )| 641
<
< 16nLlog 320L + 16nLlog " + 8¢(0)
T 2
1 IVf(z 4nL
< 2 1|2 (@)l +16nL1og 22 | 84(6)
L 64nL
= z:: IV f(ze)|* < 32nLlog b + 164g(9).

Combining the two cases, we have

b2
t=1 0

T T T 2

W2 +43
SOV @))? < 4y| 262+ 43 e <nmog 042 1] +g<6>>
t=1

AnL 2
+ (3277/: log 6b77 + 169(6)> .
0

The final step is to use Lemma C.1 and union bound to get, with probability at least 1 — 3§

202 + 402T + 402 log L
0 85 +g<6>)

72 IV f(xe)]]” < \/2b2 + 402T + 402 log — 3 (nLlog 72
0

<6>)2.

+ = (320L10
T(”
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