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Rich bodies of works show that amyloid deposition and neurofibrillary tangles
damage neural connections in the brain, suggesting the analysis of brain connec-
tomes in neuroimaging studies to characterize early symptoms of brain disorders
such as Autism [1], Parkinson’s Disease (PD) [24] and Alzheimer’s Disease (AD)
[6,20]. The connectome connects different anatomical regions of interest (ROI)
in the brain and comprises a brain network for individual subjects. Such a brain
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Abstract. Brain connectomes are heavily studied to characterize early
symptoms of various neurodegenerative diseases such as Alzheimer’s Dis-
ease (AD). As the connectomes over different brain regions are naturally
represented as a graph, variants of Graph Neural Networks (GNNs) have
been developed to identify topological patterns for disease early diagno-
sis. However, existing GNNs heavily rely on the fixed local structure given
by an initial graph as they aggregate information from a direct neigh-
borhood of each node. Such an approach overlooks useful information
from further nodes, and multiple layers for node aggregations have to be
stacked across the entire graph which leads to an over-smoothing issue.
In this regard, we propose a flexible model that learns adaptive scales
of neighborhood for individual nodes of a graph to incorporate broader
information from appropriate range. Leveraging an adaptive diffusion
kernel, the proposed model identifies desirable scales for each node for
feature aggregation, which leads to better prediction of diagnostic labels
of brain networks. Empirical results show that our method outperforms
well-structured baselines on Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) study for classifying various stages towards AD based on
the brain connectome and relevant node-wise features from neuroimages.
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network is mathematically represented as a graph that is defined by a set of nodes
and edges, whose nodes are given by the ROIs and the connectomes define edges
as a measure of strength among the nodes derived from structural and functional
neuroimages, e.g., tractography on Diffusion Tensor Images (DTT).

Such a graph representation of a brain network, together with image-derived
measurements at each ROI, naturally justifies the utilization of graph deep learn-
ing approaches such as graph neural network (GNN) for disease characterization.
GNN [9] and its variants [4,13] incorporate the structure of graphs via message
passing among connected nodes in the graph. To obtain more robust features,
they aggregate direct neighborhood information and refer to indirectly connected
nodes by stacking multiple aggregation layers, which lead to promising results in
node classification [7], link prediction [26] under the homophily condition [15],
i.e., adjacent nodes have high similarity as in adjacent pixels in natural images.

However, there are still several issues for previous GNNs to be adopted for
brain network analysis. First, they often use a single graph merely as the domain
of measurements at each node. Also, the graph is often represented as a binary
matrix, which does not incorporate exact relationships in the neighborhood of its
node. Of course there have been recent efforts to alleviate these problems such as
Graph Attention Network (GAT) [22], Graph Convolutional using Heat Kernel
(GraphHeat) [25] and Graph Diffusion Convolution (GDC) [14]. However, they
cannot incorporate heterogeneous characteristics of brains, where both ROI mea-
sures and brain networks are different across subjects. A bigger problem is that
these methods are either too local or global: aggregation of information occurs
only within the direct neighbors of each node and adding layers to incorporate
indirect neighbors triggers the local aggregation across all the nodes.

The issues above naturally lead to an idea of learning adaptive range for
individual nodes. As each brain ROI has different biological and topological
properties, it is feasible to learn different local receptive fields that provide an
understanding of subnetwork structure. For this, we propose a novel flexible
framework that learns suitable scales of each node’s neighborhood by leveraging
a diffusion kernel and a specialized model architecture to update the scale as a
parameter in the model. Learning individual scales for each node lets our model
find the right spatial range for information propagation for each ROIL.

Key Contributions: Our work leads to 1) learning adaptive local neighbor-
hood to aggregate information for better prediction of graph labels, 2) deriving
a parametric formulation to perform gradient-based learning on local receptive
field of nodes using a diffusion kernel, and 3) validating the developed frame-
work in comparisons to the recent graph neural network models. Experiments
on structural brain networks from Diffusion Tensor Imaging (DTI) and ROI
measures from functional imaging from Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) study show that the developed framework demonstrates superior
graph-level classification results identifying the independence of each ROI.
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Fig. 1. An overview of node aggregation frameworks. Different from the previous meth-
ods, our model can flexibly learn the scale s for each node. Note that s in the GraphHeat
is a constant hyperparameter.

