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Accurate and comprehensive material databases extracted from research papers are critical for
materials science and engineering but require significant human effort to develop. In this paper
we present a simple method of extracting materials data from full texts of research papers suitable
for quickly developing modest-sized databases. The method requires minimal to no coding, prior
knowledge about the extracted property, or model training, and provides high recall and almost
perfect precision in the resultant database. The method is fully automated except for one human-
assisted step, which typically requires just a few hours of human labor. The method builds on
top of natural language processing and large general language models but can work with almost
any such model. The language models GPT-3/3.5, bart and DeBERTaV3 are evaluated here for
comparison. We provide a detailed detailed analysis of the methods performance in extracting bulk
modulus data, obtaining up to 90% precision at 96% recall, depending on the amount of human
effort involved. We then demonstrate the methods broader effectiveness by developing a database

of critical cooling rates for metallic glasses.

I. INTRODUCTION

Obtaining reliable and comprehensive materials data is
crucial for many research and industrial applications. If
necessary information is not accessible through curated
databases researchers typically must manually extract
the data from research papers, a process that can be
time-consuming and labor-intensive. Natural language
processing (NLP) with general Language Models (LMs),
and in particular, powerful large LMs (LLMs) trained
of massive bodies of data, offer a new and potentially
transformative technology for increasing the efficiency of
extracting data from papers. These methods are partic-
ularly valuable when the data is embedded in the text of
the documents, rather than being presented in a struc-
tured or tabular format, making it harder to find and
extract. The rapid pace of development in NLP and fre-
quent release of improved LLMs suggests they can be
best utilized by methods which are easily adapted to new
LLMs. In this paper we present such a flexible method
for materials data extraction and demonstrate that it can
achieve excellent precision and recall.

So far, the majority of materials data extraction ap-
proaches focus on fully automatic data extraction [1-3].
Automation is clearly desirable, particularly when ex-
tracting very large databases. However, more automa-
tion tends to require more complexity in the software,
sophistication in training schemes, and knowledge about
the extracted property. In addition, if a high level of
completeness is required from a database, the recall of
these approaches may not be sufficient. In such fully au-
tomated approaches a large amount of focus has been
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placed on the complex task of named entity recogni-
tion (NER) [4-7], so that the property, material, values
and units can be extracted accurately. However, auto-
matic identification of an improper recognition is still
very challenging, which can reduce the precision of such
approaches. Tools for automatic materials and chemistry
data extraction, like OSCAR4 [8] or ChemDataExtrac-
tor [9, 10], have been developed and used to successfully
extract large databases. A recent example includes a
database of over 22 thousand entries for relatively com-
plex thermoelectric properties [11], at an average preci-
sion of 82.5% and a recall of 39.23%, or over 100 thousand
band gap values [12], with an average precision of 84%
and a recall of 64%. More complex information such as
synthesis recipes [13-18] have also been extracted with
automated NLP-based methods. Although not complete
due to the relatively low recall, databases of that size are
useful for training machine learning models [19-25], and
would be very time consuming or impossible to extract
with virtually any other method than full automation.
Other recent examples of databases created in a simi-
lar way include photovoltaic properties and device mate-
rial data for dye-sensitized solar cells [26], yield strength
and grain size [27], and refractive index [28, 29]. Other
notable databases gathered with NLP-based approaches
include more complex information than just data values,
such as synthesis procedures [14, 22]. Recently, another
method for structured information extraction, making
use of the GPT-3 capabilities was presented [30]. In that
work, the focus is placed on the complicated NER tasks
and relation extraction, at which GPT-3 excels. In that
approach, more complex sentences can be successfully
parsed into structured information. A ”human in the
loop” approach was use to fine-tune the model, a tech-
nique that seems to be emerging as a method of choice
to obtain higher performing models. Impressive perfor-
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FIG. 1. Qualitative behavior of different types of approaches
to data extraction, presented as human time required as a
function of the size of the dataset. The broad range of the
green (fully automatic), and orange (this work) represents the
potential variation in the initial fixed time requirement, which
may slightly influence the quality of the result. The dashed
line suggests which method is the best choice for a given size
of dataset.

mance was achieved in this work for structured informa-
tion extraction, although at a price of a relatively large
set of relatively complex training examples.

Depending on the nature of the data and the end goal
for which the database is needed, there are different re-
quirements for the resultant database and different op-
timal approaches for the data extraction. It is useful to
organize methods along two broad axes. One axis is hu-
man time, which generally has the form

t=A+B-N. (1)

Here A is up-front fixed time to develop the method for a
specific case and B is a marginal time cost whose contri-
bution scales with some measure of data quantity N (N
represents some function of the number of papers, sen-
tences, and data to extract). The other axis is database
quality, generally represented by some combination of
precision (what fraction of the found data are right) and
recall (what fraction of the available data was found)
of the database. A schematic plot representing required
human time as a function of the size of the database for
different methods, and the quality of their results, is pre-
sented in Fig. 1.

One limiting case, which we will call "small data”, is
one where only a small amount of data is available in
the literature (for example, properties that are very new,
very hard to measure, or studied by only a small commu-
nity), and where completeness and accuracy are highly
valued. It is typical to develop a database for properties
in the very small data limit fully manually, usually by ex-
perts in the field. Full manual curation is practical due
to the limited number of papers and data and assures
that the database is comprehensive and accurate. This
fully manual approach is represented in Fig. 1 as the blue
line, which is preferred (dashed) for very small datasets.

Even though it is technically slower that other methods,
even in the very small data range, it is still the method of
choice due to the highest possible quality of the results.
The opposite limiting case, which we will call ”large
data”, is when there is a lot of data in the literature,
the database is expected to be large, and modest pre-
cision and recall are acceptable. For example, such a
database might be pursued for use for building machine
learning regression and classification models on widely
studied properties. For this large data case fully auto-
mated NLP-based approaches may be the most appropri-
ate solution (see green curve in Fig. 1 for large number of
entries). However, such an automated approach can re-
sult in an incomplete database that may not be sufficient
for certain research or industrial applications, e.g., where
extremes of performance of just a few materials might be
the primary interest. In addition, fully automated ap-
proaches often require extensive retraining and building
of parsers specific for different properties, as well as a
significant amount of coding. These methods thus often
require a significant initial investment of human time.

The logic of the best approaches for these extremes
is simple. Large data (e.g., > 10% data points) can be
most efficiently extracted by spending human time on au-
tomating the extraction (leading to large A and small B
in Eq. 1), and reduced precision and recall is often of lim-
ited consequence since so much data is available. Small
data sets (e.g, < 10 data points) can be most efficiently
extracted by spending human time on directly extract-
ing the data (leading to small A and large B in equation
Eq. 1), and high precision and recall is typically more im-
portant for smaller databases. However, the optimal ap-
proach for the middle ground between these scales, which
represents many databases in materials, is not obvious.

