Any-Start-Time Planning for SIPP

Devin Wild Thomas,' Solomon Eyal Shimony,” Wheeler Ruml,' Erez Karpas,’
Shahaf S. Shperberg,” Andrew Coles*

!University of New Hampshire, USA, Ben-Gurion University of the Negev, Israel
3Technion, Israel, 4King’s College London, UK
dwt@cs.unh.edu, shimony @cs.bgu.ac.il, ruml@cs.unh.edu, karpase @technion.ac.il,
shperbsh@post.bgu.ac.il, andrew.coles @kcl.ac.uk

Abstract

The problem of navigation among moving obstacles, some-
times referred to as SIPP, is a problem in which the applica-
bility of an action, such as moving to a particular neighboring
location, can change with the passage of time. This means
that the optimal plan, and its duration, can change depend-
ing on when execution begins. In practice, the execution start
time is often unknown until planning completes or another
agent gives the go-ahead. However, most prior work on SIPP
assumes a known start time and thus that the found plans are
always feasible. In this paper, we relax this assumption and
directly address the setting of any-start-time planning. We
present a general-purpose data structure that compactly en-
codes the optimal plan as a function of start time, as well as
planning algorithms that utilize it. In experiments on SIPP,
we find that this data structure tells us how long our paths re-
main valid, while its overhead is minimal. We also find that,
in any-start-time SIPP, replanning is insufficient for difficult
problems. In contrast, our any-start-time algorithms can be
quickly queried for the optimal plan once the start time is
known, albeit at the cost of substantial precomputation time.

Introduction

Many applications of planning naturally involve planning on
a time-dependent graph. Often this time dependence can be
represented as safe intervals within which a state or action
is applicable or safe for the agent. This paper explores how
a simple change to this problem, making the start time un-
known, fundamentally changes how we address the prob-
lem. To illustrate, consider a food delivery robot planning
its delivery route. The robot must wait for a human chef to
finish preparing a meal before it can be delivered. Assume
we have accurate (enough) knowledge of the travel times
on the two relevant local roads, such as when trains block
crossings. If we know ahead of time when the food will be
ready, i.e., the execution start time, we can find the optimal
plan assuming departure at that time. This can be done by
searching our road network for the earliest possible arrival
time at each location, until we reach the goal. This problem
representation, and a popular algorithm to solve it, are called
Safe Interval Path Planning (SIPP) (Phillips and Likhachev
2011).

In more detail, Figure 1 shows the arrival time plotted as a
function of departure time for the delivery robot. The robot

D
C
3:50
B
[}
E
=3:40
=
2
z
3:30 Road Blocked
3:20
3:10 3:2?) 3:30 ... 3:40 3:50
eparture Time

Figure 1: Delivery robot arrival time function, red segments
follow the faster road, blue the slower road.

has two roads it can choose between, taking 10 and 20 min-
utes, respectively, to reach the delivery target. However, the
faster road is blocked from 3:20 PM - 3:40 PM by a freight
train. We can see that there is a family of trajectories, la-
beled as segment A in Figure 1, which represents the same
journey along the faster road, just with different departure
times. However, the train blocking the faster road causes a
breakpoint in the arrival time function, where the segment
labeled B corresponds to the delivery robot taking the slower
road. At 3:30 there is another breakpoint in the arrival time
function, where segment C has a constant arrival time, be-
cause it is faster for the delivery robot to wait for the train
to pass and then take the faster road. At 3:40 the train cross-
ing opens and the arrival time function of segment D returns
to increase proportionally to departure time. This structure
arises due to the binary nature of safety in our problem.

Relation to Previous Problem Settings

Prior work on time-dependent shortest paths (TDSP) (Drey-
fus 1969; Orda and Rom 1990; Foschini, Hershberger, and
Suri 2014) has shown that the arrival times of the optimal
paths for the robot form a piecewise linear function. Each
segment of the function represents a family of related paths
going through the same locations but shifted in time. Using
the arrival time functions (ATFs) for planning we will gen-

time passes during planning

start time no yes
known temporal planning contract search
unknown | any-start-time planning situated planning

Table 1: Relationships between problem settings.

eralize SIPP to Any-start-Time SIPP (@SIPP).

Any-start-time planning fills a gap between existing prob-
lem settings (Table 1). Returning to our delivery robot exam-
ple, if we knew in advance when the chef will finish cook-
ing and planning was fast enough to treat the problem as
offline, we could model the situation as a conventional tem-
poral planning problem with timed initial literals (Cresswell
and Coddington 2003; Edelkamp and Hoffmann 2004; Fox
and Long 2003). If planning is slow enough to require tak-
ing its duration into account, we have the contract search
setting, in which the start time functions as a deadline by
which planning must complete (Dionne, Thayer, and Ruml
2011). However, in many cases we are uncertain of exactly
when we will be able to start executing any delivery plan that
we make, so finding a single plan in advance will not work.
Another approach would be to begin planning as soon as
the food is ready. If planning is slow relative to the changing
travel times and changing applicable actions, one could use a
situated temporal planner (Shperberg et al. 2021; Cashmore
et al. 2018) that takes the passage of time during planning
into account during the planning itself in order to ensure that
the final plan is feasible. The remaining combination is plan-
ning in the offline setting, but where we do not know the start
time. A simple approach would be to assume that planning
is so fast, and the environment changing so slowly, that we
can just do temporal planning starting the moment we learn
the start time. This however wastes time, and may result in
an invalid plan if the planner is too slow.