To generalize the Convolutional Neural Networks (CNNs) to signals defined
on graphs, various spectral methods such as Graph Convolutional Network and
ChebyNet were proposed in [2,4,11,13], allowing the use of shared filters. In
these models, the importance of each node is given dichotomously, limiting the
selection of proper nodes in the neighborhood. To address this issue, the Graph
Convolutional Networks using Heat Kernel (GraphHeat) [25] uses heat diffusion
to quantify relationships among nodes, Graph Attention Network (GAT) [22]
generates the importance score of different nodes by using attention mechanism,
and Graph Diffusion Convolution (GDC) [14] uses a transition matrix utilizing
personalized PageRank node proximity measure. A streamline of these methods
is introduced in Fig. 1, and are discussed in detail in the following section.

3 Preliminaries

Graph Convolution. An undirected graph G = {V, E'}, where V is a node set
with |[V| = N and F is a set of edges, has an symmetric adjacency matrix Ay xn
encoding node connectivity. Graph Laplacian L = D — A, where D is a diagonal
degree matrix of G with D;; = > ;Aij, and a normalized graph Laplacian is

defined as [ = Iy — D~Y2AD~Y/2 where Iy is an identity matrix. Since L is
real and symmetric, L has a complete set of orthonormal basis U = [u; |ug)|...|ux]
and corresponding real and non-negative eigenvalues 0 = A\; < Ao < ... < An.
With U, the Graph Fourier transform of signal z is defined as # = U7 & and
its inverse transform is x = UZ, where % is the signal in Graph Fourier space
[19]. By the convolution theorem [16], a graph convolution operation is defined
as:
grz=U(UTg)o (U ), (1)

where g is a filter and o is hadamard product.
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Graph Convolutional Network. In a spectral graph convolutional network
[2], spectral convolution between a filter g and a signal = on a graph was defined
as:

gxx = UggUT:E = (91u1uz+92ung—+...+9NuNuE)x (2)

where U7 g in Eq. (1) is replaced by a kernel go = diag({0;}}.,). As using
Eq. (2) can be computationally expensive, polynomial approximation using
Chebyshev expansions was proposed [4]. ChebyNet provides a polynomial filter
g = ZkK;Ol 0, A* where the parameter § € RX with K < N is vector of poly-
nomial coefficients. With a polynomial filter g, graph convolution is performed
as:

g*x T~ (00]+61ﬁ+...+0K,1f1K71)x. (3)

Later, GCN [13] was proposed with only the first-order approximation as:

gz ~0(— L)z, (4)

which is a simplified version of ChebyNet.

Heat Kernel on Graphs. In [3], heat kernel between nodes p and ¢ of a graph
G is defined in the spectral graph domain as:

N
ha(p,a) =D e M ui(p)uila) (5)
i=1
where \; and u; are the i-th eigenvalue and eigenvector of the graph Laplacian,
and s controls the time/scale of diffusion. Later in [25], the GraphHeat gener-
ates the connectivity measure using heat-kernel, and the similarity via the heat
diffusion replaces binary adjacency matrix for GNN to capture more precise
relationships. Since GraphHeat only retains the first two terms in Eq. (3) for
efficiency, the convolution with heat kernel is approximated as:

hs xx ~ (001 + Hle_Sﬁ), (6)

where hg acts as a low-pass filter.

4 Method: Learning Node-Wise Adaptive Scales

In this section, we propose a flexible model to learn the range of adaptive neigh-
borhoods for each graph node to capture the optimal local context to improve a
downstream prediction task. Figure 2 explains the fundamental idea where nodes
n1 and ng aggregate information from their neighborhoods. The left panel shows
an example where ny (blue) is misclassified as red when the equal receptive field
of sy is used both ny and nsy, whereas n; is misclassfied as blue if s is used.
Therefore, s; and ss need to be applied adaptively for n; and ny so that the
right local neighborhoods are selected for individual nodes for data aggregation.
Manual selection of these scales can be extremely exhaustive, thus it requires a
specialized model to “learn” the scales in a data-driven way.

In the following, we consider a graph classification problem. The objective is
to learn to predict a graph-wise label y for input G = {A, X}, where A is an
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Fig. 2. An example of adaptive neighborhood for nodes ni and ns. Node color (red
and blue) denotes node class. Left: Applying the same scale (s1 or s2) leads to false
aggregation. Right: adaptively applying s,, and s,, leads to a proper aggregation.
(Color figure online)

adjacency matrix and X is node-wise feature. We first introduce a model that
learns a single s globally for a graph, then design a model that learns individual
s; for each node of the graph expecting that adaptively aggregating X through
the graph structure will significantly improve the prediction performance.

