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ABSTRACT
Stacking excessive layers in DNN results in highly under-

determined system when training samples are limited, which
is very common in medical applications. In this regard, we
present a framework capable of deriving an efficient high-
dimensional space with reasonable increase in model size.
This is done by utilizing a transform (i.e., convolution) that
leverages scale-space theory with covariance structure. The
overall model trains on this transform together with a down-
stream classifier (i.e., Fully Connected layer) to capture the
optimal multi-scale representation of the original data which
corresponds to task-specific components in a dual space.
Experiments on neuroimaging measures from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study show that
our model performs better and converges faster than con-
ventional models even when the model size is significantly
reduced. The trained model is made interpretable using gra-
dient information over the multi-scale transform to delineate
personalized AD-specific regions in the brain.

1. INTRODUCTION
Literature in the past decades clearly demonstrates that Ar-
tificial Neural Network (ANN) has brought significant im-
provements in various prediction tasks for image data [1, 2].
However, it is also shown that they often require unprece-
dentedly large amount of data when the ANNs are deeply
stacked to learn highly non-linear functions in a data-driven
manner [3, 4]. Such an issue limits the use of powerful ANN
methods for medical image analyses where sample sizes are
limited due to several difficulties in data acquisition [5].

This critical issue is caused from the intrinsic architec-
ture of ANN: the model becomes too flexible and complex
even with only a few stacked hidden layers such that rely-
ing solely on the large-scale data is inevitable. Therefore, the
deeply stacked ANNs, i.e., Deep Learning (DL) approaches,
are often used as a black box without much understanding of
the behavior mechanism. Several tries [6, 7] have effectively
identified on which variables the model cares to come up with
a specific decision, e.g., Class Activation Map (CAM) [8]
and Grad-CAM [9], but such delineations come from post-
hoc analysis of a trained model for a specific target task.

Fig. 1: Overall scheme of our multi-scale learning network. Input
X is transformed to a high-dimensional space with kernels g(s) and
Principal Components U (i.e., convolution) and fed to a downstream
classifier (solid line). The S and classifier are trained to obtain the
optimal task-specific multi-scale representation (dashed line).

Essentially, what DL models learn is a transformation of
the data into a latent space where the transformed represen-
tation is optimized for a target task [10]. Most of the DL ap-
proaches learn this transform in a non-parametric data-driven
manner that results in estimating exhaustive parameters. In
this regime, we propose to utilize parametric kernels (i.e., fil-
ter) as in wavelet transform [11], which is formulated as band-
pass filtering in the Fourier space (i.e., frequency space). The
bottleneck is that typical data (e.g., data matrix) are not de-
fined in time and there is no notion of order of variables, and
we tackle this issue using the covariance structure. Lever-
aging the transform in [12] which defines multi-scale repre-
sentations using parametric kernels in the space spanned by
eigenvectors of a covariance matrix, we design a novel neural
network that trains on the “scales” of filters instead of learning
the kernel itself. It learns the optimal transform by a simple
convolutional filtering, yielding a suitable multi-scale repre-
sentation for a target task such as classification.

To this end, our work brings the following contributions:
1) we construct a neural network architecture that learns a
multi-scale representation of tabular data via its covariance
structure, 2) our model is light and trains efficiently even with
small number of samples, 3) the proposed model is validated
on various imaging measures from Alzheimer’s Disease Neu-
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roimaging Initiative (ADNI) study for classification of diag-
nostic labels for Alzheimer’s Disease (AD). The experiments
on region-wise cortical thickness from magnetic resonance
image (MRI) and tau from positron emission tomography
(PET) show that our model with a simple convolution layer
can distinguish AD-related groups with high precision out-
performing conventional ANN with similar architecture.

2. METHODS
As introduced in Fig. 1, we construct an efficient ANN utiliz-
ing a transform with parametric kernels summarized by scales
and train on the scales only.