We propose a method that is most suited to creating
these mid-size databases. Our method uses a combina-
tion of NLP methods, such as LLMs, with some degree
of human supervision and input, which allows one to rel-
atively quickly extract data of high quality while at the
same time requiring minimal coding experience and up-
front fixed human time cost. The method leads to modest
A and B in Eq. 1, making it better than human extrac-
tion or full automation in the medium-data scale range.
Two variants of the proposed methods are represented in
Fig. 1 by the red and orange curves. They provide data of
relatively high quality, approaching that of a fully man-
ually created database, and scale well for medium sized
databases. The proposed methods allow a database of
up to the order of 1000 data points to be gathered in a
few hours.

The approach taken in this work is to break up pa-
pers into sentences, use a LM to classify each sentence
as relevant or not, parse each relevant category sentence
with a LM into a structured set of target data, and then
perform human review of the extracted structured data
for validation and fixing. The LM classification is done
either fully automatically (in a zero-shot fashion) or with
some small human effort to fine-tune the LM with exam-



ple sentences. The LM classification step typically re-
moves about 99% of the irrelevant data and leaves only
about 1% to be further analyzed, dramatically reducing
human labor. The final human review is very efficient as
only highly structured data is presented, and most are
already correct or nearly correct. This method results
in an almost perfect precision and recall for the resultant
database, comparable to a fully human curated database,
but at 100 times or less human effort.

There are three major advantages of this method com-
pared to other possible approaches of data extraction
with NLP. First, the method is very easy to apply, re-
quiring almost no coding or NLP expertise and very lim-
ited time from the user. For example, the case where the
LM is provided by transformers zero-shot classification
pipeline [31] requires just 3 lines of code that are pro-
vided on the huggingface website. As another example,
in the case where the LLM GPT-3/3.5 is used, the API
request is also just a few lines and provided to the user
explicitly by the developers. Second, the method inter-
faces with the LM through a standard classification task
available in any modern LM, making it possible to easily
use the method with many present and likely any future
LLMs. Thus the method can easily take advantage of
the rapid improvements occuring in LLMs. Third, the
method requires almost no knowledge about the prop-
erty for which the data is to be extracted, with just the
property name required for the basic application of the
method.

In this paper we demonstrate our method by develop-
ing multiple databases with multiple LMs. The simplicity
and flexibility of the method is illustrated by repeating
the development of a benchmark bulk modulus database
with multiple OpenAI GPT models, including the recently
released GPT-3 and GPT-3.5 [32, 33], as well as the bert-
and DeBERTaV3-based language models [34-37] hosted on
huggingface, currently the most downloaded models for
text classification. It is important to demonstrate the ap-
plicability of the method on both simple LMs that can be
easily used on a personal computer, and on LLMs, which
require significantly more computation and may be out
of reach of most people’s resources for now. Even though
there exist fully free and open LLMs, such as OPT[38] or
BLOOM[39], their use is computationally expensive and not
convenient, which contradicts the spirit of ease and ac-
cessibility of the presented method. Therefore, we opted
for The OpenAl’s GPT-3/3.5 whose API allows one to
efficiently use the LLM on outside servers, although is
not free. GPT-3/3.5 is also currently the most popular
LLM, so its a choice that will likely be relevant for many
users.

We demonstrate and benchmark the method on raw
texts of actual research papers, simulating how the
method will likely be used by science and engineering
communities. We first assess the precision and recall of
the method on a small set of papers and the property
bulk modulus in order to demonstrate the excellent ac-
curacy that can be obtained with this method. We then

use the method to extract a modest sized but high quality
database of critical cooling rates for metallic glasses.

The paper is organized as follows: Section II describes
the methos in detail; Section IIT shows the results of
benchmarks and statistical analysis of the obtained re-
sults for a Bulk Modulus database; Section IV discusses
the database of critical cooling rates for metallic glasses,
the possible utility of the method for purposes other than
simple data extraction, and future possibilities in light of
the rapid evolution of NLP methods and new LLMs. Sec-
tion VI describes in detail the benchmark bulk modulus
database used for assessment as well as the critical cool-
ing rate of metallic glasses database.

II. DESCRIPTION OF THE METHOD

This section describes the steps involved in our method
for data extraction from research papers. These steps
are schematically presented in Fig. 2. Each step is first
summarized (in bold), and then expanded to include de-
tails and observations we had during their development.
Note that the first step is focused on gathering and ba-
sic processing of the papers and does not use the NLP
methods. Furthermore, this step (or one very similar) is
present in any data extraction method and is not specific
to our method. Since this step is largely a universal pre-
processing that does not have any direct connection to
our method we label it the zeroth step, thereby allowing
the first step to denote a step directly connected to our
method.

STEP 0:

Obtaining and postprocessing the raw html/xml
paper texts into human-readable format.

InpuT: This step starts with gathering the papers
for analysis (e.g. from ScienceDirect API [40]) in an
xml/html format. This usually involves searching for pa-
pers through a query to the publisher’s search engine,
and simply downloading every paper that comes up as a
result. If at this stage any relevant papers are missed, the
data will not be extracted, so it is safer to use a broad
search query or combine results of multiple queries. In-
cluding additional data does not increase the amount of
human time, only involves more processing for the NLP
model. This step takes very little human time, does not
depend on the size of the database and is already mostly
automated through the publisher, since only the query is
required to obtain a list of matching documents.

SIMPLE TEXT PROCESSING: After the papers are
downloaded the metadata and html/xml syntax is re-
moved. We keep all the paragraphs and the title and
remove the rest of the content. Then, we remove the
html/xml markup syntax and tags. At this point all
that is left is pure text. This cleaned up text is then
split into separate sentences, according to regular rules
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FIG. 2. A diagram of the steps necessary for NLP/LM data extraction in the proposed method. The process starts with
gathering and preparing the documents to be analyzed, a process not involving any NLP (Step 0), then a LM is used to classify
sentences by whether a sentence does or does not contain data for a given property (value and units) in a zero-shot fashion
(Step 1). The pre-classified sentences are then (optionally) validated and used for fine-tuning the LM and reclassifying the
sentences with higher quality (Step 2). Finally the data is structured by a LM/human assisted process, where the name of
the material/system, the numerical value of the given property, its unit, and in some cases an additional detail, such as the
temperature at which the value are obtained (Step 3). A detailed description of all steps can be found in Sec. II

for how sentences are terminated. At the end of this
step we are left with the raw data that may be fed to
the LM and analyzed. There is no need for any hu-
man evaluation of the data at this point. Whether an
entire paper is unrelated, or some of the paragraphs con-
tents are, it will simply be analyzed by the LM and
deemed irrelevant. This step takes very little human
time, and the amount required does not depend on the
size of the database or the extracted property. The ex-
act method for removal of html/xml syntax and splitting
into sentences can vary. It can be done by text pro-
cessing through regular expressions (an example can be
found in the codes, Sec. VIIIB), or ready-made special-
ized python libraries and their functions (such as lxml,
nltk.tokenize.sent_tokenize [41, 42]), depending on
the user preference.