Note that our example provides time before the food is
ready during which the delivery agent can plan. The first
contribution of this paper is a data structure from which the
optimal plan can be quickly extracted once the start time is
known. That is, once the food is ready, delivery can com-
mence immediately without requiring any further search.

Related representations have been used to address TDSP
problems in settings such as network routing (Orda and Rom
1990) and transit networks (Sancho 1992). Any-start-time
planning is an example of the time-dependent shortest path
problem with restricted slopes, which is noted by Foschini,
Hershberger, and Suri (2014) due to the theoretical linear
complexity of the ATF. We use the term any-start-time plan-
ning for brevity and to be clearer to a planning-focused au-
dience. To our knowledge, this is the first work to instantiate
a search algorithm that takes advantage of these theoretical
complexity results. In this paper we 1) describe any-start-
time planning, 2) specify the @SIPP problem, its relation to
the TDSP problem and present PEAT, an algorithm to solve
@SIPP, and 3) present the augmented SIPP algorithm, that
captures useful extra information with minimal overhead. In
the following sections, we show how the ATFs that were
used by Foschini, Hershberger, and Suri (2014) to prove the

complexity of the TDSP naturally arise in the SIPP problem
setting and how they can be adapted to form the states of a
search algorithm to solve @SIPP.

Background

A SIPP problem is a tuple (S, E, §, z,, z4). For every state
s = (x,i) € S, the component z = (xg, z1...) denotes the
configuration the robot is in during that state. In our delivery
robot example this could be the location of the robot. The
component ¢ = (t, t.) defines a safe interval, a continuous
set of times from ¢ to ¢, where the corresponding configu-
ration is safe. Thus, each state represents an interval of time
that a configuration is safe. Many states may be associated
with the same configuration, but with different intervals. We
require that states have maximal intervals, that is that the
configuration is unsafe immediately prior to the start of the
interval, and immediately after the end of the interval.

An action e = (u,v,7) € E represents an interval in time
that the transition from state v to state v is safe for the agent'.
We denote the end of the interval at state w as ¢, while ¢¢ is
the start of the interval of edge e. The cost of an action is its
non-negative duration d(u, v): an agent departing w at time ¢
will arrive at v at ¢ + 0 (u, v). Wait actions (u, u, ¢) may have
any non-negative duration, subject to the constraints of the
safe interval of u. All other actions have a time-independent
constant duration. As with states, the safe intervals of edges
are required to be maximal. The existence of an action im-
plies that there exists a time ¢ such that the source is safe, the
action is safe, and the destination is safe at ¢t + §(u, v). Our
objective is to find a shortest path to the goal configuration
Z4, from starting in the initial configuration z at time 0.

The SIPP state space models an omniscient agent with
complete knowledge of its environment, including moving
obstacles now and in the future. These moving obstacles are
represented in the state space as safe intervals at configura-
tions and for actions moving between them. The fundamen-
tal observation for solving SIPP is the temporal dominance
relation: it is always at least as good to be in a state earlier.
This holds because any later time in an interval is reach-
able by waiting. The SIPP algorithm exploits this by tracking
the earliest arrival time at each state as g in the nodes of an
A* search (Phillips and Likhachev 2011). This efficiently re-
stricts the search to the compact SIPP state space rather than
the infinite (x, t) state space inherent to these problems.

Any-start-time SIPP

We define any-start-time SIPP (@SIPP) similarly to SIPP,
with the sole difference that the initial start time ¢ is un-
known. With this modification, we must now find a shortest
path for any start time. In the food delivery example, the aim
is to find delivery plans for all possible start times such that
a plan can be immediately executed as soon as the food is
ready. A side effect of allowing any start time is that, while

"We explicitly define actions as having safe intervals. Prior lit-
erature on SIPP has action intervals implicitly defined by collision
checking. For example: if we have an agent on a 1-D grid, with an
obstacle approaching from the right, the safe interval if the agent is
moving to the right is different than if it is stationary.

the SIPP dominance relation still holds, it does not suffice
to track only earliest arrival time for @SIPP. For example,
imagine our delivery robot with two potential roads. The
first is shorter, but crosses a set of train tracks and is only
safe if the agent departs in the next 5 seconds. The second
route is slightly longer, but without any anticipated inter-
ruptions. Searching only with regard to earliest arrival time
would prune all information about the second route, and pro-
duce a plan that is only safe for the next 5 seconds. We need
to track an ATF that encodes the earliest arrival time for all
potential departure times. In the following section we de-
scribe how to represent these ATFs and how to use them
when searching in the @SIPP state space.

Representing Any-Start-Time Plans

Any safe path to the goal has up to two distinct sections to its
ATF, for example sections C and D in Figure 1. The first is
a constant section, where the path requires the agent to wait
for some duration, and so departing later simply results in
less waiting. Following this, there is then a breakpoint where
the slope of the piecewise linear function changes. The path
no longer requires waiting and any delay in departure would
result in a proportionally later arrival, which introduces an
increasing section where the ATF increases directly propor-
tional to the departure time. For example, when our deliv-
ery robot is forced to wait at the train crossing, the depar-
ture time does not change the arrival time until the crossing
becomes safe. As Figure 1 illustrates, an ATF representing
multiple paths can have many segments.

