General-Purpose Planning Algorithms
in the Card Game Duelyst 11

Bryan McKenney
Department of Computer Science
University of New Hampshire
Durham, New Hampshire, USA
Email: bryan.mckenney @unh.edu

Abstract—Duelyst 11 is an online collectible card game (CCG)
that features a 9x5 grid board, making it a cross between the
popular CCG Hearthstone and chess. It is a partially-observable
stochastic game (POSG) with a large branching factor and the
ability to take several actions in a time-limited turn, making it a
challenging domain for AI. The existing ‘“‘starter AI” in the game
is an expert-rule-based player that is limited to using certain
decks and is weak against humans. We develop simple general-
purpose planning algorithms that are able to consistently beat the
starter Al using little domain knowledge and no learning. The
most complex of these is a variant of Monte Carlo tree search
(MCTS), for which we show that a novel action factoring method
is helpful under certain conditions.

I. INTRODUCTION

Duelyst Il (henceforth referred to simply as “Duelyst”) is a
two-player online collectible card game (CCQG) that features a
9x5 grid board where unit cards can move around and fight.
Each player’s goal is to keep their General alive and kill the
enemy General using the resources in their deck.

Duelyst is an unexplored game in Al research. Creating an
Al to intelligently play Duelyst is a challenge because there
is a large branching factor (often around 100), several actions
can be taken per turn within a 90-second limit, actions can be
stochastic, and the opponent’s deck and hand are unknown.
Formally, it is a zero-sum partially-observable stochastic game
(POSG). The existing Al in Duelyst, called the “starter Al”
is an expert-rule-based player that is limited to using certain
decks and is weak against humans. There are many ways in
which a smarter Al that can play any deck could improve the
player experience and introduce new content to the game. In
this paper, we describe general-purpose planners, including a
modified version of Monte Carlo tree search (MCTS), that are
able to consistently beat the starter Al

In the following sections, we discuss relevant work on
games, describe Duelyst and the starter Al, introduce our
variant of MCTS, explain our static evaluator, present exper-
imental results, and, lastly, consider limitations and possible
extensions.

979-8-3503-2277-4/23/$31.00 ©2023 IEEE

Wheeler Ruml
Department of Computer Science
University of New Hampshire
Durham, New Hampshire, USA
Email: ruml@cs.unh.edu

II. RELATED WORK

Monte Carlo tree search (MCTS) is an algorithm that has
been used to great success in fully-observable games (Gelly
et al. [1]). It builds a search tree of alternating state and action
nodes, each of which contains a visit count N and an estimated
value V (initially both set to 0). Repeated simulations are
performed from the root of the search tree, and one node is
added to the tree each time. A rollout is done from each added
node until a terminal state; then, the estimated value of the
node is backpropagated up the tree. This process is continued
until time is up or a certain number of simulations have been
run; then, the action with the highest value or visit count is
taken. The UCT policy (Gelly et al. [1]) selects which action to
take during simulations and incorporates the visit count to add
an exploration bonus (weighted by a parameter C) to nodes
that have not been explored much.

Hearthstone is a popular CCG that is similar to Duelyst,
with the greatest difference being that it does not have a grid
board. Dockhorn et al. [2] use a modified version of MCTS
that searches three plies (a ply is one turn for one player) into
the future to play Hearthstone. The rollouts for this MCTS
variant greedily select actions using a static evaluator and stop
at the end of the ply, instead of the end of the game. When
an initial run of MCTS for the agent’s ply is complete, the
n best end-of-turn states reached during rollouts are used as
root nodes for MCTS searches for the opponent’s next ply,
and this is repeated to simulate the agent’s next ply after
that. The evaluations of the final states (three plies ahead) are
backpropagated to the current-ply search tree. The algorithm
returns the best sequence of actions from the search tree
(until the frontier) instead of just the best next action to take.
The opponent’s deck and hand are predicted based on the
opponent’s previous plays.

Magic: The Gathering (MTG) is a popular trading card
game that is a more complex version of Hearthstone. Cowling
et al. [3] implement an expert-rule-based player for their own
version of MTG that is simpler than Duelyst. Cowling et al. [3]
use an ensemble of determinized binary MCTS trees whose
final action values are summed to consistently beat the expert-
rule-based player.

Partially observable Monte-Carlo planning (POMCP) is an

algorithm invented by Silver and Veness [4] to apply MCTS
in partially-observable domains. The search tree alternates
between observation and action nodes. Observation nodes
contain unweighted particle belief states that are updated
during simulations. A simulation starts by sampling a state
from the root’s belief state so as to continue simulating from
a fully observable state.