2.1. Prelim: Covariance-based Multi-scale Transform
Let X ∈ Rp×n be a standardized (zero-mean) feature ma-
trix with n samples with p-dimensional feature. Its covari-
ance matrix Σp×p = 1

nXXT shows how each variable is
related to each other. Because a covariance matrix is real
and symmetric, it has a complete set of orthonormal eigen-
vectors U = [u1|u2|...|up] and corresponding positive defi-
nite eigenvalues 0 < λ1 ≤ ... ≤ λp. These eigenvectors,
known as Principal Components (PC), define an orthonormal
subspace where X can be projected onto with minimal loss
of information [13]. Using U , X can be transformed as a
signal X̂ = UTX in a dual space (i.e., an analogue of the
frequency space), where an eigenvector that corresponds to a
larger eigenvalue captures components of X with high varia-
tion. As in conventional frequency analysis, one can apply a
filter g(·) on X̂ as g(Λ)X̂ where Λ = diag(λ1, ..., λp). When
the g(·) is a band-pass filter of a specific scale s, the formula-
tion becomes a Wavelet-like transform with coefficients

CX(s) = Ug(sΛ)UTX (1)

that yields a multi-resolution representation of X on the co-
variance structure of Σ. This transform was introduced as
Covariance-based Wavelet-like (COVLET) transform in [12].

2.2. Learning Adaptive Kernel with Scales
Given a set of positive and trainable scales S = [s1, s2, ..., sJ ]
where J = |S|, each si yields an embedding of X as
CX(si) = Ug(siΛ)U

TX . With S ∈ RJ and X ∈ Rp×n,
a set of embeddings is obtained and concatenated together
as E = [CX(s1), CX(s2), ..., CX(sJ)] ∈ R(J×p)×n which
is a mapping of the X onto a higher-dimensional space. To
capture target task-relevant frequency components, the S is
trained to minimize a task-specific loss function, e.g., cross-
entropy for classification.

If the filter g(·) in (1) is differentiable with respect to si,
then the representation from (1) can be optimized according
to a task-specific loss Ltask. This is because the derivative
∂Ltask

∂si
can be achieved via chain rule as

∂Ltask

∂si
=

∂Ltask

∂CX(si)

∂CX(si)

∂g(siΛ)

∂g(siΛ)

∂siΛ

∂siΛ

∂si
(2)

=
∂Ltask

∂CX(si)

∂CX(si)

∂g(siΛ)
g′(siΛ)Λ. (3)

Eq. (3) says that the loss can be back-propagated via a gradi-
ent descent method throughout the neural network to update
CX(si) if g′(·) exists. Such optimization achieves the opti-
mal si that corresponds to a specific scale of the band-pass
filter. Learning multi-variate S yields the optimal multi-scale
representation CX(si), i ∈ {1, · · · , J} of X .

To make use of all CX(si) in downstream task, we con-
catenated these multi-scale representations into E. Because
E is a linear transform of X , an activation function σ is re-
quired to make our network non-linear toward X as σ(E).
We feed this non-linear multi-scale representation σ(E) to
classifier (i.e., fully connected layer with weights W ) at the
end, which produces a class-wise prediction ŷ. The overall
architecture trains on W and S to minimize multi-class cross-
entropy between the ŷ and the ground truth y.

Model Interpretation. When a sample is fed to a trained
model, with a back-propagation of the model’s prediction (i.e.
class label), gradients are computed toward every layer’s in-
put. Considering each gradient as an importance measure of
corresponding input in the layer, weighted combination with
layer’s input followed by Rectified Linear Unit (ReLU) tells
us which variable is related to the model’s prediction, and this
is known as Grad-CAM [9]. In our framework, Grad-CAM
can be obtained for every multi-scaled representation CX(si).
To figure out the ROI-wise influence across the scales, the
Grad-CAM is averaged across the scale to yield a measure M
for k-th input variable on c-th class as

Mc(k) =

J∑
i=1

ReLU(
∂ŷc

∂CXk (si)
· CXk (si)) (4)

where ŷc is a class-wise prediction and CXk
(si) denotes em-

bedding of k-th input variable with si. The M identifies ROI-
wise effect of a specific label for each subject.