It is important to note here that further simple text
processing of the cleaned up text to keep only plausi-
ble sentences, e.g. using regular expressions to keep sen-
tences with easily identified essential information, can,
and probably should be performed at this point. Al-
though such an additional processing step does not in-
fluence the method or the final outcome and quality of
the produced database, such processing can significantly
reduce the amount of data to be categorized by the LMs.
This simple processing will certainly reduce the compute
time needed for the NLP and can reduce costs if the LM
is not free. How this text processing is performed de-
pends on the task and the amount of knowledge about

the data or property to be extracted. For example, if
we know the data is numeric we can keep just sentences
containing a number. In the case of bulk modulus (see
Dataset 1 in Sec. VI)), keeping only sentences contain-
ing a number cuts the amount of data to be processed in
half and does not lower recall (i.e., keeps all relevant sen-
tences). If some amount of knowledge about the quantity
to be extracted is available it can be used to further select
the most promising sentences. For example, if we know
the expected units of the data we can further process
the remaining sentences to keep only those that contain
such units. In the case of bulk modulus (see Dataset
1 in Sec. VI)) keeping only sentences containing units
of pressure (pascals and bars with possible metric pre-
fixes, N/m?), lowers the amount of possible candidates
to less than 20% of the initial set, still without any loss
of recall. Such refinements can be continued to further
narrow down the search, but each subsequent step relies
on a deeper knowledge of the property in question and
increases the risk of reducing recall. In the work pre-
sented here we assume the most demanding situation for
the method, in which no prior knowledge of the property
is assumed. Therefore we only narrow down the search
to sentences containing numerical values.



STEP 1:

Zero-Shot binary classification of sentences to

produce unstructured data, i.e. set of sentences
containing values for a given property. The classi-
fication puts sentences in two categories: positive,
which are sentences containing the data (numeri-
cal value for a given property with its correspond-
ing unit), and negative, which are sentences not
containing the data.
Depending on the LLM used, the zero-shot may require
as little as just the name of the desired property as the
label of the class (name of the property), or require a
full prompt phrase (e.g., GPT-3/3.5). Since the most
recent and powerful LLMs make use of a prompt (e.g.,
GPT-3/3.5), we focus on that case here. The prompt (a
single set of words, typically a phrase that makes gram-
matical sense) given to the model plays an important
role. The impact of prompts has already been widely
observed in NLP-based text to image generation tools
(e.g., DALL-E2 [43], MidJourney [44], Stable Diffusion
[45]) and a similar situation occurs in the present appli-
cation. Depending on the completeness and phrasing of
the prompt, the results for classification may be dramati-
cally different. In our experience, however, prompts that
do not contain false and misleading information almost
always result high recall, and it is mainly the precision
that is affected. In addition, more complex prompts do
not necessarily guarantee a better result and may not be
necessary.

Fig. 3 shows the zero-shot result statistics for the differ-

ent models, including GPT-3/3.5 (whose technical names
are text-davinci-002 and text-davinci-003). The pI
and p2 stand for two different prompts.
pl: A sentence containing bulk modulus data must have
its numerical value and the units of pressure. Does the
following sentence contain bulk modulus data?.
p2: Does the following sentence contain the value of bulk
modulus?
Even though pI contains more seemingly valuable infor-
mation, it did not necessarily perform better. We exper-
imented with various different prompts, and straightfor-
ward prompts similar to p2 performed most consistently
and predictably. Therefore a simple prompt: Does the
following sentence contain the value of [name of prop-
erty/? is our strong recommendation.

It is worth noting that some models are not free to
use, for example at the time of writing this article, the
OpenAl models (GPT-3/3.5), after a small trial amount
of free tokens, become paid on a per-token basis (1 token
is approximately four English characters). Therefore, the
flexibility to use different LMs presented by our method
is very valuable, as some free models, while not neces-
sarily capable of accurately performing the more com-
plex tasks such as automated data structurization, and
although overall generally less capable than GPT-3/3.5,
perform well enough in the simple task of classification
to produce satisfying results. However, in the case of

OpenAl GPT-3/3.5, both model usage and fine-tuning is
done on outside servers, so in a situation where compu-
tational resources are not available to run locally, it may
enable one to use the best models at a low cost.

STEP 2 (optional):

Human assisted verification of the zero-shot clas-
sification of sentences. The highest scoring un-
structured data (most likely to be a true positive),
pre-classified in Step 1, is manually classified into
positive and negative sentences to provide a new
training set of sentence for fine-tuning the clas-
sification process. The new training set is then
used to fine-tune the model and classify the sen-
tences again to obtain higher precision and recall.
This optional step is just a chance for the a human user to
provide confirmation or correction to particularly impor-
tant zero-shot classification data from Step 1 and then
use those checks to fine-tune the LLM. Specifically, as
the highest scoring sentences are being manually veri-
fied, a new training sets consisting of true positive and
true negative examples is built. Since the precision of re-
sults of Step 1 is typically around 50% at 90% recall (see
Fig. 3 (d)), the created sets are typically close to equal
in size. The human labeled sets consist of positive cases,
which represent true positives from Step 1, and negative
cases, consisting of false positives from Step 1. The latter
are the most valuable counter-examples for the negative
training set, as these are the sentences the easiest for
the model to confuse for positives. If after reaching the
desired amount of verified positive sentences the corre-
sponding set of negative sentences is smaller, it may be
complemented with random sentences from the analyzed
papers (the exceeding majority of which are negative).
Fig. 4 shows how the classification model improves when
fine-tuned on datasets of increasing size. A detailed anal-
ysis of that figure is present in Sec. II1, where a conclusion
is made that after around 100 positive sentences for the
quicker learning models such as GPT-3/3.5 davinci or
bart, we start to observe diminishing returns with this
human labeled dataset size increase and it may not be
worth spending more human time on obtaining more ex-
amples. Therefore, we recommend to perform the manual
verification of the zero-shot classification until 100 posi-
tive sentences (and a corresponding 100 negative - made
easy due to the 50% precision) are obtained, a number
easy to remember and satisfactory for an efficient fine-
tuning dataset.