Settlers of Catan (SoC) is a complex 4-player POSG. Dobre
and Lascarides [5] use POMCP to play SoC. They cluster
actions into types — such as road building, city building, and
trading — and learn from game data a preference distribution
over those types. This distribution is used to influence which
actions get selected during tree search and rollouts (an action
type is sampled first, then an action from that type) (Dobre
and Lascarides [5]).

III. DUELYST

In a Duelyst match, two players battle with 39-to-54-card
decks on a 9x5 grid board. A match starts with a mulligan
phase where both players simultaneously choose which cards
to replace from their starting hands. There is a maximum hand
size of 6. Each player controls a General, and the goal is to
kill the opponent’s General (by reducing that General’s Health
to 0). To do this, a player can play minion, spell, and artifact
cards from their hand by spending mana. Minions are played
on the board and can move and attack enemy units (enemy
units are the opponent’s minions and General). Spells have
effects when played. Artifacts boost the power of a player’s
General. Duelyst is partially-observable because each player
cannot see their opponent’s deck or hand.

Duelyst has a discrete but large state space. There are 6
factions, each with 34 cards, and 112 neutral cards. A player’s
deck can be made up of cards from one faction and neutral
cards and can contain up to 3 copies of the same card, which
means there are on the order of ((3“;}12“3) ~ 1059 possible
decks for a given faction. 45 units can be on the board at
once, 6 cards in each player’s hand, and potentially more than
54 cards in each player’s deck (because some cards add cards
to a player’s deck). Units on the board have integer Attack,
ranging from O to 99, and integer Health, ranging from 1 to
99. Units can also have an unlimited number of additional
abilities granted to them by cards. All of this makes the state
space enormous, not to mention the number of possible worlds
when taking partial observability into account.

Duelyst has a discrete action space that can be either
relatively small or very large, depending on how many cards
are in the player’s hand and how many units are on the board.
It is not uncommon to have a branching factor of over 100
at some points during the game. In addition, several actions
can be taken in a turn (depending on a player’s mana, cards
in hand, and units on the board) within a 90-second time limit
and some actions have stochastic outcomes.

IV. THE STARTER Al

The starter Al is an expert-rule-based player. This means
that it follows a set of hard-coded instructions about how to

play the game, instructions which were manually created using
expert-level human domain knowledge. These instructions lead
to rigid, predictable behavior. For instance, the starter Al will
always replace a card from its hand as its first action even
though it may be beneficial in some cases to wait or not
replace a card at all. To be able to handle the large state space
of Duelyst, most of the instructions are somewhat general
(e.g. play the most expensive card in hand first). However,
the starter Al does rely on intents — rules for how to play
specific cards effectively. The Al has intents for most of the
cards in the starter decks (the decks players first unlock).

A proficient human player can consistently beat the starter
Al with no trouble. Currently, the Al is only used for training
new players. An interactive demo of a human (called You)
playing — and winning — against the starter Al (called Ar-
geon Highmayne) can be found at https://tinyurl.com/d2replay.

V. ONE-PLY MCTS FOR CCGSs

Our algorithm for Duelyst is called one-ply MCTS for
CCGs (IMC). It is based on MCTS but incorporates four
enhancements:

1) Rollouts stop at the end of the turn, instead of the end
of the game, because the opponent’s turn cannot be
accurately simulated without a good model of their deck
and hand. Rollouts either take random actions or do hill-
climbing, greedily choosing the action that leads to the
highest-valued state (according to the static evaluator).
The latter is the approach taken by Dockhorn et al. [2].

2) Inspired by Dobre and Lascarides [5]’s use of action
types to guide search, action types are an explicit part
of the MCTS search tree — the possible actions at a
particular state are grouped into an action tree (see Fig.
1). Duelyst’s action space can be neatly factored into
seven action types: Mulligan, MoveUnit, AttackWithU-
nit, PlayCard, ReplaceCard, EndTurn, and FollowUp (a
FollowUp action can occur after a PlayCard action or
another FollowUp action). The MoveUnit, AttackWithU-
nit, and PlayCard action types can be further factored (in
the next layer of the action tree) into action sources: the
cards that can perform that type of action (e.g. MoveUnit
could branch into UnitA and UnitB). Beneath action
types or action sources are ground actions, which are
fully specified actions that can be executed in the current
game state (e.g. where to move UnitB). The EndTurn
action type is unique in also being a ground action. Fig. 1
shows an example of an action tree for a particular state.
Action types are blue, action sources are purple, and
ground actions are green. Each action type and action
source node has a visit count and stored value, just like
the other nodes in the search tree, and choosing an action
consists of choosing an action type, potentially an action
source, and then a ground action.