3. EXPERIMENTAL RESULTS
In this section, we perform two experiments on ADNI data to
validate the performance and efficiency of our method.

3.1. ADNI Dataset
For the experiments, we used MRI and PET imaging mea-
sures from the public ADNI study. The images were regis-
tered to Destrieux atlas [14] to obtain region-wise measures
from 148 cortical regions and 12 sub-cortical regions, i.e.,
total of 160 regions. Grey matter biomarkers (i.e., cortical
thickness from 148 cortical regions and grey matter volume
from 12 sub-cortical regions) were derived from the MRI, and
tau measure was obtained from the PET scans. The dataset
consists of 4 AD-specific progressive groups: Cognitively

Table 1: Demographics of ADNI dataset
Biomarker Category CN EMCI LMCI AD

Cortical
Thickness

# of Subjects 844 490 250 240
Age (mean, std) 74.1±8.1 71.3±7.5 72.0±7.7 74.1±8.1
Gender (M/F) 490/354 282/208 148/102 149/91

Tau
protein

# of Subjects 237 186 105 85
Age (mean, std) 72.0±5.9 70.1±7.0 70.6±7.7 72.6±8.0
Gender (M/F) 119/118 110/76 61/44 43/42
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Table 2: Performance comparison of baselines and our model (with 16 scales) on each two classification tasks from two
different biomarkers. The number of parameters in each model is reported together (except Linear SVM).

Biomarker Methods CN vs. EMCI CN vs. EMCI vs. LMCI vs. AD
# Params Accuracy Recall Precision # Params Accuracy Recall Precision

Cortical
Thickness

Linear SVM - 0.738±0.026 0.734±0.031 0.725±0.027 - 0.742±0.017 0.726±0.022 0.739±0.027
1-MLP 0.3K 0.738±0.023 0.728±0.034 0.723±0.027 0.6K 0.683±0.014 0.655±0.018 0.669±0.013

2-MLPR 5.2K 0.759±0.019 0.754±0.029 0.745±0.021 10.5K 0.692±0.011 0.672±0.012 0.679±0.017
2-MLPI 25.9K 0.765±0.045 0.759±0.053 0.750±0.048 26.2K 0.702±0.013 0.681±0.010 0.691±0.016

Ours (J=16) 5.1K 0.858±0.029 0.849±0.036 0.846±0.030 10.2K 0.800±0.021 0.788±0.035 0.785±0.030

Tau
Protein

Linear SVM - 0.615±0.015 0.593±0.017 0.613±0.023 - 0.515±0.029 0.458±0.033 0.575±0.052
1-MLP 0.3K 0.608±0.032 0.589±0.034 0.600±0.036 0.6K 0.504±0.020 0.479±0.027 0.519±0.035

2-MLPR 5.2K 0.648±0.030 0.635±0.033 0.642±0.034 10.5K 0.540±0.019 0.514±0.020 0.563±0.047
2-MLPI 25.9K 0.653±0.032 0.642±0.036 0.648±0.035 26.2K 0.556±0.012 0.521±0.016 0.590±0.018

Ours (J=16) 5.1K 0.726±0.060 0.721±0.064 0.723±0.063 10.2K 0.577±0.016 0.553±0.016 0.585±0.046

Normal (CN), Early Mild Cognitive Impairment (EMCI),
Late Mild Cognitive Impairment (LMCI) and Alzheimer’s
Disease (AD). The demographics of ADNI dataset is summa-
rized in Table 1.