This steps usually takes no more than 30 minutes -
each sentence has to be classified only in a binary fash-
ion which is a very simple task and takes just a few sec-
onds per sentence. The classification is as simple and
straightforward as assigning 1 for positive and 0 to each
sentence in a spreadsheet. After this step is performed
and the sentences are once again reclassified using the
now fine-tuned model the precision and recall are greatly



improved, as can be seen in Fig. 4.

This Step 2 is optional and is generally done to im-
prove the quality data collected from Step 1. Improving
precision of data at this stage will reduce the human time
needed in data structurization in Step 3 (see Sec. II) to
review the data. However, for small data sets the human
time in Step 3 is very modest, and this Step 2 may not be
worth the extra effort. Thus whether it is performed or
not typically depends on the size of the dataset. For small
datasets, and if a recall of around 90% is satisfactory this
step can be entirely omitted. As seen in Fig. 3 d), the
precision at 90% recall after Step 1 is over 50% for the
best models, which means that for every true positive
sentence, there is only one false positive - a reasonable
number to be removed by hand during data structuriza-
tion (Step 3). For small datasets, up to a couple hun-
dred values, verifying around 100 positive sentences to
perform additional fine-tuning to improve the precision
may turn out to be more labor intensive that proceeding
straight to data structurization, and improving the pre-
cision manually by simply ignoring false positives. It is
crucial to understand that the recall obtained at this step
(or that has been obtained after Step 1, if this optional
step is skipped) will be the recall of the final database,
while the precision will be improved to near perfect in
the next step (Step 3).

STEP 3:

Data structurization. In this step, extraction of
the structured data is performed. Here, by struc-
tured data we mean the full information neces-
sary to provide a datapoint: the name of the ma-
terial /system, the numerical value of the given
property, its unit, and in some cases an additional
detail, such as the temperature at which the value
was obtained. At the same time as the data is ex-
tracted the precision of the result is improved to
perfect (or near perfect, depending on the exper-
tise and accuracy of the human supervising this
step), by simply ignoring the false positive sen-
tences left over from previous steps. The result
of this step is a final, curated structured database.

The user will typically perform this step by first rank-
ing the sentences by their probability of being relevant,
which is the output from Step 1 (or Step 2 if performed),
and start reviewing the list at the top, working down un-
til they decide to stop. As the user works through the
results in that fashion, they traverse down the precision
recall curve (PRC) (see. Figs. 3 (a) and 4 (a)). While the
recall is impossible to assess without knowing the ground
truth, the user is fully aware of the precision of the data
they have already analyzed, therefore using the PRC they
can estimate the recall and decide to stop when a desired
recall is reached (with the assumption that the PRC are
similar to those shown in Figs. 3 (a) and 4 (a)). For best
models, reaching recall of around 90% (close to that of a

fully manual data curation) without performing the op-
tional Step 2 happens for a precision close to 60%, while
for a fine-tuned model (with Step 2), for a precision over
80%. The 90% recall seems to be a reasonable value to
stop the process, as the precision sharply drops for higher
values, which diminishes returns for the human time in-
volved. However, this behavior may vary depending on
the case, which will be discussed further in the Sec. III.

In general, human assisted data structurization, even
when only the sentences containing the relevant data are
given, may be a tedious and time consuming task. How-
ever, at this point it is the only method that can guar-
antee an almost perfect precision. For an unexperienced
user, extracting one datapoint from a given sentence and
its surrounding context fully by hand may take as long
as 30 seconds, depending on the complexity of the prop-
erty being analyzed and how it is typically expressed in
research papers. Considering this, only relatively modest
sized databases are reasonable to create. However, with
experience, this time quickly reduces as the user gets used
to the process. In addition, more experienced users may
employ simple computer codes, e.g. based on regular ex-
pressions, which would preselect possible candidates for
values and units, reducing the time significantly. In the
longer term, it is likely the NLP tools will help automate
this data structurization step, although they do not do
this very effectively at present without either human su-
pervision or a major effort to tune them. For example,
GPT-3/3.5 is capable of parsing unstructured data in a
zero-shot fashion, with no need for retraining. In the
case of our Dataset 1 (bulk modulus) we found that in
over 60% of cases GPT-3/3.5 is capable of correctly pro-
viding the entire data entry for a given property (name
of the material/system, value, unit), and an incomplete
datapoint (wrong material /system, but correct value and
unit) in over 95% of cases. The only drawback that pro-
hibits a full automation of this step with a LLM is the
inability to automatically and unambiguously distinguish
between a correct and incorrect extracted datapoints.
However, human assistance in determining whether the
data has been structurized properly, and in case it was
not, fixing it by hand, can easily remedy that problem.
Since almost all values and units are extracted correctly,
and only less than half of the material names require
fixing, using a LLM approach greatly reduces the hu-
man time and effort required for data structurization.
Using an LLM we found that the average human time
required to extract each good datapoint was reduced to
under 10 seconds, keeping the same, almost perfect preci-
sion. Thus, and NLP-assisted data structurization, while
still a tedious process, enables one create databases of up
to around 1000 entries (more or less, depending on the
users predisposition to and efficiency at repetitive tasks),
in one workday. This timing includes the whole process,
beginning (Step 0) to end (structurized database after
Step 3), although almost all the human time is spent in
Step 3.

While the value, units and the optional additional de-



tails most often occur within the positive sentence, the
name of the material is often missing from that sentence
(sentences are often similar to e.g. We determined the
bulk modulus to be 123 GPa.). In those cases the system
is described most often in the preceding sentence, and if
not, then in the title of the paper. In a vast majority
of cases (96% in our bulk modulus dataset) the full data
information is available to be extracted from a sentence,
that preceding it, and the title, so we do not search for it
in other places. In the rare case when the full datapoint
cannot be extracted, we record an incomplete datapoint.
We also note that even in NLP models finely tuned for
structurized data extractions, the further apart the rel-
evant data are from each other, the more difficult it is
for the model to accurately extract the relevant data, so
those datapoints would very likely be incomplete with
other NLP-based approaches as well.

