
General-Purpose Planning Algorithms
in the Card Game Duelyst II

Bryan McKenney
Department of Computer Science

University of New Hampshire

Durham, New Hampshire, USA

Email: bryan.mckenney@unh.edu

Wheeler Ruml
Department of Computer Science

University of New Hampshire

Durham, New Hampshire, USA

Email: ruml@cs.unh.edu

Abstract—Duelyst II is an online collectible card game (CCG)
that features a 9x5 grid board, making it a cross between the
popular CCG Hearthstone and chess. It is a partially-observable
stochastic game (POSG) with a large branching factor and the
ability to take several actions in a time-limited turn, making it a
challenging domain for AI. The existing “starter AI” in the game
is an expert-rule-based player that is limited to using certain
decks and is weak against humans. We develop simple general-
purpose planning algorithms that are able to consistently beat the
starter AI using little domain knowledge and no learning. The
most complex of these is a variant of Monte Carlo tree search
(MCTS), for which we show that a novel action factoring method
is helpful under certain conditions.

I. INTRODUCTION

Duelyst II (henceforth referred to simply as “Duelyst”) is a

two-player online collectible card game (CCG) that features a

9x5 grid board where unit cards can move around and fight.

Each player’s goal is to keep their General alive and kill the

enemy General using the resources in their deck.

Duelyst is an unexplored game in AI research. Creating an

AI to intelligently play Duelyst is a challenge because there

is a large branching factor (often around 100), several actions

can be taken per turn within a 90-second limit, actions can be

stochastic, and the opponent’s deck and hand are unknown.

Formally, it is a zero-sum partially-observable stochastic game

(POSG). The existing AI in Duelyst, called the “starter AI,”

is an expert-rule-based player that is limited to using certain

decks and is weak against humans. There are many ways in

which a smarter AI that can play any deck could improve the

player experience and introduce new content to the game. In

this paper, we describe general-purpose planners, including a

modified version of Monte Carlo tree search (MCTS), that are

able to consistently beat the starter AI.

In the following sections, we discuss relevant work on

games, describe Duelyst and the starter AI, introduce our

variant of MCTS, explain our static evaluator, present exper-

imental results, and, lastly, consider limitations and possible

extensions.

II. RELATED WORK

Monte Carlo tree search (MCTS) is an algorithm that has

been used to great success in fully-observable games (Gelly

et al. [1]). It builds a search tree of alternating state and action

nodes, each of which contains a visit count N and an estimated

value V (initially both set to 0). Repeated simulations are

performed from the root of the search tree, and one node is

added to the tree each time. A rollout is done from each added

node until a terminal state; then, the estimated value of the

node is backpropagated up the tree. This process is continued

until time is up or a certain number of simulations have been

run; then, the action with the highest value or visit count is

taken. The UCT policy (Gelly et al. [1]) selects which action to

take during simulations and incorporates the visit count to add

an exploration bonus (weighted by a parameter C) to nodes

that have not been explored much.

Hearthstone is a popular CCG that is similar to Duelyst,

with the greatest difference being that it does not have a grid

board. Dockhorn et al. [2] use a modified version of MCTS

that searches three plies (a ply is one turn for one player) into

the future to play Hearthstone. The rollouts for this MCTS

variant greedily select actions using a static evaluator and stop

at the end of the ply, instead of the end of the game. When

an initial run of MCTS for the agent’s ply is complete, the

n best end-of-turn states reached during rollouts are used as

root nodes for MCTS searches for the opponent’s next ply,

and this is repeated to simulate the agent’s next ply after

that. The evaluations of the final states (three plies ahead) are

backpropagated to the current-ply search tree. The algorithm

returns the best sequence of actions from the search tree

(until the frontier) instead of just the best next action to take.

The opponent’s deck and hand are predicted based on the

opponent’s previous plays.

Magic: The Gathering (MTG) is a popular trading card

game that is a more complex version of Hearthstone. Cowling

et al. [3] implement an expert-rule-based player for their own

version of MTG that is simpler than Duelyst. Cowling et al. [3]

use an ensemble of determinized binary MCTS trees whose

final action values are summed to consistently beat the expert-

rule-based player.

Partially observable Monte-Carlo planning (POMCP) is an979-8-3503-2277-4/23/$31.00 ©2023 IEEE

algorithm invented by Silver and Veness [4] to apply MCTS

in partially-observable domains. The search tree alternates

between observation and action nodes. Observation nodes

contain unweighted particle belief states that are updated

during simulations. A simulation starts by sampling a state

from the root’s belief state so as to continue simulating from

a fully observable state.