3.2. Experiment Setup
Group Comparisons. In our experiment, we designed tasks
of 2-way (CN vs. EMCI) and 4-way (CN vs. EMCI vs. LMCI
vs. AD) classifications to validate qualitative and quantitative
performances of the proposed method.
Baselines. We adopted four baseline methods: 1) Linear Sup-
port Vector Machine (Linear SVM), 2) Multi-Layer Percep-
tron with one layer (1-MLP) and 3,4) with two layers (2-
MLPI , 2-MLPR). For the 2-MLP, we tried two cases where
the number of hidden nodes were consistent as the input di-
mension (2-MLPI ) or reduced to have similar number of pa-
rameters with our methods when J=16 (2-MLPR).
Evaluation. For unbiased and fair comparison, we carefully
tuned baseline methods and used 5-fold cross validation (CV)
in every experiment. For evaluation, we used mean accuracy,
precision and recall across the CV. Precision and recall were
averaged with equal importance for each class.
Training. Due to the imbalance in class labels, we oversam-
pled training dataset using ADASYN [15]. For our method,
we tried various number of kernels J ∈ [2, 64], with each
scale initialized uniformly between [0.1,10] in log10-space.
Performance analysis on the J is given in Section 3.5. Net-
work weights were randomly initialized with He initializa-
tion [16] and trained with AdamW [17] optimizer including
both classifier W and scale parameters S. Learning rates for
W and S were set separately within [0.001, 0.03], but their
effects were marginal. To prevent overfitting, weight decay at
0.01 was adopted for every linear layer. Spline kernel in [18]
was used for g(·) as it behaves as a smooth band-pass filter.

3.3. Performance Evaluation
Our model is evaluated on two classification tasks as in
Section 3.2 to demonstrate that it can classify different AD-
related classes. For every experiment, we reported perfor-
mances in mean and standard deviation from 5-fold CV and
they are summarized in Table 2. In every experiment, stack-
ing one more layer on 1-MLP, i.e., 2-MLPR and 2-MLPI ,
increased the performance where that of 2-MLPI was better

than 2-MLPR possibly due to larger model size. On top of the
MLPs, our model with J=16 outperformed them with less or
similar model sizes.

3.3.1. 2-way Classification: CN vs. EMCI
We first demonstrate the performance of our model together
with baselines on a binary classification task where CN and
EMCI groups are distinguished. This is not an easy problem
as the variation caused by AD in the preclinical stage is subtle.
Cortical Thickness. Linear SVM and single layer classifier
(1-MLP) achieved almost 74% in accuracy. Stacking one
more linear layer (2-MLPR, 2-MLPI ), accuracy increased
only ∼2% even though model size increased drastically.
However, when the convolution layer of our method with
J=16 was added to the 1-MLP, it gained ∼12% in accu-
racy even with significantly less number parameters than
2-MLPI . Compared to 2-MLPR with comparable model size,
our model with J=16 outperformed by ∼10% in accuracy.
Tau Protein. We observed similar accuracy patterns in Tau
as in the cortical thickness analysis. While 2-layered clas-
sifiers (2-MLPR, 2-MLPI ) achieved nearly 4% increase in
accuracy compared to single layer classifier, our model with
J=16 even outperformed 2-layered classifiers by 7%.

3.3.2. 4-way Classification: CN vs. EMCI vs. LMCI vs. AD
We extend the experiment to validate our model with a more
difficult case. Here, the expected accuracy with a random
guess is only 25% and guessing with the majority class (i.e.,
CN) is 46.8% for cortical thickness and 38.7% for tau.
Cortical Thickness. Classifier with MLPs (1-MLP, 2-MLPR,
2-MLPI ) achieved ∼70% in accuracy even worse than Linear
SVM which reached 74% in accuracy. Even in this compli-
cated task, our model with J=16 yielded 80% in accuracy
surpassing other 2-MLP baselines over 10% with less number
of parameters. Precision and recall were around 0.78 demon-
strating that the model worked reasonably well.
Tau Protein. Linear SVM and 1-MLP achieved only about
50% in accuracy. While 2-MLPR and 2-MLPI outperformed
1-MLP in the accuracy by 4 to 5%, Ours (J=16) surpassed
them. Overall performances were not as good as in cortical
thickness. This may be because tau measures vary in the early
stages of AD [23], which may not be a suitable biomarker to
characterize later stages of MCI and AD.
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Fig. 2: Visualization of M on a random AD-sample that identifies personalized AD-specific ROIs. Various AD-specific ROIs are identified as
in [19, 20, 21] including hippocampus, thalamus, amygdala and several temporal regions. Drawings were generated using BrainPainter [22].