III. RESULTS

Fig. 3 summarizes the result from Step 1 in Sec. I for
a bulk modulus analysis. The papers, sentences, ground
truth category statistics, and other information is pro-
vided in Sec. VI. The ground truth for Step 1 was de-
termined by human labeling. The following precision re-
call curves (PRCs) and receiver operating characteristic
curves (ROCs) are constructed in the usual way, which is
by plotting the relevant metrics while varying the cutoff
used for the lowest value of probability accepted as a pos-
itive classification for sentence relevance. Panel (a) shows
a PRC for the models tested in this paper. The two differ-
ent curves for each of the davinci models correspond to
two different prompts used in classification (see Sec. II).
All of the tested models perform similarly, with bart
struggling slightly more than others in achieving higher
recall. A more quantitative measure of models’ perfor-
mance is presented in panel (b), where the area under
the precision recall curve (AUC-PRC) alongside a max-
imum F'1 score are presented. The GPT-3/3.5 davinci
models, in particular using the first prompt (pl) show
the highest scores, while bart and DeBERTaV3 rank low-
est in PRC-AUC. It is important to notice, however, that
the datasets analyzed here are heavily imbalanced, with
negative results outnumbering positives by more than 2
orders of magnitude. This places the naive no skill in
Fig. 3 (a) line, representing an entirely random model,
close to zero (as opposed to at 0.5 for a fully balanced
set), lowering the entire PRC compared to a balance set.
Fig. 3 (c) shows the ROC, which is insensitive to dataset
imbalance, and shows much higher AUCs (panel (b))
than those of PRCs. The conclusions from ROCs are
similar to those from PRCs; GPT-3/3.5 performs best,
with bart scoring lowest, while still performing reason-
ably well.

It is informative to consider the implication of the
ROCs and PRCs for the efficiency of the human effort
in our method. The step that requires most of the hu-

man time for a modest size database or larger (e.g., a
few hundred entries or more) is Step 3, where the user
must read and structure output from each sentence cate-
gorized as positive in Step 1 (or Step 2 if used). In Sec. II
we suggested that the user limit their review of sentences
in Step 3 unless a desired recall (implied by precision
through the PRC) is achieved.

In some applications one might wish to target a high
recall irrelevant of the human time required in step 3.
To give a sense of how that might impact the method,
Fig. 3 (d) and 4 (b) show the precision for 90% recall after
Step 1 and after the optional Step 2, respectively. Con-
sistent with our above discussions, the best models can
achieve this recall with more than 50% precision using
even just the zero-shot approach (Step 1). For less robust
models, a 50% precision requires tuning (Step 2). For the
worst models and using just zero-shot learning, the preci-
sion is about 17%, meaning the user would be extracting
useful data from only about 1 in every 6 sentences re-
viewed. This would likely still be practical, but could
become very tedious for a database of even a few hun-
dred final entries. However, the important implication is
that if one uses the best models (GPT-3/3.5 davinci),
even a quite high recall requirement, e.g., 90%, can be
achieved using very efficient sentence review, with almost
every (more than 90%) sentence presented to the user
containing relevant data.

Fig. 4 demonstrates how the performance of each of the
models is improved if the optional fine-tuning in Step 2
is performed, as a function of the size of the training
set. Panel (a) shows PRCs before fine-tuning (zero-shot)
and compares them to PRCs after fine tuning on 100
and 200 positive sentences. While all models eventually
show improvement, fine-tuning is clearly the most benefi-
cial for the GPT-3/3.5 davinci. Similarly, various met-
rics describing the quality of the model are presented in
Fig. 4 (b), where learning curves as a function of the size
of the fine-tuning training set are shown. The the x-axis
represents the number of positive sentences included in
the training set (with an assumed equal number of neg-
ative sentences). The shape of the learning curves dif-
fers for different models, with GPT-3/3.5 davinci model
performing best (i.e. achieves higher performance metric
values for smaller training sets) and learning the quick-
est (i.e. converges closer to best observed performance
metric values for smaller training sets), bert following
second, and DeBERTaV3 third, across all metrics. For
davinci, slope starts to decrease rapidly (curve starts
to saturate) for as few as 60-80 positive sentences in the
training set, for bart that occurs at around 100 posi-
tive sentences, and for DeBERTaV3 closer to 160. Even
though not all of the curves are fully saturated for the
above mentioned dataset sizes, constructing larger fine-
tuning training sets is likely to waste more human time
than it is going to gain in Step 3. Our recommendation
is to use a training set of around 100 positive sentences
and the GPT-3/3.5 davinci model or the smaller and
free bert. This size of 100 positive sentences is very
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manageable to obtain with human-assisted verification
of classification after Step 1, and typically does not take
more than 30 minutes. Whether to perform the optional
Step 2 (fine-tuning) will ultimately depend on the size of
the database. As mentioned before, for larger databases,
this improvement will be beneficial and save overall hu-
man time needed to curate the database by making Step
3 more efficient, while for small databases, up to a cou-
ple hundred datapoints, the time spent on the fine-tuning
in Step 2 might be more than is saved during the data
structurization in Step 3.

IV. DISCUSSION

To provide an example use-case for our method, we
applied it to curate a high quality and highly accu-
rate database of critical cooling rates for metallic glasses
(Sec. VIB). 668 papers responded to the query "bulk
metallic glass”+”critical cooling rate”, which is more
than what a human researcher would be analyze man-
ually in a reasonable timeframe. The proposed method
resulted in 443 datapoints consisting of the value of mate-
rials, their critical cooling rate, and the unit in which they
were expressed in the paper. These results, include all
mentions of critical cooling rates, with different degrees
of specificity, e.g., accurate values for specific composi-
tions (the ideal result), value ranges for specific materi-
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als, and value ranges for broad families of materials. The
obtained database covers the range of expected values
very well, with values ranging from 10~3 K/s for known
bulk metallic glass formers, to 101' K /s for particularly
bad glass formers. The well known Pd-based bulk metal-
lic glasses (Pd430U2N’i10P20 and Pd43.2NZ'8.gCU28P20)
are identified as those with the lowest values of critical
cooling rates, while simpler alloys such as AgCu, PdNi
or NiBe and pure metals such as Co are identified as
those with the highest critical cooling rates, which fur-
ther validates the results. The obtained data, cleaned
up for direct use in data oriented tasks (such as machine
learning) i.e postprocessed to only include unique val-
ues for uniquely specified systems yielded 211 entries.

Within these, 129 are unique systems (multiple values
are reported for some systems and we kept these to allow
the user to manage them as they wish). The database
is larger than the size of a recently published manually
curated database of critical cooling rates [46], which is
the most state-of-the-art and complete such database of
which we are aware, and consists of only 77 unique com-
pound datapoints.