Our key observation is that our search can use these ATFs
analogously to g values in SIPP, finding a path that repre-
sents a family of related valid traversals of the graph instead
of the single traversal that would be found by conventional
known-start-time SIPP algorithms. To do this, each search
node keeps an ATF representing a set of partial paths the
agent might take. Like g, we update this ATF when generat-
ing successor states. Each additional action can potentially
constrain the entire path, requiring the agent to wait to de-
part for longer, until the action becomes safe, or setting an
earlier deadline on the agents departure so that it takes the
action before it becomes unsafe. We will first construct a fi-
nite directed graph representation of our problem, adapting
the structure of TDSP problems. Second, with this repre-
sentation, we will define the ATF of an edge on the graph,
Ale](t). Third, we then show how to construct the ATF of
a path, A[p](t) from its constituent edge ATFs. Fourth and
finally, we explain how to represent a set of path ATFs and
search using ATFs.

Earliest ATFs for Edges

We will now address how to manipulate our @SIPP state
space into a finite directed graph analogous to those used in
the TDSP literature. We adapt the notation for ATFs from
Foschini, Hershberger, and Suri (2014). To generate this
graph, we observe that it is possible to compile the state
intervals into the respective action intervals. Precisely, we
construct a finite directed graph, G = (S, E, Ae]) from an
@SIPP problem (S, E, 0, zo, x4). The vertices of the graph
are the states of the @SIPP problem, likewise the edges are

the actions. The change we make is to compile the safe in-
tervals of the source state, destination state, and the action
into one ATF, Ale]. As we saw in the delivery example, A|e]
encodes the inherent minimum duration to travel between
the two configurations, while also accounting for any wait-
ing required by the intervals of the source, destination and
action.

To compile an action e = (u, v, i), we parameterize Ale]
as three time points and a duration, these parameters are il-
lustrated in Figure 2a. “wait”, denoted (, is t¥, the earliest
departure time that the agent can begin waiting at the source
state u. The second time is “go”, denoted «, the earliest de-
parture time to traverse e. « is a breakpoint we described
earlier, for example the breakpoint between C and D in Fig-
ure 1. «v is constrained by all three intervals of e, u and v
because the agent must be safe in v and safe to traverse e at
the moment of departure, and also be safe upon arrival in v
at tgepart + 0(u, v). The precise calculation of ¢ is shown
in Eq. 2. The final time, “end” denoted /3 is the latest depar-
ture time that will allow a safe traversal of e. Like «, (3 is
constrained by all three intervals; the calculation is shown in
Eq. 3. The duration A is §(u, v).

=t (1
a=mazx(ts,ty,t2 — o(u,v)) (2)
B = miTL(tZ’ th tz - 6(““’ U)) 3
A = §(u,v) “)

These parameters define the piecewise linear edge ATF:

0 t < (e

actAe Ce <t <min(ce,Se)
t+ Ae Qe Stgﬁe

o0 Be <t

f[Ce7ae7ﬁea Ae](t): %)

If the agent ‘departs’ u between (and «, the soonest it can
arrive at v is by waiting at v until « and then traversing the
edge, arriving at time o + A, where A is the traversal du-
ration of edge e, regardless of when in the (—« window the
agent departs u. After 3, either the edge or v becomes in-
accessible and no traversal is possible, so Afe] = oo again.
If the agent arrives at u at some time ¢ between « and f, it
can transit immediately to v without waiting, arriving there
att + A. Ale] captures all the information needed from the
original intervals on w, v and e. We note that conditions of
the second and third terms of Eq. 5 may appear odd, this
is because we will later reuse the same piecewise linear
parametrization for the ATF of a path. We need min(«, 3)
because the ATF of a path may have 8 < « when traversing
the path requires more waiting (o) than can be done in the
initial state (/). In such a case < « means the third case,
a <t < B never applies. We will explain this further after
we describe path ATFs in the following subsection.

Earliest ATFs for Paths

We need two pieces of information to generate a successor,
Ale] is the first, filling the role that action duration would
normally play in SIPP. Second is the path ATF A[p], that
acts as g in our search. As we have replaced g and duration

(é) Ce Qe Be t
wait 2° end

t

& d -

Als,d](t) Als,d](t)

b . ,%2
G2 /‘6,1 o2 e

P1

(©) t @ t

Figure 2: (a) A typical A[e] (b) — (d) Examples of the interaction of two path ATFs A[p;] and A[ps] in forming A[s, d]

with ATFs, we can no longer simply add the incremental du-
ration to update g for a newly generated successor. It may be
helpful to view the search as building out paths, rather than
searching through states. Using the edge earliest ATFs, we
now define ATFs for paths: A[p]. A path represents an or-
dered subset of edges where it is safe to traverse each edge
in order, possibly with some waiting. So intuitively, the ATF
of a path is the successive composition of the ATFs of the
edges in the path. The departure time of each succeeding
edge is the earliest arrival time of the preceding edge. What
may be surprising is that the composition operation main-
tains the pieceswise linear structure of the edge ATFs, mean-
ing that we can represent a path ATF by its equivalent edge
ATF. Next, we will see how this composition maintains the
simple structure of the ATF.

The ATF for a feasible path p, denoted by A[p|(t) which
we restate from Foschini, Hershberger, and Suri (2014) is:

Alpl(t) = Alpn] © Alpu_i] o ... 0 A[p](t) (6)

with o denoting function composition: (f o g)(t) = f(g(t)).
A[p](¢) is the earliest arrival time at the end of p, following
path p, starting at time ¢. The agent might be able to do ad-
ditional waiting along the path without invalidating the path,
although it would arrive later.

We observe that the path ATF of a path composed of a
single edge, is exactly the ATF of that edge. This leads us to
introduce the representation of A[p] as its ‘equivalent edge’
with regards to the ATF. The role of an equivalent edge is to
stand in for a path in computing the ATF, allowing us to use
Eq. 5 to compute A[p| as well as Ale]. That is, we want to
find the parameters of an equivalent edge e., = (¢, o, 5, A)
such that the edge ATF is exactly the path’s ATF.