3) Mulligan actions are simultaneous, so, as part of the
state transition after a simulated mulligan, the agent
pretends that the opponent takes an arbitrary Mulligan
action. If the agent is going second, it will also ignore

state

— T

MoveUnit PlayCard EndTurn
UnitA UnitB CardA CardB
possible possible possible possible
positions positions positions positions

Fig. 1. An action tree for a particular state.

the opponent’s first turn (pretend that the opponent only
takes the EndTurn action) in order to continue simulating
in the agent’s first turn.

4) If there is only one action available to the agent, that
action is immediately chosen instead of doing a tree
search for the allotted time.

The parameters for 1MC are: the rollout policy to use
(random or greedy), the time to spend searching for each
action, and whether or not to use action trees, as well as the
default MCTS exploration parameter C'.

VI. STATIC EVALUATOR

The static evaluator we created estimates the value of a state
using a set of simple rules. A win state has a value of 10,000
multiplied by the remaining health of the winner (in order to
differentiate end-game states). A lose state is the same but with
a negative value. Any other state’s value is the difference in
values of both players’ units. A unit’s value is based on its cost,
Attack, and Health, and there is a penalty for being far from
mana orbs (collectible resources that start on the board at the
beginning of the game) and a bonus for being near enemy units
(especially the General) that it can kill. A General’s Health is
valued at three times that of a minion to promote the ultimate
objectives of staying alive and killing the enemy General.

VII. EXPERIMENTAL RESULTS

We conducted two experiments in Duelyst. The first was to
tune 1MC’s parameters and the second was to compare the
performance of IMC to that of baseline algorithms. For both
experiments, both Al players use the first deck players unlock
— the Lyonar starter deck. This is so neither player has a
better deck than the other and so the starter Al can effectively
use its cards. Unlike in a true Duelyst match, the players are
given unlimited time to take their turns.

A. Tuning IMC

In order to see the effect of action trees, random or greedy
rollouts, and choosing actions by value or visits on the per-
formance of 1MC against the starter Al, we ran 1,000 games
with IMC using each combination of possible arguments. In

every case, IMC had 15 seconds to choose each action and C'
was set to 10.

The average winrate for each combination is shown in
Table I. With random rollouts, choosing by value is slightly
better than choosing by visits, and use of action trees does
not seem to make a difference. With greedy rollouts, choosing
by value is significantly better than choosing by visits, and
action trees only make a difference when choosing by visits
— but it is a significant difference. When choosing by value,
both random and greedy rollouts perform about the same. This
is likely due to the fact that random rollouts are faster while
greedy rollouts are more accurate, which leads to the same
quality of gathered information in a fixed amount of time.
This speed-accuracy trade-off could also explain why action
trees only lead to a higher winrate when choosing by visits
and using greedy rollouts — since fewer greedy rollouts occur
than random rollouts, the visit counts of actions may not vary
much even though the values do, but when actions are factored
into trees, there are fewer top-level choices and thus the visit
counts vary more.

Seven of the eight argument combinations allow 1IMC to
beat the starter Al consistently (a greater than 50% winrate).
Six of those seven successful methods achieve above a 60%
winrate, with the highest being 65%. The two weakest combi-
nations use greedy rollouts and choose actions by visit count.

B. Comparative Performance

In order to see if a MCTS-based approach was necessary to
consistently beat the starter Al, we created the following base-
line algorithms: Random takes a random action. Hillclimb
simulates trying each action and chooses the one that leads to
the highest-valued state (1-step lookahead). Rollout simulates
trying each action, performs n rollouts (random or greedy)
from the resulting state, and chooses the action that leads to
the highest-valued end-of-turn state.

We ran Random, Hillclimb, Rollout with random (n = 1
and 7) and greedy (n = 1) rollouts, and 1MC with random and
greedy rollouts against the starter Al 1,000 times each. Rollout
(7 Random) was chosen because a preliminary experiment
showed that increasing the number of rollouts improved the
algorithm, but going beyond 7 caused it take too long to choose
actions. Both IMC versions had 15 seconds to choose each
action, chose actions by value, and used a C' of 10. IMC
(Random) did not use action trees, but IMC (Greedy) did.