Adaptive Convolution via Scale. While [25] defines the scale s as a hyper-
parameter for an entire graph, we propose a model that trains on the s. The
objective function is defined by cross-entropy between the true value Y;. at the
c-th class for the ¢-th sample and the model prediction fftc, and a regularizer on
s to prevent it from becoming negative:

T
£(5) =~ 3 D VieloaVie(s) + Alsl[s < 0], (7)
t=1 ceC
where ) is a hyperparameter, T is a sample size, and |s|[s < 0] takes an absolute
value of s when the scale becomes less than 0. Update of the scale is performed
as s §— asg—g with a learning rate «; for s via gradient-based methods along
with other learnable parameters W. Derivation of %—f is shown below.

Forward Propagation. Our model consists of multiple graph convolution lay-
ers that adaptively aggregate information for each node and an output layer that
predicts a class label for an input graph. From Eq. (6), each of graph convolution
layer is defined with a non-linear activation function oy as:

Hy, zak(e_SLkalwk)a (8)

where Hj is an output from the k-th convolution layer with Hy = X, and Wy
is a matrix of learnable parameters. To obtain a prediction Yj, given K graph
convolution layers, the output H g is vectorized and applied with a readout func-
tion v (-) (e.g., Multi-Layer Perceptron) to obtain integrated values for predicting
each class in C'. Finally, Softmax is used to get class-wise pseudo-probability as

P(Hk )te
o O(HR )

which is fed into Eq. (7) for training.

ﬁc:
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Training on the Scale. From Eq. (5) and Eq. (7)-(9), we can calculate the
derivative of £ in terms of scale parameter s. For simplicity, let us consider a
single sample case with 7' = 1 and an arbitrary kernel K(s). In Eq. (7), let the
error term be L. and the regularization be Lg.qic. First, the derivative of Lgcq1e

with respect to s is:
aAcscale _

Seele — —Als < 0. (10)

Now, the derivative of L., w.r.t. s can be derived using chain rule as:

OLce  OLe. OV(Hi)OHx

ds — O(Hk) OHxk 9s ' (11)
where
OLee 3 OHe _ T T gT i OHgk—1
50 (Hr) =Y -Y, s = 0, (K(s)Hx—1 W) W)l (H_1K'(s) + o K(s)).

As ¢/ (Hp) depends on the choice of ¢(H ), the final gradient on the loss is:

ZZ OLec o1 (1(s) s Wie) "W (HEAK () + ZEE2 K ()5 — Als < 0]

Js
=1 j=1
(12)

where i,j € {1,..., N} denoting the i-th and the j-th node, and %}2‘) is embed-

ded in ‘%“ for all k € {1, ..., K'}. Note that s is univariate and covers the entire
graph. The full derivation of Eq. (12) is shown in the supplementary.

Localization to Each Node. Figure2 (right) shows that node n; and ng
having adaptive neighborhood size s,, and s,, can capture more precise infor-
mation. Therefore, we propose a diffusion model to train on the local receptive
fields (i.e., scale) for each node. We directly update each scale by removing the
marginalization over the nodes (i.e., ZZV:I) in the cross-entropy term of Eq. (12)
as:

T N
OHj,—
ce / TixrT T , h—1
882 ZZ 8Hk Sz)Hk71W]c) Wk (kalK: (Sz) + TSZIC(SZ)))“J

(13)

where i € {1,..., N}. The s; is given for each node n; and can be trained with
gradient-based methods.

5 Experiment

Dataset. Total of 401 subjects with diffusion-weighted imaging (DWI),
Amyloid-PET and FDG-PET were taken from pre-selected ADNI cohort. Each
brain was partitioned into 148 cortical surface regions using Destrieux atlas [5],
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Table 1. Demographics of the ADNI dataset.

Category CN SMC EMCI LMCI AD

# of Subjects 89 53 132 55 72
Gender (M/F) 37/52 19/34 84/48 32/23 42/30
Age (Mean =+ std) | 72.6 + 4.8|73.4 £4.8/70.3 £ 7.1 723 £6.2|75.8 £ 7.2

and tractography on DWI was applied to calculate the white matter fibers con-
necting the brain regions to construct 148 x 148 structural network. On the same

parcellation, region-wise imaging features such as SUVR (standard uptake value
ratio) of S-amyloid protein from Amyloid-PET, SUVR of metabolism level from

FDG-PET, cortical thickness from MRI, and nodal degree were defined. Cerebel-
lum was used as the reference for SUVR normalization. The diagnostic labels for

each subject were defined as cognitive normal (CN), significant memory concern
(SMC), early mild cognitive impairment (EMCI), late mild cognitive impairment
(LMCI) and AD. The demographics of the ADNT dataset is given in Table 1.