Consider a path consisting of three edges, the first safe
from [0, 2], the second from [0, 10] and the third from [8, 10]
each with unit movement duration. The agent can wait for a
maximum of two time units before taking the first edge, so
the 3 of the equivalent edge is 2. However the agent is forced
to wait for at least 6 time units for the final edge to become
accessible, so « of the equivalent edge is 6. Thus our equiv-
alent edge is parameterized by (6, 2, 3), giving us an earliest
arrival time of 6 + 3 = 9, which increases proportional to
departure time for a latest arrival time of 6 + 2 + 3 = 11.

Notice that this example shows a case where o > [3,
which requires min(a, 8) in Eq. 5. For a single edge, all
waiting must be done prior to taking the action to traverse
the edge. However, for a multi-step path, the agent can

sometimes wait at intermediate points. While we can not be
forced to wait for longer than the edge is safe, it can hap-
pen that we are forced to wait along an entire path for longer
than we can wait prior to traversing the first edge! Precisely,
while o < f is true for all edges, it need not be true for a
path. This arises when the agent is forced to wait along the
path but cannot do all the waiting at the beginning. Instead,
the agent must wait at intermediate states along the path.

Formally, to generate the successor p’ of path p using ac-
tion e, the ATF of p’ is:

A[p](t) = Ale] o Ap](2) ©)
As the base case, suppose we have a path composed of
a single edge: the ATF of the path will be exactly the ATF
of its single edge. Now let us examine the ATF of a path
with two edges: p, the equivalent edge of the existent path;
and e, the edge being composed onto the path. ¢, is exactly
(p» as extending the path does not change the safety of its
start. Each edge along the path can either force the agent to
wait for it to open, or not place an additional requirement on
the minimum waiting that an agent must do along the path.
Similarly, the expiration of each edge provides a deadline
on the most additional waiting that can be done at each step
along the path. The intrinsic duration of movement in the
path, A, is the sum of the intrinsic durations of the edges.
We formalize these intuitions into a recursive definition of
our equivalent edge:

Cp/ = Cp ®)
apy = maz(ay, ae — Ap) &)
By = min(ﬁp, Be — Ap) (10)
Ay =A.+ A, (11

With this we now have all we need to generate successors
using A[p] in place of g and Ale] in place of duration.

Multi-path Earliest ATFs

The last requirement for search is an ATF for a set of paths,
all with the same source state s and destination d. We denote
the ATF for reaching d from s as Als, d]. When planning,
we will be considering multiple possible paths. If Py 4 rep-
resents the set of all feasible paths from s to d, then A[s, d]
minimizes over these (restated from Foschini, Hershberger,
and Suri (2014)):

Als,d)(t) = min Alpl(0) (12)

As Als,d|(t) is a minimization over piecewise linear
Alp](t) path arrival functions, A[s,d](t) is also piecewise
linear. Figure 2b, c, d shows different combinations of break-
points that can arise in A[s,d]. The breakpoints of each
path ATF A[p] are labeled (;, v; or ;. Regions minimizing
Als, d] are shown as a solid line while the remainder of the
path ATF is dashed. Minimization breakpoints are black dots
labeled b. Discontinuities in Als, d] are highlighted with a
dashed line. Figure 2b shows the unique configuration lead-
ing to a distinct breakpoint b that was not originally a break-
point of either constituent path. Figure 2c,d show break-
points in A[s, d] that are not distinct from the path break-
points that cause them.

Searching with ATFs

We now have what we need to search with ATFs. We il-
lustrate their use via the operation of A* on the delivery
robot scenario. We represent the @ SIPP problem using three
states: the restaurant R, which has a safe interval during
dinner service of (2:00, 8:00), the railroad crossing C, and
the apartment A to deliver the food to. The start state is R,
the goal is A, our search must compute A[R,.A], which is
shown in Figure 1. The crossing and apartment are always
safe. The action moving from C to A has a safe interval rep-
resenting the train. Formally, the actions are:

€1 = <R7C7 <7OO, OO>>
es = (C, A, (—00, 3:20))
ez = (C, A, (3:40, c0))
eqg = (R, A, (—00,00))

The inherent travel times are:
0(R,C) = 1 min
4(C, A) = 9 min
0(R, A) = 20 min

We now calculate the parameters ((, «, 5, A) of our edge
ATFs, using Equations 1-4:

[e1]
Ales] = (—o0, —00, 3:20, 9 min)
Ales] = (—o0, 3:40, 00, 9 min)
Aleq] = (2:00, 2:00, 8:00, 20 min)

Search nodes consist of a state (for clarity, we list the
full path) and its path ATF (taking the place of the tradi-
tional g value). For this example, we will use h(n) = the
cost to go assuming all states and actions are always safe.
A*’s open list will be sorted by the earliest expected arrival
time (f(n) = a(n) + A(n) + h).

