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Status 

 
The emergence of two-dimensional (2D) and van der Waals (vdW) materials has 

invigorated fundamental research at the device level for brain-inspired computing hardware.1, 2 A 

critical component of neuromorphic circuits is an analog non-volatile memory (NVM) that is not 

only fast, reliable, and high-density but also possesses multiple states and internal temporal 

dynamics to mimic the spike-based learning rules of biological synapses. Crossbars of NVM 

technologies based on conventional bulk materials, such as memristors, phase change memories, 

and magnetic and ferroelectric tunnel junctions, can outcompete CMOS counterparts for neural 

network performance metrics. All of these NVMs have also been realized using 2D materials with 

unprecedented functionalities (e.g., gate tunability) that translate into improved performance as a 

result of simplified circuit architectures. For example, 2D materials have been integrated into 

atomically thin vertical memristors with femtojoule switching energies (Fig. 1a,b).3,4 The most 

promising vertical memristors are based on 2D transition metal dichalcogenides (TMDCs) or 

hexagonal boron nitride (hBN) where resistive switching has been achieved with intrinsic defects 

or metal cations. Although the constituent 2D materials can be grown over a wafer-scale, most of 
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the demonstrations thus far have been limited to 10 x 10 crossbar arrays without a selector (Fig. 

1c,d).3 A particularly promising approach is a self-selective crossbar based on two hBN memristors 

with volatile and non-volatile switching in an Au/hBN/graphene/hBN/Ag stack (Fig. 1c).5 

Although some applications have been proposed for 2D vertical memristors (e.g., RF switches, 

encryption circuits), their characteristics and functions are similar to conventional two-terminal 

memristive systems.3,4 

To gain more unique functionality, semiconducting 2D materials (e.g., MoS2) can also be 

integrated into lateral memtransistors where nonvolatile switching is tuned by a third gate electrode 

(Fig. 1d,e).6 In addition, 2D channels enable dual-gated control where one of the gates can achieve 

tunable learning behavior, while the other gate can be used as a selector in a manner analogous to 

a one-transistor-one-memristor (1T1M) crossbar (Fig. 1f,g).7 Lateral memtransistors are also 

compatible with multiple electrodes to realize heterosynaptic learning behavior.6 Memtransistors 

have been generalized to a wider class of heterojunctions using charge trap, floating gate, 

ferroelectric, conducting bridge, and phase change memories.2 Crossbars consisting of 10 x 10 

memtransistors have been experimentally demonstrated, achieving the same level of complexity 

as 2D vertical memristors (Fig. 1d,g). 

Solution-processed 2D and vdW materials are also promising for printed and flexible 

neuromorphic circuits. For instance, femtojoule vertical memristors and memcapacitors have been 

demonstrated using printed films on flexible substrates.8 However, most of these devices use 

electrochemical filaments such as Ag and Cu, and thus the role of the layered materials is unclear. 

Recently, a new thermally activated volatile switching mechanism has been reported for a range 

of solution-processed 2D materials that can be exploited for artificial spiking neurons (Fig. 1i,j).9 

Here, the morphology of the 2D nanoflakes plays a vital role to produce non-linear behavior that 
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can be used for high-order oscillator circuits. However, the lack of an effective selector has limited 

the integration of printed memristors in crossbar architectures (Fig. 1k,l). Recently, neuromorphic 

applications have also been proposed for 2D magnets, 2D charge density wave switches, and 2D 

moiré heterostructures, suggesting further opportunities in this space. 

Current and Future Challenges 
 

The main challenge facing vertical 2D memristors is competition with conventional metal 

oxide memristors that outperform their 2D counterparts in nearly all relevant metrics. Furthermore, 

wafer-scale 2D materials are generally polycrystalline, and spatial variations in grain boundaries 

are likely to lead to device-to-device variability, unlike the relatively high device-to-device 

homogeneity of amorphous metal oxide films.3,4 This spatial inhomogeneity is further exacerbated 

by the inherent variability arising from stochastic switching that is common to all filamentary 

switches. While 2D memristors provide atomically thin channels, the lateral dimensions of metal 

lines are the more relevant scaling parameters for high-density crossbars, which also may be 

complicated by the finite grain sizes in 2D films. While single-crystal 2D flakes have also shown 

stable memristive switching arising from partially oxidized layers, wafer-scale growth of layered 

single crystals has not been shown. Thus, one immediate challenge in vertical memristors is to 

scale N x N crossbar arrays from N = 10 to N = 1000. Another key challenge is to integrate vertical 

memristors with a selector to avoid sneak current issues. A 2D transistor selector may be possible, 

although integration of a functional 1T1M crossbar has not yet been demonstrated. 