Searching for a given property does not typically add
any restrictions on the search other than the property
itself, i.e., the search is unrestricted. In the case of the
method proposed here, unrestricted search will identify
and help extract all datapoints for the target property
from the input set of documents. Therefore, if the user



desires a database limited to, for example, a given family
of systems, the limitation would have to be enforced in
some additional way. This constraint could be done by
limiting the input set of documents through a more strict
search query, but even that does not guarantee that only
the desired values will be extracted, as many papers men-
tion a wide range of results, even if technically focused
on a particular topic. Limiting the final database can be
easily done manually in Step 3 (Sec. II), but depending
on the property and the size of the desired subset, limit-
ing the data at that stage may take a lot of human time
and be inefficient. In principle, more restrictions than
just the property can be imposed on the NLP level, but
such abstract concepts as families of materials are very
challenging even for the best LLMs and greatly reduce
the quality of the zero-shot results (Sec. I1I) and would
require significantly more training in (Sec. IT). This prob-
lem is highly dependent on the property in question. For
example, an unrestricted search for critical cooling rates
while limiting the search in Step 0 to papers responding
to a query ”bulk metallic glasses” 4" critical cooling rate”
was quite effective for our goals of obtaining all ranges
of critical cooling rates for metallic glasses. But if one
wanted, say, an overpotential for water splitting, restric-
tions on many factors, e.g., temperature or pH, might be
essential to obtaining useful result and difficult to screen
on in the initial Step 0.

A particular example of where unrestricted searches
can be problematic occurs when searching for properties
which are relevant in many fields when one is interested
in only a particular field, and/or which have many pos-
sible associated restrictions which are needed to make
the data useful. A specific example of this problem oc-
curred for us when we explored constructing a database
for ”area specific resistance” (ASR) for anode materials
of proton conducting cells. In step zero we searched for
”area specific resistance” +”proton conducting fuel cells
(and similar terms)” The method proved very successful
at identifying sentences containing ASR and structuring
the data, as it was asked to do. However, the method
captured ASR in a wide variety of contexts, including
single phase and composite materials, porous and non-
porous materials, electrodes and electrolytes, steels, in-
terconnects, coatings, varying temperatures, and ASR in
both fuel cell and electrolysis operation modes. To ob-
tain a simple and immediately useful dataset we were
interested in single phase dense anodes operating in fuel
cell mode with temperature information. Imposing such
limitations was dramatically harder than the basic data
extraction. Although one might have different goals than
the ones just mentioned, it is very unlikely that one is
interested in gathering information for all of the above
data in a single database. Restricting the set of input
documents was able to help to a certain degree to move
the balance of the obtained results in the desired direc-
tion, but did not solve the issue entirely. From such a
wide variety of contexts, identifying only those we were
interested in required a relatively deep knowledge from
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the person performing the data extraction and required
significantly more human time to extract than in case of
datasets where the property is more uniquely identified.
In fact, we stopped developing this database due to these
many challenges, although for someone willing to commit
4-5 days of human time in step 3 the desired database is
certainly practical to develop.

On the other hand, the lack of restrictions in the model
may have other benefits, as it expands the possibilities of
the kinds of information that can be extracted. For ex-
ample, our method can be used to extract many kinds of
information, not just property values. Step 1 with mod-
els like GPT-3/3.5 broadly describe the type of text we
are looking for, and Step 2 fine-tunes to better classify
the relevant sentences. While we utilized this classifica-
tion search to find sentences containing numerical data
for a given property, it can be used to search for more ab-
stract concepts, such as suitability of a given material for
a certain application, personal opinions of authors about
promising directions of future research, or any other con-
cept that can be characterized as a group of example
texts for the model to train on, and classify in a binary
fashion.

It is also important to remember that the method we
present here is not restricted to the LMs explored in this
paper, and is in fact designed to be quickly adapted to
new and improved LMs.

V. SUMMARY

We have shown a simple and efficient method for ma-
terials data extraction from research papers. The simple
NLP concept of binary text classification is involved as
a key step in the method, which allows for a high flex-
ibility in the language model used as virtually all mod-
ern language models are very capable at text classifica-
tion. We determined GPT-3/3.5 davinci to be the best
performer, but evaluated other alternatives such as bart
or DeBERTaV3. By including a highly-optimized human-
assisted step in the process, we minimized the amount
of coding and prior knowledge about the extracted prop-
erty necessary to achieve a high recall and nearly perfect
precision. A modest sized database of up to around 1000
entries can be extracted in around one workday with this
method. The method is assessed vs. ground truth on a
bulk modulus database and then applied to construct cu-
rated database of critical cooling rate of metallic glasses.

VI. DATASETS

Below, the details about the datasets are provided. As
a result of this paper a high quality database of critical
cooling rates for bulk metallic glasses has been curated,
as well as a benchmark-only dataset - the bulk modulus
dataset, which was used to assess the model. Information
on accessing the datasets can be found in Sec. VIIIB.



A. Bulk modulus

The bulk modulus is a benchmark dataset is a test
dataset consisting of 100 papers randomly chosen from
the over 10000 paper results of a search query ”bulk mod-
ulus”+"crystal” returned from the ScienceDirect API. In
the written text of these 100 papers, there are 18408 sen-
tences in total, out of which 237 sentences mention the
value of bulk modulus. This dataset is used as a bench-
mark so a human ground truth is extracted. To avoid ex-
cessive time spent establishing the human labeled ground
truth this database uses only a very small fraction of the
total available papers. Thus the bulk modulus database
is not nearly complete.

For the zero-shot case (only step 1 and not step 2) the
approach effectively has no training data and can just
be assessed on the test data described above. However,
when step 2 included the fine-tuning requires additional
data (effectively a training data set). For this fine-tuning
process an additional 339 positive and 484 negative sen-
tences have been extracted from papers not included in
the 100 papers in the test set. These additional sentences
are use to investigate how fine-tuning improves the model
and plot learning curves (see Fig. 4).

B. Critical cooling rates for bulk metallic glasses

This dataset consists of data gathered from 668 pa-
pers based on a result of a search query ”bulk metallic
glass” 47 critical cooling rate” from Elsevier’s ScienceDi-
rect API. These papers consisted of 107386 sentences, out
of which 347 were identified as positive (containing values
of critical cooling rates), after applying the workflow de-
scribed in Sec. I, including the optional Step 2 in order to
provide best quality data. From these 347 sentences, 443
critical cooling rate data points (consisting of the ma-
terial name, critical cooling rate value and units) were
extracted and are collected as a final database presented.
Additionally, that data was manually postprocessed to
include only unique datapoints (removing duplicate re-
sults, i.e. the same values reported in multiple papers),
remove those which included ranges or limits or values,
or where the material’s composition was not explicitly
given, and unify the formatting of the materials compo-
sitions, which resulted in 211 unique datapoints.
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VIII. METHODS

As with any machine learning model, there are hy-
perparameters that may be optimized. Our experience
showed that there is very little to be gained by perform-
ing the costly optimization, and throughout the paper
we used default recommended values for all models. In
OpenAl GPT-3/3.5 davinci we used the default val-
ues for fine-tuning, and when using both the pretrained
text-davinci-002/003 and fine-tuned davinci we set
the frequency and presence penalties as well as temper-
ature to 0. The fine-tuning of bart and DeBERTaV3 was
performed with default recommended values too, which is
a learning rate of 2e — 5, batch size of 16, 5 epochs, and
0.01 weight decay. Full and detailed input files can be
found in [47]. Python codes were executed with Python
ver. 3.10.6.