For our starting node, the path is simply R, our ATF is
uninformed so far, and f is —oo + 0 + 10:

open, = {<R : <*OO, *O0,00,0HliH%f = 7OO>}

We pop the front of open, and generate the successors of R.
To do so, we look at the actions, e; and ey originating in

‘R. Each successor is generated by applying Equations 1-4
yielding two successors:

open,; = {(RC : (2:00, 2:00, 8:00, 1 min), f = 2:10),
pen,
(RA : (2:00,2:00,8:00,20 min), f = 2:20)}

Popping the front of open, we expand RC, yielding two
more Successors:

open, = {{RCA; : (2:00,2:00,3:19, 10 min), f = 2:10),
(RA : (2:00,2:00,8:00, 20 min), f = 2:20),
(RCAs : (2:00,3:39,8:00, 10min), f = 3:50)}

Open is now A[R, A], very similar to what is shown in Fig-
ure 1. The slight difference is due to the original example
used by Figure 1 not having the state C, which we added to
make this worked example more illuminating. Segment A
is RCA;1, segment B is RA and C and D are RC.As. Our
next steps would be to pop the three nodes off open, observe
that they have reached the goal, and add them to our A[s, d]
container. We can then query A[s, d] for a specific starting
time, for instance if the robot departs at 3:18 the minimizer
of Equation 12 is RCA;, and we have up to 1 minute to
safely depart because 5 = 3:19.

Computing A[s, d| Efficiently: Implementation

In order for Als,d] to be useful, we would like to have a
representation that can be efficiently queried to return the
optimal path for a given time. It should also be efficient to in-
crementally construct during a search. We represent A[s, d]
as a set of line segments, with each constituent A[p] form-
ing a pair of segments inserted into A[s, d].Each segment is
parameterized by (begin, end, slope, a;) where begin and
end delineate the extent of the segment in departure time,
slope is the slope of the segment which is either zero or
one and ay is the arrival time of the segment at begin. We
can represent A[p] = (¢, «, 8, A) as segments ((, «,0, A)
and («a, 3,1, A). These segments can be stored in a balanced
tree sorted on (3, with a pointer to A[p|. This structure gives
O(log(n)) query and add. We note that if needed it may be
possible to effectively get constant time query for the current
time, by maintaining a pointer to the A[p] corresponding to
the current time.

We add a prospective A[p] to A[s,d] when A[p] is not
dominated by A[s, d], which is when there exists some time
such that A[p|(t) < A[s, d](t). Because A[s, d] is monotonic
non-decreasing, it is sufficient to check for dominance at the
breakpoints of A[p] and Als, d].

Planning Algorithms

We present three algorithms that we will use to study search
with ATFs: one to compare against SIPP at solving SIPP
problems and two for solving @SIPP problems:

ASIPP Augmented SIPP: performs an identical search as
SIPP but with A[p] rather than scalar g.

RSIPP Replanning SIPP: finds an approximate solution to
@SIPP by precomputing an initial SIPP plan for ¢ = 0,
then replanning while invalid.

Algorithm 1: SIPP

Algorithm 3: Augmented SIPP

1: function SIPP(startState, goalConfig)
2: open < {}, closed + {}

3 place startState on open and closed
4: while open not empty do
5: cur < open.pop() > min f
6: if cur at goalConfig then
7 return path of cur
8: for e € successors(cur) do
9: dt < d(cur.state, e.v)
10: g < max(cur.g + dt, t<)
11: n « {e.w,g)
12: if n ¢ closed or n better then
13: put n in open and closed
14: return Failure
Algorithm 2: RSIPP
15: function RSIPP(startConfig, goalConfig)
16: validPlan < False
17: Wait until tstart
18: while true do
19: p < SIPP((startConfig, tnow), goalCon fig)
20: if p still valid then
21: return p

PEAT Partial Expansion A* for @SIPP: solves @SIPP by
continuing a partial expansion ASIPP and maintaining an
arrival time function.

These three algorithms and SIPP all operate on a search
graph G = (S, E, Ale]).

Algorithm 1 formally shows how SIPP performs an A*
search. We perform the search, popping the minimum f
node off open. If the node is a goal, we follow the parent
pointers of the node to recreate the path. Otherwise, we gen-
erate the successors, which are the edges in G that start in
cur.state (and are safe at cur.g). In line 9 we calculate dt,
the inherent duration of action e, and in line 10 we calcu-
late the (potential) earliest arrival time as the maximum of
cur.g + dt which is the arrival time if we are able to depart
at the earliest arrival time at cur, otherwise we must wait for
the edge to become safe at time ¢5. We store these values as
the node n, then in line 12 if n.state has not been generated
before or if we have found an earlier arrival time at n.state,
we add n to open and closed.

Augmented SIPP (Algorithm 3) modifies SIPP to perform
an identical search, solving a SIPP problem but returning
Alp] rather than a single path. This is done by lines 31-33
which update A[p]. Because ASIPP returns A[p], we will
know not only the earliest arrival time at our destination, but
o tells us how much time we will be forced to wait along the
way and [tells us when the path we have planned becomes
unsafe. These may be valuable in certain applications. For
example, imagine our delivery robot knows it will be forced
to wait near its destination. Earlier along the path, it now has
the freedom to not arrive at the earliest arrival time at each
intermediate state. This allows it to know that it has time to

22: function ASIPP(startState, goalConfig)
23: open < {}, closed < {}

24: place startState on open and closed
25: while open not empty do

26: cur < open.pop() > min f
27: if cur at goalConfig then

28: return path of cur

29: for e € successors(cur) do

30: dt + d(cur.state, e.v)

31: « < max(e.« - cur.A, cur.c)
32: 8 < min(e.[3 - cur.A, cur.j3)
33: A <+ cur.A +dt

34: n < (nC, dest, o, 5, A)

35: if n ¢ closed or n better then
36: put n in open and closed
37: return Failure

drive in a more conservative manner, potentially making the
plan more robust to unforeseen events.