TABLE I
IMC TUNING
rollouts choose by | action tree | winrate (%)

.. no 62

visits
yes 61

random

value 1o 63
yes 64
.. no 34

VISItS
yes 51
greedy o &5
value ves !

random =

hillclimb

rollout
(1random)

rollout
(7random)

Algorithm

rollout
(1greedy)

imec
(random)

imc
(greedy)

10 20 30 40 50 60 70
Winrate Against Starter (%)

Fig. 2. The winrate of each algorithm against the starter Al.

15959.9

13072.7 133121

49225

10°

961.0
287.9

2
10

\
10

E v I

o [i

starter random

Average Action Selection Time (ms)

hiliclimb rollout rollout rollout ime
(frandom) (7random) (1greedy) (random)
Algorithm

1mc
(greedy)

Fig. 3. The average time (ms) that each algorithm takes to select an action.

The winrate of each algorithm is shown in Fig. 2. Random,
Hillclimb, and Rollout (1 Random) are not able to beat the
starter Al consistently, but, as expected, Rollout (I Random)
outperforms Hillclimb, which outperforms Random (by a large
margin). Both IMC versions have similar winrates over 60%,
as in the last experiment. What is unexpected is that Rollout (7
Random) has a winrate in the same range as IMC and Rollout
(1 Greedy) outperforms 1MC (although not significantly), with
a 68% winrate. This could be because C' is too high, causing
IMC to explore bad actions a bit too much, while Rollout
explores each action an equal amount.

Fig. 3 shows the average selection time of each algorithm,
including the starter AL. Random is naturally the fastest, with
the starter Al a close second. Rollout (1 Greedy) is the
slowest, with an average of 16 seconds per action. Both IMC
methods take around 13 seconds on average. These successful
approaches are too slow against a human, but Rollout (7
Random) only takes 5 seconds per action, which is reasonable.

VIII. DISCUSSION

The results show that a general planner even simpler than
MCTS can consistently beat the specialized starter Al and take
actions in a reasonable time.

We worked in the Duelyst II codebase, which is written
in JavaScript and has limitations. Originally, there was no
equality comparator for game states, which is necessary for
MCTS, so we had to implement one. The biggest problem
is that the existing state copying function serializes the large
game state object to a JSON and then deserializes it, which is
incredibly slow. We plan to implement a more efficient method
of state copying that avoids copying information that is not
relevant to simulations. Faster state copying would speed up
most of the algorithms, which is important for having the most
successful ones be viable options in the actual game (players
do not want to wait 16 seconds for the Al to make a move).

Another limitation of this work is that we have not yet tested
different values of C or different time limits for IMC. It would
be interesting to see what the cut-off in performance is and if
planning for less time can still yield intelligent actions.

A possible extension that we have already started experi-
menting with is multi-ply planners: algorithms that maintain
a belief about the opponent’s deck and hand and simulate
the opponent’s turn. Preliminary results in this direction are
unpromising, possibly because the static evaluator needs to be
improved in order to accurately look further ahead.

IX. CONCLUSION

We introduced a MCTS variant, one-ply MCTS for CCGs
(IMC), and the notion of factoring actions into action trees
based on their types and sources. We pitted IMC and some
baseline algorithms against the expert-rule-based starter Al and
found that not only 1MC but also two of the baselines could
consistently win. General-purpose algorithms can be superior
to specialized ones, even in complex POSGs.

ACKNOWLEDGMENT
This research was supported in part by NSF grant 2008594.

REFERENCES

[1] S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver,
C. Szepesvari, and O. Teytaud, “The grand challenge of
computer go: Monte Carlo tree search and extensions,’
Communications of the ACM, 2012.

[2] A. Dockhorn, M. Frick, U. Akkaya, and R. Kruse, “Pre-
dicting opponent moves for improving Hearthstone Al in
Information Processing and Management of Uncertainty
in Knowledge-Based Systems, 2018.

[3] P. I. Cowling, C. D. Ward, and E. J. Powley, “Ensemble
determinization in Monte Carlo tree search for the imper-
fect information card game Magic: The Gathering,” IEEE
Transa. Comp. Intell. and Al in Games, 2012.

[4] D. Silver and J. Veness, “Monte-Carlo planning in large
POMDPs,” in Proceedings of NIPS-10, 2010.

[5] M. Dobre and A. Lascarides, “POMCP with human pref-
erences in Settlers of Catan,” in Proceedings of AIIDE-18,
2018.