Lateral memtransistors are faced with similar scaling challenges where the device footprint 

and operating power are not yet competitive with conventional vertical memristors. Since grain 

boundaries are believed to be essential for resistive switching in memtransistors, polycrystalline 

grain size likely dictates the ultimate scaling limits. Furthermore, since the operating mechanism 
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devices using intrinsic defects, growth also needs to be optimized to yield small gain sizes (< 10 

nm) and well-controlled defect densities.1 Although wafer-scale 2D transistors have been used to 

realize neural network chips consisting of > 800 devices, this technology does not yet compete 

effectively with existing Si CMOS-based neural network chips. In this context, self-aligned vdW 

anti-ambipolar Gaussian transistors have been shown to significantly simplify the circuit 

architecture of spiking neurons with a smaller number of elements than conventional CMOS 

circuits. These Gaussian transistors could also be integrated with a non-volatile memory (e.g., 

floating gate or ferroelectric gate) to achieve Bayesian neural networks for machine learning 

predictions with confidence bounds. In terms of advances in fabrication, the self-aligned scheme 

also provides an opportunity for highly scaled lateral memtransistor crossbars. While efforts are 

underway to improve the performance of individual devices, the existing neuromorphic paradigms 

also need to be revisited to identify unique opportunities enabled by the unique characteristics of 

2D devices. For example, recent algorithmic innovations in deep neural network architectures 

require higher-order processing where, along with inputs and model parameters (i.e., weights), the 

application context should also be considered in making predictions. For these higher-order neural 

networks, the additional gate electrode layer in dual-gated memtransistor crossbars presents a 

promising pathway to dynamic weight selection.10 In this manner, 2D neuromorphic computing 

has the potential to provide efficient hardware accelerators for emerging artificial intelligence and 

machine learning algorithms.11 
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Figures 
 
 

 
Figure 1. (a) Device architecture of a vertical memristor using layered materials such as TMDCs, 

hBN, and other insulators. (b) Typical current-voltage (I-V) characteristics of a vertical hBN 

memristor for two current compliances (red and blue curves). Arrows show the voltage sweep 

direction. (c) Crossbar architecture for vertical memristors where the desired node is selected by a 

V/2 biasing scheme. (d) Scanning electron microscopy (SEM) image of a 10 x 10 crossbar array 

of vertical memristors on a wafer-scale hBN film. (e,f) Device architecture and gate bias (VBG)- 

dependent I-V characteristics of a dual-gated lateral MoS2 memtransistor, respectively. (g,h) 

Architecture and SEM image (false color) of a dual-gated memtransistor crossbar array, 
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respectively. (i,j) Cross-sectional SEM image and current-controlled I-V characteristics of a 

solution-processed MoS2 memristor, respectively. (k) Schematic of a 3 x 3 crossbar using 

memristors from solution-processed 2D materials. (l) Optical image of a 50 x 1 crossbar array of 

MoS2 memristors on printed Ag electrodes. (a) Reproduced with permission.4 Copyright 2018, 

Springer Nature. (b,d) Reproduced with permission.3 Copyright 2020, Springer Nature. (c) 

Reproduced with permission.5 Copyright 2019, Springer Nature. (e-h) Reproduced with 

permission.7 Copyright 2020, Wiley-VCH. (i,j) Reproduced with permission.9 Copyright 2021, 

Wiley-VCH. (l) Reproduced with permission.8 Copyright 2015, Springer Nature. 
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Figure 1: Overview of compute-in-SRAM and critical challenges being studied by the researchers. 

was discussed in [8] by adapting deep learning’s inference operator such that the multiplications between multibit 
precision weight and input vectors was not necessary. Novel adaptations of SRAM-based compute-in-memory 
were discussed where the memory structure was employed for non-classical inference schemes such as Markov 
chain Monte Carlo (MCMC) in [9] and Monte Carlo Dropout (MC-Dropout) in [10]. 
3 Advances in Science and Technology to Meet Challenges 

Integrating computations and storage invariably demands more area per cell in compute-in-memory. Meanwhile, 
state-of-the-art DNNs continue to increase in model-size, thereby demanding higher energy and area-efficiency 
of the memory structures. In the future, several complementary efforts must be pursued in cohesion to improve 
the area efficiency of compute-in-memory. Compute-in-memory inference architectures that can robustly operate 
in more advanced CMOS nodes, such as 7 nm or below, will be imperative. Compute-in-memory in monolithic 
and vertically-integrated memory structures need to be pursued. Low and mixed precision DNNs, better suited 
for compute-in-memory processing, will be needed. Pruning and compression methods of DNN will be critical. 
Almost or completely digital architectures will be needed that maintaining multibit precision operations as well as 
the advantages of analog mode processing such as minimizing workload by exploiting physics for computations. 
In parallel, DNN architectures themselves are going through a dramatic evolution to improve their computational 
efficiency. In the last few years, novel layers such as inception, residual layers, dynamic gating, polynomial layers, 
self-attention, and Hypernetworks have been added to the repository of DNN building blocks. Therefore, a critical 
challenge for the next generation compute-in-memory accelerators for DNN is to exhibit high versatility in their 
processing flow for efficient mapping of these diverse DNN layers into hardware circuits. Especially, many emerging 
layers, unlike classical layers, simultaneously correlate multiple variables to enhance computational efficiency 
and representation capacity. Therefore, novel compute-in-memory schemes will be needed to map higher-order 
processing of the emerging layers within simplified cells. 
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