Our second algorithm, RSIPP, approximates a solution to
@SIPP, where the agent is planning for an unknown start
time. RSIPP waits until the start time, then repeatedly runs
SIPP starting from the current time ¢,,,,,. If the found plan is
still valid after planning completes, we return it, otherwise
loop. If the problem is simple enough and the planner fast
enough, this should return a valid path in time to be used. It
however does not truly solve the @SIPP problem, as we are
only returning a single path.

In contrast, PEAT (Algorithm 4) maintains a collection
of paths to the goal that it progressively adds to, increasing
the departure time it has plans for. PEAT starts in line 40
by initializing open with the starting configuration at time 0,
which is a stand-in for the earliest departure time we might
query. @SIPP is potentially an infinite sized problem as we
are concerned with finding the paths at all times including
infinitely far in the future. This creates an issue where a
node may (in theory) have an infinite number of successors.
While we want to have a solution for any start time, time is
monotonically increasing and we generally want solutions
for departure times in the near future before solutions for
the far future. To address this, PEAT performs a partial ex-
pansion A* (Yoshizumi, Miura, and Ishida 2000), where we
generate only a subset of successors each time a node is ex-
panded, corresponding to the earliest upcoming safe inter-
vals at neighboring configurations which have not already
been generated. We pop the minimum f node from open in
line 42, then in line 45 we generate the next layer of succes-
sors of cur, and finally in line 55 we return cur in open, with
its expansions count incremented. Concretely, cur tracks the
number of times it has been expanded, so on the first time it
is expanded, it generates successors for the chronologically
first edge to each successor configuration, on the n'” time
it is expanded it generates the successors corresponding to
the n'" edge to each successor configuration. In our deliv-
ery robot example, the first time RC was expanded it would
generate the successor from following edge A[es], then be

Algorithm 4: PEAT

38: function PEAT (startConfig, goalConfig)
39: open < {}, closed < {}, A[s,d] < {}
40: place (startConfig,0) on open and closed

41: while open not empty do

42: cur < open.pop() > min
43: if cur at goalConfig then

44: add path of cur to Als, d]

45: for e € nextSuccessors(cur) do
46: dt < (cur.state, e.v)

47: « + max(e.« - cur.A, cur.«v)
48: B < min(e.[3 - cur.A, cur.(3)
49: A <+ cur.A +dt

50: n + (nC, dest, o, 8, A)

51: if n ¢ closed or n better then
52: put n in open and closed
53: cur.expansions += 1

54: cur.f = min f of remaining children
55: place cur in open

56: return Als, d]

placed back onto open. The second time RC is expanded,
it would generate the successor from following edge Ales]
and, because it has no more successors, RC would not be
placed back on open.

The second key element of PEAT is that it maintains
Als, d], the record of found paths to the goal. Als, d] is ini-
tialized empty, then rather than returning when a path to the
goal is found, we add it to A[s,d] in line 44. The pruning
strategy for PEAT remains an area of future work. An im-
proved version of PEAT would prune nodes that represent
plans that are worse than plans already in A[s, d], but should
still allow short duration plans that depart later.

Empirical Evaluation

To evaluate the performance of these techniques, we ran
SIPP experiments with 8-way motion by both agent and ob-
stacles. We address three questions: 1) what is the overhead
of ASIPP in comparison with SIPP? This tells us the price
we would be paying to know when our plan will become in-
valid. 2) How long do SIPP plans remain valid? This tells
us when it would be worth using PEAT, in comparison to a
simple replanning scheme like RSIPP. 3) What are the rela-
tive runtimes of precomputation and querying for RSIPP and
PEAT? This tells us when an@SIPP vs replanning approach
might apply. Our C++ code is available on GitHub?.

Experimental Set-Up

Our test domains are adapted from maps and scenarios from
the Moving Al Lab 2D Pathfinding Benchmarks (Sturtevant
2012). We selected three maps, 32room_004, random512-
20-1 and den520d (which we will refer to as rooms, random
and den520d respectively) to provide three contrasting static
environments. Rooms and den520d were selected, in part, to

*https://github.com/dwthomas/any-start-time-sipp

correspond with prior SIPP papers, which have used these or
similar maps for their experiments. Rooms provides a static
environment with regularly shaped and spaced local minima
to increase the challenge of the search, while den520d con-
sists of larger irregular rooms connected by long hallways.
The random map contrasts with the other two, providing
an intermediate difficulty between the easier den520d and
the more challenging rooms. The den520d map is 256x257,
while the other two maps are 512x512. We selected the 16
start-goal scenarios with the longest optimal paths in the
static benchmark scenarios provided with each map.

For each map, we also generate 16 sets of 16,384 moving
obstacles. Experiments are run on subsets consisting of the
first n of these obstacles, so experiments with more obstacles
include those from the smaller experiments. Each obstacle
moves from a chosen starting location by picking a direction
and distance to move (or waiting in place). It moves in that
direction until it hits a static obstacle, or travels the intended
distance. This process is repeated to generate potentially in-
finite paths for the moving obstacles. The random generator
is repeatable across different computers and compiler ver-
sions. Moving obstacles are able to pass through other mov-
ing obstacles, but not through the static environment. The
obstacles are not following long distance optimal paths; for
example in the rooms map, this means the obstacles spread
out into the rooms, instead of streaming on shortest paths
between doorways. This creates a more uniform distribution
of safe intervals, rather than having high traffic paths sur-
rounded by low traffic areas.