3.4. Interpretation from Trained Model
In Fig. 2, we visualize Grad-CAM result using Eq. (4) from
Section 2.2. This result was derived by inputting cortical
thickness from a randomly selected AD sample into our pre-
trained model with 4-way classification setting. It delineates
which ROIs the model considered importantly to classify it as
an AD sample, which include superior temporal, hippocam-
pus, thalamus, amygdala and many others which are very
well-known to be AD-specific in other literature [19, 20, 21].

3.5. Discussions on Model Behavior
Convergence. In Table 2, our proposed model has less num-
ber of parameters than stacking another linear layer as in 2-
MLPI . To show fast convergence of our model, we compared
the convergence between ours and 2-MLPI with the same ob-
jective function. The test accuracy on 4-way (CN vs. EMCI
vs. LMCI vs. AD) classification with 5-fold CV is shown in
Fig. 3 using the same learning rate set for both models.

As shown in Fig. 3, with same learning rates of 0.1 or
0.01, our proposed model converged faster than 2-MLPI . To
reach the test accuracy of 0.6, our model required 110 and 50
epochs for 0.01 and 0.1 respectively. However, 2-MLPI with
learning rate of 0.01 required 430 epochs and cannot even
reach when learning rate was 0.1 showing unstable pattern
across 5 folds with very high variations.

Fig. 3: Comparisons of mean test accuracy from our model and 2-
MLPI on 4-way classification with cortical thickness. Our model
reaches 0.6 significantly faster than 2-MLPI . Measures are com-
puted from 5-fold CV (shaded areas are range of the test accuracy).

Effect of Number of Scales. In Section 2.2, we hypothe-
sized that each kernel is capable of capturing important fre-
quency components. To capture various task-specific com-
ponents with kernels, we need sufficient number of scales.
Fig. 4 shows the test accuracy with respect to the number of

scales. For each experiment, hyperparameters were tuned to
obtain the best results. The test accuracy kept increasing with
respect to the number of scales until J=16 for both cortical
thickness and tau. After J=16, the performance remained
the same or degraded. This may be because the data are being
mapped to too high-dimensional space with the increase of J .
Effect of Training on Scale. To show that training on the
scales improves the model performance, we compared the re-
sults of training the same model with and without training
on S. As shown in Fig. 4, the classification results on both
biomarkers improved with the training of scales. However,
as more scales were adopted, effect of training on scales de-
creased. This may be because the COVLET transform in
many scales sufficiently captures all the necessary compo-
nents for classifying AD-specific groups from the beginning.
One may argue that simply adopting more scales can replace
the training of scales, but such an approach will significantly
increase the dimension of a latent space (i.e., curse of dimen-
sionality) and the number of model parameters.

Fig. 4: Mean test accuracy w.r.t. scale in our model on 4-way classi-
fication using cortical thickness (5-fold CV). Test accuracy improves
with scale training (solid line) over without training (dashed line).

4. CONCLUSION

We proposed an efficiently trainable framework with small
sample-sized datasets by utilizing trainable parametric ker-
nels and sample covariance structure. The kernels are defined
as band-pass filters in a dual space spanned by eigenvectors
of the covariance matrix, whose scales are trained with a task-
specific loss. The training process achieves multi-scale rep-
resentation that captures task-specific components in the dual
space. Our model is validated on classifications of diagnostic
labels of AD (and preclinical AD) for performance and con-
vergence, and identifies personalized AD-relevant ROIs sup-
ported by other literature.
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