Settlers of Catan (SoC) is a complex 4-player POSG. Dobre

and Lascarides [5] use POMCP to play SoC. They cluster

actions into types — such as road building, city building, and

trading — and learn from game data a preference distribution

over those types. This distribution is used to influence which

actions get selected during tree search and rollouts (an action

type is sampled first, then an action from that type) (Dobre

and Lascarides [5]).

III. DUELYST

In a Duelyst match, two players battle with 39-to-54-card

decks on a 9x5 grid board. A match starts with a mulligan

phase where both players simultaneously choose which cards

to replace from their starting hands. There is a maximum hand

size of 6. Each player controls a General, and the goal is to

kill the opponent’s General (by reducing that General’s Health

to 0). To do this, a player can play minion, spell, and artifact

cards from their hand by spending mana. Minions are played

on the board and can move and attack enemy units (enemy

units are the opponent’s minions and General). Spells have

effects when played. Artifacts boost the power of a player’s

General. Duelyst is partially-observable because each player

cannot see their opponent’s deck or hand.

Duelyst has a discrete but large state space. There are 6

factions, each with 34 cards, and 112 neutral cards. A player’s

deck can be made up of cards from one faction and neutral

cards and can contain up to 3 copies of the same card, which

means there are on the order of
(

(34+112)×3
54

)

≈ 10
69 possible

decks for a given faction. 45 units can be on the board at

once, 6 cards in each player’s hand, and potentially more than

54 cards in each player’s deck (because some cards add cards

to a player’s deck). Units on the board have integer Attack,

ranging from 0 to 99, and integer Health, ranging from 1 to

99. Units can also have an unlimited number of additional

abilities granted to them by cards. All of this makes the state

space enormous, not to mention the number of possible worlds

when taking partial observability into account.

Duelyst has a discrete action space that can be either

relatively small or very large, depending on how many cards

are in the player’s hand and how many units are on the board.

It is not uncommon to have a branching factor of over 100

at some points during the game. In addition, several actions

can be taken in a turn (depending on a player’s mana, cards

in hand, and units on the board) within a 90-second time limit

and some actions have stochastic outcomes.

IV. THE STARTER AI

The starter AI is an expert-rule-based player. This means

that it follows a set of hard-coded instructions about how to

play the game, instructions which were manually created using

expert-level human domain knowledge. These instructions lead

to rigid, predictable behavior. For instance, the starter AI will

always replace a card from its hand as its first action even

though it may be beneficial in some cases to wait or not

replace a card at all. To be able to handle the large state space

of Duelyst, most of the instructions are somewhat general

(e.g. play the most expensive card in hand first). However,

the starter AI does rely on intents — rules for how to play

specific cards effectively. The AI has intents for most of the

cards in the starter decks (the decks players first unlock).

A proficient human player can consistently beat the starter

AI with no trouble. Currently, the AI is only used for training

new players. An interactive demo of a human (called You)

playing — and winning — against the starter AI (called Ar-

geon Highmayne) can be found at https://tinyurl.com/d2replay.

V. ONE-PLY MCTS FOR CCGS

Our algorithm for Duelyst is called one-ply MCTS for

CCGs (1MC). It is based on MCTS but incorporates four

enhancements:

1) Rollouts stop at the end of the turn, instead of the end

of the game, because the opponent’s turn cannot be

accurately simulated without a good model of their deck

and hand. Rollouts either take random actions or do hill-

climbing, greedily choosing the action that leads to the

highest-valued state (according to the static evaluator).

The latter is the approach taken by Dockhorn et al. [2].

2) Inspired by Dobre and Lascarides [5]’s use of action

types to guide search, action types are an explicit part

of the MCTS search tree — the possible actions at a

particular state are grouped into an action tree (see Fig.

1). Duelyst’s action space can be neatly factored into

seven action types: Mulligan, MoveUnit, AttackWithU-

nit, PlayCard, ReplaceCard, EndTurn, and FollowUp (a

FollowUp action can occur after a PlayCard action or

another FollowUp action). The MoveUnit, AttackWithU-

nit, and PlayCard action types can be further factored (in

the next layer of the action tree) into action sources: the

cards that can perform that type of action (e.g. MoveUnit

could branch into UnitA and UnitB). Beneath action

types or action sources are ground actions, which are

fully specified actions that can be executed in the current

game state (e.g. where to move UnitB). The EndTurn

action type is unique in also being a ground action. Fig. 1

shows an example of an action tree for a particular state.

Action types are blue, action sources are purple, and

ground actions are green. Each action type and action

source node has a visit count and stored value, just like

the other nodes in the search tree, and choosing an action

consists of choosing an action type, potentially an action

source, and then a ground action.

3) Mulligan actions are simultaneous, so, as part of the

state transition after a simulated mulligan, the agent

pretends that the opponent takes an arbitrary Mulligan

action. If the agent is going second, it will also ignore