In order to generate safe intervals when an obstacle pauses
at some grid point, we generate an unsafe interval at that
grid position for the duration of the wait. When an ob-
stacle moves between two grid points, the source location
is recorded unsafe for the first half of the movement, the
destination is recorded unsafe for the second half of the
movement and the edge connecting those two locations is
recorded unsafe for the entirety of the movement. A diag-
onal movement also blocks the other intersecting diagonal
edge. Neither obstacles nor the agent can ‘cut corners’ of
static obstacles. To constrain the problem to a finite size, all
locations become unsafe after 5,000 seconds. All algorithms
use octile distance as their heuristic.

The experiments were performed on identical machines
with i3-12100 CPUs and 64 GB RAM. The algorithms
were implemented in C++, sharing code where possible.
All implementations share common data structures, includ-
ing the node ordering for the open list, which prefers low
f, breaking ties for higher g. The code was compiled by
GCC v11.3.0 using -std=c++20 and -O3. All timings mea-
sure only the search itself, excluding generation of safe in-
tervals from moving obstacles and I/O, which are similar for
all the tested algorithms.

Overhead of Augmented SIPP

Our first experiment measures the overhead of ASIPP in
comparison with standard SIPP. We calculate the overhead
as the difference in runtimes, normalized by the SIPP run-

time: % overhead = 100 x Ze22—"<ire We ran SIPP and
sipp

| 0 4 16 64 256 1024 2048 | 4 16 64 256 1024 2048
rooms 0.5+6 0.5%6 1.5+6.0 1.0+£5 0.5+5 0.5+5 0.6+8 rooms 100 100 100 99 15 0
den520 | 11+44 3.8+26 1.2+11 1247 09+6 0.1x3 0.3x2 den520 | 100 100 100 100 1 2
random | 0.6x6 0.8+6 0.7+£5 0.8+5 09+4 0.6%4 2.0#10 random | 100 100 100 100 44 22

(a) Percent Overhead of Augmented SIPP

(b) Percentage of plans valid longer than SIPP runtime

Table 2: SIPP experimental results.

ASIPP on the three maps, with 0, 4, 16, 64, 256, 1024 and
2048 obstacles from each obstacle sets. Table 2a shows the
average and standard deviation in percent overhead for each
map and number of obstacles. In den520d we see a sig-
nificant decrease in overhead from the instances with very
few obstacles (11%) to more obstacles (0.3%). Because this
is the smallest and easiest map when there are few obsta-
cles, its overhead of 11% with high variability can be con-
sidered indicative of the worst case. Overall, we conclude
that there is minimal runtime overhead associated with us-
ing Augmented SIPP to track the duration of path validity.

How long are SIPP plans valid?

The family of plans found by ASIPP are valid from ¢t =
0...[, and the plan found by SIPP is the earliest traversal of
the ASIPP plan, so the 3 found by ASIPP is the duration that
the SIPP plan is valid when shifted in time. Table 2b quan-
tifies the proportion of plans found that are valid for longer
than the runtime of SIPP (confidence intervals are all are
< 1% and are omitted). Detailed results are shown in Figure
3, where each point represents a single run. As more obsta-
cles are included, there is both a decrease in the duration a
plan is valid and an increase in runtime. For all three maps
there is a significant decrease from 256 obstacles, where al-
most all plans are valid for longer than the runtime, to 1024
obstacles, where the majority of plans are invalid when the
planner finishes. As 1024 is around 1.6% of a 256x257 map,
we conclude that it does not take a particularly dense obsta-
cle set to make an @SIPP approach attractive.

RSIPP and PEAT runtime comparison

In order to test the runtime of PEAT, we ran PEAT on the
1024 obstacle instances and cut off planning after PEAT
found optimal plans for at least the first 4 seconds, or it ex-
hausted the search space. Four seconds was chosen to be be-
yond the average time where SIPP plans become invalid in
these instances. On average, PEAT took 96 seconds to com-
plete the precomputation, which is 40x the average runtime
of SIPP. An average of 11 path ATFs were preserved in the
final function, with a standard deviation of 8 and a maximum
of 35. The small number of path ATFs suggests that query-
ing Als, d] would be very fast. However, the pre-processing
time is very long compared to solving a single SIPP prob-
lem with ASIPP, suggesting that PEAT would benefit from a
more intelligent pruning strategy. One area of improvement
we see in PEAT is that we are always searching with respect
to a reference time of 0 (see Alg. 4.40). We are working on
how to modify PEAT to search while monotonically increas-
ing this reference time, efficiently finding paths that increase
the time for which PEAT knows an optimal path.

Related Work

Our work can be seen as a specialization of TDSP prob-
lems or as a generalization of SIPP. To our knowledge,
while problems similar to @SIPP have been suggested in
remarks by Halpern (1977) and Foschini, Hershberger, and
Suri (2014), it has not been explored in prior work. Early
work on TDSP by Cooke and Halsey (1966) and Drey-
fus (1969) provided a Dijkstra style algorithm for finding
the quickest path between nodes on a graph with time-
dependent edge delays. Halpern and Priess (1974) intro-
duced TDSP with arc closures, effectively safe intervals on
edges. Later, Halpern (1977) introduced TDSP with park-
ing bans on nodes, and time-dependent edge costs. However,
Halpern (1977) and other more recent work are focused on
the case where the node time windows are ‘parking bans’:
where a node can be temporarily closed for waiting, but may
still be traversed. They provide a manipulation to their graph
that describes how to implement safe intervals on a node by
replacing the node with a pair of nodes connected by a sin-
gle edge corresponding to the safe interval. We note that the
combination of the ‘Nodes with no-passing-through periods’
i.e. safe intervals described in Halpern (1977) and the edge
functions from Halpern and Priess (1974) that alternate be-
tween a constant duration and infinite duration directly cor-
responds to our problem space.