Table 2. Performance Comparisons of Various GNN Models on ADNI Data.

Feature Methods Accuracy Precision Specificity Sensitivity (Recall)
Degree SVM 0.532 + 0.162 0.509 + 0.109 0.886 4+ 0.037 0.616 + 0.220
GCN 0.466 + 0.079 0.422 4+ 0.085 0.867 £+ 0.019 0.461 £+ 0.107
GAT 0.633 + 0.093 0.610 4+ 0.085 0.908 + 0.025 0.681 + 0.101
GraphHeat 0.641 £+ 0.077 0.624 + 0.071 0.908 £+ 0.021 0.672 £+ 0.083
GDC 0.670 4+ 0.090 0.660 + 0.088 0.917 4+ 0.024 0.684 4+ 0.103
Ours (global t) | 0.703 + 0.068 | 0.671 + 0.079 | 0.925 + 0.017 | 0.744 + 0.072
Ours (local t) |0.653 £+ 0.076 0.620 + 0.068 0.913 4+ 0.022 0.690 £+ 0.101
Cortical Thickness SVM 0.721 4+ 0.051 0.669 £ 0.060 0.933 £+ 0.016 0.862 £ 0.050
GCN 0.494 + 0.076 0.464 + 0.073 0.867 + 0.024 0.518 4+ 0.098
GAT 0.865 + 0.111 0.865 £+ 0.098 0.966 + 0.028 0.874 £+ 0.110
GraphHeat 0.828 4+ 0.056 0.843 4+ 0.050 0.956 4+ 0.014 0.853 4+ 0.055
GDC 0.860 + 0.063 0.871 + 0.061 0.965 + 0.016 0.878 £ 0.055
Ours (global t) | 0.841 £ 0.106 0.848 4+ 0.112 0.960 + 0.024 0.865 £ 0.090
Ours (local t) | 0.875+ 0.043 | 0.873 + 0.046 | 0.968 + 0.011 | 0.896 + 0.032
B-Amyloid SVM 0.843 + 0.093 0.819 + 0.089 0.961 + 0.025 0.882 4+ 0.084
GCN 0.526 + 0.069 0.499 + 0.074 0.880 + 0.019 0.535 £+ 0.106
GAT 0.873 4+ 0.057 0.876 4+ 0.055 0.968 4+ 0.015 0.889 + 0.053
GraphHeat 0.881 + 0.081 0.878 4+ 0.095 0.970 £+ 0.020 0.877 £+ 0.114
GDC 0.893 4+ 0.108 0.875 + 0.151 0.974 4+ 0.025 0.915 £+ 0.077
Ours (global t) | 0.911 + 0.072 0.912 4+ 0.085 0.977 £+ 0.017 0.911 + 0.085
Ours (local t) |0.916 + 0.078 | 0.912 + 0.093 | 0.979 + 0.019 | 0.914 + 0.099
FDG SVM 0.853 4+ 0.044 0.829 + 0.053 0.964 + 0.011 0.919 + 0.029
GCN 0.511 4+ 0.066 0.474 4+ 0.088 0.876 4+ 0.017 0.535 4+ 0.108
GAT 0.678 £ 0.089 0.673 4+ 0.102 0.919 £+ 0.024 0.685 £+ 0.105
GraphHeat 0.885 4+ 0.065 0.893 £+ 0.067 0.971 4+ 0.016 0.902 £+ 0.065
GDC 0.923 4+ 0.089 0.923 + 0.104 0.980 + 0.024 0.949 £ 0.052
Ours (global t) | 0.928 + 0.067 0.931 4+ 0.078 0.982 £+ 0.017 0.945 £ 0.050
Ours (local t) | 0.960 + 0.028 | 0.963 + 0.031 | 0.990 + 0.007 | 0.965 + 0.028
All Imaging Features | SVM 0.935 4+ 0.042 0.917 4+ 0.048 0.985 4+ 0.010 0.953 4+ 0.037
GCN 0.556 + 0.074 0.537 £+ 0.065 0.888 + 0.018 0.562 £+ 0.126
GAT 0.726 + 0.073 0.710 4+ 0.070 0.932 4+ 0.019 0.746 £+ 0.077
GraphHeat 0.923 4+ 0.047 0.923 + 0.050 0.980 + 0.012 0.931 £ 0.043
GDC 0.930 + 0.066 0.930 4+ 0.073 0.983 4+ 0.016 0.945 £+ 0.052
Ours (global t) | 0.933 £ 0.056 0.933 4+ 0.057 0.983 £+ 0.015 0.945 £+ 0.044