A. Definition of statistical quantities

True positive (TP) - a sentence containing numerical
data for a given property.

True negative (TN) - a sentence not containing numeri-
cal data for a given property.

False positive (FP) - a sentence not containing the
numerical data for a given property but is identified as
one that does.

False negative (FN) - a sentence containing numerical
data for a given property but is identified as one that
does not.

Precision:
TP
Precision = m (2)
Recall (True Positive Rate):
TP
Recall = ———— (3)

TP+ FN



False Positive Rate (FPR):

FP
FPR= ———— 4
R FP+TN (4)
F1 score:
2T P
FPR =
R 2I'P+ FP+ FN (5)

B. Data Availability

The databases curated as a result of this pa-
per, all datasets used in the assessment of the
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method, as well as the codes and software used
in this paper are available on figshare [47):
https://doi.org/10.6084/m9.figshare.21861948. The
codes are included for full transparency, but were
developed for internal use only, so they contain very
limited error handling, and the authors do not guarantee
that they will work universally on every system. All
parameters used for the model fine-tuning and zero-shot
classification can be found in the codes.

C. Competing Interest

The authors declare no competing interest.

[1] E. A. Olivetti, J. M. Cole, E. Kim, O. Kononova,
G. Ceder, T. Y.-J. Han, and A. M. Hiszpanski, Data-
driven materials research enabled by natural language
processing and information extraction, Applied Physics
Reviews 7, 041317 (2020).

[2] O. Kononova, T. He, H. Huo, A. Trewartha, E. A.
Olivetti, and G. Ceder, Opportunities and challenges of
text mining in materials research, iScience 24, 102155
(2021).

[3] M. Krallinger, O. Rabal, A. Lourenco, J. Oyarzabal,
and A. Valencia, Information retrieval and text mining
technologies for chemistry, Chemical Reviews 117, 7673
(2017).

[4] A. Trewartha, N. Walker, H. Huo, S. Lee, K. Cruse,
J. Dagdelen, A. Dunn, K. A. Persson, G. Ceder, and
A. Jain, Quantifying the advantage of domain-specific
pre-training on named entity recognition tasks in mate-
rials science, Patterns 3, 100488 (2022).

[5] L. Weston, V. Tshitoyan, J. Dagdelen, O. Kononova,
A. Trewartha, K. A. Persson, G. Ceder, and A. Jain,
Named entity recognition and normalization applied to
large-scale information extraction from the materials sci-
ence literature, Journal of Chemical Information and
Modeling 59, 3692 (2019).

[6] X. Zhao, J. Greenberg, Y. An, and X. T. Hu, Fine-tuning
bert model for materials named entity recognition, 2021
IEEE International Conference on Big Data (Big Data),
, 3717 (2021).

[7] T. Isazawa and J. M. Cole, Single model for organic
and inorganic chemical named entity recognition in
chemdataextractor, Journal of Chemical Information and
Modeling 62, 1207 (2022).

[8] D. M. Jessop, S. E. Adams, E. L. Willighagen, L. Hawizy,
and P. Murray-Rust, OSCARA4: a flexible architecture for
chemical text-mining, Journal of Cheminformatics 3, 41
(2011).

[9] M. C. Swain and J. M. Cole, Chemdataextractor: A
toolkit for automated extraction of chemical information
from the scientific literature, Journal of Chemical Infor-
mation and Modeling 56, 1894 (2016).

[10] J. Mavracié, C. J. Court, T. Isazawa, S. R. Elliott, and
J. M. Cole, Chemdataextractor 2.0: Autopopulated on-
tologies for materials science, Journal of Chemical Infor-
mation and Modeling 61, 4280 (2021).

[11] O. Sierepeklis and J. Cole, A thermoelectric materials
database auto-generated from the scientific literature us-
ing chemdataextractor, Sci Data 9, 648 (2022).

[12] Q. Dong and J. Cole, Auto-generated database of semi-
conductor band gaps using chemdataextractor, Sci Data
9, 193 (2022).

[13] O. Kononova, H. Huo, T. He, Z. Rong, T. Botari, W. Sun,
V. Tshitoyan, and G. Ceder, Text-mined dataset of inor-
ganic materials synthesis recipes, Scientific Data 6, 203
(2019).

[14] Z. Wang, O. Kononova, K. Cruse, et al., Dataset of
solution-based inorganic materials synthesis procedures
extracted from the scientific literature, Sci Data 9, 231
(2022).

[15] Z. Wang, O. Kononova, K. Cruse, T. He, H. Huo, Y. Fei,
Y. Zeng, Y. Sun, Z. Cai, W. Sun, and G. Ceder, Dataset
of solution-based inorganic materials synthesis proce-
dures extracted from the scientific literature, Scientific
Data 9, 231 (2022).

[16] E. Kim, K. Huang, A. Saunders, A. McCallum, G. Ceder,
and E. Olivetti, Materials synthesis insights from scien-
tific literature via text extraction and machine learning,
Chemistry of Materials 29, 9436 (2017).

[17] Z. Jensen, E. Kim, S. Kwon, T. Z. H. Gani, Y. Roméan-
Leshkov, M. Moliner, A. Corma, and E. Olivetti, A ma-
chine learning approach to zeolite synthesis enabled by
automatic literature data extraction, ACS Central Sci-
ence 5, 892 (2019).

[18] E. Kim, Z. Jensen, A. van Grootel, K. Huang, M. Staib,
S. Mysore, H.-S. Chang, E. Strubell, A. McCallum,
S. Jegelka, and E. Olivetti, Inorganic materials synthesis
planning with literature-trained neural networks, Journal
of Chemical Information and Modeling 60, 1194 (2020).

[19] D. Morgan and R. Jacobs, Opportunities and challenges
for machine learning in materials science, Annual Review
of Materials Research 50, 71 (2020).

[20] J. E. Saal, A. O. Oliynyk, and B. Meredig, Machine learn-
ing in materials discovery: Confirmed predictions and
their underlying approaches, Annual Review of Materi-
als Research 50, 49 (2020).