Sancho (1992) provides a dynamic programming algo-
rithm for the TDSP with time constraints on movement and
parking described by Halpern and Priess (1974). Orda and
Rom (1990) formalize the problem of Halpern (1977) and
provide algorithms for a variety of extension and modifica-
tions to the problem. El-Sherbeny et al. (2014) give an A*
algorithm for TDSP with time windows. Foschini, Hersh-
berger, and Suri (2014) study the complexity of the prob-
lems presented in Orda and Rom (1990); they prove that for
a restricted family of edge slopes, which includes our case
of {0, 1, 00} the complexity of the ATF, A[s, d], is linear in
the number of edges of the graph. Modern work in TDSP has
focused on rapidly answering repeated queries on a graph of-
ten using contraction hierarchies (Batz et al. 2009), or short-
cuts (Delling 2011) as well as in logistics domains, for in-
stance trucking with driving bans (van der Tuin, de Weerdt,
and Batz 2018).

In standard temporal planning, time is considered but
there is no exogenous change. Situated temporal plan-
ning (Shperberg et al. 2021) is limited by its duplicate state
detection, designed for the general case of task planning,
where TILs may have arbitrary state effects, and degrades
to keeping all paths to all states on the special case of SIPP,
where TILs are used only to demarcate intervals.

N=2048

10t 10!

SIPP Plan valid duration (s)

10° 10°

10!

10°

10t

SIPP Runtime (s)

Figure 3: SIPP runtime vs. plan validity duration. Blue diamonds are experiments on the den520d map, green circles the random
map and red squares the rooms map. The red line marks where the SIPP runtime is equal to the resulting plan’s valid duration.

Conclusion

Any-start-time SIPP complements the existing problem set-
tings of temporal planning, situated planning, and contract
search by formalizing a problem of offline planning for an
unknown start time. This generalizes SIPP and is closely re-
lated to several variants of TDSP. The value of a state is no
longer captured by a scalar but requires a function. Inspired
by prior TDSP work, we showed that @SIPP can be solved
using relatively simple and compact ATFs. We showed that
the overhead of planning using ATFs is modest (at most
11% in our experiments). We also showed how they could
be combined with partial expansion to yield an incremen-
tal any-start-time SIPP planner. This work strengthens the
foundations of planning with time and exogenous change,
two features that are important in many applications.

Acknowledgments

This research was supported by United States-Israel Bina-
tional Science Foundation (BSF) grant 2019730, and United
States National Science Foundation (NSF) grant 2008594.

References

Batz, G. V.; Delling, D.; Sanders, P.; and Vetter, C. 2009.
Time-dependent contraction hierarchies. In ALENEX, 97—
105. SIAM.

Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-

zzeni, D.; and Ruml, W. 2018. Temporal Planning while
the Clock Ticks. In Proceedings of ICAPS, 39—46.

Cooke, K.; and Halsey, E. 1966. The shortest route through a
network with time-dependent internodal transit times. Math-
ematical Analysis and Applications, 14(3): 493-498.

Cresswell, S.; and Coddington, A. 2003. Planning with
Timed Literals and Deadlines. In UK PlanSIG, 23-35.
Delling, D. 2011. Time-dependent SHARC-routing. Algo-
rithmica, 60(1): 60-94.

Dionne, A. J.; Thayer, J. T.; and Ruml, W. 2011. Deadline-
Aware Search Using On-line Measures of Behavior. In
SoCS. AAAI Press.

Dreyfus, S. E. 1969. An appraisal of some shortest-path
algorithms. Operations Research, 17(3): 395-412.

Edelkamp, S.; and Hoffmann, J. 2004. PDDL2.2: The Lan-
guage for the Classical Part of the 4th International Planning
Competition. Technical Report 195, University of Freiburg.
El-Sherbeny, N. A.; et al. 2014. The algorithm of the time-
dependent shortest path problem with time windows. Ap-
plied Mathematics, 5(17): 2764.

Foschini, L.; Hershberger, J.; and Suri, S. 2014. On the
Complexity of Time-Dependent Shortest Paths. Algorith-
mica, 68(4): 1075-1097.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. JAIR,
20: 61-124.

Halpern, J. 1977. Shortest route with time dependent length
of edges and limited delay possibilities in nodes. Zeitschrift
fuer operations research, 21(3): 117-124.

Halpern, J.; and Priess, I. 1974. Shortest path with time con-
straints on movement and parking. Networks, 4(3).

Orda, A.; and Rom, R. 1990. Shortest-path and minimum-
delay algorithms in networks with time-dependent edge-
length. Journal of the ACM, 37(3): 607-625.

Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In /CRA, 5628—
5635.

Sancho, N. 1992. A dynamic programming solution of
a shortest path problem with time constraints on move-
ment and parking. Mathematical Analysis and Applications,
166(1): 192-198.

Shperberg, S. S.; Coles, A.; Karpas, E.; Ruml, W.; and
Shimony, S. E. 2021. Situated Temporal Planning Using
Deadline-aware Metareasoning. In ICAPS, 340-348.
Sturtevant, N. R. 2012. Benchmarks for Grid-Based
Pathfinding. IEEE Transactions on Computational Intelli-
gence and Al in Games, 4(2): 144—148.

van der Tuin, M.; de Weerdt, M.; and Batz, G. 2018. Route
planning with breaks and truck driving bans using time-
dependent Contraction Hierarchies. In ICAPS, 356-364.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with Par-
tial Expansion for Large Branching Factor Problems. In
AAAI/TAAL 923-929.