Ours (local t)

0.953 £ 0.032

0.955 £+ 0.035

0.988 £ 0.008

0.957 £ 0.029
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Setup. We trained a two-layer graph convolution model with 16 hidden units,
and used a rectified linear unit (ReLU) for the activation function. 1) was a two-
level linear layers, and dropout with predefined rate for each model. Weights were
initialized with Xavier initialization [8] and trained with Adam optimizer [12] at
the learning rate of 0.01. The « was chosen as either 0.1 or 0.01. We used the
kernel K(L, s) as Heat kernel defined in Eq. (5). Heat kernel’s initial scale was
s = 2 for both global and local models, and heat kernel values were thresholded
at < le — 5. Regularization A was 1. 10-fold cross-validation (CV) was used and
accuracy /precision/specificity /sensitivity in average were computed for evalua-
tion. One-vs-rest scheme was used to compute the evaluation metrics.

Support Vector Machine (SVM) as well as recent GNN models such as
GCN [13], GAT [22], GraphHeat [25], and GDC [14] were adopted as the baseline
models. Each baseline was set up and trained at our best effort to obtain feasible
outcomes for fair comparisons. More details are given in the supplementary.

Quantitative Results. All results are reported in Table 2 at a glance. It shows
that our models (training both global and local s) empirically outperform in all
experiments except the recall of classification with S-amyloid. The highest accu-
racy of 96% in classifying the 5 classes was achieved with the metabolism (FDG)
on the structural network, which is known to be an effective biomarker for char-
acterizing early AD. The standard deviation on all evaluation measures stayed
low across the 10-folds addressing our models’ stability. Especially comparing
the results from GraphHeat and our models proves that training on the scale
definitely improves the results where the scale (hyper-)parameter for the Graph-
Heat was used as the initialization for our models. As the sample-size was small,
SVM worked efficiently, and the GNN models other than GCN showed good per-
formance; this may be because these GNN models extract weighted adjacency
matrix but binary adjacency matrix (thresholded from the brain network) was
used for the GCN. Adopting all features was mostly better but underperformed
FDG measure with training with local scale. This may be because cortical thick-
ness is not a suitable biomarker to discriminate very early stages of AD.

(K5 TN SRS
Inner (5 ? ,,j) g’? '

Fig. 3. A visualization of learned scales on the right hemisphere of a brain and localized
ROISs. Left: initial scale (s =2), Middle: globally trained scale (s =1.59), Right: locally
trained scales, Bottom: Region of interests having lower scale than 1 in the local model.
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Qualitative Results. In Fig. 3, we visualize the initial scale (s = 2 for Graph-
Heat), globally trained scale (s = 1.586), and adaptively trained scale for each
ROIL. The ROIs with small scales denote that it is independent: they do not
require node aggregation from large neighborhoods to improve the AD classifi-
cation. Table in Fig. 3 shows those ROIs with the trained s < 1. Interestingly,
middle-anterior cingulate gyrus and sulcus from both left and right hemispheres
showed the smallest scales (0.171 and 0.207) demonstrating the highest locality.
It is responsible for cognitive and executive functions reported in [10,21] to be
AD-specific. Other ROIs with low scales such as temporal lingual gyrus, inferior
temporal and post central regions are also consistently found in preclinical AD
[17,18,23], which demonstrate that these were the key ROIs in discriminating
even early stages of Alzheimer’s disease in our model.

6 Conclusion

In this paper, we proposed a novel model that flexibly learns individual node-wise
scales in a brain network to adaptively aggregate information from neighbor-
hoods. The developed model lets one identify which ROIs in the brain behave
locally (i.e., independently) on the brain network structure to predict global
diagnostic labels. We have derived a rigorous formulation of the scale such that
it can be trained via gradient-based method, and validated that our model can
accurately classify AD-specific labels of brain networks and detect key ROIs
corroborated by other AD literature.
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