[21] C. Court and J. Cole, Magnetic and superconducting
phase diagrams and transition temperatures predicted
using text mining and machine learning, npj Comput
Mater 6, 18 (2020).



(22]

23]

24]

(25]

(26]

27]

(31]

H. Huo, C. J. Bartel, T. He, A. Trewartha, A. Dunn,
B. Ouyang, A. Jain, and G. Ceder, Machine-learning ra-
tionalization and prediction of solid-state synthesis con-
ditions, Chemistry of Materials 34, 7323 (2022).

J. Zhao and J. M. Cole, Reconstructing chromatic-
dispersion relations and predicting refractive indices us-
ing text mining and machine learning, Journal of Chem-
ical Information and Modeling 62, 2670 (2022).

C. Karpovich, Z. Jensen, V. Venugopal, and
E. Olivetti, Inorganic synthesis reaction condi-
tion prediction with generative machine learning

10.48550/ARXIV.2112.09612 (2021).

A. B. Georgescu, P. Ren, A. R. Toland, S. Zhang, K. D.
Miller, D. W. Apley, E. A. Olivetti, N. Wagner, and
J. M. Rondinelli, Database, features, and machine learn-
ing model to identify thermally driven metal-insulator
transition compounds, Chemistry of Materials 33, 5591
(2021).

E. Beard and J. Cole, Perovskite- and dye-sensitized
solar-cell device databases auto-generated using chem-
dataextractor, Sci Data 9, 329 (2022).

P. Kumar, S. Kabra, and J. Cole, Auto-generating
databases of yield strength and grain size using chem-
dataextractor, Sci Data 9, 292 (2022).

J. Zhao and J. M. Cole, Reconstructing chromatic-
dispersion relations and predicting refractive indices us-
ing text mining and machine learning, Journal of Chem-
ical Information and Modeling 62, 2670 (2022).

J. Zhao and J. Cole, A database of refractive indices and
dielectric constants auto-generated using chemdataex-
tractor, Sci Data 9, 192 (2022).

A. Dunn, J. Dagdelen, N. Walker, S. Lee, A. S.
Rosen, G. Ceder, K. Persson, and A. Jain, Struc-
tured information extraction from complex scien-
tific text with fine-tuned large language models

10.48550/ARXIV.2212.05238 (2022).

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz,
J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jer-
nite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. M. Rush, Transformers: State-of-the-
art natural language processing, in Proceedings of the
2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations (Association
for Computational Linguistics, Online, 2020) pp. 38-45.
T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, Language mod-
els are few-shot learners 10.48550/ARXIV.2005.14165

(2020).
L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L.
Wainwright, P. Mishkin, C. Zhang, S. Agarwal,

K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kel-
ton, L. Miller, M. Simens, A. Askell, P. Welinder,

34]

(35]

(36]

37]

(38]

39]

(40]

41]

42]

(43]
(44]

[45]

(46]

(47]

13

P. Christiano, J. Leike, and R. Lowe, Training lan-
guage models to follow instructions with human feedback
10.48550/ARXIV.2203.02155 (2022).

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mo-
hamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, Bart:
Denoising sequence-to-sequence pre-training for natu-
ral language generation, translation, and comprehension
10.48550/ARXIV.1910.13461 (2019).

W. Yin, J. Hay, and D. Roth, Benchmarking zero-shot
text classification: Datasets, evaluation and entailment
approach 10.48550/ARXIV.1909.00161 (2019).

P. He, J. Gao, and W. Chen, Debertav3d: Im-
proving deberta using electra-style pre-training
with gradient-disentangled embedding sharing
10.48550/ARXIV.2111.09543 (2021).

A. Conneau, G. Lample, R. Rinott, A. Williams,
S. R. Bowman, H. Schwenk, and V. Stoyanov,

Xnli: Evaluating cross-lingual sentence representations
10.48550/ARXIV.1809.05053 (2018).

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen,
S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin, T. Mi-
haylov, M. Ott, S. Shleifer, K. Shuster, D. Simig,
P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer,
Opt: Open pre-trained transformer language models
10.48550/ARXIV.2205.01068 (2022).

B. Workshop, :, T. L. Scao, A. Fan, C. Akiki,
E. Pavlick, S. Ili¢, D. Hesslow, R. Castagné, A. S.
Luccioni, F. Yvon, and M. Gallé et al., Bloom: A
176b-parameter open-access multilingual language model
10.48550/ARXIV.2211.05100 (2022).

Elsevier developer portal, https://dev.elsevier.com,
[Online; accessed 08-Feb-2023].

S. Bird, E. Klein, and E. Loper, Natural Language Pro-
cessing with Python: Analyzing Text with the Natural
Language Toolkit (O’Reilly, 2009).

S. Behnel, M. Faassen, and I. Bicking, Ixml: Xml and
html with python (2005).

A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and
M. Chen, Hierarchical text-conditional image generation
with clip latents 10.48550/ARXIV.2204.06125 (2022).
Midjourney, https://www.midjourney.com, [Online; ac-
cessed 08-Feb-2023].

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and
B. Ommer, High-resolution image synthesis with la-
tent diffusion models, in 2022 IEEE/CVFE Conference
on Computer Vision and Pattern Recognition (CVPR)
(2022) pp. 10674-10685.

B. T. Afflerbach, C. Francis, L. E. Schultz, J. Speth-
son, V. Meschke, E. Strand, L. Ward, J. H. Perepezko,
D. Thoma, P. M. Voyles, 1. Szlufarska, and D. Morgan,
Machine learning prediction of the critical cooling rate
for metallic glasses from expanded datasets and elemen-
tal features, Chemistry of Materials 34, 2945 (2022).

M. P. Polak, S. Modi, A. Latosinska, J. Zhang, J. Wang,
S. Wang, A. D. Hazra, and D. Morgan, Data for ”Flex-
ible, Model-agnostic Method for Data Extraction from
Text Using General Purpose Natural Language Process-
ing” 10.6084/m9.figshare.21861948 (2023).



	 Flexible, Model-Agnostic Method for Materials Data Extraction from Text Using General Purpose Language Models 
	Abstract
	I Introduction
	II Description of the method
	 STEP 0:
	 STEP 1:
	 STEP 2 (optional):
	 STEP 3:

	III Results
	IV Discussion
	V Summary
	VI Datasets
	A Bulk modulus
	B Critical cooling rates for bulk metallic glasses

	 Acknowledgments
	VII Contributions
	VIII Methods
	A Definition of statistical quantities
	B Data Availability
	C Competing Interest

	 References


